Science.gov

Sample records for 3d t1-weighted mri

  1. Application of contrast-enhanced T1-weighted MRI-based 3D reconstruction of the dural tail sign in meningioma resection.

    PubMed

    You, Binsheng; Cheng, Yanhao; Zhang, Jian; Song, Qimin; Dai, Chao; Heng, Xueyuan; Fei, Chang

    2016-07-01

    OBJECT The goal of this study was to investigate the significance of contrast-enhanced T1-weighted (T1W) MRI-based 3D reconstruction of dural tail sign (DTS) in meningioma resection. METHODS Between May 2013 and August 2014, 18 cases of convexity and parasagittal meningiomas showing DTS on contrast-enhanced T1W MRI were selected. Contrast-enhanced T1W MRI-based 3D reconstruction of DTS was conducted before surgical treatment. The vertical and anteroposterior diameters of DTS on the contrast-enhanced T1W MR images and 3D reconstruction images were measured and compared. Surgical incisions were designed by referring to the 3D reconstruction and MR images, and then the efficiency of the 2 methods was evaluated with assistance of neuronavigation. RESULTS Three-dimensional reconstruction of DTS can reveal its overall picture. In most cases, the DTS around the tumor is uneven, whereas the DTS around the dural vessels presents longer extensions. There was no significant difference (p > 0.05) between the vertical and anteroposterior diameters of DTS measured on the contrast-enhanced T1W MR and 3D reconstruction images. The 3D images of DTS were more intuitive, and the overall picture of DTS could be revealed in 1 image, which made it easier to design the incision than by using the MR images. Meanwhile, assessment showed that the incisions designed using 3D images were more accurate than those designed using MR images (ridit analysis by SAS, F = 7.95; p = 0.008). Pathological examination showed that 34 dural specimens (except 2 specimens from 1 tumor) displayed tumor invasion. The distance of tumor cell invasion was 1.0-21.6 mm (5.4 ± 4.41 mm [mean ± SD]). Tumor cell invasion was not observed at the dural resection margin in all 36 specimens. CONCLUSIONS Contrast-enhanced T1W MRI-based 3D reconstruction can intuitively and accurately reveal the size and shape of DTS, and thus provides guidance for designing meningioma incisions. PMID:26654184

  2. A study on the flip angle for an optimal T1-weighted image based on the 3D-THRIVE MRI technique: Focusing on the detection of a hepatocellular carcinoma (HCC)

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan; Kim, Young-Jae

    2014-04-01

    This study examined the optimal flip angle (FA) for a T1-weighted image in the detection of a hepatocellular carcinoma (HCC). A 3D-T1-weighted high-resolution isotropic volume examination (THRIVE) technique was used to determine the dependence of the signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) on the change in FA. This study targeted 40 liver cancer patients (25 men and 15 women aged 50 to 70 years with a mean age of 60.32 ± 6.2 years) who visited this hospital to undergo an abdominal MRI examination from January to June 2013. A 3.0 Tesla MRI machine (Philips, Medical System, Achieva) and a MRI receiver coil for data reception with a 16-channel multicoil were used in this study. The THRIVE (repetition time (TR): 8.1 ms, echo time (TE): 3.7 ms, matrix: 172 × 172, slice thickness: 4 mm, gap: 2 mm, field of view (FOV): 350 mm, and band width (BW): 380.1 Hz) technique was applied as a pulse sequence. The time required for the examination was 19 seconds, and the breath-hold technique was used. Axial images were obtained at five FAs: 5, 10, 15, 20 and 25°. The signal intensities of the liver, the lesion and the background noise were measured based on the acquired images before the SNR and the CNR were calculated. To evaluate the image at the FA, we used SPSS for Windows ver. 17.0 to conduct a one-way ANOVA test. A Bonferroni test was conducted as a post-hoc test. The SNRs of the hemorrhagic HCC in the 3D-THRIVE technique were 35.50 ± 4.12, 97.00 ± 10.24, 66.09 ± 7.29, 53.84 ± 5.43, and 42.92 ± 5.11 for FAs of 5, 10, 15, 20, and 25°, respectively (p = 0.0430), whereas the corresponding CNRs were 30.50 ± 3.84, 43.00 ± 5.42, 36.54 ± 4.09, 32.30 ± 2.79, and 31.69 ± 3.21 (p = 0.0003). At a small FA of 10, the SNR and the CNR showed the highest values. As the FA was increased, the SNR and the CNR values showed a decreasing tendency. In conclusion, the optimal T1-weighted image FA should be set to 10° to detect a HCC by using the 3D

  3. Investigation of cyano-bridged coordination nanoparticles Gd(3+)/[Fe(CN)6](3-)/D-mannitol as T1-weighted MRI contrast agents.

    PubMed

    Perrier, M; Gallud, A; Ayadi, A; Kennouche, S; Porredon, C; Gary-Bobo, M; Larionova, J; Goze-Bac, Ch; Zanca, M; Garcia, M; Basile, I; Long, J; de Lapuente, J; Borras, M; Guari, Y

    2015-07-28

    Cyano-bridged Gd(3+)/[Fe(CN)6](3-) coordination polymer nanoparticles of 3-4 nm stabilized with D-mannitol presenting a high r1 relaxivity value of 11.4 mM(-1) s(-1) were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. PMID:25967733

  4. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3-/d-mannitol as T1-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.

    2015-07-01

    Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j

  5. Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem.

    PubMed

    El Azami, Meriem; Hammers, Alexander; Jung, Julien; Costes, Nicolas; Bouet, Romain; Lartizien, Carole

    2016-01-01

    Pattern recognition methods, such as computer aided diagnosis (CAD) systems, can help clinicians in their diagnosis by marking abnormal regions in an image. We propose a machine learning system based on a one-class support vector machine (OC-SVM) classifier for the detection of abnormalities in magnetic resonance images (MRI) applied to patients with intractable epilepsy. The system learns the features associated with healthy control subjects, allowing a voxelwise assessment of the deviation of a test subject pattern from the learned patterns. While any number of various features can be chosen and learned, here we focus on two texture parameters capturing image patterns associated with epileptogenic lesions on T1-weighted brain MRI e.g. heterotopia and blurred junction between the grey and white matter. The CAD output consists of patient specific 3D maps locating clusters of suspicious voxels ranked by size and degree of deviation from control patterns. System performance was evaluated using realistic simulations of challenging detection tasks as well as clinical data of 77 healthy control subjects and of eleven patients (13 lesions). It was compared to that of a mass univariate statistical parametric mapping (SPM) single subject analysis based on the same set of features. For all simulations, OC-SVM yielded significantly higher values of the area under the ROC curve (AUC) and higher sensitivity at low false positive rate. For the clinical data, both OC-SVM and SPM successfully detected 100% of the lesions in the MRI positive cases (3/13). For the MRI negative cases (10/13), OC-SVM detected 7/10 lesions and SPM analysis detected 5/10 lesions. In all experiments, OC-SVM produced fewer false positive detections than SPM. OC-SVM may be a versatile system for unbiased lesion detection. PMID:27603778

  6. [Early Detection of Manganese Intoxication Based on Occupational History and T1-weighted MRI].

    PubMed

    Fukutake, Toshio; Yano, Hajime; Kushida, Ryutaro; Sunada, Yoshihide

    2016-02-01

    Manganese regulates many enzymes and is essential for normal cell function. Chronic manganese intoxication has an insidious and progressive course terminating to atypical parkinsonism with little therapeutic efficacy. For subjects with chronic manganese exposure such as welders, manganese intoxication can be detected early based on the presence of hyperintensity in the globus pallidus on T(1)-weighted MRI and abnormally high urinary excretion of manganese with a chelating agent even in cases of normal serum/urine level of manganese. PMID:26873238

  7. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound

    NASA Astrophysics Data System (ADS)

    Wintermark, Max; Tustison, Nicholas J.; Elias, William J.; Patrie, James T.; Xin, Wenjun; Demartini, Nicholas; Eames, Matt; Sumer, Suna; Lau, Benison; Cupino, Alan; Snell, John; Hananel, Arik; Kassell, Neal; Aubry, Jean-Francois

    2014-07-01

    Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called ‘virtual CT’ to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27) p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum

  8. On the fallacy of quantitative segmentation for T1-weighted MRI

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.

  9. On the Fallacy of Quantitative Segmentation for T1-Weighted MRI

    PubMed Central

    Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.

    2016-01-01

    T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure “similar” contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply “T1-weighted”. Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but “normal study-to-study variation” in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling. PMID:27127328

  10. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  11. Fast pseudo-CT synthesis from MRI T1-weighted images using a patch-based approach

    NASA Astrophysics Data System (ADS)

    Torrado-Carvajal, A.; Alcain, E.; Montemayor, A. S.; Herraiz, J. L.; Rozenholc, Y.; Hernandez-Tamames, J. A.; Adalsteinsson, E.; Wald, L. L.; Malpica, N.

    2015-12-01

    MRI-based bone segmentation is a challenging task because bone tissue and air both present low signal intensity on MR images, making it difficult to accurately delimit the bone boundaries. However, estimating bone from MRI images may allow decreasing patient ionization by removing the need of patient-specific CT acquisition in several applications. In this work, we propose a fast GPU-based pseudo-CT generation from a patient-specific MRI T1-weighted image using a group-wise patch-based approach and a limited MRI and CT atlas dictionary. For every voxel in the input MR image, we compute the similarity of the patch containing that voxel with the patches of all MR images in the database, which lie in a certain anatomical neighborhood. The pseudo-CT is obtained as a local weighted linear combination of the CT values of the corresponding patches. The algorithm was implemented in a GPU. The use of patch-based techniques allows a fast and accurate estimation of the pseudo-CT from MR T1-weighted images, with a similar accuracy as the patient-specific CT. The experimental normalized cross correlation reaches 0.9324±0.0048 for an atlas with 10 datasets. The high NCC values indicate how our method can accurately approximate the patient-specific CT. The GPU implementation led to a substantial decrease in computational time making the approach suitable for real applications.

  12. New Algorithm for Extracting Motion Information from PROPELLER Data and Head Motion Correction in T1-Weighted MRI.

    PubMed

    Feng, Yanqiu; Chen, Wufan

    2005-01-01

    PROPELLER (Periodically Rotated Overlapping ParallEl Lines with Enhanced Reconstruction) MRI, proposed by J. G. Pipe [1], offers a novel and effective means for compensating motion. For the reconstruction of PROPLLER data, algorithms to reliably and accurately extract inter-strip motion from data in central overlapped area are crucial to motion artifacts suppression. When implemented on T1-weighted MR data, the reconstruction algorithm, with motion estimated by registration based on maximizing correlation energy in frequency domain (CF), produces images with low quality due to the inaccurate estimation of motion. In this paper, a new algorithm is proposed for motion estimation based on the registration by maximizing mutual information in spatial domain (MIS). Furthermore, the optimization process is initialized by CF algorithm, so the algorithm is abbreviated as CF-MIS algorithm in this paper. With phantom and in vivo MR imaging, the CF-MIS algorithm was shown to be of higher accuracy in rotation estimation than CF algorithm. Consequently, the head motion in T1-weighted PROPELLER MRI was better corrected. PMID:17282454

  13. Evaluation of the partial flip angle spin echo method to improve non-uniformity in T1-weighted imaging with the 3-tesla MRI

    NASA Astrophysics Data System (ADS)

    Watanabe, Youhei; Tsuzaka, Masatoshi; Ishibashi, Kazuto; Sakurai, Yasuo

    2008-03-01

    The higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3T MRI) contributes to an improvement in the spatial and temporal resolution. However, T1-weighted images of the brain obtained by the spin-echo (SE) method using 3T MRI are unsuitable for clinical use because of the inhomogeneity of the radio frequency (RF) field B1 non-uniformity. And it is clear by SE method. In addition, the prolongation of the longitudinal relaxation time (T1) of most tissues leads to a decrease in the T1 contrast. Therefore, many hospitals that utilize 3TMRI use the GRE method instead of the SE method in order to obtain an adequate T1 contrast, as can be obtained using FLASH (fast low angle shot), and high uniformity of images. Further, many studies have been performed to improve the non uniformity using techniques such as spatial presaturation. However, when filters are used, the high intensity of the influence in susceptible regions, signal deficits, and original contrast are lost, and a distortion can be clearly observed when the GRE method is used. Therefore, we obtained the T1-weighted images by using the partial flip angle SE method instead of the GRE method or SE method. We attempted to improve the image non-uniformity by using the partial flip angle SE method. Using this method, we could improve the image uniformity and also realize an adequate T1 contrast. As a result, the uniformity was found to improve by 6% and it became 82.6% at 110°. These results indicate that the use of the partial flip angle SE method is effective for obtaining adequate uniformity in the T1-weighted images of the brain.

  14. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-01

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal. PMID:24005082

  15. Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver.

    PubMed

    Brand, Jonathan F; Furenlid, Lars R; Altbach, Maria I; Galons, Jean-Philippe; Bhattacharyya, Achyut; Sharma, Puneet; Bhattacharyya, Tulshi; Bilgin, Ali; Martin, Diego R

    2016-07-01

    Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver-operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF. PMID:27446971

  16. Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis☆

    PubMed Central

    Yiannakas, Marios C.; Mustafa, Ahmed M.; De Leener, Benjamin; Kearney, Hugh; Tur, Carmen; Altmann, Daniel R.; De Angelis, Floriana; Plantone, Domenico; Ciccarelli, Olga; Miller, David H.; Cohen-Adad, Julien; Gandini Wheeler-Kingshott, Claudia A.M.

    2015-01-01

    Spinal cord (SC) atrophy, i.e. a reduction in the SC cross-sectional area (CSA) over time, can be measured by means of image segmentation using magnetic resonance imaging (MRI). However, segmentation methods have been limited by factors relating to reproducibility or sensitivity to change. The purpose of this study was to evaluate a fully automated SC segmentation method (PropSeg), and compare this to a semi-automated active surface (AS) method, in healthy controls (HC) and people with multiple sclerosis (MS). MRI data from 120 people were retrospectively analysed; 26 HC, 21 with clinically isolated syndrome, 26 relapsing remitting MS, 26 primary and 21 secondary progressive MS. MRI data from 40 people returning after one year were also analysed. CSA measurements were obtained within the cervical SC. Reproducibility of the measurements was assessed using the intraclass correlation coefficient (ICC). A comparison between mean CSA changes obtained with the two methods over time was performed using multivariate structural equation regression models. Associations between CSA measures and clinical scores were investigated using linear regression models. Compared to the AS method, the reproducibility of CSA measurements obtained with PropSeg was high, both in patients and in HC, with ICC > 0.98 in all cases. There was no significant difference between PropSeg and AS in terms of detecting change over time. Furthermore, PropSeg provided measures that correlated with physical disability, similar to the AS method. PropSeg is a time-efficient and reliable segmentation method, which requires no manual intervention, and may facilitate large multi-centre neuroprotective trials in progressive MS. PMID:26793433

  17. MR urography (MRU) of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    PubMed Central

    Roy, C.; Ohana, M.; Host, Ph.; Alemann, G.; Labani, A.; Wattiez, A.; Lang, H.

    2014-01-01

    Objective The goal of this prospective study was to compare the efficiency of two types of MRU after diuretic administration to identify the non-dilated ureter. Methods MR pelvic examinations were performed in 126 patients after receiving furosemide. Each patient underwent in addition to their protocol for context, two types of MRU: 2D T2-weighted FSE (T2w-MRU) and 3D Gd T1-weighted GE (CE-MRU). Four segments were checked for each ureter. For the first part of the analysis, readers evaluated the whole image quality using a four points subjective scale and for the second part, they were asked to score separately each ureteral segment as present or absent. Results 1008 ureteral segments were checked. For the image quality, readers did not find any significant difference (3.8 ± 0.5 vs 3.6 ± 0.7, p value: 0.13) between MRU methods. The interobserver agreement was excellent with a κ correlation coefficient as high as 0.89 for T2w-MRU and 0.92 for CE-MRU, respectively. For the detection of the segments and considering the 9 rotations for the T2W MRU, there were no statistically significant differences between the two groups. Conclusion T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs. PMID:26937423

  18. Effect of iron oxide nanoparticles coating type on the relationship between nanoparticles concentration and signal intensity in inversion recovery T1-weighted MRI

    PubMed Central

    Gharehaghaji, Nahideh; Nazarpoor, Mahmood; Saharkhiz, Hodaiseh

    2015-01-01

    Background: Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are used as blood pool contrast agent for magnetic resonance angiography and perfusion imaging. Our aim in this study was to investigate the effect of the two coating types of iron oxide nanoparticles on the relationship between nanoparticles concentration and signal intensity (SI) in T1-weighted MR images. Methods: Different concentrations of the polyethylene glycol (PEG), and carboxydextran-coated iron oxide nanoparticles were imaged using inversion recovery Turbo-FLASH (Turbo fast low-angle shot) pulse sequence with inversion times (TIs) of 300-900 ms (interval of 100 ms). The maximum non-linear and linear relationship between the corrected SI (after non-uniformity correction) and the concentration of the two coated nanoparticles were calculated in T1-weighted images. Results: The maximum non-linear relationship between the corrected SI and the concentration of the PEG, and carboxydextran-coated nanoparticles were obtained at concentrations of 400 and 200 μmol Fe/L at a TI of 900 ms, respectively. In addition, the maximum linear relationship between the corrected SI and the concentration of the PEG, and carboxydextran-coated nanoparticles (R2=0.99) appeared at 228.184 and 205.654 μmolFe/L with a TI of 300 ms, respectively. Conclusion: The maximum non-linear corrected SI of the carboxydextran-coated nanoparticles was slightly higher than that of the PEG-coated nanoparticles at similar TIs. However, the PEG-coated nanoparticles were better than the carboxydextran-coated nanoparticles as a T1 contrast agent for perfusion measurements. PMID:26478869

  19. T1-Weighted Dynamic Contrast-Enhanced MRI as a Noninvasive Biomarker of Epidermal Growth Factor Receptor vIII Status

    PubMed Central

    Arevalo-Perez, J.; Thomas, A.A.; Kaley, T.; Lyo, J.; Peck, K.K.; Holodny, A.I.; Mellinghoff, I.K.; Shi, W.; Zhang, Z.; Young, R.J.

    2016-01-01

    BACKGROUND AND PURPOSE Epidermal growth factor receptor variant III is a common mutation in glioblastoma, found in approximately 25% of tumors. Epidermal growth factor receptor variant III may accelerate angiogenesis in malignant gliomas. We correlated T1-weighted dynamic contrast-enhanced MR imaging perfusion parameters with epidermal growth factor receptor variant III status. MATERIALS AND METHODS Eighty-two consecutive patients with glioblastoma and known epidermal growth factor receptor variant III status who had dynamic contrast-enhanced MR imaging before surgery were evaluated. Volumes of interest were drawn around the entire enhancing tumor on contrast T1-weighted images and then were transferred onto coregistered dynamic contrast-enhanced MR imaging perfusion maps. Histogram analysis with normalization was performed to determine the relative mean, 75th percentile, and 90th percentile values for plasma volume and contrast transfer coefficient. A Wilcoxon rank sum test was applied to assess the relationship between baseline perfusion parameters and positive epidermal growth factor receptor variant III status. The receiver operating characteristic method was used to select the cutoffs of the dynamic contrast-enhanced MR imaging perfusion parameters. RESULTS Increased relative plasma volume and increased relative contrast transfer coefficient parameters were both significantly associated with positive epidermal growth factor receptor variant III status. For epidermal growth factor receptor variant III–positive tumors, relative plasma volume mean was 9.3 and relative contrast transfer coefficient mean was 6.5; for epidermal growth factor receptor variant III–negative tumors, relative plasma volume mean was 3.6 and relative contrast transfer coefficient mean was 3.7 (relative plasma volume mean, P < .001, and relative contrast transfer coefficient mean, P = .008). The predictive powers of relative plasma volume histogram metrics outperformed those of the

  20. Structure-property relationships in manganese oxide--mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery.

    PubMed

    Chen, Yu; Chen, Hangrong; Zhang, Shengjian; Chen, Feng; Sun, Shikuan; He, Qianjun; Ma, Ming; Wang, Xia; Wu, Huixia; Zhang, Lingxia; Zhang, Linlin; Shi, Jianlin

    2012-03-01

    The extremely low longitudinal relaxivity (r(1)) of manganese oxide has severely impeded their substitution for cytotoxic gadolinium-based contrast agents for safe clinical magnetic resonance imaging (MRI). Here, we report on a synthetic strategy of chemical oxidation/reduction reaction in-situ in mesopores, followed by hydrogen reduction, for the fabrication of non-toxic manganese oxide/MSNs-based MRI-T(1) contrast agents with highly comparable imaging performance to commercial Gd-based agents. This strategy involves a "soft-templating" process to prepare mesoporous silica nanoparticles, in-situ reduction of MnO(4)(-) by the "soft templates" in mesopores and heat treatment under reducing atmosphere, to disperse manganese oxide nanoparticles within mesopores. This special nanostructure combines the merits of nanopores for maximum manganese paramagnetic center accessibility for water molecules for enhanced MRI performance and encapsulation/sustained release/intracellular delivery of drugs. The synthesized manganese oxide/MSNs were successfully assessed as a high performance contrast agent for MRI-T(1) both in intro and in vivo, and meanwhile, was also demonstrated as an effective anti-cancer drug delivery (doxorubicin) vehicle, therefore, a family of manganese-based theranostics was successfully demonstrated based on the manganese oxide/MSNs composite. PMID:22177841

  1. Assessment of synovitis in the osteoarthritic knee: Comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast-enhanced fat-suppressed T1-weighted MRI.

    PubMed

    Fotinos-Hoyer, Amber Kassel; Guermazi, Ali; Jara, Hernán; Eckstein, Felix; Ozonoff, Al; Khard, Hussain; Norbash, Alexander; Bohndorf, Klaus; Roemer, Frank W

    2010-08-01

    Osteoarthritic joints regularly exhibit synovitis, which is ideally assessed on contrast-enhanced MRI. Manual segmentation is the reference standard for volumetric analysis but is labor intensive. The aim was to evaluate alternative semiautomated approaches of targeted thresholding and gaussian deconvolution. Volumetric and semiquantitative synovitis assessment was compared in addition. Thirty-two knees with osteoarthritis were scanned on a 1.5-T system. Synovitis volumes were plotted against each other and distributions fit with linear functions. The relationship between semiquantitative scores and synovitis volumes was assessed using Spearman's correlation coefficient. Semiautomated volume measurement was more time efficient than manual segmentation and showed a high correlation with manual analysis (R(2) = 0.88 and 0.82). Manual segmentation was correlated with summed and with maximum semiquantitative synovitis scores (rho = 0.71 and 0.47). In conclusion, semiautomated analysis provides comparable quantitative results when compared to manual segmentation but is approximately five times more time efficient. Semiquantitative assessment adds anatomic information on synovitis distribution. PMID:20665803

  2. Reduction of Breast Density Following Tamoxifen Treatment Evaluated by 3-D MRI: Preliminary Study

    PubMed Central

    Chen, Jeon-Hor; Chang, Yeun-Chung; Chang, Daniel; Wang, Yi-Ting; Nie, Ke; Chang, Ruey-Feng; Nalcioglu, Orhan; Huang, Chiun-Sheng; Su, Min-Ying

    2010-01-01

    This study analyzed the change of breast density in women receiving tamoxifen treatment using 3-D MRI. Sixteen women were studied. Each woman received breast MRI before and after tamoxifen. The breast and the fibroglandular tissue were segmented using a computer-assisted algorithm, based on T1-weighted images. The fibroglandular tissue volume (FV) and breast volume (BV) were measured and the ratio was calculated as the percent breast density (%BD). The changes in breast volume (ΔBV), fibroglandular tissue volume (ΔFV), and percent density (Δ%BD) between two MRI studies were analyzed and correlated with treatment duration and baseline breast density. The ΔFV showed a reduction in all 16 women. The Δ%BD showed a mean reduction of 5.8%. The reduction of FV was significantly correlated with baseline FV (P<0.001) and treatment duration (P=0.03). The percentage change in FV was correlated with duration (P=0.049). The reduction in %BD was positively correlated with baseline %BD (p=0.02). Women with higher baseline %BD showed more reduction of %BD. 3D MRI may be useful for the measurement of the small changes of ΔFV and Δ%BD after tamoxifen. These changes can potentially be used to correlate with the future reduction of cancer risk. PMID:20832226

  3. 3D MRI Analysis of the Lower Legs of Treated Idiopathic Congenital Talipes Equinovarus (Clubfoot)

    PubMed Central

    Duce, Suzanne L.; D’Alessandro, Mariella; Du, Yimeng; Jagpal, Baljit; Gilbert, Fiona J.; Crichton, Lena; Barker, Simon; Collinson, J. Martin; Miedzybrodzka, Zosia

    2013-01-01

    Background Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls. Methodology/Principal Findings The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12–28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. Conclusions/Significance Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as well as

  4. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems. PMID:23836390

  5. MRI Volume Fusion Based on 3D Shearlet Decompositions.

    PubMed

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  6. MRI Volume Fusion Based on 3D Shearlet Decompositions

    PubMed Central

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  7. Creating 3D visualizations of MRI data: A brief guide

    PubMed Central

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  8. Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-06-01

    To model the true shape of MRI brain images, automatically classified T1-weighted 3D MRI images (gray matter, white matter, cerebrospinal fluid, scalp/bone and background) are utilized for simulation of grayscale data and imaging artifacts. For each class, Gaussian distribution of grayscale values is assumed, and mean and variance are computed from grayscale images. A random generator fills up the class images with Gauss-distributed grayscale values. Since grayscale values of neighboring voxels are not correlated, a Gaussian low-pass filtering is done, preserving class region borders. To simulate anatomical variability, a Gaussian distribution in space with user-defined mean and variance can be added at any user-defined position. Several imaging artifacts can be added: (1) to simulate partial volume effects, every voxel is averaged with neighboring voxels if they have a different class label; (2) a linear or quadratic bias field can be added with user-defined strength and orientation; (3) additional background noise can be added; and (4) artifacts left over after spoiling can be simulated by adding a band with increasing/decreasing grayscale values. With this method, realistic-looking simulated MRI images can be produced to test classification and segmentation algorithms regarding accuracy and robustness even in the presence of artifacts.

  9. Quantification of cervical spine muscle fat: a comparison between T1-weighted and multi-echo gradient echo imaging using a variable projection algorithm (VARPRO)

    PubMed Central

    2013-01-01

    Background Previous data using T1-weighted MRI demonstrated neck muscle fat infiltration (MFI) in patients with poor functional recovery following whiplash. Such findings do not occur in those with milder symptoms of whiplash, chronic non-traumatic neck pain or healthy controls, suggesting traumatic factors play a role. Muscle degeneration could potentially represent a quantifiable marker of poor recovery, but the temporal constraints of running a T1-weighted sequence and performing the subsequent analysis for muscle fat may be a barrier for clinical translation. The purpose of this preliminary study was to evaluate, quantify and compare MFI for the cervical multifidus muscles with T1-weighted imaging and a more rapid quantitative 3D multi-echo gradient echo (GRE) Dixon based method in healthy subjects. Methods 5 asymptomatic participants with no history of neck pain underwent cervical spine MRI with a Siemens 3 Tesla system. The muscle and fat signal intensities on axial spin-echo T1-weighted images were quantitatively classified for the cervical multifidii from C3-C7, bilaterally. Additional axial GRE Dixon based data for fat and water quantification were used for comparison via paired t-tests. Inter-tester reliability for fat and water measures with GRE images were examined using 1) Pearson’s Intra-class correlation coefficient 2) Bland-Altman Plots and 3) Lin’s-Concordance Coefficient. P < 0.05 was used to indicate significance. Results Total mean (SD) MFI (C3-C7) for the multifidii obtained with T1-weighted imaging and GRE were 18.4% (3.3) (range 14-22%) and 18.8% (2.9) (range 15-22%), respectively. The Pearson correlation coefficients for inter-tester reliability on the GRE sequences for the C3-C7 multifidii ranged from .83 - .99, indicating high levels of agreement with segmental MFI measures. Bland-Altman Plots revealed all data points were within 2 SDs and concordance was established between 2-blinded raters, suggesting good agreement between two

  10. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  11. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. PMID:25261742

  12. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    PubMed Central

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  13. Construction of an MRI 3D high resolution sheep brain template.

    PubMed

    Ella, Arsène; Keller, Matthieu

    2015-12-01

    Sheep is a developing animal model used in the field of neurosciences for the study of many behavioral, physiological or pathophysiological mechanisms, including for example, the central control of social behavior, brain injury or neurodegenerative diseases. However, sheep remains an orphan species in the field of magnetic resonance imaging (MRI). Therefore, a mean image (template), resulting of registrations of multiple subject images is needed and currently does not exist. In this study, we: i) computed multimodal high resolution 3D in-vivo sheep brain templates of T1 weighted (T1W) and T2W images, ii) computed gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) prior probability maps using linear and optimized non-linear registrations iii) used prior probability maps to perform the segmentation of a single brain tissues. Computed multimodal sheep brain templates showed to preserve and underline all brain patterns of a single T1W or T2W image, and prior probability maps allowed to improve the segmentation of brain tissues. Finally, we demonstrated that these templates and prior probability maps were able to be portable in other publicly available imaging software and could be used as standardized spaces for multi-institution neuroimaging studies or other neuroscience methods. PMID:26363468

  14. Optimizing T1-weighted imaging of cortical myelin content at 3.0 T.

    PubMed

    Bock, Nicholas A; Hashim, Eyesha; Janik, Rafal; Konyer, Norman B; Weiss, Marcel; Stanisz, Greg J; Turner, Robert; Geyer, Stefan

    2013-01-15

    With increases in the sensitivity and resolution of anatomical MRI for the brain, methods for mapping the organization of the cerebral cortex by imaging its myelin content have emerged. This identifies major sensory and motor regions and could be used in studies of cortical organization, particularly if patterns of myelination can be visualized over the cortical surface robustly in individual subjects. The imaging problem is difficult, however, because of the relative thinness of the cerebral cortex and the low intracortical tissue contrast. In this paper, we optimize the contrast of T(1)-weighted MRI to help better visualize patterns of myelination. We measure a small but statistically significant difference in T(1) of 171 ± 40 ms between cortical regions with low and high myelin contents in the human cortex at 3T, and then perform simulations to choose parameters for an inversion-recovery pulse sequence that utilizes this T(1) difference to increase contrast within the cortex. We show that lengthening the delay between signal acquisition and the next inversion pulse in the sequence increases intracortical contrast more effectively than does image averaging. Using the optimized sequence, we show that major myelinated regions that are relatively thick, such as the primary motor and auditory regions, can be visualized well in individuals at 3T using whole-cortex 3D images made at 1mm isotropic resolution, while thinner regions, such as the primary visual cortex, can be visualized using targeted 3D images made at 0.5mm isotropic resolution. Our findings demonstrate that patterns of myelination can be better visualized in individual subjects when the imaging is optimized to highlight intracortical contrast and can help to pave the way for the creation of matched maps of microanatomy and function in the cortex of living individual humans. PMID:23036446

  15. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.

    PubMed

    Kleesiek, Jens; Urban, Gregor; Hubert, Alexander; Schwarz, Daniel; Maier-Hein, Klaus; Bendszus, Martin; Biller, Armin

    2016-04-01

    Brain extraction from magnetic resonance imaging (MRI) is crucial for many neuroimaging workflows. Current methods demonstrate good results on non-enhanced T1-weighted images, but struggle when confronted with other modalities and pathologically altered tissue. In this paper we present a 3D convolutional deep learning architecture to address these shortcomings. In contrast to existing methods, we are not limited to non-enhanced T1w images. When trained appropriately, our approach handles an arbitrary number of modalities including contrast-enhanced scans. Its applicability to MRI data, comprising four channels: non-enhanced and contrast-enhanced T1w, T2w and FLAIR contrasts, is demonstrated on a challenging clinical data set containing brain tumors (N=53), where our approach significantly outperforms six commonly used tools with a mean Dice score of 95.19. Further, the proposed method at least matches state-of-the-art performance as demonstrated on three publicly available data sets: IBSR, LPBA40 and OASIS, totaling N=135 volumes. For the IBSR (96.32) and LPBA40 (96.96) data set the convolutional neuronal network (CNN) obtains the highest average Dice scores, albeit not being significantly different from the second best performing method. For the OASIS data the second best Dice (95.02) results are achieved, with no statistical difference in comparison to the best performing tool. For all data sets the highest average specificity measures are evaluated, whereas the sensitivity displays about average results. Adjusting the cut-off threshold for generating the binary masks from the CNN's probability output can be used to increase the sensitivity of the method. Of course, this comes at the cost of a decreased specificity and has to be decided application specific. Using an optimized GPU implementation predictions can be achieved in less than one minute. The proposed method may prove useful for large-scale studies and clinical trials. PMID:26808333

  16. Optimized 3D Ultrashort Echo Time Pulmonary MRI

    PubMed Central

    Johnson, Kevin M.; Fain, Sean B.; Schiebler, Mark L.; Nagle, Scott

    2012-01-01

    Purpose To optimize 3D radial ultrashort echo time MRI for high resolution whole-lung imaging. Methods 3D radial ultrashort echo time was implemented on a 3T scanner to investigate the effects of: (1) limited field-of-view excitation, (2) variable density readouts, and (3) radial oversampling. Improvements in noise performance and spatial resolution were assessed through simulation and phantom studies. Their effects on lung and airway visualization in five healthy male human subjects (mean age 32 years) were compared qualitatively through blinded ordinal scoring by two cardiothoracic radiologists using a nonparametric Friedman test (P < 0.05). Relative signal difference between endobronchial air and adjacent lung tissue, normalized to nearby vessel, was used as a surrogate for lung tissue signal. Quantitative measures were compared using the paired Student's t-test (P < 0.05). Finally, clinical feasibility was investigated in a patient with interstitial fibrosis. Results Simulation and phantom studies showed up to 67% improvement in SNR and reduced blurring for short T2* species using all three optimizations. In vivo images showed decreased artifacts and improved lung tissue and airway visualization both qualitatively and quantitatively. Conclusion The use of limited field-of-view excitation, variable readout gradients, and radial oversampling significantly improve the technical quality of 3D radial ultrashort echo time lung images. PMID:23213020

  17. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  18. Comparison of accelerated T1-weighted whole-brain structural-imaging protocols.

    PubMed

    Falkovskiy, Pavel; Brenner, Daniel; Feiweier, Thorsten; Kannengiesser, Stephan; Maréchal, Bénédicte; Kober, Tobias; Roche, Alexis; Thostenson, Kaely; Meuli, Reto; Reyes, Denise; Stoecker, Tony; Bernstein, Matt A; Thiran, Jean-Philippe; Krueger, Gunnar

    2016-01-01

    Imaging in neuroscience, clinical research and pharmaceutical trials often employs the 3D magnetisation-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images with high spatial resolution of the human brain. Typical research and clinical routine MPRAGE protocols with ~1mm isotropic resolution require data acquisition time in the range of 5-10min and often use only moderate two-fold acceleration factor for parallel imaging. Recent advances in MRI hardware and acquisition methodology promise improved leverage of the MR signal and more benign artefact properties in particular when employing increased acceleration factors in clinical routine and research. In this study, we examined four variants of a four-fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and segmented MPRAGE) and compared clinical readings, basic image quality metrics (SNR, CNR), and automated brain tissue segmentation for morphological assessments of brain structures. The results were benchmarked against a widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that served as reference in this study. 22 healthy subjects (age=20-44yrs.) were imaged with all MPRAGE variants in a single session. An experienced reader rated all images of clinically useful image quality. CAIPIRINHA MPRAGE scans were perceived on average to be of identical value for reading as the reference ADNI-2 protocol. SNR and CNR measurements exhibited the theoretically expected performance at the four-fold acceleration. The results of this study demonstrate that the four-fold accelerated protocols introduce systematic biases in the segmentation results of some brain structures compared to the reference ADNI-2 protocol. Furthermore, results suggest that the increased noise levels in the accelerated protocols play an important role in introducing these biases, at least under the present study conditions. PMID:26297848

  19. Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training

    ERIC Educational Resources Information Center

    Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.

    2015-01-01

    A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…

  20. Breast Tissue 3D Segmentation and Visualization on MRI

    PubMed Central

    Cui, Xiangfei; Sun, Feifei

    2013-01-01

    Tissue segmentation and visualization are useful for breast lesion detection and quantitative analysis. In this paper, a 3D segmentation algorithm based on Kernel-based Fuzzy C-Means (KFCM) is proposed to separate the breast MR images into different tissues. Then, an improved volume rendering algorithm based on a new transfer function model is applied to implement 3D breast visualization. Experimental results have been shown visually and have achieved reasonable consistency. PMID:23983676

  1. MRI-guided 3D conformal arc micro-irradiation of a F98 glioblastoma rat model using the Small Animal Radiation Research Platform (SARRP).

    PubMed

    Bolcaen, Julie; Descamps, Benedicte; Deblaere, Karel; Boterberg, Tom; Hallaert, Giorgio; Van den Broecke, Caroline; Decrock, Elke; Vral, Anne; Leybaert, Luc; Vanhove, Christian; Goethals, Ingeborg

    2014-11-01

    Current glioblastoma (GB) small animal models for cranial radiation therapy (RT) use simple single beam technologies, which differ from the advanced conformal image-guided radiation techniques used in clinical practice. This technological disparity presents a major disadvantage for the development of new therapeutic approaches. Hence, we established a F98 GB rat model using magnetic resonance imaging (MRI)-guided three-dimensional (3D)-conformal arc RT with the Small Animal Radiation Research Platform (SARRP). Ten Fischer rats were inoculated with F98 tumor cells. When the tumor reached a volume of approximately 27 mm(3) on T2-weighted MR images, the animals were randomized into a treatment group (n = 5) receiving RT and concomitant temozolomide, and a sham group (n = 5) receiving control injections. For the treated animals, contrast-enhanced T1-weighted MR images were acquired followed by a cone-beam computed tomography (CBCT) on the SARRP system. Both scans were co-registered; MRI was used to define the target whereas CBCT was used for calculating a dose plan (20 Gy, three non-coplanar arc beams, 3 × 3 mm collimator). Tumor volumes were evaluated on follow-up contrast-enhanced T1-weighted MR images. Verification of treatment accuracy with γH2AX immunohistochemical staining was performed. Tumors in the control animals showed rapid proliferation during follow-up, encompassing almost the entire right cerebral hemisphere at day 12-15. Treated animals showed no significant tumor growth from 2 to 9 days post RT. γH2AX results confirmed the accuracy of dose delivery. This model, which is quite similar to the approach in the clinic, is valid for combined RT and chemotherapy of GB in rats. PMID:25069566

  2. Prostate cancer detection from model-free T1-weighted time series and diffusion imaging

    NASA Astrophysics Data System (ADS)

    Haq, Nandinee F.; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi

    2015-03-01

    The combination of Dynamic Contrast Enhanced (DCE) images with diffusion MRI has shown great potential in prostate cancer detection. The parameterization of DCE images to generate cancer markers is traditionally performed based on pharmacokinetic modeling. However, pharmacokinetic models make simplistic assumptions about the tissue perfusion process, require the knowledge of contrast agent concentration in a major artery, and the modeling process is sensitive to noise and fitting instabilities. We address this issue by extracting features directly from the DCE T1-weighted time course without modeling. In this work, we employed a set of data-driven features generated by mapping the DCE T1 time course to its principal component space, along with diffusion MRI features to detect prostate cancer. The optimal set of DCE features is extracted with sparse regularized regression through a Least Absolute Shrinkage and Selection Operator (LASSO) model. We show that when our proposed features are used within the multiparametric MRI protocol to replace the pharmacokinetic parameters, the area under ROC curve is 0.91 for peripheral zone classification and 0.87 for whole gland classification. We were able to correctly classify 32 out of 35 peripheral tumor areas identified in the data when the proposed features were used with support vector machine classification. The proposed feature set was used to generate cancer likelihood maps for the prostate gland.

  3. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI.

    PubMed

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-04-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI's ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time that the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  4. Development and assessment of a new 3D neuroanatomy teaching tool for MRI training.

    PubMed

    Drapkin, Zachary A; Lindgren, Kristen A; Lopez, Michael J; Stabio, Maureen E

    2015-01-01

    A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in which 3D objects are overlaid onto the 2D MRI slices, all while rotating the brain in any direction and advancing through coronal, sagittal, or axial planes. The efficacy of this tool was assessed by comparing scores from an MRI identification quiz and survey in two groups of first-year medical students. The first group was taught using this new 3D teaching tool, and the second group was taught the same content for the same amount of time but with traditional methods, including 2D images of brain MRI slices and 3D models from widely used textbooks and online sources. Students from the experimental group performed marginally better than the control group on overall test score (P = 0.07) and significantly better on test scores extracted from questions involving C-shaped internal brain structures (P < 0.01). Experimental participants also expressed higher confidence in their abilities to visualize the 3D structure of the brain (P = 0.02) after using this tool. Furthermore, when surveyed, 100% of the students in the experimental group recommended this tool for future students. These results suggest that this neuroanatomy teaching tool is an effective way to train medical students to read an MRI of the brain and is particularly effective for teaching C-shaped internal brain structures. PMID:25573020

  5. A voxel based comparative analysis using magnetization transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy

    PubMed Central

    Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar

    2014-01-01

    Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571

  6. Spatio-temporal registration in multiplane MRI acquisitions for 3D colon motiliy analysis

    NASA Astrophysics Data System (ADS)

    Kutter, Oliver; Kirchhoff, Sonja; Berkovich, Marina; Reiser, Maximilian; Navab, Nassir

    2008-03-01

    In this paper we present a novel method for analyzing and visualizing dynamic peristaltic motion of the colon in 3D from two series of differently oriented 2D MRI images. To this end, we have defined an MRI examination protocol, and introduced methods for spatio-temporal alignment of the two MRI image series into a common reference. This represents the main contribution of this paper, which enables the 3D analysis of peristaltic motion. The objective is to provide a detailed insight into this complex motion, aiding in the diagnosis and characterization of colon motion disorders. We have applied the proposed spatio-temporal method on Cine MRI data sets of healthy volunteers. The results have been inspected and validated by an expert radiologist. Segmentation and cylindrical approximation of the colon results in a 4D visualization of the peristaltic motion.

  7. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques

    SciTech Connect

    Daftari, Inder k; Aghaian, Elsa; O'Brien, Joan M.; Dillon, William; Phillips, Theodore L.

    2005-11-15

    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights {<=}3 mm. A small intraobserver variation with a mean of (-0.22{+-}4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm{sup 3

  8. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  9. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  10. A VBM study demonstrating ‘apparent’ effects of a single dose of medication on T1-weighted MRIs

    PubMed Central

    Franklin, Teresa R.; Wang, Ze; Shin, Joshua; Suh, Jesse J.; Detre, John A.; O'Brien, Charles P.; Childress, Anna Rose

    2012-01-01

    Voxel-based morphometry (VBM) studies have interpreted longitudinal medication- or behaviorally-induced changes observed on T1-weighted magnetic resonance images (MRIs) as changes in neuronal structure. Although neurogenesis or atrophy certainly occurs, the use of T1-weighted scans to identify change in brain structure in vivo in humans has a vulnerability: the T1 relaxation time for arterial blood and gray matter are not clearly distinguishable and therefore, apparent reported structural findings might be at least partially related to changes in blood flow or other physiological signals. To examine the hypothesis that apparent structural modifications may reflect changes introduced by additional mechanisms irrespective of potential neuronal growth/atrophy, we acquired a high resolution T1-weighted structural scan and a 5-minute perfusion fMRI scan (a measurement of blood flow), prior to and after administration of an acute pharmacological manipulation, In a within subjects design, 15 subjects were either un-medicated or were administered a 20 mg dose of baclofen (an FDA-approved anti-spastic) approximately 110 minutes prior to acquiring a T1-weighted scan and a pseudo continuous arterial spin labeled (pCASL) perfusion fMRI scan. Using diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL) within SPM7 we observed macroscopic, and therefore implausible, baclofen-induced decreases in VBM ‘gray matter’ signal in the dorsal rostral anterior cingulate [Family-wise error (FWE) corrected at p < 0.04, T= 6.54, extent: 1460 voxels] that overlapped with changes in blood flow. Given that gray matter reductions are unlikely following a single dose of medication these findings suggest that changes in blood flow are masquerading as reductions in gray matter on the T1-weighted scan irrespective of the temporal interval between baseline measures and longitudinal manipulations. These results underscore the crucial and immediate need to develop in vivo

  11. Comparison of Parallel MRI Reconstruction Methods for Accelerated 3D Fast Spin-Echo Imaging

    PubMed Central

    Xiao, Zhikui; Hoge, W. Scott; Mulkern, R.V.; Zhao, Lei; Hu, Guangshu; Kyriakos, Walid E.

    2014-01-01

    Parallel MRI (pMRI) achieves imaging acceleration by partially substituting gradient-encoding steps with spatial information contained in the component coils of the acquisition array. Variable-density subsampling in pMRI was previously shown to yield improved two-dimensional (2D) imaging in comparison to uniform subsampling, but has yet to be used routinely in clinical practice. In an effort to reduce acquisition time for 3D fast spin-echo (3D-FSE) sequences, this work explores a specific nonuniform sampling scheme for 3D imaging, subsampling along two phase-encoding (PE) directions on a rectilinear grid. We use two reconstruction methods—2D-GRAPPA-Operator and 2D-SPACE RIP—and present a comparison between them. We show that high-quality images can be reconstructed using both techniques. To evaluate the proposed sampling method and reconstruction schemes, results via simulation, phantom study, and in vivo 3D human data are shown. We find that fewer artifacts can be seen in the 2D-SPACE RIP reconstructions than in 2D-GRAPPA-Operator reconstructions, with comparable reconstruction times. PMID:18727083

  12. 3D active surfaces for liver segmentation in multisequence MRI images.

    PubMed

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  13. A pediatric brain structure atlas from T1-weighted MR images

    NASA Astrophysics Data System (ADS)

    Shan, Zuyao Y.; Parra, Carlos; Ji, Qing; Ogg, Robert J.; Zhang, Yong; Laningham, Fred H.; Reddick, Wilburn E.

    2006-03-01

    In this paper, we have developed a digital atlas of the pediatric human brain. Human brain atlases, used to visualize spatially complex structures of the brain, are indispensable tools in model-based segmentation and quantitative analysis of brain structures. However, adult brain atlases do not adequately represent the normal maturational patterns of the pediatric brain, and the use of an adult model in pediatric studies may introduce substantial bias. Therefore, we proposed to develop a digital atlas of the pediatric human brain in this study. The atlas was constructed from T1 weighted MR data set of a 9 year old, right-handed girl. Furthermore, we extracted and simplified boundary surfaces of 25 manually defined brain structures (cortical and subcortical) based on surface curvature. Higher curvature surfaces were simplified with more reference points; lower curvature surfaces, with fewer. We constructed a 3D triangular mesh model for each structure by triangulation of the structure's reference points. Kappa statistics (cortical, 0.97; subcortical, 0.91) indicated substantial similarities between the mesh-defined and the original volumes. Our brain atlas and structural mesh models (www.stjude.org/BrainAtlas) can be used to plan treatment, to conduct knowledge and modeldriven segmentation, and to analyze the shapes of brain structures in pediatric patients.

  14. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

    NASA Astrophysics Data System (ADS)

    Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.

    2012-05-01

    In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

  15. Visualization of 3D geometric models of the breast created from contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken, III; Wang, Xiao Hui; Chang, Yuan-Hsiang; Chapman, Brian E.

    2002-05-01

    Contrast enhanced breast MRI is currently used as an adjuvant modality to x-ray mammography because of its ability to resolve ambiguities and determine the extent of malignancy. This study described techniques to create and visualize 3D geometric models of abnormal breast tissue. MRIs were performed on a General Electric 1.5 Tesla scanner using dual phased array breast coils. Image processing tasks included: 1) correction of image inhomogeneity caused by the coils, 2) segmentation of normal and abnormal tissue, and 3) modeling and visualization of the segmented tissue. The models were visualized using object-based surface rendering which revealed characteristics critical to differentiating benign from malignant tissue. Surface rendering illustrated the enhancement distribution and enhancement patterns. The modeling process condensed the multi-slice MRI data information and standardized its interpretation. Visualizing the 3D models should improve the radiologist's and/or surgeon's impression of the 3D shape, extent, and accessibility of the malignancy compared to viewing breast MRI data slice by slice.

  16. 3D mapping of somatotopic reorganization with small animal functional MRI

    PubMed Central

    Yu, Xin; Wang, Shumin; Chen, Der-Yow; Dodd, Stephen; Goloshevsky, Artem; Koretsky, Alan P.

    2009-01-01

    There are few in vivo noninvasive methods to study neuroplasticity in animal brains. Functional MRI (fMRI) has been developed for animal brain mapping, but few fMRI studies have analyzed functional alteration due to plasticity in animal models. One major limitation is that fMRI maps are characterized by statistical parametric mapping making the apparent boundary dependent on the statistical threshold used. Here, we developed a method to characterize the location of center-of-mass in fMRI maps that is shown not to be sensitive to statistical threshold. Utilizing centers-of-mass as anchor points to fit the spatial distribution of the BOLD response enabled quantitative group analysis of altered boundaries of functional somatosensory maps. This approach was used to study cortical reorganization in the rat primary somatosensory cortex (S1) after sensory deprivation to the barrel cortex by follicle ablation (F.A.). FMRI demonstrated an enlarged nose S1 representation in the 3D somatotopic functional maps. This result clearly demonstrates that fMRI enables the spatial mapping of functional changes that can characterize multiple regions of S1 cortex and still be sensitive to changes due to plasticity. PMID:19770051

  17. Assessing tumor response after loco-regional liver cancer therapies: the role of 3D MRI

    PubMed Central

    Chapiro, Julius; Lin, MingDe; Duran, Rafael; Schernthaner, Rüdiger E; Geschwind, Jean-François

    2015-01-01

    Assessing the tumor response of liver cancer lesions after intraarterial therapies is of major clinical interest. Over the last two decades, tumor response criteria have come a long way from purely size-based, anatomic methods such as the Response Evaluation Criteria in Solid Tumors towards more functional, enhancement- and diffusion-based parameters with a strong emphasis on MRI as the ultimate imaging modality. However, the relatively low reproducibility of those one- and 2D techniques (modified Response Evaluation Criteria in Solid Tumors and the European Association for the Study of the Liver criteria) provided the rationale for the development of new, 3D quantitative assessment techniques. This review will summarize and compare the existing methodologies used for 3D quantitative tumor analysis and provide an overview of the published clinical evidence for the benefits of 3D quantitative tumor response assessment techniques. PMID:25371052

  18. Multimodal visualization of 3D enhanced MRI and CT of acoustic schwannoma and related structures

    NASA Astrophysics Data System (ADS)

    Kucharski, Tomasz; Kujawinska, Malgorzata; Niemczyk, Kazimierz; Marchel, Andrzej

    2005-09-01

    According to the necessity of supporting vestibular schwannoma surgery, there is a demand to develop a convenient method of medical data visualization. The process of making choice of optimal operating access way has been uncomfortable for a surgeon so far, because there has been a necessity of analyzing two independent 3D images series (CT -bone tissues visible, MRI - soft tissues visible) in the region of ponto-cerebellar angle tumors. The authors propose a solution that will improve this process. The system used is equipped with stereoscopic helmet mounted display. It allows merged CT and MRI data representing tissues in the region of of ponto-cerebellar angle to be visualized in stereoscopic way. The process of data preparation for visualization includes: -automated segmentation algorithms, -different types of 3D images (CT, MRI) fusion. The authors focused on the development of novel algorithms for segmentation of vestibular schwannoma. It is important and difficult task due to different types of tumors and their inhomogeneous character dependent on growth models. The authors propose algorithms based on histogram spectrum and multimodal character of MRI imaging (T1 and T2 modes). However due to a variety of objects the library of algorithms with specific modifications matching to selected types of images is proposed. The applicability and functionality of the algorithms and library was proved on the series of data delivered by Warsaw Central Medical University Hospital.

  19. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    PubMed Central

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability. PMID:21922017

  20. Role of 3D MRI with proset technique in the evaluation of lumbar radiculopathy.

    PubMed

    Grasso, D; Borreggine, C; Melchionda, D; Bristogiannis, C; Stoppino, L P; Macarini, L

    2013-01-01

    The aim of this study is to demonstrate the effectiveness of 3-Dimensional Magnetic Resonance Imaging (3D MRI) using the ProSet technique in the diagnosis of lumbar radiculopathy and to compare morphological findings with clinical and neurophysiological data. 40 patients suffering from L5 or S1 mono-radiculopathy caused by a disc herniation were evaluated through preliminary clinical assessment and electromyography (EMG) technique. Both conventional spin-echo sequences and 3D coronal FFE with selective water excitation (ProSet imaging) were acquired. Indentation, swelling and tilt angle of the nerve root were assessed by means of a 3D MR radiculography. 3D ProSet multiplanar reconstructions (MPR) were used for quantitative measurements of L5 and S1 nerve root widths. Widths of the symptomatic nerve root were compared with those of the contralateral nerve. Data were processed using Epi Info 3.3 software (CDC, Atlanta, GA, USA) and were compared through a paired t-Student test. We observed an abnormal tilt angle in 22 patients (57,2 percent, P less than 0.05). Morphologic alterations such as monolateral swelling or indentation of the involved roots were found in 36 patients (90 percent, P less than0.01) using 3D MR radiculography. In 10 patients, EMG revealed more nerve roots involved, while 3D FFE with ProSet technique shows a single root involved. In 2 patients, alterations were demonstrated only through EMG technique. We suggest that 3D MR radiculography can provide more information than other techniques about symptomatic disc herniation, supporting the detection of morphological changes of all nerve segments. 3D FFE with ProSet technique demonstrates high sensibility to exactly identify the level of the root involved and can provide an extremely useful tool to lead a surgical planning. PMID:24152846

  1. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  2. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  3. Whole brain 3D T2-weighted BOLD fMRI at 7T

    PubMed Central

    Hua, Jun; Qin, Qin; van Zijl, Peter C. M.; Pekar, James J.; Jones, Craig K.

    2014-01-01

    Purpose A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced. Methods It employs a T2-preparation module to induce BOLD contrast, followed by a single-shot 3D fast gradient-echo readout with short TE. It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the “dead time” due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed “3D T2prep-GRE”, was implemented at 7T with a typical spatial (2.5×2.5×2.5mm3) and temporal (TR=2.3s) resolution for fMRI and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence. Results In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination. Conclusion This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength. PMID:24338901

  4. Predicting Outcome of Patients with High-grade Gliomas After Radiotherapy using Quantitative Analysis of T1-weighted Magnetic Resonance Imaging

    SciTech Connect

    Tsien, Christina . E-mail: ctsien@umich.edu; Gomez-Hassan, Diana; Chenevert, Thomas L.; Lee, Julia; Lawrence, Theodore; Haken, Randall K. ten; Junck, Larry R.; Ross, Brian; Cao Yue

    2007-04-01

    Purpose: The aim of this study was to test the hypothesis that measuring quantitative changes in signal intensity early after radiotherapy (RT) in the contrast-enhancing tumor rim and nonenhancing core may be a noninvasive marker of early treatment response in patients with high-grade gliomas. Methods and Materials: Twenty patients with high-grade gliomas had magnetic resonance imaging (MRI) performed 1 week before RT, during Weeks 1 and 3 of RT, and every 1 to 3 months after RT as part of a clinical prospective study. Regions of interest (ROI) including contrast-enhancing rim, and the nonenhancing core were defined automatically based on a calculated image of post- to precontrast T1-weighted MRI. Pretreatment T1-weighted MRI signal intensity changes were compared with Weeks 1 and 3 RT and 1 and 3 months post-RT MRI. Clinical and MRI parameters were then tested for prediction of overall survival. Results: Regional T1-weighted signal intensity changes in both the contrast-enhancing rim and the nonenhancing core were observed in all patients during Week 1 and Week 3 of RT. Imaging parameters including signal intensity change within the nonenhancing core after Weeks 1 to 2 RT (p = 0.004), Weeks 3 to 4 RT (p = 0.002) and 1 month after completion of RT (p 0.002) were predictive of overall survival. Using multivariate analysis including RTOG recursive partitioning analysis (RPA) and signal intensity change, only the signal intensity change in the nonenhancing core at 1 month after RT (p = 0.01) retained significance. Conclusion: Quantitative measurements of T1-weighted MRI signal intensity changes in the nonenhancing tumor core (using ratios of pre-post values) may provide valuable information regarding early response during treatment and improve our ability to predict posttreatment outcome.

  5. 3D MRI-based multicomponent FSI models for atherosclerotic plaques.

    PubMed

    Tang, Dalin; Yang, Chun; Zheng, Jie; Woodard, Pamela K; Sicard, Gregorio A; Saffitz, Jeffrey E; Yuan, Chun

    2004-07-01

    A three-dimensional (3D) MRI-based computational model with multicomponent plaque structure and fluid-structure interactions (FSI) is introduced to perform mechanical analysis for human atherosclerotic plaques and identify critical flow and stress/strain conditions which may be related to plaque rupture. Three-dimensional geometry of a human carotid plaque was reconstructed from 3D MR images and computational mesh was generated using Visualization Toolkit. Both the artery wall and the plaque components were assumed to be hyperelastic, isotropic, incompressible, and homogeneous. The flow was assumed to be laminar, Newtonian, viscous, and incompressible. The fully coupled fluid and structure models were solved by ADINA, a well-tested finite element package. Results from two-dimensional (2D) and 3D models, based on ex vivo MRI and histological images (HI), with different component sizes and plaque cap thickness, under different pressure and axial stretch conditions, were obtained and compared. Our results indicate that large lipid pools and thin plaque caps are associated with both extreme maximum (stretch) and minimum (compression when negative) stress/strain levels. Large cyclic stress/strain variations in the plaque under pulsating pressure were observed which may lead to artery fatigue and possible plaque rupture. Large-scale patient studies are needed to validate the computational findings for possible plaque vulnerability assessment and rupture predictions. PMID:15298432

  6. Imaging knee position using MRI, RSA/CT and 3D digitisation.

    PubMed

    McPherson, A; Kärrholm, J; Pinskerova, V; Sosna, A; Martelli, S

    2005-02-01

    The purpose of this study was to compare 3 methods of imaging knee position. Three fresh cadaver knees were imaged at 6 flexion angles between 0 degrees and 120 degrees by MRI, a combination of RSA and CT and 3D digitisation (in two knees). Virtual models of all 42 positions were created using suitable computer software. Each virtual model was aligned to a newly defined anatomically based Cartesian coordinate system. The angular rotations around the 3 coordinate system axes were calculated directly from the aligned virtual models using rigid body kinematics and found to be equally accurate for the 3 methods. The 3 rotations in each knee could be depicted using anatomy-based diagrams for all 3 methods. We conclude that the 3 methods of data acquisition are equally and adequately accurate in vitro. MRI may be the most useful in vivo. PMID:15598452

  7. MRI 3D CISS– A Novel Imaging Modality in Diagnosing Trigeminal Neuralgia – A Review

    PubMed Central

    Besta, Radhika; Shankar, Y. Uday; Kumar, Ashwini; Prakash, S. Bhanu

    2016-01-01

    Trigeminal Neuralgia (TN) is considered as one of the most painful neurologic disorders affecting oro-facial region. TN is often diagnosed clinically based on the patients complete history of pain (severity, duration, episodes etc), relief of pain on test dose of Carbamazepine, regional block of long acting anaesthetic. However, Magnetic Resonance Imaging (MRI) plays an important and confirmatory role in showing Neuro Vascular Conflict (NVC) which is the commonest causative factor for TN. This article reviews the effectiveness of three-dimensional constructive interference in steady-state (3D-CISS) MRI in diagnosing the exact location, degree of neurovascular conflict responsible for classical as well as atypical TN and possible pre-treatment evaluation and treatment outcome. PMID:27135019

  8. MRI 3D CISS- A Novel Imaging Modality in Diagnosing Trigeminal Neuralgia - A Review.

    PubMed

    Besta, Radhika; Shankar, Y Uday; Kumar, Ashwini; Rajasekhar, E; Prakash, S Bhanu

    2016-03-01

    Trigeminal Neuralgia (TN) is considered as one of the most painful neurologic disorders affecting oro-facial region. TN is often diagnosed clinically based on the patients complete history of pain (severity, duration, episodes etc), relief of pain on test dose of Carbamazepine, regional block of long acting anaesthetic. However, Magnetic Resonance Imaging (MRI) plays an important and confirmatory role in showing Neuro Vascular Conflict (NVC) which is the commonest causative factor for TN. This article reviews the effectiveness of three-dimensional constructive interference in steady-state (3D-CISS) MRI in diagnosing the exact location, degree of neurovascular conflict responsible for classical as well as atypical TN and possible pre-treatment evaluation and treatment outcome. PMID:27135019

  9. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI

    NASA Astrophysics Data System (ADS)

    Liew, Y. M.; McLaughlin, R. A.; Chan, B. T.; Aziz, Y. F. Abdul; Chee, K. H.; Ung, N. M.; Tan, L. K.; Lai, K. W.; Ng, S.; Lim, E.

    2015-04-01

    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.

  10. 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition

    PubMed Central

    Holmes, James H.; O’Halloran, Rafael L.; Brodsky, Ethan K.; Jung, Youngkyoo; Block, Walter F.; Fain, Sean B.

    2010-01-01

    A method is presented for high resolution 3D imaging of the whole lung using inhaled hyperpolarized (HP) He-3 MR with multiple half-echo radial trajectories that can accelerate imaging through undersampling. A multiple half-echo radial trajectory can be used to reduce the level of artifact for undersampled 3D projection reconstruction (PR) imaging by increasing the amount of data acquired per unit time for HP He-3 lung imaging. The point spread functions (PSFs) for breath-held He-3 MRI using multiple half-echo trajectories were evaluated using simulations to predict the effects of T2* and gas diffusion on image quality. Results from PSF simulations were consistent with imaging results in volunteer studies showing improved image quality with increasing number of echoes using up to 8 half-echoes. The 8 half-echo acquisition is shown to accommodate lost breath-holds as short as 6 s using a retrospective reconstruction at reduced resolution as well as to allow reduced breath-hold time compared to an equivalent Cartesian trajectory. Furthermore, preliminary results from a 3D dynamic inhalation-exhalation maneuver are demonstrated using the 8 half-echo trajectory. Results demonstrate the first high resolution 3D PR imaging of ventilation and respiratory dynamics in humans using HP He-3 MR. PMID:18429034

  11. On-line 3D motion estimation using low resolution MRI

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2015-08-01

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  12. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  13. 3D segmentation of masses in DCE-MRI images using FCM and adaptive MRF

    NASA Astrophysics Data System (ADS)

    Zhang, Chengjie; Li, Lihua

    2014-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging modality for the detection of breast cancer. Automated segmentation of breast lesions in DCE-MRI images is challenging due to inherent signal-to-noise ratios and high inter-patient variability. A novel 3D segmentation method based on FCM and MRF is proposed in this study. In this method, a MRI image is segmented by spatial FCM, firstly. And then MRF segmentation is conducted to refine the result. We combined with the 3D information of lesion in the MRF segmentation process by using segmentation result of contiguous slices to constraint the slice segmentation. At the same time, a membership matrix of FCM segmentation result is used for adaptive adjustment of Markov parameters in MRF segmentation process. The proposed method was applied for lesion segmentation on 145 breast DCE-MRI examinations (86 malignant and 59 benign cases). An evaluation of segmentation was taken using the traditional overlap rate method between the segmented region and hand-drawing ground truth. The average overlap rates for benign and malignant lesions are 0.764 and 0.755 respectively. Then we extracted five features based on the segmentation region, and used an artificial neural network (ANN) to classify between malignant and benign cases. The ANN had a classification performance measured by the area under the ROC curve of AUC=0.73. The positive and negative predictive values were 0.86 and 0.58, respectively. The results demonstrate the proposed method not only achieves a better segmentation performance in accuracy also has a reasonable classification performance.

  14. A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Teresa; Bennett, Kevin M.

    2015-03-01

    The glomeruli of the kidney perform the key role of blood filtration and the number of glomeruli in a kidney is correlated with susceptibility to chronic kidney disease and chronic cardiovascular disease. This motivates the development of new technology using magnetic resonance imaging (MRI) to measure the number of glomeruli and nephrons in vivo. However, there is currently a lack of computationally efficient techniques to perform fast, reliable and accurate counts of glomeruli in MR images due to the issues inherent in MRI, such as acquisition noise, partial volume effects (the mixture of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such challenges are particularly severe because the glomeruli are very small, (in our case, a MRI image is ~16 million voxels, each glomerulus is in the size of 8~20 voxels), and the number of glomeruli is very large. To address this, we have developed an efficient Hessian based Difference of Gaussians (HDoG) detector to identify the glomeruli on 3D rat MR images. The image is first smoothed via DoG followed by the Hessian process to pre-segment and delineate the boundary of the glomerulus candidates. This then provides a basis to extract regional features used in an unsupervised clustering algorithm, completing segmentation by removing the false identifications occurred in the pre-segmentation. The experimental results show that Hessian based DoG has the potential to automatically detect glomeruli,from MRI in 3D, enabling new measurements of renal microstructure and pathology in preclinical and clinical studies.

  15. Focal liver lesions hyperintense on T1-weighted magnetic resonance images.

    PubMed

    Furlan, Alessandro; Marin, Daniele; Bae, Kyongtae T; Lagalla, Roberto; Agnello, Francesco; Bazzocchi, Massimo; Brancatelli, Giuseppe

    2009-10-01

    This article reviews focal liver lesions hyperintense on T1-weighted magnetic resonance (MR) images and describes the underlying etiologies associated with their T1 signal intensity. Although focal liver lesions are commonly detected because of their iso- or hypointensity on T1-weighted images, lesions (benign or malignant) may present with T1 hyperintensity when they contain T1 shortening elements--such as fat, hemorrhage, copper, melanin, and highly concentrated proteins. Our discussion includes the description of state-of-the-art T1-weighted MR sequences and the imaging features of lesions on pre- and postcontrast MR images that are characteristic for lesion composition and useful for making accurate diagnosis. PMID:19842568

  16. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  17. SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data.

    PubMed

    van Assen, Hans C; Danilouchkine, Mikhail G; Frangi, Alejandro F; Ordás, Sebastián; Westenberg, Jos J M; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2006-04-01

    A new technique (SPASM) based on a 3D-ASM is presented for automatic segmentation of cardiac MRI image data sets consisting of multiple planes with arbitrary orientations, and with large undersampled regions. Model landmark positions are updated in a two-stage iterative process. First, landmark positions close to intersections with images are updated. Second, the update information is propagated to the regions without image information, such that new locations for the whole set of the model landmarks are obtained. Feature point detection is performed by a fuzzy inference system, based on fuzzy C-means clustering. Model parameters were optimized on a computer cluster and the computational load distributed by grid computing. SPASM was applied to image data sets with an increasing sparsity (from 2 to 11 slices) comprising images with different orientations and stemming from different MRI acquisition protocols. Segmentation outcomes and calculated volumes were compared to manual segmentation on a dense short-axis data configuration in a 3D manner. For all data configurations, (sub-)pixel accuracy was achieved. Performance differences between data configurations were significantly different (p<0.05) for SA data sets with less than 6 slices, but not clinically relevant (volume differences<4 ml). Comparison to results from other 3D model-based methods showed that SPASM performs comparable to or better than these other methods, but SPASM uses considerably less image data. Sensitivity to initial model placement proved to be limited within a range of position perturbations of approximately 20 mm in all directions. PMID:16439182

  18. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI

    PubMed Central

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi; Wens, Stephan C. A.; van Doorn, Pieter A.; Tiddens, Harm A. W. M.; van der Ploeg, Ans T.; de Bruijne, Marleen

    2016-01-01

    Background Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness. Methods The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle. Results Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls. Conclusion Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response. PMID:27391236

  19. Combining supine MRI and 3D optical scanning for improved surgical planning of breast conserving surgeries

    NASA Astrophysics Data System (ADS)

    Pallone, Matthew J.; Poplack, Steven P.; Barth, Richard J., Jr.; Paulsen, Keith D.

    2012-02-01

    Image-guided wire localization is the current standard of care for the excision of non-palpable carcinomas during breast conserving surgeries (BCS). The efficacy of this technique depends upon the accuracy of wire placement, maintenance of the fixed wire position (despite patient movement), and the surgeon's understanding of the spatial relationship between the wire and tumor. Notably, breast shape can vary significantly between the imaging and surgical positions. Despite this method of localization, re-excision is needed in approximately 30% of patients due to the proximity of cancer to the specimen margins. These limitations make wire localization an inefficient and imprecise procedure. Alternatively, we investigate a method of image registration and finite element (FE) deformation which correlates preoperative supine MRIs with 3D optical scans of the breast surface. MRI of the breast can accurately define the extents of very small cancers. Furthermore, supine breast MR reduces the amount of tissue deformation between the imaging and surgical positions. At the time of surgery, the surface contour of the breast may be imaged using a handheld 3D laser scanner. With the MR images segmented by tissue type, the two scans are approximately registered using fiducial markers present in both acquisitions. The segmented MRI breast volume is then deformed to match the optical surface using a FE mechanical model of breast tissue. The resulting images provide the surgeon with 3D views and measurements of the tumor shape, volume, and position within the breast as it appears during surgery which may improve surgical guidance and obviate the need for wire localization.

  20. 3D cardiac motion reconstruction from CT data and tagged MRI.

    PubMed

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  1. 3D Cardiac Motion Reconstruction from CT Data and Tagged MRI

    PubMed Central

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2016-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  2. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  3. Histological Evaluation of 3D MRI-Guided Transurethral Ultrasound Therapy in the Prostate

    NASA Astrophysics Data System (ADS)

    Vedula, Siddharth; Boyes, Aaron; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous work from our group has shown that transurethral ultrasound therapy, with a single ultrasound transducer guided by temperature feedback from a single MRI plane (slice), can be used to treat a targeted region accurately in the prostate gland. We have extended this approach to a larger, 3D, targeted volume within the prostate, using a multi-element transducer controlled concurrently by temperature feedback from multiple imaging planes. Animals were placed supine in a 1.5 T clinical MRI, and the transurethral heating device was positioned with image guidance. A four-element transducer (each element was 5 mm long, operating at ˜8 MHz) was rotated to treat a targeted volume around the device. Temperature maps transverse to each element were acquired during heating and used to control the acoustic power of each element and the rate of rotation of the device. T2-weighted and contrast-enhanced (CE) MR images were obtained pre- and post-heating. Following the treatment, prostates were removed and fixed, axially sliced, stained with H&E, and digitally imaged at high-resolution to outline boundaries of cell death. Slice alignment and image registration techniques were developed to enable quantitative comparison of the axial MRI images and matching histological sections. Prostate sections showed clear regions of coagulative necrosis, extending ˜20 mm along the urethra, which correlated well with CE MRI data and transducer length. After registration, the outer border of coagulative necrosis on H&E conformed well to the target isotherm, similar to results from our previous (single element) acute studies. These results confirm that our previous analysis techniques for a single transducer can be extended to multiple elements, and that a large volumetric ablation of the prostate gland is feasible with a high degree of accuracy.

  4. Synthetic T1-weighted brain image generation with incorporated coil intensity correction using DESPOT1.

    PubMed

    Deoni, Sean C L; Rutt, Brian K; Peters, Terry M

    2006-11-01

    The increased use of phased-array and surface coils in magnetic resonance imaging, the push toward increased field strength and the need for standardized imaging across multiple sites during clinical trials have resulted in the need for methods that can ensure consistency of intensity both within the image and across multiple subjects/sites. Here, we describe a means of addressing these concerns through an extension of the rapid T(1) mapping technique - driven equilibrium single-pulse observation of T(1). The effectiveness of the proposed approach was evaluated using human brain T(1) maps acquired at 1.5 T with a multichannel phased-array coil. Corrected "synthetic" T(1)-weighted images were reconstructed by substituting the T(1) values back into the governing signal intensity equation while assuming a constant value for the equilibrium magnetization. To demonstrate signal normalization across a longitudinal study, we calculated synthetic T(1)-weighted images from data acquired from the same healthy subject at four different time points. Signal intensity profiles between the acquired and synthetic images were compared to determine the improvements with our proposed approach. Following correction, the images demonstrate obvious qualitative improvement with increased signal uniformity across the image. Near-perfect signal normalization was also observed across the longitudinal study, allowing direct comparison between the images. In addition, we observe an increase in contrast-to-noise ratio (compared with regular T(1)-weighted images) for synthetic images created, assuming uniform proton density throughout the volume. The proposed approach permits rapid correction for signal intensity inhomogeneity without significantly lengthening exam time or reducing image signal-to-noise ratio. This technique also provides a robust method for signal normalization, which is useful in multicenter longitudinal MR studies of disease progression, and allows the user to reconstruct T

  5. Thermal analysis of the surrounding anatomy during 3-D MRI-guided transurethral ultrasound prostate therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous numerical simulations have shown that MRI-guided transurethral ultrasound therapy can generate highly accurate volumes of thermal coagulation conforming to 3-D human prostate geometries. The goal of this work is to simulate, quantify and evaluate the thermal impact of these treatments on the rectum, pelvic bone, neurovascular bundles (NVB) and urinary sphincters. This study used twenty 3-D anatomical models of prostate cancer patients and detailed bio-acoustic simulations incorporating an active feedback algorithm which controlled a rotating, planar ultrasound transducer (17-4×3 mm elements, 4.7/9.7 MHz, 10 Wac/cm2). Heating of the adjacent surrounding anatomy was evaluated using thermal tolerances reported in the literature. Heating of the rectum poses the most important safety concern and is influenced largely by the water temperature flowing through an endorectal cooling device; temperatures of 7-37° C are required to limit potential damage to less than 10 mm3 on the outer 1 mm layer of rectum. Significant heating of the pelvic bone was predicted in 30% of the patient models with an ultrasound frequency of 4.7 MHz; setting the frequency to 9.7 MHz when the bone is less than 10 mm away from the prostate reduced heating in all cases below the threshold for irreversible damage. Heating of the NVB was significant in 75% of the patient models in the absence of treatment planning; this proportion was reduced to 5% by using treatment margins of up to 4 mm. To avoid damaging the urinary sphincters, margins from the transducer of 2-4 mm should be used, depending on the transurethral cooling temperature. Simulations show that MRI-guided transurethral therapy can treat the entire prostate accurately. Strategies have been developed which, along with careful treatment planning, can be used to avoid causing thermal injury to the rectum, pelvic bone, NVB and urinary sphincters.

  6. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    PubMed

    Ramskill, N P; Bush, I; Sederman, A J; Mantle, M D; Benning, M; Anger, B C; Appel, M; Gladden, L F

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has

  7. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI

    NASA Astrophysics Data System (ADS)

    Ramskill, N. P.; Bush, I.; Sederman, A. J.; Mantle, M. D.; Benning, M.; Anger, B. C.; Appel, M.; Gladden, L. F.

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16 min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi = 1.89 ± 0.03 ft day-1, 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution

  8. 3D MRI brain image segmentation based on region restricted EM algorithm

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Fan, Jianping

    2008-03-01

    This paper presents a novel algorithm of 3D human brain tissue segmentation and classification in magnetic resonance image (MRI) based on region restricted EM algorithm (RREM). The RREM is a level set segmentation method while the evolution of the contours was driven by the force field composed by the probability density functions of the Gaussian models. Each tissue is modeled by one or more Gaussian models restricted by free shaped contour so that the Gaussian models are adaptive to the local intensities. The RREM is guaranteed to be convergency and achieving the local minimum. The segmentation avoids to be trapped in the local minimum by the split and merge operation. A fuzzy rule based classifier finally groups the regions belonging to the same tissue and forms the segmented 3D image of white matter (WM) and gray matter (GM) which are of major interest in numerous applications. The presented method can be extended to segment brain images with tumor or the images having part of the brain removed with the adjusted classifier.

  9. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space

    NASA Astrophysics Data System (ADS)

    Ahmad, Ezak; Yap, Moi Hoon; Degens, Hans; McPhee, Jamie S.

    2014-03-01

    Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field across an image. In this paper, we demonstrate a combination framework of atlas construction and image registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the targeted image based on the prior atlas information and non-rigid image registration methods.

  10. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources.

    PubMed

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B₀-field inhomogeneity, (2) B₁-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B₀-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B₁-field inhomogeneities were found to induce R₂ variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R₂ maps using a heuristic flip angle-R₂ relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B₁-field homogeneity, hence R₂ homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B₁-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%. PMID

  11. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B0-field inhomogeneity, (2) B1-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B0-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B1-field inhomogeneities were found to induce R2 variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R2 maps using a heuristic flip angle-R2 relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B1-field homogeneity, hence R2 homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B1-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%. Both authors contributed

  12. Registration of 2D x-ray images to 3D MRI by generating pseudo-CT data

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Gounis, M. J.; van de Kraats, E. B.; Sprinkhuizen, S. M.; Timmer, J.; Homan, R.; Bartels, L. W.

    2011-02-01

    Spatial and soft tissue information provided by magnetic resonance imaging can be very valuable during image-guided procedures, where usually only real-time two-dimensional (2D) x-ray images are available. Registration of 2D x-ray images to three-dimensional (3D) magnetic resonance imaging (MRI) data, acquired prior to the procedure, can provide optimal information to guide the procedure. However, registering x-ray images to MRI data is not a trivial task because of their fundamental difference in tissue contrast. This paper presents a technique that generates pseudo-computed tomography (CT) data from multi-spectral MRI acquisitions which is sufficiently similar to real CT data to enable registration of x-ray to MRI with comparable accuracy as registration of x-ray to CT. The method is based on a k-nearest-neighbors (kNN)-regression strategy which labels voxels of MRI data with CT Hounsfield Units. The regression method uses multi-spectral MRI intensities and intensity gradients as features to discriminate between various tissue types. The efficacy of using pseudo-CT data for registration of x-ray to MRI was tested on ex vivo animal data. 2D-3D registration experiments using CT and pseudo-CT data of multiple subjects were performed with a commonly used 2D-3D registration algorithm. On average, the median target registration error for registration of two x-ray images to MRI data was approximately 1 mm larger than for x-ray to CT registration. The authors have shown that pseudo-CT data generated from multi-spectral MRI facilitate registration of MRI to x-ray images. From the experiments it could be concluded that the accuracy achieved was comparable to that of registering x-ray images to CT data.

  13. 3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.

    2011-09-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good

  14. 3D MRI of impaired hyperpolarized 129Xe uptake in a rat model of pulmonary fibrosis.

    PubMed

    Cleveland, Zackary I; Virgincar, Rohan S; Qi, Yi; Robertson, Scott H; Degan, Simone; Driehuys, Bastiaan

    2014-12-01

    A variety of pulmonary pathologies, in particular interstitial lung diseases, are characterized by thickening of the pulmonary blood-gas barrier, and this thickening results in reduced gas exchange. Such diffusive impairment is challenging to quantify spatially, because the distributions of the metabolically relevant gases (CO2 and O2) cannot be detected directly within the lungs. Hyperpolarized (HP) (129)Xe is a promising surrogate for these metabolic gases, because MR spectroscopy and imaging allow gaseous alveolar (129)Xe to be detected separately from (129)Xe dissolved in the red blood cells (RBCs) and the adjacent tissues, which comprise blood plasma and lung interstitium. Because (129)Xe reaches the RBCs by diffusing across the same barrier tissues (blood plasma and interstitium) as O2, barrier thickening will delay (129)Xe transit and, thus, reduce RBC-specific (129)Xe MR signal. Here we have exploited these properties to generate 3D, MR images of (129)Xe uptake by the RBCs in two groups of rats. In the experimental group, unilateral fibrotic injury was generated prior to imaging by instilling bleomycin into one lung. In the control group, a unilateral sham instillation of saline was performed. Uptake of (129)Xe by the RBCs, quantified as the fraction of RBC signal relative to total dissolved (129)Xe signal, was significantly reduced (P = 0.03) in the injured lungs of bleomycin-treated animals. In contrast, no significant difference (P = 0.56) was observed between the saline-treated and untreated lungs of control animals. Together, these results indicate that 3D MRI of HP (129)Xe dissolved in the pulmonary tissues can provide useful biomarkers of impaired diffusive gas exchange resulting from fibrotic thickening. PMID:24816478

  15. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  16. 3-D sonography for diagnosis of osteoarthrosis and disk degeneration of the temporomandibular joint, compared with MRI.

    PubMed

    Landes, Constantin A; Goral, Wojciech; Mack, Martin G; Sader, Robert

    2006-05-01

    This study determined the value of three-dimensional (3-D) sonography for the assessment of osteoarthrosis and disk degeneration of the temporomandibular joint (TMJ). Sixty-eight patients (136 TMJ) with clinical dysfunction were examined by 272 sonographic 3-D scans. An 8- to 12.5-MHz motor-angulated transducer positioned inferior-parallel to the zygomatic arch scanned the region-of-interest. 3-D condylar morphology was compared with subsequent magnetic resonance imaging (MRI). Fifty-three datasets were complete, i.e., 106 TMJ, 212 examinations. 3-D sonographic examination took 5 min and attained 70% sensitivity/76% specificity/75% accuracy; positive predictive value was 44%%; negative predictive value was 90%. Disk degeneration was diagnosed synonymously with 64%/73%/71%/42%/ 87%. 3-D sonography proved to be reliable for exclusion of osteoarthrosis as disk degeneration compared with MRI, whereas the presence of osteoarthrosis and disk dislocation cannot be reliably diagnosed. Prospective use will include routine screening, using more sophisticated equipment with higher frequency in real-time 3-D viewing. PMID:16677921

  17. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model

    PubMed Central

    Huisman, Merel; Staruch, Robert M.; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A.; Burns, Dennis K.; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Purpose Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Methods Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining. Results All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Conclusion Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may

  18. Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging.

    PubMed

    Trefler, Aaron; Sadeghi, Neda; Thomas, Adam G; Pierpaoli, Carlo; Baker, Chris I; Thomas, Cibu

    2016-06-01

    Measures of brain morphometry derived from T1-weighted (T1W) magnetic resonance imaging (MRI) are widely used to elucidate the relation between brain structure and function. However, the computation of T1W morphometric measures can be confounded by subject-related factors such as head motion and level of hydration. A recent study reported subtle yet significant changes in brain volume from morning to evening in a large group of patient populations as well as in healthy elderly individuals. In addition, there is a growing recognition that factors such as circadian rhythm can impact MRI measures of brain function and structure. Here, we provide a comprehensive assessment of the impact of time-of-day (TOD) on widely used measures of brain morphometry in a group of 19 healthy young adults. Our results show that (a) even in a small group of healthy adult volunteers, a highly significant reduction in apparent brain volume, from morning to evening, could be detected; (b) the apparent volume of all three major tissue compartments - gray matter, white matter, and cerebrospinal fluid - were influenced by TOD, and the magnitude of the TOD effect varied across the tissue compartments; (c) measures of cortical thickness, cortical surface area, and gray matter density computed with widely used neuroimaging software suites (i.e., FreeSurfer, FSL-VBM) were all affected by TOD, while other measures, such as curvature indices and sulcal depth, were not; and (d) the effect of TOD appeared to have a greater impact on morphometric measures of the frontal and temporal lobe than on other major lobes of the brain. Our results suggest that the TOD effect is a physiological phenomenon and that controlling for the effect of TOD is crucial for proper interpretation of apparent structural differences measured with T1W morphometry. PMID:26921714

  19. Intracranial lesions with high signal intensity on T1-weighted MR images – review of pathologies

    PubMed Central

    Zimny, Anna; Zińska, Lidia; Bladowska, Joanna; Neska-Matuszewska, Małgorzata; Sąsiadek, Marek

    2013-01-01

    Summary In the article we present pathological intracranial substances and lesions, which produce high signal intensity on T1-weighted MR images. Six groups of substances are discussed: 1. Gadolinium – based contrast agents, 2.hemoglobin degradation products (intra- and extra-cellular methemoglobin), 3. lipid-containing lesions (lipoma, dermoid cyst, implanted fatty materials, laminar cortical necrosis), 4. substances with high concentration of proteins (colloid cyst, craniopharyngioma, Rathke’s cleft cyst, ectopic posterior pituitary gland), 5. melanin (metastatic melanoma), 6. lesions containing mineral substances such as: calcium (calcifications, Fahr’s disease), copper (Wilson’s disease) and manganese (hepatic encephalopathy, manganese intoxication in intravenous drug abusers). Appropriate interpretation of signal intensity as well as analysis of location of lesions and clinical symptoms enables planning of further diagnostics and, in many cases, establishing the final diagnosis based on MR examination. PMID:24505222

  20. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Yang, Jia; Yan, Yu; Li, Jingchao; Shen, Mingwu; Zhang, Guixiang; Mignani, Serge; Shi, Xiangyang

    2015-08-01

    We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM-1 s-1), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems.We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration

  1. Intracranial lesions with high signal intensity on T1-weighted MR images - review of pathologies.

    PubMed

    Zimny, Anna; Zińska, Lidia; Bladowska, Joanna; Neska-Matuszewska, Małgorzata; Sąsiadek, Marek

    2013-10-01

    In the article we present pathological intracranial substances and lesions, which produce high signal intensity on T1-weighted MR images. Six groups of substances are discussed: 1. Gadolinium - based contrast agents, 2.hemoglobin degradation products (intra- and extra-cellular methemoglobin), 3. lipid-containing lesions (lipoma, dermoid cyst, implanted fatty materials, laminar cortical necrosis), 4. substances with high concentration of proteins (colloid cyst, craniopharyngioma, Rathke's cleft cyst, ectopic posterior pituitary gland), 5. melanin (metastatic melanoma), 6. lesions containing mineral substances such as: calcium (calcifications, Fahr's disease), copper (Wilson's disease) and manganese (hepatic encephalopathy, manganese intoxication in intravenous drug abusers). Appropriate interpretation of signal intensity as well as analysis of location of lesions and clinical symptoms enables planning of further diagnostics and, in many cases, establishing the final diagnosis based on MR examination. PMID:24505222

  2. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  3. The (in)consistency of changes in brain macrostructure in male paedophiles: A combined T1-weighted and diffusion tensor imaging study.

    PubMed

    Gerwinn, Hannah; Pohl, Alexander; Granert, Oliver; van Eimeren, Thilo; Wolff, Stephan; Jansen, Olav; Deuschl, Günther; Huchzermeier, Christian; Stirn, Aglaja; Siebner, Hartwig Roman; Ponseti, Jorge

    2015-09-01

    Thus far, four studies have used magnetic resonance imaging (MRI) to test for differences in brain structure between paedophilic (i.e. sexually attracted to pre-pubescent children) and teleiophilic (i.e. sexually attracted to adults) men, revealing divergent results. To re-examine this issue, we acquired high resolution structural T1-weighted and diffusion MRI scans of the brain in 24 paedophilic and 32 teleiophilic men. We performed voxel-based morphometry (VBM) of the T1-weighted images and tract-based spatial statistics (TBSS) of the diffusion tensor imaging data to search for grey and white matter differences between groups. In contrast to previous studies, less than half of the individuals in our paedophilic group had a record of sexual offences against children, as subjects were partially recruited from two outpatient facilities of a child sexual abuse prevention project for self-acknowledged paedophiles. After adjustment for multiple comparisons and controlling for important confounding factors, we did not find any significant grey or white matter differences between the paedophilic and teleiophilic subjects. Together with the inconsistencies in the literature, these results argue against consistent structural differences at the macroanatomical scale between paedophiles and teleiophiles. PMID:26228426

  4. Jet fuel toxicity: skin damage measured by 900-MHz MRI skin microscopy and visualization by 3D MR image processing.

    PubMed

    Sharma, Rakesh; Locke, Bruce R

    2010-09-01

    The toxicity of jet fuels was measured using noninvasive magnetic resonance microimaging (MRM) at 900-MHz magnetic field. The hypothesis was that MRM can visualize and measure the epidermis exfoliation and hair follicle size of rat skin tissue due to toxic skin irritation after skin exposure to jet fuels. High-resolution 900-MHz MRM was used to measure the change in size of hair follicle, epidermis thickening and dermis in the skin after jet fuel exposure. A number of imaging techniques utilized included magnetization transfer contrast (MTC), spin-lattice relaxation constant (T1-weighting), combination of T2-weighting with magnetic field inhomogeneity (T2*-weighting), magnetization transfer weighting, diffusion tensor weighting and chemical shift weighting. These techniques were used to obtain 2D slices and 3D multislice-multiecho images with high-contrast resolution and high magnetic resonance signal with better skin details. The segmented color-coded feature spaces after image processing of the epidermis and hair follicle structures were used to compare the toxic exposure to tetradecane, dodecane, hexadecane and JP-8 jet fuels. Jet fuel exposure caused skin damage (erythema) at high temperature in addition to chemical intoxication. Erythema scores of the skin were distinct for jet fuels. The multicontrast enhancement at optimized TE and TR parameters generated high MRM signal of different skin structures. The multiple contrast approach made visible details of skin structures by combining specific information achieved from each of the microimaging techniques. At short echo time, MRM images and digitized histological sections confirmed exfoliated epidermis, dermis thickening and hair follicle atrophy after exposure to jet fuels. MRM data showed correlation with the histopathology data for epidermis thickness (R(2)=0.9052, P<.0002) and hair root area (R(2)=0.88, P<.0002). The toxicity of jet fuels on skin structures was in the order of tetradecane

  5. MRI data driven partial volume effects correction in PET imaging using 3D local multi-resolution analysis

    NASA Astrophysics Data System (ADS)

    Le Pogam, Adrien; Lamare, Frederic; Hatt, Mathieu; Fernandez, Philippe; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2013-02-01

    PET partial volume effects (PVE) resulting from the limited resolution of PET scanners is still a quantitative issue that PET/MRI scanners do not solve by themselves. A recently proposed voxel-based locally adaptive 3D multi-resolution PVE correction based on the mutual analysis of wavelet decompositions was applied on 12 clinical 18F-FLT PET/T1 MRI images of glial tumors, and compared to a PET only voxel-wise iterative deconvolution approach. Quantitative and qualitative results demonstrated the interest of exploiting PET/MRI information with higher uptake increases (19±8% vs. 11±7%, p=0.02), as well as more convincing visual restoration of details within tumors with respect to deconvolution of the PET uptake only. Further studies are now required to demonstrate the accuracy of this restoration with histopathological validation of the uptake in tumors.

  6. Volumetric HIFU ablation under 3D guidance of rapid MRI thermometry.

    PubMed

    Köhler, Max O; Mougenot, Charles; Quesson, Bruno; Enholm, Julia; Le Bail, Brigitte; Laurent, Christophe; Moonen, Chrit T W; Ehnholm, Gösta J

    2009-08-01

    A volumetric sonication method is proposed that produces volume ablations by steering the focal point along a predetermined trajectory consisting of multiple concentric outward-moving circles. This method was tested in vivo on pig thigh muscle (32 ablations in nine animals). Trajectory diameters were 4, 12, and 16 mm with sonication duration depending on the trajectory size and ranging from 20 to 73 s. Despite the larger trajectories requiring more energy to reach necrosis within the desired volume, the ablated volume per unit applied energy increased with trajectory size, indicating improved treatment efficiency for larger trajectories. The higher amounts of energy required for the larger trajectories also increased the risk of off-focus heating, especially along the beam axis in the near field. To avoid related adverse effects, rapid volumetric multiplane MR thermometry was introduced for simultaneous monitoring of the temperature and thermal dose evolution along the beam axis and in the near field, as well as in the target region with a total coverage of six slices acquired every 3 s. An excellent correlation was observed between the thermal dose and both the nonperfused (R=0.929 for the diameter and R=0.964 for the length) and oedematous (R=0.913 for the diameter and R=0.939 for the length) volumes as seen in contrast-enhanced T1-weighted difference images and T2-weighted postsonication images, respectively. Histology confirmed the presence of a homogeneous necrosis inside the heated volumes. These results show that volumetric high-intensity focused ultrasound (HIFU) sonication allows for efficiently creating large thermal lesions while reducing treatment duration and also that the rapid multiplane MR thermometry improves the safety of the therapeutic procedure by monitoring temperature evolution both inside as well as outside the targeted volume. PMID:19746786

  7. SU-E-J-231: Comparison of 3D Angiogram and MRI in Delineating the AVM Target for Frameless Stereotactic Radiosurgery

    SciTech Connect

    Avkshtol, V; Tanny, S; Reddy, K; Chen, C; Parsai, E

    2014-06-01

    Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DA and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.

  8. 3D interactive tractography-informed resting-state fMRI connectivity

    PubMed Central

    Chamberland, Maxime; Bernier, Michaël; Fortin, David; Whittingstall, Kevin; Descoteaux, Maxime

    2015-01-01

    In the past decade, the fusion between diffusion magnetic resonance imaging (dMRI) and functional magnetic resonance imaging (fMRI) has opened the way for exploring structure-function relationships in vivo. As it stands, the common approach usually consists of analysing fMRI and dMRI datasets separately or using one to inform the other, such as using fMRI activation sites to reconstruct dMRI streamlines that interconnect them. Moreover, given the large inter-individual variability of the healthy human brain, it is possible that valuable information is lost when a fixed set of dMRI/fMRI analysis parameters such as threshold values are assumed constant across subjects. By allowing one to modify such parameters while viewing the results in real-time, one can begin to fully explore the sensitivity of structure-function relations and how they differ across brain areas and individuals. This is especially important when interpreting how structure-function relationships are altered in patients with neurological disorders, such as the presence of a tumor. In this study, we present and validate a novel approach to achieve this: First, we present an interactive method to generate and visualize tractography-driven resting-state functional connectivity, which reduces the bias introduced by seed size, shape and position. Next, we demonstrate that structural and functional reconstruction parameters explain a significant portion of intra- and inter-subject variability. Finally, we demonstrate how our proposed approach can be used in a neurosurgical planning context. We believe this approach will promote the exploration of structure-function relationships in a subject-specific aspect and will open new opportunities for connectomics. PMID:26321901

  9. Imaging of prostate cancer: a platform for 3D co-registration of in-vivo MRI ex-vivo MRI and pathology

    NASA Astrophysics Data System (ADS)

    Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry

    2012-02-01

    Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence

  10. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis.

    PubMed

    Zijdenbos, Alex P; Forghani, Reza; Evans, Alan C

    2002-10-01

    The quantitative analysis of magnetic resonance imaging (MRI) data has become increasingly important in both research and clinical studies aiming at human brain development, function, and pathology. Inevitably, the role of quantitative image analysis in the evaluation of drug therapy will increase, driven in part by requirements imposed by regulatory agencies. However, the prohibitive length of time involved and the significant intraand inter-rater variability of the measurements obtained from manual analysis of large MRI databases represent major obstacles to the wider application of quantitative MRI analysis. We have developed a fully automatic "pipeline" image analysis framework and have successfully applied it to a number of large-scale, multicenter studies (more than 1,000 MRI scans). This pipeline system is based on robust image processing algorithms, executed in a parallel, distributed fashion. This paper describes the application of this system to the automatic quantification of multiple sclerosis lesion load in MRI, in the context of a phase III clinical trial. The pipeline results were evaluated through an extensive validation study, revealing that the obtained lesion measurements are statistically indistinguishable from those obtained by trained human observers. Given that intra- and inter-rater measurement variability is eliminated by automatic analysis, this system enhances the ability to detect small treatment effects not readily detectable through conventional analysis techniques. While useful for clinical trial analysis in multiple sclerosis, this system holds widespread potential for applications in other neurological disorders, as well as for the study of neurobiology in general. PMID:12585710

  11. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    NASA Astrophysics Data System (ADS)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  12. High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification.

    PubMed

    Barbieri, Sebastiano; Schroeder, Christophe; Froehlich, Johannes M; Pasch, Andreas; Thoeny, Harriet C

    2016-05-01

    Gadolinium-based contrast agents (primarily those with linear chelates) are associated with a dose-dependent signal hyperintensity in the dentate nucleus and the globus pallidus on unenhanced T1-weighted MRI following administration to selected patients with normal renal function. The accumulation of gadolinium has also been reported in the skin, heart, liver, lung, and kidney of patients with impaired renal function suffering from nephrogenic systemic fibrosis (NSF). Here we report on three patients with impaired renal function and vascular calcification (two with confirmed NSF) whose unenhanced T1-weighted MRIs showed conspicuous high signal intensity in the dentate nucleus and the globus pallidus after they had been exposed to relatively low doses of linear gadolinium-based contrast agents (0.27, 0.45, and 0.68 mmol/kg). Signal ratios between dentate nucleus and pons and between globus pallidus and thalamus were comparable with previously reported measurements in subjects without renal impairment. Of note, all three analysed patients suffered from transient signs of neurological disorders of undetermined cause. In conclusion, the exposure to 0.27-0.68 mmol/kg of linear gadolinium-based contrast agent was associated with probable gadolinium accumulation in the brain of three patients suffering from impaired renal function and vascular calcification. © 2016 The Authors. Contrast Media & Molecular Imaging published by John Wiley & Sons Ltd. PMID:26929131

  13. 3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta.

    PubMed

    Sotelo, Julio; Urbina, Jesus; Valverde, Israel; Tejos, Cristian; Irarrazaval, Pablo; Andia, Marcelo E; Uribe, Sergio; Hurtado, Daniel E

    2016-06-01

    Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms. PMID:26780787

  14. 3D+t brain MRI segmentation using robust 4D Hidden Markov Chain.

    PubMed

    Lavigne, François; Collet, Christophe; Armspach, Jean-Paul

    2014-01-01

    In recent years many automatic methods have been developed to help physicians diagnose brain disorders, but the problem remains complex. In this paper we propose a method to segment brain structures on two 3D multi-modal MR images taken at different times (longitudinal acquisition). A bias field correction is performed with an adaptation of the Hidden Markov Chain (HMC) allowing us to take into account the temporal correlation in addition to spatial neighbourhood information. To improve the robustness of the segmentation of the principal brain structures and to detect Multiple Sclerosis Lesions as outliers the Trimmed Likelihood Estimator (TLE) is used during the process. The method is validated on 3D+t brain MR images. PMID:25571045

  15. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  16. MRI visualisation by digitally reconstructed radiographs

    NASA Astrophysics Data System (ADS)

    Serrurier, Antoine; Bönsch, Andrea; Lau, Robert; Deserno, Thomas M.

    2015-03-01

    Visualising volumetric medical images such as computed tomography and magnetic resonance imaging (MRI) on picture archiving and communication systems (PACS) clients is often achieved by image browsing in sagittal, coronal or axial views or three-dimensional (3D) rendering. This latter technique requires fine thresholding for MRI. On the other hand, computing virtual radiograph images, also referred to as digitally reconstructed radiographs (DRR), provides in a single two-dimensional (2D) image a complete overview of the 3D data. It appears therefore as a powerful alternative for MRI visualisation and preview in PACS. This study describes a method to compute DRR from T1-weighted MRI. After segmentation of the background, a histogram distribution analysis is performed and each foreground MRI voxel is labeled as one of three tissues: cortical bone, also known as principal absorber of the X-rays, muscle and fat. An intensity level is attributed to each voxel according to the Hounsfield scale, linearly related to the X-ray attenuation coefficient. Each DRR pixel is computed as the accumulation of the new intensities of the MRI dataset along the corresponding X-ray. The method has been tested on 16 T1-weighted MRI sets. Anterior-posterior and lateral DRR have been computed with reasonable qualities and avoiding any manual tissue segmentations. This proof-of-concept holds for research application for use in clinical PACS.

  17. 3D-Dixon MRI based volumetry of peri- and epicardial fat.

    PubMed

    Homsi, Rami; Meier-Schroers, Michael; Gieseke, Jürgen; Dabir, Darius; Luetkens, Julian A; Kuetting, Daniel L; Naehle, Claas P; Marx, Christian; Schild, Hans H; Thomas, Daniel K; Sprinkart, Alois M

    2016-02-01

    There is growing evidence that pericardial and epicardial fat volume (PFV, EFV) are associated with cardiovascular risk. We evaluated a novel method for accurate measurement of PFV and EFV using a 3D-Dixon based cardiac magnetic resonance (CMR) approach. An electrocardiography triggered and respiratory navigator gated 3D-gradient echo pulse sequence was used for cardiac Dixon imaging. Based on this sequence, voxels predominantly containing fat were identified and added up for volumetry. After accuracy assessment in phantoms, consisting of muscle tissue and seven different fat samples (50-200 ml), the sequence was acquired in 34 healthy volunteers (22 male, BMI range 14-42 kg/m(2), age range 21-79 years) at 1.5 T. Analysis was performed independently by two readers who draw two 3D-regions of interest, one for EFV and one for PFV. Additionally, EFV and PFV were compared between overweighted and non-overweighted subjects. The phantom study showed an excellent agreement of measured and true fat volumes (maximum difference = 6 %, linear correlation coefficient R = 1.00). PFV over all volunteers was 158.0 ± 126.4 ml and EFV was 77.0 ± 55.3 ml. PFV and EFV were highly correlated (R = 0.96). Inter-reader agreement was good with a mean difference of 0.2 ± 5.6 and 4.5 ± 4.2 ml for PFV/EFV, (R > 0.99, each). EFV and PFV differed significantly between subjects with BMI > 25 kg/m(2) and BMI < 25 kg/m(2), n = 17 each (PFV 219.0 ± 151.8 vs. 96.9 ± 44.7 ml and EFV 102.3 ± 66.3 vs. 51.7 ± 23.6 ml, p < 0.001, each). The proposed 3D-Dixon based method allows accurate measurement of cardiac fat volumes. It provides a valuable tool for cardiovascular risk stratification by CMR. PMID:26424492

  18. 3D source localization of interictal spikes in epilepsy patients with MRI lesions

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2006-08-01

    The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC

  19. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking

    PubMed Central

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F.; Lutti, Antoine; Weiskopf, Nikolaus

    2015-01-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0 mm or 1.5 mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5 mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p < 0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies. PMID:25783205

  20. 3D MRI of non-Gaussian 3He gas diffusion in the rat lung

    NASA Astrophysics Data System (ADS)

    Jacob, Richard E.; Laicher, Gernot; Minard, Kevin R.

    2007-10-01

    In 3He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted 3He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only ˜1 L of hyperpolarized 3He gas. Diffusion weighting ranges from 0 s/cm 2 to 40 s/cm 2. Results show that the non-Gaussian effects of 3He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.

  1. MR imaging and spectroscopy of the basal ganglia in chronic liver disease: correlation of T1-weighted contrast measurements with abnormalities in proton and phosphorus-31 MR spectra.

    PubMed

    Taylor-Robinson, S D; Sargentoni, J; Oatridge, A; Bryant, D J; Hajnal, J V; Marcus, C D; Seery, J P; Hodgson, H J; deSouza, N M

    1996-09-01

    The purpose of this study was to correlate the hyperintensity in the globus pallidus seen on T1-weighted magnetic resonance imaging (MRI) of the brain in chronic liver disease with changes in metabolite ratios measured from both proton and phosphorus-31 magnetic resonance spectroscopy (MRS) localised to the basal ganglia. T1-weighted spin echo (T1WSE) images were obtained in 21 patients with biopsy-proven cirrhosis (nine Child's grade A, eight Child's grade B and four Child's grade C). Four subjects showed no evidence of neuropsychiatric impairment on clinical, psychometric and electrophysiological testing, four showed evidence of subclinical hepatic encephalopathy and 13 had overt hepatic encephalopathy. Signal intensities of the globus pallidus and adjacent brain parenchyma were measured and contrast calculated, which correlated with the severity of the underlying liver disease, when graded according to the Pugh's score (p < 0.05). Proton MRS of the basal ganglia was performed in 12 patients and 14 healthy volunteers. Peak area ratios of choline (Cho), glutamine and glutamate (Glx) and N-acetylaspartate relative to creatine (Cr) were measured. Significant reductions in mean Cho/Cr and elevations in mean Glx/Cr ratios were observed in the patient population. Phosphorus-31 MRS of the basal ganglia was performed in the remaining nine patients and in 15 healthy volunteers. Peak area ratios of phosphomonoesters (PME), inorganic phosphate, phosphodiesters (PDE) and phosphocreatine relative to beta ATP (ATP) were then measured. Mean values of PME/ATP and PDE/ATP were significantly lower in the patient population. No correlation was found between the T1WSE MRI contrast measurements of the globus pallidus and the abnormalities in the metabolite ratios measured from either proton or phosphorus-31 MR spectra. Our results suggest that pallidal hyperintensity seen on T1WSE MR imaging of patients with chronic liver disease is not related to the functional abnormalities of the

  2. Age- and race-dependence of the fibroglandular breast density analyzed on 3D MRI

    PubMed Central

    Nie, Ke; Su, Min-Ying; Chau, Man-Kwun; Chan, Siwa; Nguyen, Hoanglong; Tseng, Tiffany; Huang, Yuhong; McLaren, Christine E.; Nalcioglu, Orhan; Chen, Jeon-Hor

    2010-01-01

    Purpose: The purpose of this study was to evaluate the age- and race-dependence of the breast fibroglandular tissue density based on three-dimensional breast MRI. Methods: The normal breasts of 321 consecutive patients including Caucasians, Asians, and Hispanics were studied. The subjects were separated into three age groups: Younger than 45, between 45 and 55, and older than 55. Computer algorithms based on body landmarks were used to segment the breast, and fuzzy c-means algorithm was used to segment the fibroglandular tissue. Linear regression analysis was applied to compare mean differences among different age groups and race∕ethnicity groups. The obtained parameters were not normally distributed, and the transformed data, natural log (ln) for the fibroglandular tissue volume, and the square root for the percent density were used for statistical analysis. Results: On the average, the transformed fibroglandular tissue volume and percent density decreased significantly with age. Racial differences in mean transformed percent density were found among women older than 45, but not among women younger than 45. Mean percent density was higher in Asians compared to Caucasians and Hispanics; the difference remained significant after adjustment for age, but not significant after adjusted for both age and breast volume. There was no significant difference in the density between the Caucasians and the Hispanics. Conclusions: The results analyzed using the MRI-based method show age- and race-dependence, which is consistent with literature using mammography-based methods. PMID:20632587

  3. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  4. 3D-MRI rendering of the anatomical structures related to acupuncture points of the Dai mai, Yin qiao mai and Yang qiao mai meridians within the context of the WOMED concept of lateral tension: implications for musculoskeletal disease

    PubMed Central

    Moncayo, Roy; Rudisch, Ansgar; Kremser, Christian; Moncayo, Helga

    2007-01-01

    Background A conceptual model of lateral muscular tension in patients presenting thyroid associated ophthalmopathy (TAO) has been recently described. Clinical improvement has been achieved by using acupuncture on points belonging to the so-called extraordinary meridians. The aim of this study was to characterize the anatomical structures related to these acupuncture points by means of 3D MRI image rendering relying on external markers. Methods The investigation was carried out the index case patient of the lateral tension model. A licensed medical acupuncture practitioner located the following acupuncture points: 1) Yin qiao mai meridian (medial ankle): Kidney 3, Kidney 6, the plantar Kidney 6 (Nan jing description); 2) Yang qiao mai meridian (lateral ankle): Bladder 62, Bladder 59, Bladder 61, and the plantar Bladder 62 (Nan jing description); 3) Dai mai meridian (wait): Liver 13, Gall bladder 26, Gall bladder 27, Gall bladder 28, and Gall bladder 29. The points were marked by taping a nitro-glycerin capsule on the skin. Imaging was done on a Siemens Magnetom Avanto MR scanner using an array head and body coil. Mainly T1-weighted imaging sequences, as routinely used for patient exams, were used to obtain multi-slice images. The image data were rendered in 3D modus using dedicated software (Leonardo, Siemens). Results Points of the Dai mai meridian – at the level of the waist – corresponded to the obliquus externus abdominis and the obliquus internus abdominis. Points of the Yin qiao mai meridian – at the medial side of the ankle – corresponded to tendinous structures of the flexor digitorum longus as well as to muscular structures of the abductor hallucis on the foot sole. Points of the Yang qiao mai meridian – at the lateral side of the ankle – corresponded to tendinous structures of the peroneus brevis, the peroneous longus, and the lateral surface of the calcaneus and close to the foot sole to the abductor digiti minimi. Conclusion This non

  5. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  6. Sparse Bayesian framework applied to 3D super-resolution reconstruction in fetal brain MRI

    NASA Astrophysics Data System (ADS)

    Becerra, Laura C.; Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Fetal Magnetic Resonance (FMR) is an imaging technique that is becoming increasingly important as allows assessing brain development and thus make an early diagnostic of congenital abnormalities, spatial resolution is limited by the short acquisition time and the unpredictable fetus movements, in consequence the resulting images are characterized by non-parallel projection planes composed by anisotropic voxels. The sparse Bayesian representation is a flexible strategy which is able to model complex relationships. The Super-resolution is approached as a regression problem, the main advantage is the capability to learn data relations from observations. Quantitative performance evaluation was carried out using synthetic images, the proposed method demonstrates a better reconstruction quality compared with standard interpolation approach. The presented method is a promising approach to improve the information quality related with the 3-D fetal brain structure. It is important because allows assessing brain development and thus make an early diagnostic of congenital abnormalities.

  7. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions

    PubMed Central

    Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.

    2015-01-01

    We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428

  8. A Novel Multiparametric Approach to 3D Quantitative MRI of the Brain

    PubMed Central

    Palma, Giuseppe; Tedeschi, Enrico; Borrelli, Pasquale; Cocozza, Sirio; Russo, Carmela; Liu, Saifeng; Ye, Yongquan; Comerci, Marco; Alfano, Bruno; Salvatore, Marco; Haacke, E. Mark; Mancini, Marcello

    2015-01-01

    Magnetic Resonance properties of tissues can be quantified in several respects: relaxation processes, density of imaged nuclei, magnetism of environmental molecules, etc. In this paper, we propose a new comprehensive approach to obtain 3D high resolution quantitative maps of arbitrary body districts, mainly focusing on the brain. The theory presented makes it possible to map longitudinal (R1), pure transverse (R2) and free induction decay (R2*) rates, along with proton density (PD) and magnetic susceptibility (χ), from a set of fast acquisition sequences in steady-state that are highly insensitive to flow phenomena. A novel denoising scheme is described and applied to the acquired datasets to enhance the signal to noise ratio of the derived maps and an information theory approach compensates for biases from radio frequency (RF) inhomogeneities, if no direct measure of the RF field is available. Finally, the results obtained on sample brain scans of healthy controls and multiple sclerosis patients are presented and discussed. PMID:26284778

  9. 3D morphology of the rear foot from MRI data: technical validation and clinical description

    NASA Astrophysics Data System (ADS)

    Stindel, Eric; Udupa, Jayaram K.; Hirsch, Bruce E.; Odhner, Dewey; Couture, Christine

    1998-06-01

    The purpose of this work is to characterize the 3D morphology of the bones of the rear foot using MR data. This work has two subaims: (1) to study the variability of the various computed architectural measures as a result of the subjectivity and variations in the various processing operations; (2) to study the morphology of the bones included in the peritalar complex. Each image data set utilized in this study consists of 60 longitudinal slices of the foot acquired on a 1.5 T commercial GE MR system. Our description of the rear foot morphology is based mainly on the principal axes, which represent the inertia axes of the bones, as well as on the bone surfaces. We use the live-wire method for segmenting and forming the surfaces of the bones. In the first part of this work, we focus on the dependence of the principal axes system on segmentation and on scan orientation. In the second part, we describe the normal morphology of the rear foot considering the four bones (calcaneus, cuboid, navicular, talus) and compare them to a population from the Upper Pleistocene. We conclude that this non-invasive method can be used in live patients to characterize the bone morphology or as a comparative method to classify population of bones. in spite of the variations involved in the various processing operations.

  10. Multidimensional morphometric 3D MRI analyses for detecting brain abnormalities in children: impact of control population.

    PubMed

    Wilke, Marko; Rose, Douglas F; Holland, Scott K; Leach, James L

    2014-07-01

    Automated morphometric approaches are used to detect epileptogenic structural abnormalities in 3D MR images in adults, using the variance of a control population to obtain z-score maps in an individual patient. Due to the substantial changes the developing human brain undergoes, performing such analyses in children is challenging. This study investigated six features derived from high-resolution T1 datasets in four groups: normal children (1.5T or 3T data), normal clinical scans (3T data), and patients with structural brain lesions (3T data), with each n = 10. Normative control data were obtained from the NIH study on normal brain development (n = 401). We show that control group size substantially influences the captured variance, directly impacting the patient's z-scores. Interestingly, matching on gender does not seem to be beneficial, which was unexpected. Using data obtained at higher field scanners produces slightly different base rates of suprathreshold voxels, as does using clinically derived normal studies, suggesting a subtle but systematic effect of both factors. Two approaches for controlling suprathreshold voxels in a multidimensional approach (combining features and requiring a minimum cluster size) were shown to be substantial and effective in reducing this number. Finally, specific strengths and limitations of such an approach could be demonstrated in individual cases. PMID:25050423

  11. Automatic ROI selection in structural brain MRI using SOM 3D projection.

    PubMed

    Ortiz, Andrés; Górriz, Juan M; Ramírez, Javier; Martinez-Murcia, Francisco J

    2014-01-01

    This paper presents a method for selecting Regions of Interest (ROI) in brain Magnetic Resonance Imaging (MRI) for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM), generating a set of representative prototypes, and the receptive field (RF) of each SOM prototype defines a ROI. Moreover, the proposed method computes the relative importance of each ROI by means of its discriminative power. The devised method has been assessed using 818 images from the Alzheimer's disease Neuroimaging Initiative (ADNI) which were previously segmented through Statistical Parametric Mapping (SPM). The proposed algorithm was used over these images to parcel ROIs associated to the Alzheimer's Disease (AD). Additionally, this method can be used to extract a reduced set of discriminative features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN) and Alzheimer's disease (AD) patients, and 84% of accuracy for Mild Cognitive Impairment (MCI) and AD patients. PMID:24728041

  12. Segmentation and quantitative evaluation of brain MRI data with a multiphase 3D implicit deformable model

    NASA Astrophysics Data System (ADS)

    Angelini, Elsa D.; Song, Ting; Mensh, Brett D.; Laine, Andrew

    2004-05-01

    Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up numerical computation and avoid the need for a priori information. This random initialization ensures robustness of the method to variation of user expertise, biased a priori information and errors in input information that could be influenced by variations in image quality. Experimentation on three MRI brain data sets showed that an optimal partitioning successfully labeled regions that accurately identified white matter, gray matter and cerebrospinal fluid in the ventricles. Quantitative evaluation of the segmentation was performed with comparison to manually labeled data and computed false positive and false negative assignments of voxels for the three organs. We report high accuracy for the two comparison cases. These results demonstrate the efficiency and flexibility of this segmentation framework to perform the challenging task of automatically extracting brain tissue volume contours.

  13. Qualitative Evaluation of a High-Resolution 3D Multi-Sequence Intracranial Vessel Wall Protocol at 3 Tesla MRI

    PubMed Central

    Yang, Wenjie; van der Kolk, Anja G.; Abrigo, Jill; Lee, Ka Lok; Chu, Winnie Chiu Wing; Zwanenburg, Jaco J. M.; Siero, Jeroen C. W.; Wong, Ka Sing; Hendrikse, Jeroen; Chen, Fiona Xiang Yan

    2016-01-01

    Background and Purpose Intracranial vessel wall imaging using MRI has great potential as a clinical method for assessing intracranial atherosclerosis. The purpose of the current study was to compare three 3T MRI vessel wall sequences with different contrast weightings (T1w, PD, T2w) and dedicated sagittal orientation perpendicular to the middle cerebral artery, to the reconstructed sagittal image from a transverse 3D T1w volumetric isotropically reconstructed turbo spin-echo acquisition (VIRTA), and provide a clinical recommendation. Materials and Methods The above-mentioned sequences were acquired in 10 consecutive Chinese ischemic stroke or TIA patients (age: 68 years, sex: 4 females) with angiographic-confirmed MCA stenosis at 3T. Institutional review board approval was obtained. Two raters qualitatively scored all images on overall image quality, presence of artifacts, and visibility of plaques. Data were compared using Repeated measures ANOVA and Sidak’s adjusted post hoc tests. Results All sequences except the T2w sequence were able to depict the walls of the large vessels of the Circle of Willis (p<0.05). T1w sagittal oblique VIRTA showed significantly more artifacts (p<0.01). Peripherally located plaques were sometimes missed on the sagittal sequences, but could be appreciated on the transverse T1w VIRTA. Conclusion With the 3T multi-sequence vessel wall protocol we were able to assess the intracranial plaque with two different image contrast weightings. The sequence of preference to include in a clinical protocol would be the transverse 3D T1w VIRTA based on absence of artifacts, larger coverage including the whole Circle of Willis, and excellent lesion depiction. PMID:27532106

  14. Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.

    PubMed

    Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F

    2012-07-01

    Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy. PMID:22683992

  15. Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, Catalina; Sukno, Federico M.; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F.

    2012-07-01

    Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18% LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.

  16. Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI

    PubMed Central

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J.; Vemuri, Baba C.

    2010-01-01

    This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x). The spatial relations between the different anatomical structures constituting the shape complex are captured via the distance transform. We then leverage the well known relationship between the stationary state wave function ψ(x) of the Schrödinger equation −ħ2∇2ψ + ψ = 0 and the eikonal equation ‖∇S‖ = 1 satisfied by any distance function S(x). This leads to a one-to-one map between ψ(x) and S(x) and allows for recovery of S(x) from ψ(x) through an explicit mathematical relationship. Since the wave function can be regarded as a square-root density function, we are able to exploit this connection and convert shape complex distance transforms into probability density functions. Furthermore, square-root density functions can be seen as points on a unit hypersphere whose Riemannian structure is fully known. A shape complex atlas is constructed by first computing the Karcher mean ψ̄(x) of the wave functions, followed by an inverse mapping of the estimated mean back to the space of distance transforms in order to realize the atlas. We demonstrate the shape complex atlas computation via a set of experiments on a population of brain MRI scans. We also present modes of variation from the computed atlas for the control population to demonstrate the shape complex variability. PMID:20879384

  17. Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures.

    PubMed

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J; Vemuri, Baba C

    2012-04-15

    Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its application to the characterization of neuroanatomical shape abnormalities associated with various neurodegenerative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the analysis of a single anatomical structure in which the important inter-structural information is lost. This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas based on an information geometry framework. A shape complex is a collection of neighboring shapes - for example, the thalamus, amygdala and the hippocampus circuit - which may exhibit changes in shape across multiple structures during the progression of a disease. In this paper, we represent the boundaries of the entire shape complex using the zero level set of a distance transform function S(x). We then re-derive the relationship between the stationary state wave function ψ(x) of the Schrödinger equation [formula in text] and the eikonal equation [formula in text] satisfied by any distance function. This leads to a one-to-one map (up to scale) between ψ(x) and S(x) via an explicit relationship. We further exploit this relationship by mapping ψ(x) to a unit hypersphere whose Riemannian structure is fully known, thus effectively turn ψ(x) into the square-root of a probability density function. This allows us to make comparisons - using elegant, closed-form analytic expressions - between shape complexes represented as square-root densities. A shape complex atlas is constructed by computing the Karcher mean ψ¯(x) in the space of square-root densities and then inversely mapping it back to the space of distance transforms in order to realize the atlas shape. We demonstrate the shape complex atlas computation technique via a set of experiments on a population of brain MRI scans including controls and epilepsy patients with either right anterior

  18. Construction of neuroanatomical shape complex atlas from 3D brain MRI.

    PubMed

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J; Vemuri, Baba C

    2010-01-01

    This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x). The spatial relations between the different anatomical structures constituting the shape complex are captured via the distance transform. We then leverage the well known relationship between the stationary state wave function psi(x) of the Schrödinger equation -h2nabla2 psi + psi = 0 and the eikonal equation //nablaS// = 1 satisfied by any distance function S(x). This leads to a one-to-one map between psi(x) and S(x) and allows for recovery of S(x) from psi(x) through an explicit mathematical relationship. Since the wave function can be regarded as a square-root density function, we are able to exploit this connection and convert shape complex distance transforms into probability density functions. Furthermore, square-root density functions can be seen as points on a unit hypersphere whose Riemannian structure is fully known. A shape complex atlas is constructed by first computing the Karcher mean psi(x) of the wave functions, followed by an inverse mapping of the estimated mean back to the space of distance transforms in order to realize the atlas. We demonstrate the shape complex atlas computation via a set of experiments on a population of brain MRI scans. We also present modes of variation from the computed atlas for the control population to demonstrate the shape complex variability. PMID:20879384

  19. Contrast-enhanced three-dimensional MR imaging using T 1-weighted high-resolution isotropic volume examination (THRIVE): Focus on endometrial cancer

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Goo, Eun-Hoe; Kim, Kwang; Kwak, Byung-Joon

    2013-07-01

    The present study sought to provide optimized radiographic information regarding endometrial cancer by comparing dynamic contrast-enhanced images obtained using the 3-dimensional T 1-weighted high-resolution isotropic volume examination (3D-THRIVE) technique to existing 2-dimensional magnetic resonance (MR) images to provide data regarding the radiological advantages and the technical aspects of 3D-THRIVE. This study included 30 patients with suspected endometrial cancer who were referred for an MR exam for disease characterization and staging. A 3.0T MR scanner was used to obtain 2D turbo spin echo (2D-TSE) images prior to injection of the contrast medium. After the injection, 3D-THRIVE images and 2D spectral pre-saturation inversion recovery (2D-SPIR) images were obtained. The imaging methods were quantitatively compared using the signal-to-noise ratios (SNRs) of the uterus and the endometrial cancer, the contrast-to-noise ratio (CNR) between tissue pairs, and the time-intensity curve. Comparative qualitative analyses were also conducted using an MR image evaluation tool. Comparison of the pre- and post-contrast enhancement images showed that the SNRs measured from the uterus and the endometrial cancer ( SNR uterus and SN R ec ) were relatively higher and more optimized for the contrast-enhanced 3D-THRIVE and 2D-SPIR images than they were for the pre-contrast 2D-TSE images ( p < 0.05). Comparison of the images after contrast enhancement showed that the SNR ec value was higher for the 2D-SPIR image than for the 3D-THRIVE image. The CNR ec/uterus value was higher for the 3D-THRIVE image than for the 2D-SPIR image ( p > 0.05). The time-intensity curve was obtained with the 3D-THRIVE sequence and provided data that enabled a differentiation between malignant tumors and normal tissue. The overall image quality, artifacts, and lesion definition and representation were superior for contrast-enhanced 3D-THRIVE images compared to pre- and post-contrast enhancement of 2D

  20. Quantification of red myotomal muscle volume and geometry in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1-weighted magnetic resonance imaging.

    PubMed

    Perry, Cameron N; Cartamil, Daniel P; Bernal, Diego; Sepulveda, Chugey A; Theilmann, Rebecca J; Graham, Jeffrey B; Frank, Lawrence R

    2007-04-01

    T1-weighted magnetic resonance imaging (MRI) in conjunction with image and segmentation analysis (i.e., the process of digitally partitioning tissues based on specified MR image characteristics) was evaluated as a noninvasive alternative for differentiating muscle fiber types and quantifying the amounts of slow, red aerobic muscle in the shortfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis). MRI-determinations of red muscle quantity and position made for the mid-body sections of three mako sharks (73.5-110 cm fork length, FL) are in close agreement (within the 95% confidence intervals) with data obtained for the same sections by the conventional dissection method involving serial cross-sectioning and volumetric analyses, and with previously reported findings for this species. The overall distribution of salmon shark red muscle as a function of body fork length was also found to be consistent with previously acquired serial dissection data for this species; however, MR imaging revealed an anterior shift in peak red muscle cross-sectional area corresponding to an increase in body mass. Moreover, MRI facilitated visualization of the intact and anatomically correct relationship of tendon linking the red muscle and the caudal peduncle. This study thus demonstrates that MRI is effective in acquiring high-resolution three-dimensional digital data with high contrast between different fish tissue types. Relative to serial dissection, MRI allows more precise quantification of the position, volume, and other details about the types of muscle within the fish myotome, while conserving specimen structural integrity. PMID:17299779

  1. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average

  2. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Jang, Eunji; Han, Seungmin; Lee, Kwangyeol; Suh, Jin-Suck; Haam, Seungjoo; Huh, Yong-Min

    2014-06-01

    We developed Pyrene-Gadolinium (Py-Gd) nanoparticles as pH-sensitive magnetic resonance imaging (MRI) contrast agents capable of showing a high-Mr signal in cancer-specific environments, such as acidic conditions. Py-Gd nanoparticles were prepared by coating Py-Gd, which is a complex of gadolinium with pyrenyl molecules, with pyrenyl polyethyleneglycol PEG using a nano-emulsion method. These particles show better longitudinal relaxation time (T1) MR signals in acidic conditions than they do in neutral conditions. Furthermore, the particles exhibit biocompatibility and MR contrast effects in both in vitro and in vivo studies. From these results, we confirm that Py-Gd nanoparticles have the potential to be applied for accurate cancer diagnosis and therapy.

  3. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    SciTech Connect

    Yu, H; Fatemi, A; Sahgal, A

    2015-06-15

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy. The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.

  4. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT).

    PubMed

    Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula

    2016-05-01

    This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool. PMID:26496803

  5. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    SciTech Connect

    Walker, Amy Metcalfe, Peter; Liney, Gary; Holloway, Lois; Dowling, Jason; Rivest-Henault, David

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  6. A semi-automated “blanket” method for renal segmentation from non-contrast T1-weighted MR images

    PubMed Central

    Lim, Jeremy C.; Wake, Nicole; Seah, Jas-mine; Botterill, Elissa; Farquharson, Shawna; Mikheev, Artem; Lim, Ruth P.

    2016-01-01

    Objective To investigate the precision and accuracy of a new semi-automated method for kidney segmentation from single-breath-hold non-contrast MRI. Materials and methods The user draws approximate kidney contours on every tenth slice, focusing on separating adjacent organs from the kidney. The program then performs a sequence of fully automatic steps: contour filling, interpolation, non-uniformity correction, sampling of representative parenchyma signal, and 3D binary morphology. Three independent observers applied the method to images of 40 kidneys ranging in volume from 94.6 to 254.5 cm3. Manually constructed reference masks were used to assess accuracy. Results The volume errors for the three readers were: 4.4 % ± 3.0 %, 2.9 % ± 2.3 %, and 3.1 % ± 2.7 %. The relative discrepancy across readers was 2.5 % ± 2.1 %. The interactive processing time on average was 1.5 min per kidney. Conclusions Pending further validation, the semi-automated method could be applied for monitoring of renal status using non-contrast MRI. PMID:26516082

  7. Biocompatible and high-performance amino acids-capped MnWO4 nanocasting as a novel non-lanthanide contrast agent for X-ray computed tomography and T1-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dong, Kai; Liu, Zhen; Liu, Jianhua; Huang, Sa; Li, Zhenhua; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents.In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1

  8. Content-based image retrieval using spatial layout information in brain tumor T1-weighted contrast-enhanced MR images.

    PubMed

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Gao, Yang; Chen, Yang; Feng, Qianjin; Chen, Wufan; Lu, Zhentai

    2014-01-01

    This study aims to develop content-based image retrieval (CBIR) system for the retrieval of T1-weighted contrast-enhanced MR (CE-MR) images of brain tumors. When a tumor region is fed to the CBIR system as a query, the system attempts to retrieve tumors of the same pathological category. The bag-of-visual-words (BoVW) model with partition learning is incorporated into the system to extract informative features for representing the image contents. Furthermore, a distance metric learning algorithm called the Rank Error-based Metric Learning (REML) is proposed to reduce the semantic gap between low-level visual features and high-level semantic concepts. The effectiveness of the proposed method is evaluated on a brain T1-weighted CE-MR dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). Using the BoVW model with partition learning, the mean average precision (mAP) of retrieval increases beyond 4.6% with the learned distance metrics compared with the spatial pyramid BoVW method. The distance metric learned by REML significantly outperforms three other existing distance metric learning methods in terms of mAP. The mAP of the CBIR system is as high as 91.8% using the proposed method, and the precision can reach 93.1% when the top 10 images are returned by the system. These preliminary results demonstrate that the proposed method is effective and feasible for the retrieval of brain tumors in T1-weighted CE-MR Images. PMID:25028970

  9. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging

    NASA Astrophysics Data System (ADS)

    van Gorp, Jetse S.; Bakker, Chris J. G.; Bouwman, Job G.; Smink, Jouke; Zijlstra, Frank; Seevinck, Peter R.

    2015-01-01

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  10. Geometrically undistorted MRI in the presence of field inhomogeneities using compressed sensing accelerated broadband 3D phase encoded turbo spin-echo imaging.

    PubMed

    van Gorp, Jetse S; Bakker, Chris J G; Bouwman, Job G; Smink, Jouke; Zijlstra, Frank; Seevinck, Peter R

    2015-01-21

    In this study, we explore the potential of compressed sensing (CS) accelerated broadband 3D phase-encoded turbo spin-echo (3D-PE-TSE) for the purpose of geometrically undistorted imaging in the presence of field inhomogeneities. To achieve this goal 3D-PE-SE and 3D-PE-TSE sequences with broadband rf pulses and dedicated undersampling patterns were implemented on a clinical scanner. Additionally, a 3D multi-spectral spin-echo (ms3D-SE) sequence was implemented for reference purposes. First, we demonstrated the influence of susceptibility induced off-resonance effects on the spatial encoding of broadband 3D-SE, ms3D-SE, 3D-PE-SE and 3D-PE-TSE using a grid phantom containing a titanium implant (Δχ = 182 ppm) with x-ray CT as a gold standard. These experiments showed that the spatial encoding of 3D-PE-(T)SE was unaffected by susceptibility induced off-resonance effects, which caused geometrical distortions and/or signal hyper-intensities in broadband 3D-SE and, to a lesser extent, in ms3D-SE frequency encoded methods. Additionally, an SNR analysis was performed and the temporally resolved signal of 3D-PE-(T)SE sequences was exploited to retrospectively decrease the acquisition bandwidth and obtain field offset maps. The feasibility of CS acceleration was studied retrospectively and prospectively for the 3D-PE-SE sequence using an existing CS algorithm adapted for the reconstruction of 3D data with undersampling in all three phase encoded dimensions. CS was combined with turbo-acceleration by variable density undersampling and spherical stepwise T2 weighting by randomly sorting consecutive echoes in predefined spherical k-space layers. The CS-TSE combination resulted in an overall acceleration factor of 60, decreasing the original 3D-PE-SE scan time from 7 h to 7 min. Finally, CS accelerated 3D-PE-TSE in vivo images of a titanium screw were obtained within 10 min using a micro-coil demonstrating the feasibility of geometrically undistorted MRI near severe

  11. Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T.

    PubMed

    Williams, Lori-Anne; DeVito, Timothy J; Winter, Jeff D; Orr, Timothy N; Thompson, R Terry; Gelman, Neil

    2007-10-01

    Three-dimensional (3D) magnetic resonance imaging (MRI) has shown great potential for studying the impact of prematurity and pathology on brain development. We have investigated the potential of optimized T1-weighted 3D magnetization-prepared rapid gradient-echo imaging (MP-RAGE) for obtaining contrast between white matter (WM) and gray matter (GM) in neonates at 3 T. Using numerical simulations, we predicted that the inversion time (TI) for obtaining strongest contrast at 3 T is approximately 2 s for neonates, whereas for adults, this value is approximately 1.3 s. The optimal neonatal TI value was found to be insensitive to reasonable variations of the assumed T1 relaxation times. The maximum theoretical contrast for neonates was found to be approximately one third of that for adults. Using the optimized TI values, MP-RAGE images were obtained from seven neonates and seven adults at 3 T, and the contrast-to-noise ratio (CNR) was measured for WM versus five GM regions. Compared to adults, neonates exhibited lower CNR between cortical GM and WM and showed a different pattern of regional variation in CNR. These results emphasize the importance of sequence optimization specifically for neonates and demonstrate the challenge in obtaining strong contrast in neonatal brain with T1-weighted 3D imaging. PMID:17391887

  12. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  13. CT and MRI Assessment and Characterization Using Segmentation and 3D Modeling Techniques: Applications to Muscle, Bone and Brain

    PubMed Central

    Helgason, Thordur; Ramon, Ceon; jr, Halldór Jónsson; Carraro, Ugo

    2014-01-01

    This paper reviews the novel use of CT and MRI data and image processing tools to segment and reconstruct tissue images in 3D to determine characteristics of muscle, bone and brain. This to study and simulate the structural changes occurring in healthy and pathological conditions as well as in response to clinical treatments. Here we report the application of this methodology to evaluate and quantify: 1. progression of atrophy in human muscle subsequent to permanent lower motor neuron (LMN) denervation, 2. muscle recovery as induced by functional electrical stimulation (FES), 3. bone quality in patients undergoing total hip replacement and 4. to model the electrical activity of the brain. Study 1: CT data and segmentation techniques were used to quantify changes in muscle density and composition by associating the Hounsfield unit values of muscle, adipose and fibrous connective tissue with different colors. This method was employed to monitor patients who have permanent muscle LMN denervation in the lower extremities under two different conditions: permanent LMN denervated not electrically stimulated and stimulated. Study 2: CT data and segmentation techniques were employed, however, in this work we assessed bone and muscle conditions in the pre-operative CT scans of patients scheduled to undergo total hip replacement. In this work, the overall anatomical structure, the bone mineral density (BMD) and compactness of quadriceps muscles and proximal femoral was computed to provide a more complete view for surgeons when deciding which implant technology to use. Further, a Finite element analysis provided a map of the strains around the proximal femur socket when solicited by typical stresses caused by an implant press fitting. Study 3 describes a method to model the electrical behavior of human brain using segmented MR images. The aim of the work is to use these models to predict the electrical activity of the human brain under normal and pathological conditions by

  14. Active-target T1-weighted MR Imaging of Tiny Hepatic Tumor via RGD Modified Ultra-small Fe3O4 Nanoprobes

    PubMed Central

    Jia, Zhengyang; Song, Lina; Zang, Fengchao; Song, Jiacheng; Zhang, Wei; Yan, Changzhi; Xie, Jun; Ma, Zhanlong; Ma, Ming; Teng, Gaojun; Gu, Ning; Zhang, Yu

    2016-01-01

    Developing ultrasensitive contrast agents for the early detection of malignant tumors in liver is highly demanded. Constructing hepatic tumors specific targeting probes could provide more sensitive imaging information but still faces great challenges. Here we report a novel approach for the synthesis of ultra-small Fe3O4 nanoparticles conjugated with c(RGDyK) and their applications as active-target T1-weighted magnetic resonance imaging (MRI) contrast agent (T1-Fe3O4) for imaging tiny hepatic tumors in vivo. RGD-modified T1-Fe3O4 nanoprobes exhibited high r1 of 7.74 mM-1s-1 and ultralow r2/r1 of 2.8 at 3 T, reflecting their excellent T1 contrast effect at clinically relevant magnetic field. High targeting specificity together with favorable biocompatibility and strong ability to resist against non-specific uptake were evaluated through in vitro studies. Owing to the outstanding properties of tumor angiogenesis targeting with little phagocytosis in liver parenchyma, hepatic tumor as small as 2.2 mm was successfully detected via the T1 contrast enhancement of RGD-modified T1-Fe3O4. It is emphasized that this is the first report on active-target T1 imaging of hepatic tumors, which could not only significantly improve diagnostic sensitivity, but also provide post therapeutic assessments for patients with liver cancer. PMID:27570550

  15. Active-target T1-weighted MR Imaging of Tiny Hepatic Tumor via RGD Modified Ultra-small Fe3O4 Nanoprobes.

    PubMed

    Jia, Zhengyang; Song, Lina; Zang, Fengchao; Song, Jiacheng; Zhang, Wei; Yan, Changzhi; Xie, Jun; Ma, Zhanlong; Ma, Ming; Teng, Gaojun; Gu, Ning; Zhang, Yu

    2016-01-01

    Developing ultrasensitive contrast agents for the early detection of malignant tumors in liver is highly demanded. Constructing hepatic tumors specific targeting probes could provide more sensitive imaging information but still faces great challenges. Here we report a novel approach for the synthesis of ultra-small Fe3O4 nanoparticles conjugated with c(RGDyK) and their applications as active-target T1-weighted magnetic resonance imaging (MRI) contrast agent (T1-Fe3O4) for imaging tiny hepatic tumors in vivo. RGD-modified T1-Fe3O4 nanoprobes exhibited high r1 of 7.74 mM(-1)s(-1) and ultralow r2/r1 of 2.8 at 3 T, reflecting their excellent T1 contrast effect at clinically relevant magnetic field. High targeting specificity together with favorable biocompatibility and strong ability to resist against non-specific uptake were evaluated through in vitro studies. Owing to the outstanding properties of tumor angiogenesis targeting with little phagocytosis in liver parenchyma, hepatic tumor as small as 2.2 mm was successfully detected via the T1 contrast enhancement of RGD-modified T1-Fe3O4. It is emphasized that this is the first report on active-target T1 imaging of hepatic tumors, which could not only significantly improve diagnostic sensitivity, but also provide post therapeutic assessments for patients with liver cancer. PMID:27570550

  16. A non-invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: demonstration in the human ankle joint and Achilles tendon.

    PubMed

    Clarke, E C; Martin, J H; d'Entremont, A G; Pandy, M G; Wilson, D R; Herbert, R D

    2015-01-01

    Muscle moment arms are used widely in biomechanical analyses. Often they are measured in 2D or at a series of static joint positions. In the present study we demonstrate a simple MRI method for measuring muscle moment arms dynamically in 3D from a single range-of-motion cycle. We demonstrate this method in the Achilles tendon for comparison with other methods, and validate the method using a custom apparatus. The method involves registration of high-resolution joint geometry from MRI scans of the stationary joint with low-resolution geometries from ultrafast MRI scans of the slowly moving joint. Tibio-talar helical axes and 3D Achilles tendon moment arms were calculated throughout passive rotation for 10 adult subjects, and compared with recently published data. A simple validation was conducted by comparing MRI measurements with direct physical measurements made on a phantom. The moment arms measured using our method and those of others were similar and there was good agreement between physical measurements (mean 41.0mm) and MRI measurements (mean 39.5mm) made on the phantom. This new method can accurately measure muscle moment arms from a single range-of-motion cycle without the need to control rotation rate or gate the scanning. Supplementary data includes custom software to assist implementation. PMID:25466777

  17. Use of the functional imaging modalities, f MRI r CBV and PET FDG, alters radiation therapy 3-D treatment planning in patients with malignant gliomas

    SciTech Connect

    Fitzek, M.; Pardo, F.S.; Busierre, M.

    1995-12-31

    Malignant gliomas present one of the most difficult challenges to definitive radiation therapy, not only with respect to local control, but also with respect to clinical functional status. While tumor target volume definitions for malignant gliomas are often based on CT and conventional MRI, the functional imaging modalities, echo planar rCBV (regional cerebral blood volume mapping) and 18F-fluorodeoxyglucose PET, are more sensitive modalities for the detection of neovascularization, perhaps one of the earliest signs of glial tumor initiation and progression. In order to address the clinical utility of functional imaging in radiation therapy 3-D treatment planning, we compared tumor target volume definitions and overall dosimetry in patients either undergoing co-registration of conventional Gadolinium-enhanced MRI, or co-registration of functional imaging modalities, prior to radiation therapy 3-D treatment planning.

  18. Thalamic nuclei segmentation in clinical 3T T1-weighted Images using high-resolution 7T shape models

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; D'Haese, Pierre-François; Newton, Allen T.; Dawant, Benoit M.

    2015-03-01

    Accurate and reliable identification of thalamic nuclei is important for surgical interventions and neuroanatomical studies. This is a challenging task due to their small sizes and low intra-thalamic contrast in standard T1-weighted or T2- weighted images. Previously proposed techniques rely on diffusion imaging or functional imaging. These require additional scanning and suffer from the low resolution and signal-to-noise ratio in these images. In this paper, we aim to directly segment the thalamic nuclei in standard 3T T1-weighted images using shape models. We manually delineate the structures in high-field MR images and build high resolution shape models from a group of subjects. We then investigate if the nuclei locations can be inferred from the whole thalamus. To do this, we hierarchically fit joint models. We start from the entire thalamus and fit a model that captures the relation between the thalamus and large nuclei groups. This allows us to infer the boundaries of these nuclei groups and we repeat the process until all nuclei are segmented. We validate our method in a leave-one-out fashion with seven subjects by comparing the shape-based segmentations on 3T images to the manual contours. Results we have obtained for major nuclei (dice coefficients ranging from 0.57 to 0.88 and mean surface errors from 0.29mm to 0.72mm) suggest the feasibility of using such joint shape models for localization. This may have a direct impact on surgeries such as Deep Brain Stimulation procedures that require the implantation of stimulating electrodes in specific thalamic nuclei.

  19. Signal Increase on Unenhanced T1-Weighted Images in the Rat Brain After Repeated, Extended Doses of Gadolinium-Based Contrast Agents

    PubMed Central

    Jost, Gregor; Lenhard, Diana Constanze; Sieber, Martin Andrew; Lohrke, Jessica; Frenzel, Thomas; Pietsch, Hubertus

    2016-01-01

    Objectives In this prospective preclinical study, we evaluated T1-weighted signal intensity in the deep cerebellar nuclei (CN) and globus pallidus (GP) up to 24 days after repeated administration of linear and macrocyclic gadolinium-based contrast agents (GBCAs) using homologous imaging and evaluation methods as in the recently published retrospective clinical studies. In a second part of the study, cerebrospinal fluid (CSF) spaces were evaluated for contrast enhancement by fluid-attenuated magnetic resonance imaging (MRI). Materials and Methods Sixty adult male Wistar-Han rats were randomly divided into a control and 5 GBCA groups (n = 10 per group). The administered GBCAs were gadodiamide, gadopentetate dimeglumine, and gadobenate dimeglumine (linear GBCAs) as well as gadobutrol and gadoterate meglumine (macrocyclic GBCAs) and saline (control). Over a period of 2 weeks, the animals received 10 intravenous injections at a dose of 2.5 mmol Gd/kg body weight, each on 5 consecutive days per week. Before GBCA administration, as well as 3 and 24 days after the last injection, a whole-brain MRI was performed using a standard T1-weighted 3-dimensional turbo spin echo sequence on a clinical 1.5 T scanner. The ratios of signal intensities in deep CN to pons (CN/Po) and GP to thalamus (GP/Th) were determined. For the evaluation of the CSF spaces, 18 additional rats were randomly divided into 6 groups (n = 3 per group) that received the same GBCAs as in the first part of the study. After MR cisternography for anatomical reference, a fluid-attenuated inversion recovery sequence was performed before and 1 minute after intravenous injection of a dose of 1 mmol Gd/kg body weight GBCA or saline. Results A significantly increased signal intensity ratio of CN/Po was observed 3 and 24 days after the last injection of gadodiamide and gadobenate dimeglumine. No significant changes were observed between the 2 time points. Gadopentetate dimeglumine injection led to a moderately elevated

  20. Early survival prediction after intra-arterial therapies: a 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver

    PubMed Central

    Chapiro, Julius; Duran, Rafael; Lin, MingDe; Schernthaner, Rüdiger; Lesage, David; Wang, Zhijun; Savic, Lynn Jeanette; Geschwind, Jean-François

    2015-01-01

    Objectives This study evaluated the predictive role of 1D, 2D and 3D quantitative, enhancement-based MRI regarding overall survival (OS) in patients with colorectal liver metastases (CLM) following intra-arterial therapies (IAT). Methods This retrospective analysis included 29 patients who underwent transarterial chemoembolization (TACE) or radioembolization and received MRI within 6 weeks after therapy. Tumour response was assessed using 1D and 2D criteria (such as European Association for the Study of the Liver guidelines [EASL] and modified Response Evaluation Criteria in Solid Tumors [mRECIST]). In addition, a segmentation-based 3D quantification of overall (volumetric [v] RECIST) and enhancing lesion volume (quantitative [q] EASL) was performed on portal venous phase MRI. Accordingly, patients were classified as responders (R) and non-responders (NR). Survival was evaluated using Kaplan–Meier analysis and compared using Cox proportional hazard ratios (HR). Results Only enhancement-based criteria identified patients as responders. EASL and mRECIST did not predict patient survival (P = 0.27 and P = 0.44, respectively). Using uni- and multivariate analysis, qEASL was identified as the sole predictor of patient survival (9.9 months for R, 6.9 months for NR; P = 0.038; HR 0.4). Conclusion The ability of qEASL to predict survival early after IAT provides evidence for potential advantages of 3D quantitative tumour analysis. PMID:25636420

  1. Effects of incremental beta-blocker dosing on myocardial mechanics of the human left ventricle: MRI 3D-tagging insight into pharmacodynamics supports theory of inner antagonism.

    PubMed

    Schmitt, Boris; Li, Tieyan; Kutty, Shelby; Khasheei, Alireza; Schmitt, Katharina R L; Anderson, Robert H; Lunkenheimer, Paul P; Berger, Felix; Kühne, Titus; Peters, Björn

    2015-07-01

    Beta-blockers contribute to treatment of heart failure. Their mechanism of action, however, is incompletely understood. Gradients in beta-blocker sensitivity of helically aligned cardiomyocytes compared with counteracting transversely intruding cardiomyocytes seem crucial. We hypothesize that selective blockade of transversely intruding cardiomyocytes by low-dose beta-blockade unloads ventricular performance. Cardiac magnetic resonance imaging (MRI) 3D tagging delivers parameters of myocardial performance. We studied 13 healthy volunteers by MRI 3D tagging during escalated intravenous administration of esmolol. The circumferential, longitudinal, and radial myocardial shortening was determined for each dose. The curves were analyzed for peak value, time-to-peak, upslope, and area-under-the-curve. At low doses, from 5 to 25 μg·kg(-1)·min(-1), peak contraction increased while time-to-peak decreased yielding a steeper upslope. Combining the values revealed a left shift of the curves at low doses compared with baseline without esmolol. At doses of 50 to 150 μg·kg(-1)·min(-1), a right shift with flattening occurred. In healthy volunteers we found more pronounced myocardial shortening at low compared with clinical dosage of beta-blockers. In patients with ventricular hypertrophy and higher prevalence of transversely intruding cardiomyocytes selective low-dose beta-blockade could be even more effective. MRI 3D tagging could help to determine optimal individual beta-blocker dosing avoiding undesirable side effects. PMID:25888512

  2. Compatibility of glass-guided recording microelectrodes in the brain stem of squirrel monkeys with high-resolution 3D MRI.

    PubMed

    Tammer, R; Ehrenreich, L; Boretius, S; Watanabe, T; Frahm, J; Michaelis, T

    2006-06-15

    Knowledge of the precise position of recording microelectrodes within the brain of a non-human primate is essential for a reliable exploration of very small anatomic structures. This work demonstrates the compatibility of a newly developed glass-guided microelectrode design and microfeed equipment with high-resolution 3D magnetic resonance imaging (MRI). T1- and T2-weighted images allow for the non-invasive visualization of chronically implanted microelectrodes within the brain stem of squirrel monkeys in vivo. Neural extracellular multi-unit recordings proved the functionality of the microelectrode before and after the use of 3D MRI suggesting the preservation of normal brain tissue at the tip of the electrode. Because histology confirmed the absence of lesions attributable to MRI, the approach offers an interactive monitoring during the course of neuroethological experiments. Consequently, MRI may become an in vivo alternative to common histological post mortem verifications of electrode tracks and hence may avoid the early sacrificing of primates after only a small number of experiments. PMID:16343640

  3. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  4. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm

    PubMed Central

    Ladstein, Jarle; Evensmoen, Hallvard R.; Håberg, Asta K.; Kristoffersen, Anders; Goa, Pål E.

    2016-01-01

    Purpose: To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Materials and Methods: Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Results: Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. Conclusion: The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2

  5. Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears*

    PubMed Central

    Chagas-Neto, Francisco Abaeté; Nogueira-Barbosa, Marcello Henrique; Lorenzato, Mário Müller; Salim, Rodrigo; Kfuri-Junior, Maurício; Crema, Michel Daoud

    2016-01-01

    Objective To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition. PMID:27141127

  6. The Clinical Value of High-Intensity Signals on the Coronary Atherosclerotic Plaques: Noncontrast T1-Weighted Magnetic Resonance Imaging

    PubMed Central

    Ehara, Shoichi; Matsumoto, Kenji; Shimada, Kenei

    2016-01-01

    Over the past several decades, significant progress has been made in the pathohistological assessment of vulnerable plaques and in invasive intravascular imaging techniques. However, the assessment of plaque morphology by invasive modalities is of limited value for the detection of subclinical coronary atherosclerosis and the subsequent prediction or prevention of acute cardiovascular events. Recently, magnetic resonance (MR) imaging technology has reached a sufficient level of spatial resolution, which allowed the plaque visualization of large and static arteries such as the carotids and aorta. However, coronary wall imaging by MR is still challenging due to the small size of coronary arteries, cardiac and respiratory motion, and the low contrast-to-noise ratio between the coronary artery wall and the surrounding structures. Following the introduction of carotid plaque imaging with noncontrast T1-weighted imaging (T1WI), some investigators have reported that coronary artery high-intensity signals on T1WI are associated with vulnerable plaque morphology and an increased risk of future cardiac events. Although there are several limitations and issues that need to be resolved, this novel MR technique for coronary plaque imaging could influence treatment strategies for atherothrombotic disease and may be useful for understanding the pathophysiological mechanisms of atherothrombotic plaque formation. PMID:27455243

  7. Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Peterfy, Charles G.; Genant, Harry K.

    2001-07-01

    In osteoarthritis, articular cartilage loses integrity and becomes thinned. This usually occurs at sites which bear weight during normal use. Measurement of such loss from MRI scans, requires precise and reproducible techniques, which can overcome the difficulties of patient repositioning within the scanner. In this study, we combine a previously described technique for segmentation of cartilage from MRI of the knee, with a technique for 3D image registration that matches localized regions of interest at followup and baseline. Two patients, who had recently undergone meniscal surgery, and developed lesions during the 12 month followup period were examined. Image registration matched regions of interest (ROI) between baseline and followup, and changes within the cartilage lesions were estimate to be about a 16% reduction in cartilage volume within each ROI. This was more than 5 times the reproducibility of the measurement, but only represented a change of between 1 and 2% in total femoral cartilage volume. Changes in total cartilage volume may be insensitive for quantifying changes in cartilage morphology. A combined used of automated image segmentation, with 3D image registration could be a useful tool for the precise and sensitive measurement of localized changes in cartilage from MRI of the knee.

  8. Effects of AMI-25 on liver vessels and tumors on T1-weighted turbo-field-echo images: implications for tumor characterization.

    PubMed

    van Gansbeke, D; Metens, T M; Matos, C; Nicaise, N; Gay, F; Raeymaekers, H; Struyven, J

    1997-01-01

    This study was devoted to tumor differentiation in liver MR T1-weighted imaging with superparamagnetic iron oxide (SPIO). Twenty-one patients with 40 liver lesions were studied at 1.5 T. Before and at least 45 minutes after SPIO administration, turbo-field-echo (TFE) T1-weighted, TFE T1 x T2*-weighted (MXT), and fat-suppressed turbo-spin-echo T2-weighted images were acquired. A quantitative analysis was performed blindly. On TFE T1-weighted images, the signal enhancement was -33% +/- 12 for the liver, -24% +/- 2 for adenomas and focal nodular hyperplasia, +60% +/- 33 for the hemangiomas; metastases and cyst enhancement were not significant. After SPIO on TFE T1-weighted images, the hemangioma-to-liver signal ratio (149% +/- 18) was definitely higher than the mean metastasis-to-liver signal ratio (90% +/- 16). This T1-related differentiation ability lacked dramatically on TFE MXT images and, in one case, was reduced on post-SPIO TFE T1-weighted images by a long imaging delay after SPIO administration (2 hours). PMID:9170031

  9. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  10. MRI-based Preplanning Using CT and MRI Data Fusion in Patients With Cervical Cancer Treated With 3D-based Brachytherapy: Feasibility and Accuracy Study

    SciTech Connect

    Dolezel, Martin; Odrazka, Karel; Zizka, Jan; Vanasek, Jaroslav; Kohlova, Tereza; Kroulik, Tomas; Spitzer, Dusan; Ryska, Pavel; Tichy, Michal; Kostal, Milan; Jalcova, Lubica

    2012-09-01

    Purpose: Magnetic resonance imaging (MRI)-assisted radiation treatment planning enables enhanced target contouring. The purpose of this study is to analyze the feasibility and accuracy of computed tomography (CT) and MRI data fusion for MRI-based treatment planning in an institution where an MRI scanner is not available in the radiotherapy department. Methods and Materials: The registration inaccuracy of applicators and soft tissue was assessed in 42 applications with CT/MRI data fusion. The absolute positional difference of the center of the applicators was measured in four different planes from the top of the tandem to the cervix. Any inaccuracy of registration of soft tissue in relation to the position of applicators was determined and dose-volume parameters for MRI preplans and for CT/MRI fusion plans with or without target and organs at risk (OAR) adaptation were evaluated. Results: We performed 6,132 measurements in 42 CT/MRI image fusions. Median absolute difference of the center of tandem on CT and MRI was 1.1 mm. Median distance between the center of the right ovoid on CT and MRI was 1.7 and 1.9 mm in the laterolateral and anteroposterior direction, respectively. Corresponding values for the left ovoid were 1.6 and 1.8 mm. Rotation of applicators was 3.1 Degree-Sign . Median absolute difference in position of applicators in relation to soft tissue was 1.93, 1.50, 1.05, and 0.84 mm in the respective transverse planes, and 1.17, 1.28, 1.27, and 1.17 mm in selected angular directions. The dosimetric parameters for organs at risk on CT/MRI fusion plans without OAR adaptation were significantly impaired whereas the target coverage was not influenced. Planning without target adaptation led to overdosing of the target volume, especially high-risk clinical target volume - D{sub 90} 88.2 vs. 83.1 (p < 0.05). Conclusions: MRI-based preplanning with consecutive CT/MRI data fusion can be safe and feasible, with an acceptable inaccuracy of soft tissue registration.

  11. Data-driven optimization and evaluation of 2D EPI and 3D PRESTO for BOLD fMRI at 7 Tesla: I. Focal coverage.

    PubMed

    Barry, Robert L; Strother, Stephen C; Gatenby, J Christopher; Gore, John C

    2011-04-01

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is commonly performed using 2D single-shot echo-planar imaging (EPI). However, single-shot EPI at 7 Tesla (T) often suffers from significant geometric distortions (due to low bandwidth (BW) in the phase-encode (PE) direction) and amplified physiological noise. Recent studies have suggested that 3D multi-shot sequences such as PRESTO may offer comparable BOLD contrast-to-noise ratio with increased volume coverage and decreased geometric distortions. Thus, a four-way group-level comparison was performed between 2D and 3D acquisition sequences at two in-plane resolutions. The quality of fMRI data was evaluated via metrics of prediction and reproducibility using NPAIRS (Non-parametric Prediction, Activation, Influence and Reproducibility re-Sampling). Group activation maps were optimized for each acquisition strategy by selecting the number of principal components that jointly maximized prediction and reproducibility, and showed good agreement in sensitivity and specificity for positive BOLD changes. High-resolution EPI exhibited the highest z-scores of the four acquisition sequences; however, it suffered from the lowest BW in the PE direction (resulting in the worst geometric distortions) and limited spatial coverage, and also caused some subject discomfort through peripheral nerve stimulation (PNS). In comparison, PRESTO also had high z-scores (higher than EPI for a matched in-plane resolution), the highest BW in the PE direction (producing images with superior geometric fidelity), the potential for whole-brain coverage, and no reported PNS. This study provides evidence to support the use of 3D multi-shot acquisition sequences in lieu of single-shot EPI for ultra high field BOLD fMRI at 7T. PMID:21232613

  12. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  13. Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry.

    PubMed

    Ardekani, Siamak; Jain, Saurabh; Sanzi, Alianna; Corona-Villalobos, Celia P; Abraham, Theodore P; Abraham, M Roselle; Zimmerman, Stefan L; Wu, Katherine C; Winslow, Raimond L; Miller, Michael I; Younes, Laurent

    2016-04-01

    The focus of this study was to develop advanced mathematical tools to construct high-resolution 3D models of left-ventricular (LV) geometry to evaluate focal geometric differences between patients with hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) using cardiac magnetic resonance (MR) cross-sectional images. A limiting factor in 3D analysis of cardiac MR cross-sections is the low out-of-plane resolution of the acquired images. To overcome this problem, we have developed a mathematical framework to construct a population-based high-resolution 3D LV triangulated surface (template) in which an iterative matching algorithm maps a surface mesh of a normal heart to a set of cross-sectional contours that were extracted from short-axis cine cardiac MR images of patients who were diagnosed with either HCM or HHD. A statistical analysis was conducted on deformations that were estimated at each surface node to identify shape differences at end-diastole (ED), end-systole (ES), and motion-related shape variation from ED to ES. Some significant shape difference in radial thickness was detected at ES. Differences of LV 3D surface geometry were identified focally on the basal anterior septum wall. Further research is needed to relate these findings to the HCM morphological substrate and to design a classifier to discriminate among different etiologies of LV hypertrophy. PMID:26766206

  14. A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI.

    PubMed

    Shilling, Richard Z; Robbie, Trevor Q; Bailloeul, Timothée; Mewes, Klaus; Mersereau, Russell M; Brummer, Marijn E

    2009-05-01

    A novel super-resolution reconstruction (SRR) framework in magnetic resonance imaging (MRI) is proposed. Its purpose is to produce images of both high resolution and high contrast desirable for image-guided minimally invasive brain surgery. The input data are multiple 2-D multislice inversion recovery MRI scans acquired at orientations with regular angular spacing rotated around a common frequency encoding axis. The output is a 3-D volume of isotropic high resolution. The inversion process resembles a localized projection reconstruction problem. Iterative algorithms for reconstruction are based on the projection onto convex sets (POCS) formalism. Results demonstrate resolution enhancement in simulated phantom studies, and ex vivo and in vivo human brain scans, carried out on clinical scanners. A comparison with previously published SRR methods shows favorable characteristics in the proposed approach. PMID:19272995

  15. Noninvasive 3D pressure calculation from PC-MRI via non-iterative harmonics-based orthogonal projection: constant flow experiment.

    PubMed

    Negahdar, M J; Kadbi, Mo; Cha, J; Cebral, J; Amini, A

    2013-01-01

    Use of phase-contrast (PC) MRI in assessment of hemodynamics has significant clinical importance. In this paper we develop a novel approach to determination of hemodynamic pressures. 3D gradients of pressure obtained from Navier-Stokes equation are expanded into a series of orthogonal basis functions, and are subsequently projected onto an integrable subspace. Before the projection step however, a scheme is devised to eliminate the discontinuity at the vessel and image boundaries. In terms of the computation time, the proposed approach significantly improves on previous iterative methods for pressure calculations. The method has been validated using computational fluid dynamic simulations and in-vitro MRI studies of stenotic flows. PMID:24110706

  16. Using stress MRI to analyze the 3D changes in apical ligament geometry from rest to maximal Valsalva: a pilot study

    PubMed Central

    Luo, Jiajia; Betschart, Cornelia; Chen, Luyun; Ashton-Miller, James A.; DeLancey, John O. L.

    2014-01-01

    Introduction and hypothesis A method was developed using 3D stress magnetic resonance imaging (MRI) and was piloted to test hypotheses concerning changes in apical ligament lengths and lines of action from rest to maximal Valsalva. Methods Ten women with (cases) and ten without (controls) pelvic organ prolapse (POP) were selected from an ongoing case-control study. Supine, multiplanar stress MRI was performed at rest and at maximal Valsalva and was imported into 3D Slicer v. 3.4.1 and aligned. The 3D reconstructions of the uterus and vagina, cardinal ligament (CL), deep uterosacral ligament (USLd), and pelvic bones were created. Ligament length and orientation were then measured. Results Adequate ligament representations were possible in all 20 study participants. When cases were compared with controls, the curve length of the CL at rest was 71 ±16 mm vs. 59±9 mm (p =0.051), and the USLd was 38±16 mm vs. 36±11 mm (p =0.797). Similarly, the increase in CL length from rest to strain was 30±16 mm vs. 15±9 mm (p =0.033), and USLd was 15±12 mm vs. 7±4 mm (p =0.094). Likewise, the change in USLd angle was significantly different from CL (p <0.001). Conclusions This technique allows quantification of 3D geometry at rest and at strain. In our pilot sample, at maximal Valsalva, CL elongation was greater in cases than controls, whereas USLd was not; CL also exhibited greater changes in ligament length, and USLd exhibited greater changes in ligament inclination angle. PMID:24008367

  17. A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C.; Meriaudeau, Fabrice

    2012-02-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restriction in 3D. Multiple mean parametric models of the shape and appearance corresponding to the apex, central and base regions of the prostate gland are derived from principal component analysis (PCA) of prior shape and intensity information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve segmentation in 2D. The 2D segmented slices are then rigidly registered with the average 3D model produced by affine registration of the ground truth of the training datasets to minimize pose variations and impose 3D shape restriction. The proposed method achieves a mean Dice similarity coefficient (DSC) value of 0.88+/-0.11, and mean Hausdorff distance (HD) of 3.38+/-2.81 mm when validated with 15 prostate volumes of a public dataset in leave-one-out validation framework. The results achieved are better compared to some of the works in the literature.

  18. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  19. Automatic ultrasound-MRI registration for neurosurgery using the 2D and 3D LC(2) Metric.

    PubMed

    Fuerst, Bernhard; Wein, Wolfgang; Müller, Markus; Navab, Nassir

    2014-12-01

    To enable image guided neurosurgery, the alignment of pre-interventional magnetic resonance imaging (MRI) and intra-operative ultrasound (US) is commonly required. We present two automatic image registration algorithms using the similarity measure Linear Correlation of Linear Combination (LC(2)) to align either freehand US slices or US volumes with MRI images. Both approaches allow an automatic and robust registration, while the three dimensional method yields a significantly improved percentage of optimally aligned registrations for randomly chosen clinically relevant initializations. This study presents a detailed description of the methodology and an extensive evaluation showing an accuracy of 2.51mm, precision of 0.85mm and capture range of 15mm (>95% convergence) using 14 clinical neurosurgical cases. PMID:24842859

  20. Accurate High-Resolution Measurements of 3-D Tissue Dynamics With Registration-Enhanced Displacement Encoded MRI

    PubMed Central

    Merchant, Samer S.; Hsu, Edward W.

    2014-01-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI. PMID:24771572

  1. Predicting Alzheimer's disease by classifying 3D-Brain MRI images using SVM and other well-defined classifiers

    NASA Astrophysics Data System (ADS)

    Matoug, S.; Abdel-Dayem, A.; Passi, K.; Gross, W.; Alqarni, M.

    2012-02-01

    Alzheimer's disease (AD) is the most common form of dementia affecting seniors age 65 and over. When AD is suspected, the diagnosis is usually confirmed with behavioural assessments and cognitive tests, often followed by a brain scan. Advanced medical imaging and pattern recognition techniques are good tools to create a learning database in the first step and to predict the class label of incoming data in order to assess the development of the disease, i.e., the conversion from prodromal stages (mild cognitive impairment) to Alzheimer's disease, which is the most critical brain disease for the senior population. Advanced medical imaging such as the volumetric MRI can detect changes in the size of brain regions due to the loss of the brain tissues. Measuring regions that atrophy during the progress of Alzheimer's disease can help neurologists in detecting and staging the disease. In the present investigation, we present a pseudo-automatic scheme that reads volumetric MRI, extracts the middle slices of the brain region, performs segmentation in order to detect the region of brain's ventricle, generates a feature vector that characterizes this region, creates an SQL database that contains the generated data, and finally classifies the images based on the extracted features. For our results, we have used the MRI data sets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

  2. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  3. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  4. A Pilot Study of Improved Lesion Characterization in Breast MRI Using a 3D Radial Balanced SSFP Technique With Isotropic Resolution and Efficient Fat-Water Separation

    PubMed Central

    Moran, Catherine J.; Kelcz, Frederick; Jung, Youngkyoo; Brodsky, Ethan K.; Fain, Sean B.; Block, Walter F.

    2013-01-01

    Purpose To assess a 3D radial balanced steady state free precession technique that provides sub-millimeter isotropic resolution and inherently registered fat and water image volumes in comparison to conventional T2-weighted RARE imaging for lesion characterization in breast MRI. Materials and Methods 3D PRojection SSFP (3DPR-SSFP) combines a dual half-echo radial k-space trajectory with a linear combination fat/water separation technique (Linear Combination SSFP). A pilot study was performed in 20 patients to assess fat suppression and depiction of lesion morphology using 3DPR-SSFP. For all patients fat suppression was measured for the 3DPR-SSFP image volumes and depiction of lesion morphology was compared against corresponding T2-weighted Fast Spin Echo (FSE) datasets for 15 lesions in 11 patients. Results The isotropic 0.63 mm resolution of the 3DPR-SSFP sequence demonstrated improved depiction of lesion morphology in comparison to FSE. The 3DPR-SSFP fat and water datasets were available in a 5 minute scan time while average fat suppression with 3DPR-SSFP was 71% across all twenty patients. Conclusion 3DPR-SSFP has the potential to improve the lesion characterization information available in breast MRI, particularly in comparison to conventional FSE. A larger study is warranted to quantify the effect of 3DPR-SSFP on specificity. PMID:19557728

  5. Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data

    PubMed Central

    Huang, Xueying; Yang, Chun; Yuan, Chun; Liu, Fei; Canton, Gador; Zheng, Jie; Woodard, Pamela K.; Sicard, Gregorio A.; Tang, Dalin

    2009-01-01

    Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress state (opening angle was ignored to reduce the complexity), and then stretch and pressurize to recover the in vivo plaque geometry with computed initial stress, strain, flow pressure and velocity conditions. Effects of the shrink-stretch process on plaque stress/strain distributions were demonstrated based on patient-specific data using 3D models with fluid-structure interactions (FSI). The average artery axial and inner circumferential shrinkages were 25% and 7.9%, respectively, based on a data set obtained from 10 patients. Maximum values of maximum principal stress and strain increased 349.8% and 249% respectively with 33% axial stretch. Influence of inner circumferential shrinkage (7.9%) was not very noticeable under 33% axial stretch, but became more noticeable under smaller axial stretch. Our results indicated that accurate knowledge of artery shrinkages and the shrink-stretch process will considerably improve the accuracy of computational predictions made based on results from those in vivo MRI-based FSI models. PMID:19444328

  6. Patient-specific artery shrinkage and 3D zero-stress state in multi-component 3D FSI models for carotid atherosclerotic plaques based on in vivo MRI data.

    PubMed

    Huang, Xueying; Yang, Chun; Yuan, Chun; Liu, Fei; Canton, Gador; Zheng, Jie; Woodard, Pamela K; Sicard, Gregorio A; Tang, Dalin

    2009-06-01

    Image-based computational models for atherosclerotic plaques have been developed to perform mechanical analysis to quantify critical flow and stress/strain conditions related to plaque rupture which often leads directly to heart attack or stroke. An important modeling issue is how to determine zero stress state from in vivo plaque geometries. This paper presents a method to quantify human carotid artery axial and inner circumferential shrinkages by using patient-specific ex vivo and in vivo MRI images. A shrink-stretch process based on patient-specific in vivo plaque morphology and shrinkage data was introduced to shrink the in vivo geometry first to find the zero-stress state (opening angle was ignored to reduce the complexity), and then stretch and pressurize to recover the in vivo plaque geometry with computed initial stress, strain, flow pressure and velocity conditions. Effects of the shrink-stretch process on plaque stress/strain distributions were demonstrated based on patient-specific data using 3D models with fluid-structure interactions (FSI). The average artery axial and inner circumferential shrinkages were 25% and 7.9%, respectively, based on a data set obtained from 10 patients. Maximum values of maximum principal stress and strain increased 349.8% and 249% respectively with 33% axial stretch. Influence of inner circumferential shrinkage (7.9%) was not very noticeable under 33% axial stretch, but became more noticeable under smaller axial stretch. Our results indicated that accurate knowledge of artery shrinkages and the shrink-stretch process will considerably improve the accuracy of computational predictions made based on results from those in vivo MRI-based FSI models. PMID:19444328

  7. Quantification of regional fractional ventilation in human subjects by measurement of hyperpolarized 3He washout with 2D and 3D MRI.

    PubMed

    Horn, Felix C; Deppe, Martin H; Marshall, Helen; Parra-Robles, Juan; Wild, Jim M

    2014-01-15

    Multiple-breath washout hyperpolarized (3)He MRI was used to calculate regional parametric images of fractional ventilation (r) as the ratio of fresh gas entering a volume unit to the total end inspiratory volume of the unit. Using a single dose of inhaled hyperpolarized gas and a total acquisition time of under 1 min, gas washout was measured by dynamic acquisitions during successive breaths with a fixed delay. A two-dimensional (2D) imaging protocol was investigated in four healthy subjects in the supine position, and in a second protocol the capability of extending the washout imaging to a three-dimensional (3D) acquisition covering the whole lungs was tested. During both protocols, subjects were breathing comfortably, only restricted by synchronization of breathing to the sequence timings. The 3D protocol was also successfully tested on one patient with cystic fibrosis. Mean r values from each volunteer were compared with global gas volume turnover, as calculated from flow measurement at the mouth divided by total lung volume (from MRI images), and a significant correlation (r = 0.74, P < 0.05) was found. The effects of gravity on R were investigated, and an average decrease in r of 5.5%/cm (Δr = 0.016 ± 0.006 cm(-1)) from posterior to anterior was found in the right lung. Intersubject reproducibility of r imaging with the 2D and 3D protocol was tested, and a significant correlation between repeated experiments was found in a pixel-by-pixel comparison. The proposed methods can be used to measure r on a regional basis. PMID:24311749

  8. Depiction of Achilles Tendon Microstructure In-Vivo Using High-Resolution 3D Ultrashort Echo-Time MRI at 7T

    PubMed Central

    Han, Misung; Larson, Peder E. Z.; Liu, Jing; Krug, Roland

    2014-01-01

    Objectives To demonstrate the feasibility of depicting the internal structure of the Achilles tendon in vivo using high-resolution 3D ultrashort echo-time (UTE) magnetic resonance imaging (MRI) at 7T. Materials and Methods For our UTE imaging, a minimum-phase radiofrequency pulse and an anisotropic field-of-view 3D radial acquisition were used to minimize the echo time and scan time. A fat saturation pulse was applied every eight spoke acquisitions to reduce blurring and chemical shift artifacts from fat and to improve dynamic range of the tendon signal. Five healthy volunteers and one patient were scanned with an isotropic spatial resolution of up to 0.6 mm. Fat-suppressed UTE images were qualitatively evaluated and compared to non-fat-suppressed UTE images and longer echo-time images. Results High-resolution UTE imaging was able to visualize the microstructure of the Achilles tendon. Fat suppression substantially improved the depiction of the internal structure. The UTE images revealed a fascicular pattern in the Achilles tendon and fibrocartilage at the tendon insertion. In a patient who had tendon elongation surgery after birth there was clear depiction of disrupted tendon structure. Conclusions High-resolution fat-suppressed 3D UTE imaging at 7T allows for evaluation of the Achilles tendon microstructure in vivo. PMID:24500089

  9. An open-source, automated platform for visualizing subdural electrodes using 3D CT-MRI coregistration

    PubMed Central

    Pearce, Allison; Krish, Veena T.; Wagenaar, Joost; Chen, Weixuan; Zheng, Yuanjie; Wang, Hongzhi; Lucas, Timothy H.; Gee, James C.; Litt, Brian; Davis, Kathryn A.

    2014-01-01

    Objective Visualizing implanted subdural electrodes in 3D space can greatly aid planning, executing, and validating resection in epilepsy surgery. Coregistration software is available, but cost, complexity, insufficient accuracy or validation limit adoption. We present a fully automated open-source application, based upon a novel method using post-implant CT and post-implant MR images, for accurately visualizing intracranial electrodes in 3D space. Methods CT-MR rigid brain coregistration, MR non-rigid registration, and prior-based segmentation were carried out on 7 subjects. Post-implant CT, post-implant MR, and an external labeled atlas were then aligned in the same space. The coregistration algorithm was validated by manually marking identical anatomical landmarks on the post-implant CT and post-implant MR images. Following coregistration, distances between the center of the landmark masks on the post-implant MR and the coregistered CT images were calculated for all subjects. Algorithms were implemented in open-source software and translated into a “drag and drop” desktop application for Apple Mac OS X. Results Despite post-operative brain deformation, the method was able to automatically align intra-subject multi-modal images and segment cortical subregions so that all electrodes could be visualized on the parcellated brain. Manual marking of anatomical landmarks validated the coregistration algorithm with a mean misalignment distance of 2.87 ± 0.58 mm between the landmarks. Software was easily used by operators without prior image processing experience. Significance We demonstrate an easy to use, novel platform for accurately visualizing subdural electrodes in 3D space on a parcellated brain. We rigorously validated this method using quantitative measures. The method is unique because it involves no pre-processing, is fully automated, and freely available worldwide. A desktop application, as well as the source code, are both available for download on the

  10. MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes

    NASA Astrophysics Data System (ADS)

    Romanova, M. M.; Ustyugova, G. V.; Koldoba, A. V.; Lovelace, R. V. E.

    2012-03-01

    We discuss results of global three-dimensional magnetohydrodynamic simulations of accretion on to a rotating magnetized star with a tilted dipole magnetic field, where the accretion is driven by the magnetorotational instability (MRI). The simulations show that MRI-driven turbulence develops in the disc, and angular momentum is transported outwards primarily due to the magnetic stress. The turbulent flow is strongly inhomogeneous and the densest matter is in azimuthally stretched turbulent cells. We investigate two regimes of accretion: a magnetospheric regime and a boundary layer (BL) regime. In the magnetospheric regime, the magnetic field of the star is dynamically important: the accretion disc is truncated by the star's magnetic field within a few stellar radii from the star's surface, and matter flows to the star in funnel streams. The funnel streams flow towards the south and north magnetic poles but are not equal due to the inhomogeneity of the flow. The hotspots on the stellar surface are not symmetric as well. In the BL regime, the magnetic field of the star is dynamically unimportant, and matter accretes on to the surface of the star through the BL. The magnetic field in the inner disc is strongly amplified by the shear of the accretion flow, and the matter and magnetic stresses become comparable. Accreting matter forms a belt-shaped hot region on the surface of the star. The belt has inhomogeneous density distribution which varies in time due to variable accretion rate. The peaks in the variability curve are associated with accretion of individual turbulent cells. They show 20-50 per cent density amplifications at periods of ˜5-10 dynamical time-scales at the surface of the star. Spiral waves in the disc are excited in both magnetospheric and BL regimes of accretion. Results of simulations can be applied to classical T Tauri stars, accreting brown dwarfs, millisecond pulsars, dwarf novae cataclysmic variables and other stars with magnetospheres smaller

  11. 3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs

    SciTech Connect

    Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.; Timchalk, Charles

    2008-08-21

    In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.

  12. A New Method to Explore the Spectral Impact of the Piriform Fossae on the Singing Voice: Benchmarking Using MRI-Based 3D-Printed Vocal Tracts

    PubMed Central

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4–5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output. PMID:25048199

  13. A new method to explore the spectral impact of the piriform fossae on the singing voice: benchmarking using MRI-based 3D-printed vocal tracts.

    PubMed

    Delvaux, Bertrand; Howard, David

    2014-01-01

    The piriform fossae are the 2 pear-shaped cavities lateral to the laryngeal vestibule at the lower end of the vocal tract. They act acoustically as side-branches to the main tract, resulting in a spectral zero in the output of the human voice. This study investigates their spectral role by comparing numerical and experimental results of MRI-based 3D printed Vocal Tracts, for which a new experimental method (based on room acoustics) is introduced. The findings support results in the literature: the piriform fossae create a spectral trough in the region 4-5 kHz and act as formants repellents. Moreover, this study extends those results by demonstrating numerically and perceptually the impact of having large piriform fossae on the sung output. PMID:25048199

  14. Interactive 3-dimensional segmentation of MRI data in personal computer environment.

    PubMed

    Yoo, S S; Lee, C U; Choi, B G; Saiviroonporn, P

    2001-11-15

    We describe a method of interactive three-dimensional segmentation and visualization for anatomical magnetic resonance imaging (MRI) data in a personal computer environment. The visual feedback necessary during 3-D segmentation was provided by a ray casting algorithm, which was designed to allow users to interactively decide the visualization quality depending on the task-requirement. Structures such as gray matter, white matter, and facial skin from T1-weighted high-resolution MRI data were segmented and later visualized with surface rendering. Personal computers with central processing unit (CPU) speeds of 266, 400, and 700 MHz, were used for the implementation. The 3-D visualization upon each execution of the segmentation operation was achieved in the order of 2 s with a 700 MHz CPU. Our results suggest that 3-D volume segmentation with semi real-time visual feedback could be effectively implemented in a PC environment without the need for dedicated graphics processing hardware. PMID:11640960

  15. Inverse Planning Approach for 3-D MRI-Based Pulse-Dose Rate Intracavitary Brachytherapy in Cervix Cancer

    SciTech Connect

    Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.; Magne, Nicolas; Coulot, Jeremy; Verstraet, Rodolfe; Lefkopoulos, Dimitri; Haie-Meder, Christine

    2007-11-01

    Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with low dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.

  16. Multi-material 3-D viscoelastic model of a transtibial residuum from in-vivo indentation and MRI data.

    PubMed

    Sengeh, David M; Moerman, Kevin M; Petron, Arthur; Herr, Hugh

    2016-06-01

    Although the socket is critical in a prosthetic system for a person with limb amputation, the methods of its design are largely artisanal. A roadblock for a repeatable and quantitative socket design process is the lack of predictive and patient specific biomechanical models of the residuum. This study presents the evaluation of such a model using a combined experimental-numerical approach. The model geometry and tissue boundaries are derived from magnetic resonance imaging (MRI). The soft tissue non-linear elastic and viscoelastic mechanical behavior was evaluated using inverse finite element analysis (FEA) of in-vivo indentation experiments. A custom designed robotic in-vivo indentation system was used to provide a rich experimental data set of force versus time at 18 sites across a limb. During FEA, the tissues were represented by two layers, namely the skin-adipose layer and an underlying muscle-soft tissue complex. The non-linear elastic behavior was modeled using 2nd order Ogden hyperelastic formulations, and viscoelasticity was modeled using the quasi-linear theory of viscoelasticity. To determine the material parameters for each tissue, an inverse FEA based optimization routine was used that minimizes the combined mean of the squared force differences between the numerical and experimental force-time curves for indentations at 4 distinct anatomical regions on the residuum. The optimization provided the following material parameters for the skin-adipose layer: [c=5.22kPam=4.79γ=3.57MPaτ=0.32s] and for the muscle-soft tissue complex [c=5.20kPam=4.78γ=3.47MPaτ=0.34s]. These parameters were evaluated to predict the force-time curves for the remaining 14 anatomical locations. The mean percentage error (mean absolute error/ maximum experimental force) for these predictions was 7±3%. The mean percentage error at the 4 sites used for the optimization was 4%. PMID:26946095

  17. Impossible expectations: fMRI adaptation in the lateral occipital complex (LOC) is modulated by the statistical regularities of 3D structural information.

    PubMed

    Freud, Erez; Ganel, Tzvi; Avidan, Galia

    2015-11-15

    fMRI adaptation (fMRIa), the attenuation of fMRI signal which follows repeated presentation of a stimulus, is a well-documented phenomenon. Yet, the underlying neural mechanisms supporting this effect are not fully understood. Recently, short-term perceptual expectations, induced by specific experimental settings, were shown to play an important modulating role in fMRIa. Here we examined the role of long-term expectations, based on 3D structural statistical regularities, in the modulation of fMRIa. To this end, human participants underwent fMRI scanning while performing a same-different task on pairs of possible (regular, expected) objects and spatially impossible (irregular, unexpected) objects. We hypothesized that given the spatial irregularity of impossible objects in relation to real-world visual experience, the visual system would always generate a prediction which is biased to the possible version of the objects. Consistently, fMRIa effects in the lateral occipital cortex (LOC) were found for possible, but not for impossible objects. Additionally, in alternating trials the order of stimulus presentation modulated LOC activity. That is, reduced activation was observed in trials in which the impossible version of the object served as the prime object (i.e. first object) and was followed by the possible version compared to the reverse order. These results were also supported by the behavioral advantage observed for trials that were primed by possible objects. Together, these findings strongly emphasize the importance of perceptual expectations in object representation and provide novel evidence for the role of real-world statistical regularities in eliciting fMRIa. PMID:26254586

  18. Feasibility of 3-D MRI of Proximal Femur Microarchitecture at 3 T using 26 Receive Elements without and with Parallel Imaging

    PubMed Central

    Chang, Gregory; Deniz, Cem; Honig, Stephen; Rajapakse, Chamith S.; Egol, Kenneth; Regatte, Ravinder R.; Brown, Ryan

    2013-01-01

    Purpose High-resolution imaging of deeper anatomy such as the hip is challenging due to low signal-to-noise ratio (SNR), necessitating long scan times. Multi-element coils can increase SNR and reduce scan time through parallel imaging (PI). We assessed the feasibility of using a 26-element receive coil setup to perform 3 T MRI of proximal femur microarchitecture without and with PI. Materials and Methods This study had institutional review board approval. We scanned thirteen subjects on a 3 T scanner using 26 receive-elements and a 3-D FLASH sequence without and with PI (acceleration factors (AF) 2, 3, 4). We assessed SNR, depiction of individual trabeculae, PI performance (1/g-factor), and image quality with PI (1=non-visualization to 5=excellent). Results SNR maps demonstrate higher SNR for the 26-element setup compared to a 12-element setup for hip MRI. Without PI, individual proximal femur trabeculae were well-depicted, including microarchitectural deterioration in osteoporotic subjects. With PI, 1/g values for the 26-element/12-element receive-setup were 0.71/0.45, 0.56/0.25, and 0.44/0.08 at AF2, AF3, and AF4, respectively. Image quality was: AF1, excellent (4.8±0.4); AF2, good (4.2±1.0); AF3, average (3.3±1.0); AF4, non-visualization (1.4±0.9). Conclusion A 26-element receive-setup permits 3 T MRI of proximal femur microarchitecture with good image quality up to PI AF2. PMID:24711013

  19. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Chen, Yimin; de Ribaupierre, Sandrine; Chiu, Bernard; Fenster, Aaron

    2015-03-01

    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer variability. This paper proposes a segmentation algorithm to extract the cerebral ventricles from 3D T1- weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations.

  20. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.

    PubMed

    Yang, Chun; Tang, Dalin; Atluri, Satya

    2011-01-01

    Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations. Plaque material was assumed to be uniform, homogeneous, isotropic, linear, and nearly incompressible. The linear elastic model was used. The 3D FSI plaque model was discretized and solved using a meshless generalized finite difference (GFD) method. Growth functions with a) morphology alone; b) morphology and plaque wall stress (PWS); morphology and flow shear stress (FSS), and d) morphology, PWS and FSS were introduced to predict future plaque growth based on previous time point data. Starting from the T2 plaque geometry, plaque progression was simulated by solving the FSI model and adjusting plaque geometry using plaque growth functions iteratively until T3 is reached. Numerically simulated plaque progression agreed very well with the target T3 plaque geometry with errors ranging from 8.62%, 7.22%, 5.77% and 4.39%, with the growth function including morphology, plaque wall stress and flow shear stress terms giving the best predictions. Adding flow shear stress term to the growth function improved the prediction error from 7.22% to 4.39%, a 40% improvement. We believe this is the first time 3D plaque progression FSI simulation based on multi-year patient-tracking data was reported. Serial MRI-based progression

  1. Estimating subthreshold tumor on MRI using a 3D-DTI growth model for GBM: An adjunct to radiation therapy planning.

    PubMed

    Hathout, Leith; Patel, Vishal

    2016-08-01

    Mathematical modeling and serial magnetic resonance imaging (MRI) used to calculate patient-specific rates of tumor diffusion, D, and proliferation, ρ, can be combined to simulate glioblastoma multiforme (GBM) growth. We showed that the proportion and distribution of tumor cells below the MRI threshold are determined by the D/ρ ratio of the tumor. As most radiation fields incorporate a 1‑3 cm margin to account for subthreshold tumor, accurate characterization of subthreshold tumor aids the design of optimal radiation fields. This study compared two models: a standard one‑dimensional (1D) isotropic model and a three‑dimensional (3D) anisotropic model using the advanced imaging method of diffusion tensor imaging (DTI) ‑ with regards to the D/ρ ratio's effect on the proportion and spatial extent of the subthreshold tumor. A validated reaction‑diffusion equation accounting for tumor diffusion and proliferation modeled tumor concentration in time and space. For the isotropic and anisotropic models, nine tumors with different D/ρ ratios were grown to a T1 radius of 1.5 cm. For each tumor, the percent and extent of tumor cells beyond the T2 radius were calculated. For both models, higher D/ρ ratios were correlated with a greater proportion and extent of subthreshold tumor. Anisotropic modeling demonstrated a higher proportion and extent of subthreshold tumor than predicted by the isotropic modeling. Because the quantity and distribution of subthreshold tumor depended on the D/ρ ratio, this ratio should influence radiation field demarcation. Furthermore, the use of DTI data to account for anisotropic tumor growth allows for more refined characterization of the subthreshold tumor based on the patient-specific D/ρ ratio. PMID:27374420

  2. Comparison between in-phase and opposed-phase T1-weighted breath-hold FLASH sequences for hepatic imaging

    SciTech Connect

    Rofsky, N.M.; Weinreb, J.C.; Ambrosino, M.M.; Safir, J.; Krinsky, G.

    1996-03-01

    Our goal was to compare in-phase (IP) and opposed-phase (OP) sequences for GRE breath-hold hepatic imaging. Non-contrast-enhanced IP and OP GRE breath-hold images were obtained in 104 consecutive patients referred for abdominal MRI at 1.0 T. For both sequences, the TR, FA, matrix, FOV, slice thickness, interslice gap, and measurements were kept constant. Images were compared quantitatively [liver/spleen and liver/lesion signal difference/noise ratio, (SD/N)] and qualitatively (artifacts, lesion detection and conspicuity, and intrahepatic anatomy). There was no statistically significant difference when comparing IP and OP sequences for liver/spleen and liver/lesion SD/N or for the qualitative parameters. In patients with fatty infiltration, the OP sequences yielded substantially lower values for liver/spleen and liver/lesion SD/N (0.9 and - 1.2, respectively) than the IP sequences (20 and 17, respectively). Furthermore, in several cases with fatty infiltration, many more lesions were identified using IP images. The use of IP and OP GRE sequences provides complementary diagnostic information. Focal liver lesions may be obscured in the setting of fatty infiltration if only OP sequences are employed. A complete assessment of the liver with MR should include both IP and OP imaging. 11 refs., 3 figs., 1 tab.

  3. Are T2-weighted images more useful than T1-weighted contrast-enhanced images in assessment of postoperative sella and parasellar region?

    PubMed Central

    Bladowska, Joanna; Biel, Anna; Zimny, Anna; Lubkowska, Katarzyna; Bednarek-Tupikowska, Grażyna; Sozański, Tomasz; Zaleska-Dorobisz, Urszula; Sąsiadek, Marek

    2011-01-01

    Summary Background The proper diagnosis and management of patients after surgery for pituitary tumors are of great importance in clinical practice. The purpose of this study was to investigate the magnetic resonance features of the postoperative sella with fast spin echo T2-weighted imaging and to evaluate the benefits of this sequence compared to the classically performed contrast-enhanced T1-weighted imaging at 1.5T unit. Material/Methods The study group consisted of 101 patients who underwent resection of pituitary tumors. There were 58 women (57.4%), aged 22 to 75 (mean age, 52.67 years) and 43 men (42.6%), aged 21 to 79 (mean age, 49 years). In all patients preoperative and multiple postoperative MR studies were performed. Post-contrast T1 and pre-contrast T2 images were interpreted by 2 independent readers (neuroradiologists). Results Contrast-enhanced T1-weighted imaging was significantly superior to T2-weighted imaging in assessment of infundibulum (p<0.05). There was no statistically significant difference for each of readers between T1- and T2-weighted images regarding to the following features: visualization of residual pituitary gland (p=0.062 and p=0.368), contours of pituitary (p=0.959 and p=0.265), optic chiasm (p=0.294 and p=0.843), and visualization of presence of residual tumor (p=0.204 and p=0.169). T2-weighted images were significantly superior to contrast-enhanced T1-weighted imaging with regard to visualization of contours of residual tumors (p<0.05). Conclusions T2-weighted images may help to discriminate tumorous from non-tumorous involvement of the postoperative sella and the sphenoid sinus. T2-weighted images are also very useful for a long time after the resection in the postoperative evaluation of the implanted muscle with fascia. PMID:21959621

  4. Multiscan MRI-based virtual cystoscopy

    NASA Astrophysics Data System (ADS)

    Chen, Dongqing; Li, Bin; Huang, Wei; Liang, Zach

    2000-04-01

    Computed tomography (CT) based virtual cystoscopy (VC) has been studied as a potential tool for screening bladder cancer. It is accurate in localizing tumor of size larger than 1 cm and less expensive, as compared to fiberoptic cystoscopy. However, it is invasive and difficult to perform due to using Foley catheter for bladder insufflating with air. In a previous work, we investigated a magnetic resonance imaging (MRI) based VC scheme with urine as a natural contrast solution, in which a MRI acquisition protocol and an adaptive segmentation method were utilized. Both bladder lumen and wall were successfully delineated. To suppress motion artifact and insight pathological change on the bladder wall images, a multi-scan MRI scheme was presented in this study. One transverse and another coronal acquisitions of T1-weighted that cover the whole bladder were obtained twice, at one time the bladder is full of urine and at another time it is near the empty. Four bladder volumes extracted from those 4 datasets were registered first using a flexible three- dimensional (3D) registration algorithm. Then, associated 4 lumen surfaces were viewed simultaneously with the help of an interactive 3D visualization system. This MRI-based VC was tested on volunteers and demonstrated the feasibility to mass screening for bladder cancer.

  5. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  6. Low-field versus high-field MRI in diagnosing breast disorders.

    PubMed

    Pääkkö, Eija; Reinikainen, Heli; Lindholm, Eija-Leena; Rissanen, Tarja

    2005-07-01

    We evaluated the performance of low-field MRI in breast disorders by comparing it with high-field MRI and biopsy results. Twenty-eight consecutive patients who were able to undergo two magnetic resonance examinations on following days were examined by high-field and low-field MRI. After T1-weighted sagittal images had been obtained a dynamic 3D axial study was performed followed by the acquisition of contrast-enhanced T1-weighted sagittal images. The images were analyzed separately by two radiologists paying attention to lesion morphology and enhancement kinetics. Six patients had problems in both breasts (34 breasts studied). The results were compared with biopsy results of 27 breasts. There were 16 malignant lesions, two fibroadenomas and nine other benign lesions. The inter-magnetic-resonance-scanner kappa value was 0.77 (substantial agreement), while the interobserver kappa value was 0.86 and 0.81 at low and high field, respectively (excellent agreement). The sensitivity was 100 and 100%, the specificity was 82 and 73% and the accuracy was 93 and 89% at low and high field, respectively. The mean lesion size was 2 cm and the smallest malignant lesion was 8 mm in diameter. Low-field MRI is a promising tool for breast imaging. Larger materials and smaller lesions are needed to evaluate its true sensitivity and specificity. PMID:15711841

  7. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

    PubMed Central

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing

  8. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold

    PubMed Central

    Schwenzer, Nina F.; Seith, Ferdinand; Gatidis, Sergios; Brendle, Cornelia; Schmidt, Holger; Pfannenberg, Christina A.; laFougère, Christian; Nikolaou, Konstantin

    2016-01-01

    Objective First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. Materials and Methods The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Results Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Conclusion Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR

  9. Postmortem Study of Validation of Low Signal on Fat-Suppressed T1-Weighted Magnetic Resonance Imaging as Marker of Lipid Core in Middle Cerebral Artery Atherosclerosis

    PubMed Central

    Yang, Wen-Jie; Zhao, Hai-Lu; Niu, Chun-Bo; Zhang, Bing; Xu, Yun; Wong, Ka-Sing; Ng, Ho-Keung

    2016-01-01

    Background and Purpose— High signal on T1-weighted fat-suppressed images in middle cerebral artery plaques on ex vivo magnetic resonance imaging was verified to be intraplaque hemorrhage histologically. However, the underlying plaque component of low signal on T1-weighted fat-suppressed images (LST1) has never been explored. Based on our experience, we hypothesized that LST1 might indicate the presence of lipid core within intracranial plaques. Methods— 1.5 T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of bilateral middle cerebral arteries. Then middle cerebral artery specimens were removed for histology processing. LST1 presence was identified on magnetic resonance images, and lipid core areas were measured on the corresponding histology sections. Results— Total 76 middle cerebral artery locations were included for analysis. LST1 showed a high specificity (96.9%; 95% confidence interval, 82.0%–99.8%) but a low sensitivity (38.6%; 95% confidence interval, 24.7%–54.5%) for detecting lipid core of all areas. However, the sensitivity increased markedly (81.2%; 95% confidence interval, 53.7%–95.0%) when only lipid cores of area ≥0.80 mm2 were included. Mean lipid core area was 5× larger in those with presence of LST1 than in those without (1.63±1.18 mm2 versus 0.32±0.31 mm2; P=0.003). Conclusions— LST1 is a promising imaging biomarker of identifying intraplaque lipid core, which may be useful to distinguish intracranial atherosclerotic disease from other intracranial vasculopathies and to assess plaque vulnerability for risk stratification of patients with intracranial atherosclerotic disease. In vivo clinical studies are required to explore the correlation between LST1 and clinical outcomes of patients with intracranial atherosclerotic disease. PMID:27462119

  10. Optimization of Free-Breathing Whole-Heart 3D Cardiac MRI at 3Tesla to Identify Coronary Vein Anatomy and to Compare with Multi-Detector Computed Tomography

    PubMed Central

    Ibrahim, Wael G.; El Khouli, Riham H.; Abd-Elmoniem, Khaled Z.; Matta, Jatin Raj; McAreavey, Dorothea; Gharib, Ahmed M

    2014-01-01

    Objective This study optimizes use of 3T MRI to delineate coronary venous anatomy, and compares 3T MRI with MDCT measurements. Methods The study population included 37 consecutive subjects (22 men, 19-71 years). Whole-heart contrast-enhanced MRI images at 3T were acquired using segmented k-space gradient echo with inversion recovery prepared technique. MDCT images were obtained using nonionic iodinated contrast. Results The coronary sinus, and great cardiac, posterior interventricular, and anterior interventricular veins were visualized in 100% of cases by both MRI and MDCT. Detection of the posterior vein of left ventricle and left marginal vein by MRI was 97% and 81% respectively. Bland Altman plots showed agreement in ostial diameter measured by both modalities with correlation coefficients ranging 0.5-0.76. Vein length and distances also agreed closely. Conclusion Free-breathing whole-heart 3D MRI at 3T provides high spatial resolution images and could offer an alternative imaging technique instead of MDCT scans. PMID:24983436

  11. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  12. Reproducibility of Frankfort Horizontal Plane on 3D Multi-Planar Reconstructed MR Images

    PubMed Central

    Daboul, Amro; Schwahn, Christian; Schaffner, Grit; Soehnel, Silvia; Samietz, Stefanie; Aljaghsi, Ahmad; Habes, Mohammad; Hegenscheid, Katrin; Puls, Ralf; Klinke, Thomas; Biffar, Reiner

    2012-01-01

    Objective The purpose of this study was to determine the accuracy and reliability of Frankfort horizontal plane identification using displays of multi-planar reconstructed MRI images, and propose it as a sufficiently stable and standardized reference plane for craniofacial structures. Materials and Methods MRI images of 43 subjects were obtained from the longitudinal population based cohort study SHIP-2 using a T1-weighted 3D sequence. Five examiners independently identified the three landmarks that form FH plane. Intra-examiner reproducibility and inter-examiner reliability, correlation coefficients (ICC), coefficient of variability and Bland-Altman plots were obtained for all landmarks coordinates to assess reproducibility. Intra-examiner reproducibility and inter-examiner reliability in terms of location and plane angulation were also assessed. Results Intra- and inter-examiner reliabilities for X, Y and Z coordinates of all three landmarks were excellent with ICC values ranging from 0.914 to 0.998. Differences among examiners were more in X and Z than in Y dimensions. The Bland–Altman analysis demonstrated excellent intra- as well as inter-examiner agreement between examiners in all coordinates for all landmarks. Intra-examiner reproducibility and inter-examiner reliability of the three landmarks in terms of distance showed mean differences between 1.3 to 2.9 mm, Mean differences in plane angulation were between 1.0° to 1.5° among examiners. Conclusion This study revealed excellent intra-examiner reproducibility and inter-examiner reliability of Frankfort Horizontal plane through 3D landmark identification in MRI. Sufficiently stable landmark-based reference plane could be used for different treatments and studies. PMID:23118970

  13. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis

    PubMed Central

    Roura, Eloy; Schneider, Torben; Modat, Marc; Daga, Pankaj; Muhlert, Nils; Chard, Declan; Ourselin, Sebastien; Lladó, Xavier; Wheeler-Kingshott, Claudia Gandini

    2015-01-01

    Summary Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Both qualitative and quantitative evaluations are presented, showing that the MC approach provides better alignment with the target while maintaining better T1w and FA co-alignment. PMID:26727703

  14. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli

  15. 3D Breath-Held Cardiac Function With Projection Reconstruction in Steady State Free Precession Validated Using 2D Cine MRI

    PubMed Central

    Peters, Dana C.; Ennis, Daniel B.; Rohatgi, Pratik; Syed, Mushabbar A.; McVeigh, Elliot R.; Arai, Andrew E.

    2007-01-01

    Purpose: To develop and validate a three-dimensional (3D) single breath-hold, projection reconstruction (PR), balanced steady state free precession (SSFP) method for cardiac function evaluation against a two-dimensional (2D) multislice Fourier (Cartesian) transform (FT) SSFP method. Materials and Methods: The 3D PR SSFP sequence used projections in the x-y plane and partitions in z, providing 70–80 msec temporal resolution and 1.7 × 1.7 × 8–10 mm in a 24-heartbeat breath hold. A total of 10 volunteers were imaged with both methods, and the measurements of global cardiac function were compared. Results: Mean signal-to-noise ratios (SNRs) for the blood and myocardium were 114 and 42 (2D) and 59 and 21 (3D). Bland-Altman analysis comparing the 2D and 3D ejection fraction (EF), left ventricular end diastolic volume (LVEDV) and end systolic volume (LVESV), and end diastolic myocardial mass (LVEDM) provided values of bias ±2 SD of 0.6% ± 7.7 % for LVEF, 5.9 mL ± 20 mL for LVEDV, −2.8 mL ± 12 mL for LVESV, and −0.61 g ± 13 g for LVEDM. 3D interobserver variability was greater than 2D for LVEDM and LVESV. Conclusion: In a single breath hold, the 3D PR method provides comparable information to the standard 2D FT method, which employs 10–12 breath holds. PMID:15332248

  16. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID

  17. Paramagnetic lanthanide chelates for multicontrast MRI.

    PubMed

    Cakić, Nevenka; Savić, Tanja; Stricker-Shaver, Janice; Truffault, Vincent; Platas-Iglesias, Carlos; Mirkes, Christian; Pohmann, Rolf; Scheffler, Klaus; Angelovski, Goran

    2016-07-28

    The preparation of a paramagnetic chelator that serves as a platform for multicontrast MRI, and can be utilized either as a T1-weighted, paraCEST or (19)F MRI contrast agent is reported. Its europium(iii) complex exhibits an extremely slow water exchange rate which is optimal for the use in CEST MRI. The potential of this platform was demonstrated through a series of MRI studies on tube phantoms and animals. PMID:27291157

  18. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues

    NASA Astrophysics Data System (ADS)

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent.Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the

  19. Diagnostic Performance of Fused Diffusion-Weighted Imaging Using Unenhanced or Postcontrast T1-Weighted MR Imaging in Patients With Breast Cancer

    PubMed Central

    Shin, Hee Jung; Chae, Eun Young; Choi, Woo Jung; Ha, Su Min; Park, Jin Young; Shin, Ki Chang; Cha, Joo Hee; Kim, Hak Hee

    2016-01-01

    Abstract To evaluate the diagnostic performance of fused diffusion-weighted imaging (DWI) using either unenhanced (UFMR) or early postcontrast T1-weighted imaging (PCFMR) to detect and characterize breast lesions in patients with breast cancer. This retrospective observational study was approved by institutional review board in our hospital and informed consents were waived. We retrospectively selected 87 consecutive patients who underwent preoperative breast magnetic resonance imaging, including DWI and definitive surgery. Both UFMR and PCFMR were reviewed by 5 radiologists for detection, lesion size, Breast Imaging Reporting and Data System final assessment, the probability of malignancy, lesion conspicuity, and apparent diffusion coefficients. A total of 129 lesions were identified by at least 2 readers on UFMR or PCFMR. Of 645 potentially detected lesions, there were 528 (82%) with UFMR and 554 (86%) with PCFMR. Malignant lesions or index cancers showed significantly higher detection rates than benign or additional lesions on both UFMR and PCFMR (P < 0.05). Area under the characteristic curves (AUCs) for predicting malignancy ranged 0.927 to 0.986 for UFMR, and 0.936 to 0.993 for PCFMR, which was not significantly different. Lesion conspicuity was significantly higher on PCFMR than UFMR (8.59 ± 1.67 vs 9.19 ± 1.36, respectively; P < 0.05) across 5 readers. Mean intraclass correlation coefficients for lesion size on UFMR and PCFMR were 0.89 and 0.92, respectively. Detection rates of index malignant lesions were similar for UFMR and PCFMR. Interobserver agreement for final assessments was reliable across 5 readers. Diagnostic accuracy for predicting malignancy with UFMR versus PCFMR was similar, although lesion conspicuity was significantly greater with the latter. PMID:27124054

  20. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues.

    PubMed

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent. PMID:27113247

  1. Radiation necrosis of the optic chiasm, optic tract, hypothalamus, and upper pons after radiotherapy for pituitary adenoma, detected by gadolinium-enhanced, T1-weighted magnetic resonance imaging: Case report

    SciTech Connect

    Tachibana, O.; Yamaguchi, N.; Yamashima, T.; Yamashita, J. )

    1990-10-01

    A 26-year-old woman was treated for a prolactin secreting pituitary adenoma by surgery and radiotherapy (5860 rads). Fourteen months later, she developed right hemiparesis and dysarthria. A T1-weighted magnetic resonance imaging scan using gadolinium contrast showed a small, enhanced lesion in the upper pons. Seven months later, she had a sudden onset of loss of vision, and radiation optic neuropathy was diagnosed. A T1-weighted magnetic resonance imaging scan showed widespread gadolinium-enhanced lesions in the optic chiasm, optic tract, and hypothalamus. Magnetic resonance imaging is indispensable for the early diagnosis of radiation necrosis, which is not visualized by radiography or computed tomography.

  2. Construction and investigation of 3D vessels net of the brain according to MRI data using the method of variation of scanning plane

    NASA Astrophysics Data System (ADS)

    Cherevko, A. A.; Yankova, G. S.; Maltseva, S. V.; Parshin, D. V.; Akulov, A. E.; Khe, A. K.; Chupakhin, A. P.

    2016-06-01

    The blood realizes the transport of substances, which are necessary for livelihoods, throughout the body. The assumption about the relationship genotype and structure of vasculature (in particular of brain) is natural. In the paper we consider models of vessel net for two genetic lines of laboratory mice. Vascular net obtained as a result of preprocessing MRI data. MRI scanning is realized using the method of variation of slope of scanning plane, i.e. by several sets of parallel planes specified by different normal vectors. The following special processing allowed to construct models of vessel nets without fragmentation. The purpose of the work is to compare the vascular network models of two different genetic lines of laboratory mice.

  3. MRI-SPECT image registration using multiple MR pulse sequences to examine osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Peterfy, Charles G.; White, David L.; Hawkins, Randall A.; Genant, Harry K.

    1999-05-01

    We have examined whether automated image registration can be used to combine metabolic information from SPECT knee scans with anatomical information from MRI. Ten patients, at risk of developing OA due to meniscal surgery, were examined. 99mTc methyldiphosphonate SPECT, T2-weighted fast spin echo (FSE) MRI, and T1-weighted, 3D fat-suppressed gradient recalled echo (SPGR) MRI images were obtained. Registration was performed using normalized mutual information. For each patient, FSE data was registered to SPGR data, providing a composite MRI image with each voxel represented by two intensities (ISPGR, IFSE). Modifications to the registration algorithm were made to allow registration of SPECT data (one intensity per voxel) to composite MRI data (2 intensities per voxel). Registration sources was assessed by visual inspection of uptake localization over expected anatomical locations, and the absence of uptake over unlikely sites. Three patients were discarded from SPECT-MRI registration tests since they had metallic artifacts that prevented co-registration of MR data. Registration of SPECT to SPGR or FSE data alone proved unreliable, with less than 50% of attempts succeeding. The modified algorithm, treating co-registered SPGR and FSE data as a two-value-per-voxel image, proved most reliable, allowing registration of all patients with no metallic artifacts on MRI.

  4. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    NASA Astrophysics Data System (ADS)

    Sharma, Rakesh

    2010-07-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  5. Novel methodology for 3D reconstruction of carotid arteries and plaque characterization based upon magnetic resonance imaging carotid angiography data.

    PubMed

    Sakellarios, Antonis I; Stefanou, Kostas; Siogkas, Panagiotis; Tsakanikas, Vasilis D; Bourantas, Christos V; Athanasiou, Lambros; Exarchos, Themis P; Fotiou, Evangelos; Naka, Katerina K; Papafaklis, Michail I; Patterson, Andrew J; Young, Victoria E L; Gillard, Jonathan H; Michalis, Lampros K; Fotiadis, Dimitrios I

    2012-10-01

    In this study, we present a novel methodology that allows reliable segmentation of the magnetic resonance images (MRIs) for accurate fully automated three-dimensional (3D) reconstruction of the carotid arteries and semiautomated characterization of plaque type. Our approach uses active contours to detect the luminal borders in the time-of-flight images and the outer vessel wall borders in the T(1)-weighted images. The methodology incorporates the connecting components theory for the automated identification of the bifurcation region and a knowledge-based algorithm for the accurate characterization of the plaque components. The proposed segmentation method was validated in randomly selected MRI frames analyzed offline by two expert observers. The interobserver variability of the method for the lumen and outer vessel wall was -1.60%±6.70% and 0.56%±6.28%, respectively, while the Williams Index for all metrics was close to unity. The methodology implemented to identify the composition of the plaque was also validated in 591 images acquired from 24 patients. The obtained Cohen's k was 0.68 (0.60-0.76) for lipid plaques, while the time needed to process an MRI sequence for 3D reconstruction was only 30 s. The obtained results indicate that the proposed methodology allows reliable and automated detection of the luminal and vessel wall borders and fast and accurate characterization of plaque type in carotid MRI sequences. These features render the currently presented methodology a useful tool in the clinical and research arena. PMID:22617149

  6. Aliskiren Effect on Plaque Progression in Established Atherosclerosis Using High Resolution 3D MRI (ALPINE): A Double-Blind Placebo-Controlled Trial

    PubMed Central

    Mihai, Georgeta; Varghese, Juliet; Kampfrath, Thomas; Gushchina, Liubov; Hafer, Lisa; Deiuliis, Jeffrey; Maiseyeu, Andrei; Simonetti, Orlando P.; Lu, Bo; Rajagopalan, Sanjay

    2013-01-01

    Background The renin–angiotensin system is well recognized as a mediator of pathophysiological events in atherosclerosis. The benefits of renin inhibition in atherosclerosis, especially when used in combination with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEIs/ARBs) are currently not known. We hypothesized that treatment with the renin inhibitor aliskiren in patients with established cardiovascular disease will prevent the progression of atherosclerosis as determined by high-resolution magnetic resonance imaging (MRI) measurements of arterial wall volume in the thoracic and abdominal aortas of high-risk patients with preexisting cardiovascular disease. Methods and Results This was a single-center, randomized, double-blind, placebo-controlled trial in patients with established cardiovascular disease. After a 2-week single-blind placebo phase, patients were randomized to receive either placebo (n=37, mean±SD age 64.5±8.9 years, 3 women) or 150 mg of aliskiren (n=34, mean±SD age 63.9±11.5 years, 9 women). Treatment dose was escalated to 300 mg at 2 weeks and maintained during the remainder of the study. Patients underwent dark-blood, 3-dimensional MRI assessment of atherosclerotic plaque in the thoracic and abdominal segments at baseline and on study completion or termination (up to 36 weeks of drug or matching placebo). Aliskiren use resulted in significant progression of aortic wall volume (normalized total wall volume 5.31±6.57 vs 0.15±4.39 mm3, P=0.03, and percentage wall volume 3.37±2.96% vs 0.97±2.02%, P=0.04) compared with placebo. In a subgroup analysis of subjects receiving ACEI/ARB therapy, atherosclerosis progression was observed only in the aliskiren group, not in the placebo group. Conclusions MRI quantification of atheroma plaque burden demonstrated that aliskiren use in patients with preexisting cardiovascular disease resulted in an unexpected increase in aortic atherosclerosis compared with placebo. Although

  7. A fast way to visualize the brain surface with volume rendering of MRI data.

    PubMed

    Matsumoto, S; Asato, R; Konishi, J

    1999-11-01

    The preprocessing of 3-dimensional (3D) MRI data constitutes a bottleneck in the process of visualizing the brain surface with volume rendering. As a fast way to achieve this preprocessing, the authors propose a simple pipeline based on an algorithm of seed-growing type, for approximate segmentation of the intradural space in T1-weighted 3D MRI data. Except for the setting of a seed and four parameters, this pipeline proceeds in an unsupervised manner; no interactive intermediate step is involved. It was tested with 15 datasets from normal adults. The result was reproducible in that as long as the seed was located within the cerebral white matter, identical segmentation was achieved for each dataset. Although the pipeline ran with gross segmentation error along the floor of the cranial cavity, it performed well along the cranial vault so that subsequent volume rendering permitted the observation of the sulco-gyral pattern over cerebral convexities. Use of this pipeline followed by volume rendering is a handy approach to the visualization of the brain surface from 3D MRI data. PMID:10587913

  8. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  9. Non-contrast 3D time-of-flight magnetic resonance angiography for visualization of intracranial aneurysms in patients with absolute contraindications to CT or MRI contrast

    PubMed Central

    Yanamadala, Vijay; Sheth, Sameer A.; Walcott, Brian P.; Buchbinder, Bradley R.; Buckley, Deidre; Ogilvy, Christopher S.

    2013-01-01

    The preoperative evaluation in patients with intracranial aneurysms typically includes a contrast-enhanced vascular study, such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), or digital subtraction angiography. However, there are numerous absolute and relative contraindications to the administration of imaging contrast agents, including pregnancy, severe contrast allergy, and renal insufficiency. Evaluation of patients with contrast contraindications thus presents a unique challenge. We identified three patients with absolute contrast contraindications who presented with intracranial aneurysms. One patient was pregnant, while the other two had previous severe anaphylactic reactions to iodinated contrast. Because of these contraindications to intravenous contrast, we performed non-contrast time-of-flight MRA with 3D reconstruction (TOF MRA with 3DR) with maximum intensity projections and volume renderings as part of the preoperative evaluation prior to successful open surgical clipping of the aneurysms. In the case of one paraclinoid aneurysm, a high-resolution non-contrast CT scan was also performed to assess the relationship of the aneurysm to the anterior clinoid process. TOF MRA with 3DR successfully identified the intracranial aneurysms and adequately depicted the surrounding microanatomy. Intraoperative findings were as predicted by the preoperative imaging studies. The aneurysms were successfully clip-obliterated, and the patients had uneventful post-operative courses. These cases demonstrate that non-contrast imaging is a viable modality to assess intracranial aneurysms as part of the surgical planning process in patients with contrast contraindications. TOF MRA with 3DR, in conjunction with high-resolution non-contrast CT when indicated, provides adequate visualization of the microanatomy of the aneurysm and surrounding structures. PMID:23685107

  10. Cetacean brain evolution: Dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis) - An investigation with high-resolution 3D MRI.

    PubMed

    Oelschläger, H H A; Ridgway, S H; Knauth, M

    2010-01-01

    This study compares a whole brain of the dwarf sperm whale (Kogia sima) with that of a common dolphin (Delphinus delphis) using high-resolution magnetic resonance imaging (MRI). The Kogia brain was scanned with a Siemens Trio Magnetic Resonance scanner in the three main planes. As in the common dolphin and other marine odontocetes, the brain of the dwarf sperm whale is large, with the telencephalic hemispheres remarkably dominating the brain stem. The neocortex is voluminous and the cortical grey matter thin but expansive and densely convoluted. The corpus callosum is thin and the anterior commissure hard to detect whereas the posterior commissure is well-developed. There is consistency as to the lack of telencephalic structures (olfactory bulb and peduncle, olfactory ventricular recess) and neither an occipital lobe of the telencephalic hemisphere nor the posterior horn of the lateral ventricle are present. A pineal organ could not be detected in Kogia. Both species show a tiny hippocampus and thin fornix and the mammillary body is very small whereas other structures of the limbic system are well-developed. The brain stem is thick and underlies a large cerebellum, both of which, however, are smaller in Kogia. The vestibular system is markedly reduced with the exception of the lateral (Deiters') nucleus. The visual system, although well-developed in both species, is exceeded by the impressive absolute and relative size of the auditory system. The brainstem and cerebellum comprise a series of structures (elliptic nucleus, medial accessory inferior olive, paraflocculus and posterior interpositus nucleus) showing characteristic odontocete dimensions and size correlations. All these structures seem to serve the auditory system with respect to echolocation, communication, and navigation. PMID:20203478

  11. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  12. MRI

    MedlinePlus

    ... scan is an imaging test that uses powerful magnets and radio waves to create pictures of the ... in your eyes) Because the MRI contains strong magnets, metal objects are not allowed into the room ...

  13. Breast segmentation in MRI using Poisson surface reconstruction initialized with random forest edge detection

    NASA Astrophysics Data System (ADS)

    Martel, Anne L.; Gallego-Ortiz, Cristina; Lu, YingLi

    2016-03-01

    Segmentation of breast tissue in MRI images is an important pre-processing step for many applications. We present a new method that uses a random forest classifier to identify candidate edges in the image and then applies a Poisson reconstruction step to define a 3D surface based on the detected edge points. Using a leave one patient out cross validation we achieve a Dice overlap score of 0.96 +/- 0.02 for T1 weighted non-fat suppressed images in 8 patients. In a second dataset of 332 images acquired using a Dixon sequence, which was not used in training the random classifier, the mean Dice score was 0.90 +/- 0.03. Using this approach we have achieved accurate, robust segmentation results using a very small training set.

  14. 3D quantitative assessment of response to fractionated stereotactic radiotherapy and single-session stereotactic radiosurgery of vestibular schwannoma

    PubMed Central

    Schneider, T.; Chapiro, J.; Lin, M.; Geschwind, J. F.; Kleinberg, L.; Rigamonti, D.; Jusué-Torres, I.; Marciscano, A. E.; Yousem, D. M.

    2015-01-01

    Objectives To determine clinical outcome of patients with vestibular schwannoma (VS) after treatment with fractionated stereotactic radiotherapy (FSRT) and single-session stereotactic radiosurgery (SRS) by using 3D quantitative response assessment on MRI. Materials This retrospective analysis included 162 patients who underwent radiation therapy for sporadic VS. Measurements on T1-weighted contrast-enhanced MRI (in 2-year post-therapy intervals: 0–2, 2–4, 4–6, 6–8, 8–10, and 10–12 years) were taken for total tumour volume (TTV) and enhancing tumour volume (ETV) based on a semi-automated technique. Patients were considered non-responders (NRs) if they required subsequent microsurgical resection or developed radiological progression and tumour-related symptoms. Results Median follow-up was 4.1 years (range: 0.4–12.0). TTV and ETV decreased for both the FSRT and SRS groups. However, only the FSRT group achieved significant tumour shrinkage (p < 0.015 for TTV, p < 0.005 for ETV over time). The 11 NRs showed proportionally greater TTV (median TTV pre-treatment: 0.61 cm3, 8–10 years after: 1.77 cm3) and ETV despite radiation therapy compared to responders (median TTV pre-treatment: 1.06 cm3; 10–12 years after: 0.81 cm3; p = 0.001). Conclusion 3D quantification of VS showed a significant decrease in TTV and ETV on FSRT-treated patients only. NRs had significantly greater TTV and ETV over time. PMID:26139318

  15. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  16. Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation.

    PubMed

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Wang, Lei; Disterhoft, John F

    2016-02-01

    Activity-induced manganese-dependent MRI (AIM-MRI) is a powerful tool to track system-wide neural activity using high resolution, quantitative T1-weighted MRI in animal models and has significant advantages for investigating neural activity over other modalities including BOLD fMRI. With AIM-MRI, Mn(2+) ions enter neurons via voltage-gated calcium channels preferentially active during the time of experimental exposure. A broad range of AIM-MRI studies using different species studying different phenomena have been performed, but few of these studies provide a systematic evaluation of the factors influencing the detection of Mn(2+) such as dosage and the temporal characteristics of Mn(2+) uptake. We identified an optimal dose of Mn(2+) (25 mg/kg, s.c.) in order to characterize the time-course of Mn(2+) accumulation in active neural regions in the rabbit. T1-weighted MRI and functional MRI were collected 0-3, 6-9, and 24-27 h post-Mn(2+) injection while the vibrissae on the right side were vibrated. Significant BOLD activation in the left somatosensory (SS) cortex and left ventral posteromedial (VPM) thalamic nucleus was detected during whisker vibration. T1-weighted signal intensities were extracted from these regions, their corresponding contralateral regions and the visual cortex (to serve as controls). A significant elevation in T1-weighted signal intensity in the left SS cortex (relative to right) was evident 6-9 and 24-27 h post-Mn(2+) injection while the left VPM thalamus showed a significant enhancement (relative to the right) only during the 24-27 h session. Visual cortex showed no hemispheric difference at any timepoint. Our results suggest that studies employing AIM-MRI would benefit by conducting experimental manipulations 6-24 h after subcutaneous MnCl2 injections to optimize the concentration of contrast agent in the regions active during the exposure. PMID:26589332

  17. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    SciTech Connect

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S; Senneville, B Denis de

    2015-06-15

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axial volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the

  18. Individual 3D region-of-interest atlas of the human brain: automatic training point extraction for neural-network-based classification of brain tissue types

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-04-01

    Individual region-of-interest atlas extraction consists of two main parts: T1-weighted MRI grayscale images are classified into brain tissues types (gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), scalp/bone (SB), background (BG)), followed by class image analysis to define automatically meaningful ROIs (e.g., cerebellum, cerebral lobes, etc.). The purpose of this algorithm is the automatic detection of training points for neural network-based classification of brain tissue types. One transaxial slice of the patient data set is analyzed. Background separation is done by simple region growing. A random generator extracts spatially uniformly distributed training points of class BG from that region. For WM training point extraction (TPE), the homogeneity operator is the most important. The most homogeneous voxels define the region for WM TPE. They are extracted by analyzing the cumulative histogram of the homogeneity operator response. Assuming a Gaussian gray value distribution in WM, a random number is used as a probabilistic threshold for TPE. Similarly, non-white matter and non-background regions are analyzed for GM and CSF training points. For SB TPE, the distance from the BG region is an additional feature. Simulated and real 3D MRI images are analyzed and error rates for TPE and classification calculated.

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    PubMed Central

    Bauer, Miriam; Stengl, Katharina L.; Mutke, Matthias A.; Tovar-Martinez, Elena; Wuerfel, Jens; Endres, Matthias; Niendorf, Thoralf; Sobesky, Jan

    2012-01-01

    Introduction Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. Methods In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). Results The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. Conclusions The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study. PMID:22701525

  1. Tumor Size on Abdominal MRI Versus Pathologic Specimen in Resected Pancreatic Adenocarcinoma: Implications for Radiation Treatment Planning

    SciTech Connect

    Hall, William A.; Mikell, John L.; Mittal, Pardeep; Colbert, Lauren; Prabhu, Roshan S.; Kooby, David A.; Nickleach, Dana; Hanley, Krisztina; Sarmiento, Juan M.; Ali, Arif N.; Landry, Jerome C.

    2013-05-01

    Purpose: We assessed the accuracy of abdominal magnetic resonance imaging (MRI) for determining tumor size by comparing the preoperative contrast-enhanced T1-weighted gradient echo (3-dimensional [3D] volumetric interpolated breath-hold [VIBE]) MRI tumor size with pathologic specimen size. Methods and Materials: The records of 92 patients who had both preoperative contrast-enhanced 3D VIBE MRI images and detailed pathologic specimen measurements were available for review. Primary tumor size from the MRI was independently measured by a single diagnostic radiologist (P.M.) who was blinded to the pathology reports. Pathologic tumor measurements from gross specimens were obtained from the pathology reports. The maximum dimensions of tumor measured in any plane on the MRI and the gross specimen were compared. The median difference between the pathology sample and the MRI measurements was calculated. A paired t test was conducted to test for differences between the MRI and pathology measurements. The Pearson correlation coefficient was used to measure the association of disparity between the MRI and pathology sizes with the pathology size. Disparities relative to pathology size were also examined and tested for significance using a 1-sample t test. Results: The median patient age was 64.5 years. The primary site was pancreatic head in 81 patients, body in 4, and tail in 7. Three patients were American Joint Commission on Cancer stage IA, 7 stage IB, 21 stage IIA, 58 stage IIB, and 3 stage III. The 3D VIBE MRI underestimated tumor size by a median difference of 4 mm (range, −34-22 mm). The median largest tumor dimensions on MRI and pathology specimen were 2.65 cm (range, 1.5-9.5 cm) and 3.2 cm (range, 1.3-10 cm), respectively. Conclusions: Contrast-enhanced 3D VIBE MRI underestimates tumor size by 4 mm when compared with pathologic specimen. Advanced abdominal MRI sequences warrant further investigation for radiation therapy planning in pancreatic adenocarcinoma before

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Tumor Shrinkage Assessed by Volumetric MRI in Long-Term Follow-Up After Fractionated Stereotactic Radiotherapy of Nonfunctioning Pituitary Adenoma

    SciTech Connect

    Kopp, Christine; Theodorou, Marilena; Poullos, Nektarios; Jacob, Vesna; Astner, Sabrina T.; Molls, Michael; Grosu, Anca-Ligia

    2012-03-01

    Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment was 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.

  4. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  5. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  6. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease.

    PubMed

    Beheshti, I; Demirel, H

    2015-09-01

    High-dimensional classification methods have been a major target of machine learning for the automatic classification of patients who suffer from Alzheimer's disease (AD). One major issue of automatic classification is the feature-selection method from high-dimensional data. In this paper, a novel approach for statistical feature reduction and selection in high-dimensional magnetic resonance imaging (MRI) data based on the probability distribution function (PDF) is introduced. To develop an automatic computer-aided diagnosis (CAD) technique, this research explores the statistical patterns extracted from structural MRI (sMRI) data on four systematic levels. First, global and local differences of gray matter in patients with AD compared to healthy controls (HCs) using the voxel-based morphometric (VBM) technique with 3-Tesla 3D T1-weighted MRI are investigated. Second, feature extraction based on the voxel clusters detected by VBM on sMRI and voxel values as volume of interest (VOI) is used. Third, a novel statistical feature-selection process is employed, utilizing the PDF of the VOI to represent statistical patterns of the respective high-dimensional sMRI sample. Finally, the proposed feature-selection method for early detection of AD with support vector machine (SVM) classifiers compared to other standard feature selection methods, such as partial least squares (PLS) techniques, is assessed. The performance of the proposed technique is evaluated using 130 AD and 130 HC MRI data from the ADNI dataset with 10-fold cross validation(1). The results show that the PDF-based feature selection approach is a reliable technique that is highly competitive with respect to the state-of-the-art techniques in classifying AD from high-dimensional sMRI samples. PMID:26226415

  7. Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation.

    PubMed

    Eikefjord, Eli; Andersen, Erling; Hodneland, Erlend; Zöllner, Frank; Lundervold, Arvid; Svarstad, Einar; Rørvik, Jarle

    2015-03-01

    OBJECTIVE. The purpose of this article is to compare two 3D dynamic contrast-enhanced (DCE) MRI measurement techniques for MR renography, a radial k-space weighted image contrast (KWIC) sequence and a cartesian FLASH sequence, in terms of intrasubject differences in estimates of renal functional parameters and image quality characteristics. SUBJECTS AND METHODS. Ten healthy volunteers underwent repeated breath-hold KWIC and FLASH sequence examinations with temporal resolutions of 2.5 and 2.8 seconds, respectively. A two-compartment model was used to estimate MRI-derived perfusion parameters and glomerular filtration rate (GFR). The latter was compared with the iohexol GFR and the estimated GFR. Image quality was assessed using a visual grading characteristic analysis of relevant image quality criteria and signal-to-noise ratio calculations. RESULTS. Perfusion estimates from FLASH were closer to literature reference values than were the KWIC sequences. In relation to the iohexol GFR (mean [± SD], 103 ± 11 mL/min/1.73 m(2)), KWIC produced significant underestimations and larger bias in GFR values (mean, 70 ± 30 mL/min/1.73 m(2); bias = -33.2 mL/min/1.73 m(2)) compared with the FLASH GFR (110 ± 29 mL/min/1.73 m(2); bias = 6.4 mL/min/1.73 m(2)). KWIC was statistically significantly (p < 0.005) more impaired by artifacts than was FLASH (AUC = 0.18). The average signal-enhancement ratio (delta ratio) in the cortex was significantly lower for KWIC (delta ratio = 0.99) than for FLASH (delta ratio = 1.40). Other visually graded image quality characteristics and signal-to-noise ratio measurements were not statistically significantly different. CONCLUSION. Using the same postprocessing scheme and pharmacokinetic model, FLASH produced more accurate perfusion and filtration parameters than did KWIC compared with clinical reference methods. Our data suggest an apparent relationship between image quality characteristics and the degree of stability in the numeric model

  8. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  9. Biocompatible Nanoparticles of KGd(H2O)2[Fe(CN)6]·H2O with Extremely High T1-Weighted Relaxivity Owing to Two Water Molecules Directly Bound to the Gd(III) Center

    PubMed Central

    2015-01-01

    A simple one-step method for preparing biocompatible nanoparticles of gadolinium ferrocyanide coordination polymer KGd(H2O)2[Fe(CN)6]·H2O is reported. The crystal structure of this coordination polymer is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, cellular uptake, and MR phantom and cellular imaging studies suggest that this coordination-polymer structural platform offers a unique opportunity for developing the next generation of T1-weighted contrast agents with high relaxivity as cellular MR probes for biological receptors or markers. Such high-relaxivity MR probes may hold potential in the study of molecular events and may be used for in vivo MR imaging in biomedical research and clinical applications. PMID:25238130

  10. O7.02RADIOSURGERY AND BRAIN METASTASES: ADEQUATE SEQUENCE OF BRAIN MRI CAN SIGNIFICANTLY CHANGE THE INTRACRANIAL DISEASE STAGING

    PubMed Central

    Scoccianti, S.; Greto, D.; Bordi, L.; Bono, P.; Pecchioli, G.; Casati, M.; Vanzi, E.; Compagnucci, A.; Gadda, D.; Livi, L.

    2014-01-01

    INTRODUCTION: Accurate assessment of the exact number of brain metastases is of utmost importance in the decision-making process for the appropriate treatment. The diagnostic efficacy in the detection of additional brain metastases of a double dose contrast three-dimensional, T1-Weighted Gradient-Echo Imaging was evaluated. METHODS: Before undergoing radiosurgical treatment, patients underwent a brain magnetic resonance imaging (MRI) scan to be used during the treatment planning in order to contour the targets and to locate the brain lesions as they relate to the stereotactic frame. All the patients underwent a post-contrast study with T1-weighted, 3D Magnetization-Prepared Rapid Acquisition Gradient Echo (MP RAGE) sequence. We used a double dose of gadobenate dimeglumine and slice thickness of 0.9 mm. RESULTS: Starting from October 2012 to February 2014, we treated with Gamma Knife radiosurgery (GKRS) 62 patients with brain metastases. On the diagnostic MRI, all the patients had a number of lesions ≤4. Median time interval between diagnostic MRI scan and the day of GKRS was 11 days (range 5-20) A total of 54 additional lesions were detected on MR imaging performed in the same day of the GKRS in twenty-two patients out of 62 (35.5%). A median number of 2 additional lesions were detected (range 1-8). Among these 22 patients only 14 patients had a number of lesions ≤4 on the day of treatment. Patients with a total number of lesions ≤10 were treated with GKRS. Two patients with a total number of lesions > 10 were treated with whole brain radiotherapy (WBRT). CONCLUSIONS: A double-contrast study with T1-weighted, volumetric MPRAGE sequence may offer better staging for patients with brain metastases. In our opinion, it should be recommended in all the patients with newly diagnosed brain metastases because the detection of the real number of lesions is crucial for an adequate treatment and it also may lead to choose different therapeutic strategies.

  11. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. Volumetric MRI data correlate to disease severity in metachromatic leukodystrophy

    PubMed Central

    Tillema, Jan-Mendelt; Derks, Marloes GM; Pouwels, Petra J W; de Graaf, Pim; van Rappard, Diane F; Barkhof, Frederik; Steenweg, Marjan E; van der Knaap, Marjo S; Wolf, Nicole I

    2015-01-01

    Objective Metachromatic leukodystrophy (MLD) is an inherited lysosomal disorder due to a deficiency in arylsulfatase A with progressive demyelination and neurological decline. This retrospective MRI study investigated the extent of cortical involvement at time of diagnosis, and clinical correlates to both conventional and regional volumetric measures of brain involvement. Methods 3D-T1-weighted MRI scans were used to determine cortical thickness and surface-based cerebral cortical gray matter (GM) and cerebral white matter (WM) volume (GMV and WMV), WM lesions, thalamus, and cerebellum. MRI-MLD severity scores were obtained from FLAIR images. Associations between clinical and imaging data were examined using correlation coefficients. Results Twenty patients with MLD (mean age 13.7 years, range 2–35) and 20 controls (mean age 13.9 years, range 2–40) were included. Compared with control subjects, late-infantile, and juvenile patients (n = 14) had significantly diminished cerebral cortical GMV and thalamus volume (P < 0.05), but did not differ in WMV and cortical thickness. Adult patients (n = 6) showed significantly reduced GMV, WMV and cortical thickness (all P < 0.05). Regional analysis showed statistically significant cortical thinning in the cingulate gyrus and most pronounced thinning with age in the frontal lobe of MLD patients. Intelligence quotient (IQ) correlated with MRI-MLD scores (r = −0.87, P < 0.001). Interpretation Significant cerebral cortical GMV loss is already present in early stages of MLD. IQ correlates with WM severity scores and lesion volume, but not with volumetric measures. In adult presentations, there is more pronounced global atrophy with GMV and WMV loss and accelerated cortical thinning, most prominently in the cingulate gyrus and frontal lobes. PMID:26401514

  14. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  15. 3-D in vivo brain tumor geometry study by scaling analysis

    NASA Astrophysics Data System (ADS)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  16. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  17. TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy

    SciTech Connect

    Heijst, T van; Asselen, B van; Lagendijk, J; Bongard, D van den; Philippens, M

    2014-06-15

    Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensional (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This can Result

  18. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  19. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  20. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  1. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  2. Fast and robust 3D T1 mapping using spiral encoding and steady RF excitation at 7 T: application to cardiac manganese enhanced MRI (MEMRI) in mice.

    PubMed

    Castets, Charles R; Ribot, Emeline J; Lefrançois, William; Trotier, Aurélien J; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain

    2015-07-01

    Mapping longitudinal relaxation times in 3D is a promising quantitative and non-invasive imaging tool to assess cardiac remodeling. Few methods are proposed in the literature allowing us to perform 3D T1 mapping. These methods often require long scan times and use a low number of 3D images to calculate T1 . In this project, a fast 3D T1 mapping method using a stack-of-spirals sampling scheme and regular RF pulse excitation at 7 T is presented. This sequence, combined with a newly developed fitting procedure, allowed us to quantify T1 of the whole mouse heart with a high spatial resolution of 208 × 208 × 315 µm(3) in 10-12 min acquisition time. The sensitivity of this method for measuring T1 variations was demonstrated on mouse hearts after several injections of manganese chloride (doses from 25 to 150 µmol kg(-1) ). T1 values were measured in vivo in both pre- and post-contrast experiments. This protocol was also validated on ischemic mice to demonstrate its efficiency to visualize tissue damage induced by a myocardial infarction. This study showed that combining spiral gradient shape and steady RF excitation enabled fast and robust 3D T1 mapping of the entire heart with a high spatial resolution. PMID:25989986

  3. Thalamic segmentation based on improved fuzzy connectedness in structural MRI.

    PubMed

    Yang, Chunlan; Wang, Qian; Wu, Weiwei; Xue, Yanqing; Lu, Wangsheng; Wu, Shuicai

    2015-11-01

    Thalamic segmentation serves an important function in localizing targets for deep brain stimulation (DBS). However, thalamic nuclei are still difficult to identify clearly from structural MRI. In this study, an improved algorithm based on the fuzzy connectedness framework was developed. Three-dimensional T1-weighted images in axial orientation were acquired through a 3D SPGR sequence by using a 1.5 T GE magnetic resonance scanner. Twenty-five normal images were analyzed using the proposed method, which involved adaptive fuzzy connectedness combined with confidence connectedness (AFCCC). After non-brain tissue removal and contrast enhancement, the seed point was selected manually, and confidence connectedness was used to perform an ROI update automatically. Both image intensity and local gradient were taken as image features in calculating the fuzzy affinity. Moreover, the weight of the features could be automatically adjusted. Thalamus, ventrointermedius (Vim), and subthalamic nucleus were successfully segmented. The results were evaluated with rules, such as similarity degree (SD), union overlap, and false positive. SD of thalamus segmentation reached values higher than 85%. The segmentation results were also compared with those achieved by the region growing and level set methods, respectively. Higher SD of the proposed method, especially in Vim, was achieved. The time cost using AFCCC was low, although it could achieve high accuracy. The proposed method is superior to the traditional fuzzy connectedness framework and involves reduced manual intervention in time saving. PMID:26433197

  4. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  5. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  6. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  7. High-Resolution 3-T Endorectal Prostate MRI: A Multireader Study of Radiologist Preference and Perceived Interpretive Quality of 2D and 3D T2-Weighted Fast Spin-Echo MR Images

    PubMed Central

    Westphalen, Antonio C.; Noworolski, Susan M.; Harisinghani, Mukesh; Jhaveri, Kartik S.; Raman, Steve S.; Rosenkrantz, Andrew B.; Wang, Zhen J.; Zagoria, Ronald J.; Kurhanewicz, John

    2016-01-01

    OBJECTIVE The goal of this study was to compare the perceived quality of 3-T axial T2-weighted high-resolution 2D and high-resolution 3D fast spin-echo (FSE) endorectal MR images of the prostate. MATERIALS AND METHODS Six radiologists independently reviewed paired 3-T axial T2-weighted high-resolution 2D and 3D FSE endorectal MR images of the prostates of 85 men in two sessions. In the first session (n = 85), each reader selected his or her preferred images; in the second session (n = 28), they determined their confidence in tumor identification and compared the depiction of the prostatic anatomy, tumor conspicuity, and subjective intrinsic image quality of images. A meta-analysis using a random-effects model, logistic regression, and the paired Wilcoxon rank-sum test were used for statistical analyses. RESULTS Three readers preferred the 2D acquisition (67–89%), and the other three preferred the 3D images (70–80%). The option for one of the techniques was not associated with any of the predictor variables. The 2D FSE images were significantly sharper than 3D FSE (p < 0.001) and significantly more likely to exhibit other (nonmotion) artifacts (p = 0.002). No other statistically significant differences were found. CONCLUSION Our results suggest that there are strong individual preferences for the 2D or 3D FSE MR images, but there was a wide variability among radiologists. There were differences in image quality (image sharpness and presence of artifacts not related to motion) but not in the sequences’ ability to delineate the glandular anatomy and depict a cancerous tumor. PMID:26491891

  8. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  9. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  11. SU-E-J-231: Comparison of Delineation Variability of Soft Tissue Volume and Position in Head-And-Neck Between Two T1-Weighted Pulse Sequences Using An MR-Simulator with Immobilization

    SciTech Connect

    Wong, O; Lo, G; Yuan, J; Law, M; Ding, A; Cheng, K; Chan, K; Cheung, K; Yu, S

    2015-06-15

    Purpose: There is growing interests in applying MR-simulator(MR-sim) in radiotherapy but MR images subject to hardware, patient and pulse sequence dependent geometric distortion that may potentially influence target definition. This study aimed to evaluate the influence on head-and-neck tissue delineation, in terms of positional and volumetric variability, of two T1-weighted(T1w) MR sequences on a 1.5T MR-sim Methods: Four healthy volunteers were scanned (4 scans for each on different days) using both spin-echo (3DCUBE, TR/TE=500/14ms, TA=183s) and gradient-echo sequences (3DFSPGR, TE/TR=7/4ms, TA=173s) with identical coverage, voxel-size(0.8×0.8×1.0mm3), receiver-bandwidth(62.5kHz/pix) and geometric correction on a 1.5T MR-sim immobilized with personalized thermoplastic cast and head-rest. Under this setting, similar T1w contrast and signal-to-noise ratio were obtained, and factors other than sequence that might bias image distortion and tissue delineation were minimized. VOIs of parotid gland(PGR, PGL), pituitary gland(PIT) and eyeballs(EyeL, EyeR) were carefully drawn, and inter-scan coefficient-of-variation(CV) of VOI centroid position and volume were calculated for each subject. Mean and standard deviation(SD) of the CVs for four subjects were compared between sequences using Wilcoxon ranksum test. Results: The mean positional(<4%) and volumetric(<7%) CVs varied between tissues, majorly dependent on tissue inherent properties like volume, location, mobility and deformability. Smaller mean volumetric CV was found in 3DCUBE, probably due to its less proneness to tissue susceptibility, but only PGL showed significant difference(P<0.05). Positional CVs had no significant differences for all VOIs(P>0.05) between sequences, suggesting volumetric variation might be more sensitive to sequence-dependent delineation difference. Conclusion: Although 3DCUBE is considered less prone to tissue susceptibility-induced artifact and distortion, our preliminary data showed

  12. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  13. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  14. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  15. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  16. A Novel MRI Marker for Prostate Brachytherapy

    SciTech Connect

    Frank, Steven J. Stafford, R. Jason; Bankson, James A.; Li Chun; Swanson, David A.; Kudchadker, Rajat J.; Martirosyan, Karen S.

    2008-05-01

    Purpose: Magnetic resonance imaging (MRI) is the optimal imaging modality for the prostate and surrounding critical organ structures. However, on MRI, the titanium radioactive seeds used for brachytherapy appear as black holes (negative contrast) and cannot be accurately localized. We sought to develop an encapsulated contrast agent marker (ECAM) with high-signal intensity on MRI to permit accurate localization of radioactive seeds with MRI during and after prostate brachytherapy. Methods and Materials: We investigated several agents with paramagnetic and superparamagnetic properties. The agents were injected into titanium, acrylic, and glass seeds, which were linked together in various combinations and imaged with MRI. The agent with the greatest T1-weighted signal was tested further in a canine prostate and agarose phantom. Studies were performed on a 1.5-T clinical MRI scanner. Results: The cobalt-chloride complex contrast (C4) agent with stoichiometry (CoCl{sub 2}){sub 0.8}(C{sub 2}H{sub 5}NO{sub 2}){sub 0.2} had the greatest T1-weighted signal (positive contrast) with a relaxivity ratio >1 (r{sub 2}/r{sub 1} = 1.21 {+-} 0.29). Acrylic-titanium and glass-titanium seed strands were clearly visualized with the encapsulated contrast agent marker. Conclusion: We have developed a novel ECAM that permits positive identification of the radioactive seeds used for prostate brachytherapy on MRI. Preclinical in vitro phantom studies and in vivo canine studies are needed to further optimize MRI sequencing techniques to facilitate MRI-based dosimetry.

  17. Free-Breathing 3D Whole Heart Black Blood Imaging with Motion Sensitized Driven Equilibrium

    PubMed Central

    Srinivasan, Subashini; Hu, Peng; Kissinger, Kraig V.; Goddu, Beth; Goepfert, Lois; Schmidt, Ehud J.; Kozerke, Sebastian; Nezafat, Reza

    2012-01-01

    Purpose To assess the efficacy and robustness of motion sensitized driven equilibrium (MSDE) for blood suppression in volumetric 3D whole heart cardiac MR. Materials and Methods To investigate the efficacy of MSDE on blood suppression and myocardial SNR loss on different imaging sequences. 7 healthy adult subjects were imaged using 3D ECG-triggered MSDE-prep T1-weighted turbo spin echo (TSE), and spoiled gradient echo (GRE), after optimization of MSDE parameters in a pilot study of 5 subjects. Imaging artifacts, myocardial and blood SNR were assessed. Subsequently, the feasibility of isotropic spatial resolution MSDE-prep black-blood was assessed in 6 subjects. Finally, 15 patients with known or suspected cardiovascular disease were recruited to be imaged using conventional multi-slice 2D DIR TSE imaging sequence and 3D MSDE-prep spoiled GRE. Results The MSDE-prep yields significant blood suppression (75-92%), enabling a volumetric 3D black-blood assessment of the whole heart with significantly improved visualization of the chamber walls. The MSDE-prep also allowed successful acquisition of black-blood images with isotropic spatial resolution. In the patient study, 3D black-blood MSDE-prep and DIR resulted in similar blood suppression in LV and RV walls but the MSDE prep had superior myocardial signal and wall sharpness. Conclusion MSDE-prep allows volumetric black-blood imaging of the heart. PMID:22517477

  18. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  19. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  20. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  1. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  2. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. High definition 3D ultrasound imaging.

    PubMed

    Morimoto, A K; Krumm, J C; Kozlowski, D M; Kuhlmann, J L; Wilson, C; Little, C; Dickey, F M; Kwok, K S; Rogers, B; Walsh, N

    1997-01-01

    We have demonstrated high definition and improved resolution using a novel scanning system integrated with a commercial ultrasound machine. The result is a volumetric 3D ultrasound data set that can be visualized using standard techniques. Unlike other 3D ultrasound images, image quality is improved from standard 2D data. Image definition and bandwidth is improved using patent pending techniques. The system can be used to image patients or wounded soldiers for general imaging of anatomy such as abdominal organs, extremities, and the neck. Although the risks associated with x-ray carcinogenesis are relatively low at diagnostic dose levels, concerns remain for individuals in high risk categories. In addition, cost and portability of CT and MRI machines can be prohibitive. In comparison, ultrasound can provide portable, low-cost, non-ionizing imaging. Previous clinical trials comparing ultrasound to CT were used to demonstrate qualitative and quantitative improvements of ultrasound using the Sandia technologies. Transverse leg images demonstrated much higher clarity and lower noise than is seen in traditional ultrasound images. An x-ray CT scan was provided of the same cross-section for comparison. The results of our most recent trials demonstrate the advantages of 3D ultrasound and motion compensation compared with 2D ultrasound. Metal objects can also be observed within the anatomy. PMID:10168958

  5. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  6. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  7. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  8. Neurobiological origin of spurious brain morphological changes: A quantitative MRI study.

    PubMed

    Lorio, Sara; Kherif, Ferath; Ruef, Anne; Melie-Garcia, Lester; Frackowiak, Richard; Ashburner, John; Helms, Gunther; Lutti, Antoine; Draganski, Bodgan

    2016-05-01

    The high gray-white matter contrast and spatial resolution provided by T1-weighted magnetic resonance imaging (MRI) has made it a widely used imaging protocol for computational anatomy studies of the brain. While the image intensity in T1-weighted images is predominantly driven by T1, other MRI parameters affect the image contrast, and hence brain morphological measures derived from the data. Because MRI parameters are correlates of different histological properties of brain tissue, this mixed contribution hampers the neurobiological interpretation of morphometry findings, an issue which remains largely ignored in the community. We acquired quantitative maps of the MRI parameters that determine signal intensities in T1-weighted images (R1 (=1/T1), R2 *, and PD) in a large cohort of healthy subjects (n = 120, aged 18-87 years). Synthetic T1-weighted images were calculated from these quantitative maps and used to extract morphometry features-gray matter volume and cortical thickness. We observed significant variations in morphometry measures obtained from synthetic images derived from different subsets of MRI parameters. We also detected a modulation of these variations by age. Our findings highlight the impact of microstructural properties of brain tissue-myelination, iron, and water content-on automated measures of brain morphology and show that microstructural tissue changes might lead to the detection of spurious morphological changes in computational anatomy studies. They motivate a review of previous morphological results obtained from standard anatomical MRI images and highlight the value of quantitative MRI data for the inference of microscopic tissue changes in the healthy and diseased brain. Hum Brain Mapp 37:1801-1815, 2016. © 2016 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26876452

  9. Polycatechol Nanoparticle MRI Contrast Agents.

    PubMed

    Li, Yiwen; Huang, Yuran; Wang, Zhao; Carniato, Fabio; Xie, Yijun; Patterson, Joseph P; Thompson, Matthew P; Andolina, Christopher M; Ditri, Treffly B; Millstone, Jill E; Figueroa, Joshua S; Rinehart, Jeffrey D; Scadeng, Miriam; Botta, Mauro; Gianneschi, Nathan C

    2016-02-01

    Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement. PMID:26681255

  10. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  11. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  12. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  13. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  14. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  15. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  16. Breast MRI at 7 Tesla with a Bilateral Coil and Robust Fat Suppression

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2013-01-01

    Purpose To develop a bilateral coil and optimized fat suppressed T1-weighted sequence for 7T breast MRI. Materials and Methods A dual-solenoid coil and 3D T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed for 7T. T1w FS image quality was characterized through image uniformity and fat/water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7 T SNR advantage. Results Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T T1w FS image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat/water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. Conclusion 7T T1w FS bilateral breast imaging is feasible with a custom RF coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. PMID:24123517

  17. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  18. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  19. Clinical experience of MRI in two dogs with muscle-invasive transitional cell carcinoma of the urinary bladder.

    PubMed

    Lee, Kija; Choi, Sooyoung; Choi, Hojung; Lee, Youngwon

    2016-09-01

    This study described high-field magnetic resonance imaging (MRI) and computed tomography (CT) characteristics of muscle-invasive bladder transitional cell carcinoma (TCC) in two dogs. Ultrasonography revealed a urinary bladder mass with ambiguous result about invasion to the muscular layer. Contrast-enhanced CT showed that the bladder wall in which the mass was attached was more intensely enhanced than the normal bladder walls, supporting invasion to the muscular layer. The mass revealed an intermediate signal intensity with interruption of the hypointense muscular layer on T2-weighted MRI and showed greater enhancement compared with the normal bladder wall on postcontrast T1-weighted images. T2-weighted MRI, postcontrast T1-weighted MRI and contrast-enhanced dual-phasic CT were useful for evaluating muscle-invasive bladder TCC in dogs. PMID:27149892

  20. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  1. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  2. Muscle MRI reveals distinct abnormalities in genetically proven non-dystrophic myotonias.

    PubMed

    Morrow, Jasper M; Matthews, Emma; Raja Rayan, Dipa L; Fischmann, Arne; Sinclair, Christopher D J; Reilly, Mary M; Thornton, John S; Hanna, Michael G; Yousry, Tarek A

    2013-08-01

    We assessed the presence, frequency and pattern of MRI abnormalities in non-dystrophic myotonia patients. We reviewed T1-weighted and STIR (short-tau-inversion-recovery) 3T MRI sequences of lower limb muscles at thigh and calf level in 21 patients with genetically confirmed non-dystrophic myotonia: 11 with CLCN1 mutations and 10 with SCN4A mutations, and 19 healthy volunteers. The MRI examinations of all patients showed hyperintensity within muscles on either T1-weighted or STIR images. Mild extensive or marked T1-weighted changes were noted in 10/21 patients and no volunteers. Muscles in the thigh were equally likely to be affected but in the calf there was sparing of tibialis posterior. Oedema was common in calf musculature especially in the medial gastrocnemius with STIR hyperintensity observed in 18/21 patients. In 10/11 CLCN1 patients this included a previously unreported "central stripe", also present in 3/10 SCN4A patients but no volunteers. Degree of fatty infiltration correlated with age (rho=0.46, p<0.05). Muscle MRI is frequently abnormal in non-dystrophic myotonia providing evidence of fatty infiltration and/or oedema. The pattern is distinct from other myotonic disorders; in particular the "central stripe" has not been reported in other conditions. Correlations with clinical parameters suggest a potential role for MRI as a biomarker. PMID:23810313

  3. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  4. Automated segmentation of breast in 3-D MR images using a robust atlas.

    PubMed

    Khalvati, Farzad; Gallego-Ortiz, Cristina; Balasingham, Sharmila; Martel, Anne L

    2015-01-01

    This paper presents a robust atlas-based segmentation (ABS) algorithm for segmentation of the breast boundary in 3-D MR images. The proposed algorithm combines the well-known methodologies of ABS namely probabilistic atlas and atlas selection approaches into a single framework where two configurations are realized. The algorithm uses phase congruency maps to create an atlas which is robust to intensity variations. This allows an atlas derived from images acquired with one MR imaging sequence to be used to segment images acquired with a different MR imaging sequence and eliminates the need for intensity-based registration. Images acquired using a Dixon sequence were used to create an atlas which was used to segment both Dixon images (intra-sequence) and T1-weighted images (inter-sequence). In both cases, highly accurate results were achieved with the median Dice similarity coefficient values of 94% ±4% and 87 ±6.5%, respectively. PMID:25137725

  5. SU-D-9A-03: STAMP: Simulator for Texture Analysis in MRI/PET

    SciTech Connect

    Laberge, S; Vallieres, M; Levesque, I R.; El Naqa, I

    2014-06-01

    Purpose: To develop a convenient simulation platform to facilitate PET/MR image analysis with the prospect of gaining a better understanding of the influence of acquisition parameters on PET/MRI textural features. The simulation platform is demonstrated by showing textural variations of a representative case study using different image acquisition parameters. Methods: The simulation platform is composed of MRI simulators JEMRIS and SIMRI to achieve simulations of customized MRI sequences on sample tumor models. The PET simulator GATE is used to get 2D and 3D Monte Carlo acquisitions of voxelized PET sources using a phantom geometry and a customized scanner architecture. The platform incorporates a series of graphical user interfaces written in Matlab. Two GUIs are used to facilitate communication with the simulation executables installed on a computer cluster. A third GUI is used to collect and display the clinical and simulated images, as well as fused PET/MRI images, and perform computation of textural features.To illustrate the capabilities of this platform, one FDG-PET and T1-weighted (T1w) digitized tumor models were generated from clinical images of a soft-tissue sarcoma patient. Numerically simulated MR images were produced using 3 different echo times (TE) and 5 different repetition times (TR). PET 2D images were simulated using an OSEM algorithm with 1 to 32 iterations and a post-reconstruction Gaussian filter of 0, 2, 4 or 6 mm width. Results: STAMP was successfully used to produce numerically simulated FDG-PET and MRI images, and to calculate their corresponding textures. Three typical textures (GLCM-Contrast, GLSZM-ZSV and NGTDM-Coarseness) were found to vary by a range of 45% on average compared to reference scanning conditions in the case of FDG-PET, and by a range of 40% in the case of T1w MRI. Conclusion: We have successfully developed a Matlab-based simulation platform to facilitate PET/MRI texture image analysis for outcome prediction.

  6. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  7. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  8. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  9. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  10. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  11. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  12. Uterine cirsoid aneurysm: MRI and MRA

    SciTech Connect

    Joja, Ikuo; Asakawa, Mari; Motoyama, Kazumi

    1996-03-01

    Uterine cirsoid aneurysm is uncommon. It is important to make a diagnosis of this disease preoperatively, because repeated curettages may induce life-threatening massive genital bleeding. We present a case of a 51-year-old woman with uterine cirsoid aneurysm in whom MRI and MRA were very useful for the preoperative diagnosis. The radiologic appearances on ultrasonography, CT, conventional SE MRI, MRA, dynamic MRI, and pelvic angiography are presented. Conventional SE T1-weighted and T2-weighted images demonstrated multiple flow voids in the uterus and bilateral adnexal regions. MRA demonstrated a cluster of distinct, tortuous, and coiled vascular channels in the pelvis. MRA could obtain images almost equal to angiography and was considered to be an excellent noninvasive imaging technique for the diagnosis of uterine cirsoid aneurysm. 28 refs., 7 figs

  13. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  14. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  15. [MRI-guided musculoskeletal biopsy].

    PubMed

    Daecke, W; Libicher, M; Mädler, U; Rumpf, C; Bernd, L

    2003-02-01

    MRI-guided musculoskeletal biopsy has been mentioned to be a minimally invasive method to obtain specimens for diagnostic purposes in bone tumors. To evaluate the viability, to assess the accuracy, and to record possible complications of this method, clinical data of 19 MRI-guided biopsies were analyzed. Interventions were performed on 18 patients (1-78 years) as an outpatient procedure: 15 skeletal and 4 soft tissue biopsies were taken from the pelvis, upper limb,or lower limb. We used T1-weighted gradient echoes (GE) for locating the puncture site and T2-weighted turbo spin echoes (TSE) for visualization of needle position. In 14 of 18 MRI-guided biopsies, a definite histological diagnosis was obtained. According to the pathologist, the inadequate size of the specimen was the main reason for missing the diagnoses in four cases.Long intervention time and inappropriate biopsy tools proved to be the main disadvantages of MRI-guided biopsy, but technical improvement might solve these technical problems in future.A postbiopsy hematoma was the only complication observed. Once technically improved, MRI-guided biopsy could be a precise alternative routine method for musculoskeletal biopsies in future. PMID:12607083

  16. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  17. MRI with and without a high-density EEG cap--what makes the difference?

    PubMed

    Klein, Carina; Hänggi, Jürgen; Luechinger, Roger; Jäncke, Lutz

    2015-02-01

    Besides the benefit of combining electroencephalography (EEG) and magnetic resonance imaging (MRI), much effort has been spent to develop algorithms aimed at successfully cleaning the EEG data from MRI-related gradient and ballistocardiological artifacts. However, there are also studies showing a negative influence of the EEG on MRI data quality. Therefore, in the present study, we focused for the first time on the influence of the EEG on morphometric measurements of T1-weighted MRI data (voxel- and surfaced-based morphometry). Here, we demonstrate a strong influence of the EEG on cortical thickness, surface area, and volume as well as subcortical volumes due to local EEG-related inhomogeneities of the static magnetic (B0) and the gradient field (B1). In a second step, we analyzed the signal-to-noise ratios for both the anatomical and the functional data when recorded simultaneously with EEG and MRI and compared them to the ratios of the MRI data without simultaneous EEG measurements. These analyses revealed consistently lower signal-to-noise ratios for anatomical as well as functional MRI data during simultaneous EEG registration. In contrast, further analyses of T2*-weighted images provided reliable results independent of whether including the individuals' T1-weighted image with or without the EEG cap in the fMRI preprocessing stream. Based on our findings, we strongly recommend against using the structural images obtained during simultaneous EEG-MRI recordings for further anatomical data analysis. PMID:25482268

  18. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  19. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  20. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  1. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  2. Cortical Mapping of 3D Optical Topography in Infants

    PubMed Central

    Papademetriou, Maria D; Richards, John; Correia, Teresa; Blasi, Anna; Murphy, D. G.; Lloyd-Fox, Sarah; Johnson, Mark; Elwell, Clare E

    2014-01-01

    Precise localization of cortical activation in the early development of the infant brain remains unclear. It is challenging to co-register haemodynamic responses during functional activation in infants with the underlying anatomy of the brain. We used a multispectral imaging algorithm to reconstruct 3D optical topographic images of haemodynamic responses in an infant during voice processing. In this paper we present a method for co-registering 3D optical topography images reconstructed from functional activation data in infants onto anatomical brain images obtained from MRI structurals of the individual infants. PMID:23852529

  3. The dynamic of FUS-induced BBB Opening in Mouse Brain assessed by contrast enhanced MRI

    NASA Astrophysics Data System (ADS)

    Jenne, Jürgen W.; Krafft, Axel J.; Maier, Florian; Krause, Marie N.; Kleber, Susanne; Huber, Peter E.; Martin-Villalba, Ana; Bock, Michael

    2010-03-01

    Focused ultrasound (FUS) in combination with the administration of gas-filled microbubbles, can induce a localized and reversible opening of the blood brain barrier (BBB). Contrast enhanced magnetic resonance imaging (MRI) has been demonstrated as a precise tool to monitor such a local BBB disruption. However, the opening/closing mechanisms of the BBB with FUS are still largely unknown. In this ongoing project, we study the BBB opening dynamics in mouse brain comparing an interstitial and an intravascular MR contrast agent (CA). FUS in mouse brain was performed with an MRI compatible treatment setup (1.7 MHz fix-focus US transducer, f' = 68 mm, NA = 0.44; focus: 8.1 mm length; O/ = 1.1 mm) in a 1.5 T whole body MRI system. For BBB opening, forty 10 ms-long FUS-pulses were applied at a repetition rate of 1 Hz at 1 MPa. The i.v. administration of the micro bubbles (50 μl SonoVue®) was started simultaneously with FUS exposure. To analyze the BBB opening process, short-term and long-term MRI signal dynamics of the interstitial MR contrast agent Magnevist® and the intravascular CA Vasovist® (Bayer-Schering) were studied. To assess short-term signal dynamics, T1-weighted inversion recovery turbo FLASH images (1s) were repeatedly acquired. Repeated 3D FLASH acquisitions (90 s) were used to assess long-term MRI signal dynamics. The short-term MRI signal enhancements showed comparable time constants for both types of MR contrast agents: 1.1 s (interstitial) vs. 0.8 s (intravascular). This time constant may serve as a time constant of the BBB opening process with the given FUS exposure parameters. For the long-term signal dynamics the intravascular CA (62±10 min) showed a fife times greater time constant as the interstitial contrast agent (12±10 min). This might be explained by the high molecular weight (˜60 kDa) of the intravascular Vasovist due to its reversible binding to blood serum albumin resulting in a prolonged half-life in the blood stream compared to the

  4. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  5. Sexual dimorphism of sulcal morphology of the ferret cerebrum revealed by MRI-based sulcal surface morphometry

    PubMed Central

    Sawada, Kazuhiko; Horiuchi-Hirose, Miwa; Saito, Shigeyoshi; Aoki, Ichio

    2015-01-01

    The present study quantitatively assessed sexual dimorphism of cortical convolution and sulcal morphology in young adult ferrets by MRI-based sulcal surface morphometry. Ex vivo T1-weighted (short TR/TE) MRI of the ferret cerebrum was acquired with high spatial resolution at 7-tesla. The degree of cortical convolution, evaluated quantitatively based on 3D MRI data by sulcation index (SI), was significantly greater in males (0.553 ± 0.036) than in females (0.502 ± 0.043) (p < 0.001). The rostrocaudal distribution of the cortical convolution revealed a greater convolution in the frontal region of the cortex in males than in females and by a posterior extension of the convolution in the temporo-parieto-occipital region of males. Although the cerebral width in the frontal region was not different between sexes, the rhinal fissure and rostral region of splenial sulcus were more infolded in males than in females. On the contrary, the cerebral width was greater in males in the temporo-parieto-occipital region, and male-prominent posterior extension of infolding was noted in the lateral sulcus, caudal suprasylvian sulcus, pesudosylvian sulcus, hippocampal sulcus, and the caudal region of splenial sulcus. Notably, the caudal descending region of lateral sulcus was clearly infolded in males, but obscured in females. The present results suggest a region-related sexual dimorphism of the sulcal infolding, which is reflected by local cortical expansion in the ferret cerebrum. In particular, male-favored sulcal infolding with expansion of the temporo-parieto-occipital neocortex may be relevant to the human cerebral cortex regarding visuo-spatial and emotion processing, which are known to differ between sexes. The present results will provide fundamental information assessing sex-related changes in the regional sulcal infolding, when ferrets with experimentally-induced gyrification abnormality will be used as models for male-prevalent or male-earlier-onset neurodevelopmental

  6. Antemortem MRI findings associated with microinfarcts at autopsy

    PubMed Central

    Raman, Mekala R.; Preboske, Gregory M.; Przybelski, Scott A.; Gunter, Jeffrey L.; Senjem, Matthew L.; Vemuri, Prashanthi; Murphy, Matthew C.; Murray, Melissa E.; Boeve, Bradley F.; Knopman, David S.; Petersen, Ronald C.; Parisi, Joseph E.; Dickson, Dennis W.; Jack, Clifford R.

    2014-01-01

    Objective: To determine antemortem MRI findings associated with microinfarcts at autopsy. Methods: Patients with microinfarcts (n = 22) and patients without microinfarcts (n = 44) who underwent antemortem MRI were identified from a dementia clinic–based, population–based, and community clinic–based autopsy cohort. The microinfarct and no-microinfarct groups were matched on age at MRI, age at death, sex, APOE status, Mini-Mental State Examination score, and pathologic diagnosis of Alzheimer disease. Brain infarcts were assessed on fluid-attenuated inversion recovery (FLAIR) MRI. White matter hyperintensities on FLAIR MRI and hippocampal volumes on T1-weighted MRI were quantified using automated methods. A subset of subjects with microinfarcts (n = 15) and a matched group of subjects without microinfarcts (n = 15) had serial T1-weighted MRIs and were included in an analysis of global and regional brain atrophy rates using automated methods. Results: The presence of cortical (p = 0.03) and subcortical (p = 0.02) infarcts on antemortem MRI was associated with presence of microinfarcts at autopsy. Higher numbers of cortical (p = 0.05) and subcortical (p = 0.03) infarcts on antemortem MRI were also associated with presence of microinfarcts. Presence of microinfarcts was not associated with white matter hyperintensities and cross-sectional hippocampal volume on antemortem MRI. Whole-brain and regional precuneus, motor, and somatosensory atrophy rates were higher in subjects with microinfarcts compared to subjects without microinfarcts. Conclusions: Microinfarcts increase brain atrophy rates independent of Alzheimer disease pathology. Association between microinfarct pathology and macroinfarcts on MRI suggests either common risk factors or a shared pathophysiology and potentially common preventive targets. PMID:24793188

  7. 3D Magnetization-Prepared Imaging Using a Concentric Cylinders Trajectory

    PubMed Central

    Kwon, Kie Tae; Wu, Holden H.; Shin, Taehoon; Çukur, Tolga; Lustig, Michael; Nishimura, Dwight G.

    2014-01-01

    Purpose To develop new magnetization-prepared imaging schemes based on a 3D concentric cylinders trajectory. Methods The 3D concentric cylinders trajectory, which is robust to off-resonance effects and timing delays while requiring fewer excitations than a comparable 3DFT sequence, is employed as the readout for magnetization-prepared sequences exploiting its inherently centric-ordered structure. Two applications: i) T1-weighted brain imaging with an inversion-recovery-prepared (IR) RF-spoiled gradient-echo (SPGR) sequence, ii) non-contrast-enhanced (NCE) peripheral angiography with a magnetization-prepared balanced steady-state free precession (bSSFP) sequence are presented to demonstrate the effectiveness of the proposed method. For peripheral angiography, the scan efficiency is further improved by interleaving different preparations at different rates and by carefully designing the sampling geometry for an efficient parallel imaging method. Results In vivo brain scans with an IR-SPGR sequence and lower extremity scans with a magnetization-prepared bSSFP sequence for NCE peripheral angiography both demonstrate that the proposed sequences with concentric cylinders effectively capture the transient magnetization-prepared contrast with faster scan times than a corresponding 3DFT sequence. The application of peripheral angiography also shows the feasibility of the proposed interleaving schemes and parallel imaging method. Conclusion The 3D concentric cylinders trajectory is a robust and efficient readout that is well-suited for magnetization-prepared imaging. PMID:23818212

  8. The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome.

    PubMed

    Zivadinov, Robert; Stosic, Milena; Cox, Jennifer L; Ramasamy, Deepa P; Dwyer, Michael G

    2008-03-01

    Magnetic resonance imaging (MRI) is the most important paraclinical measure for assessing and monitoring the pathologic changes implicated in the onset and progression of multiple sclerosis (MS). Conventional MRI sequences, such as T1-weighted gadolinium (Gd) enhanced and spin-echo T2-weighted imaging, only provide an incomplete picture of the degree of inflammation and underlying neurodegenerative changes in this disease. Two- and three-dimensional fluid-attenuated inversion recovery and double inversion recovery sequences allow better identification of cortical, periventricular and infratentorial lesions. Ultra-high field strength MRI has the potential to detect subpial cortical and deep gray matter lesions. Unenhanced T1-weighted imaging can reveal hypointense black holes, a measure of chronic neurodegeneration. Magnetization transfer imaging (MTI) is increasingly used to characterize the evolution of MS lesions and normal-appearing brain tissue. Evidence suggests that the dynamics of magnetization transfer changes correlate with the extent of demyelination and remyelination. Magnetic resonance spectroscopy, which provides details on tissue biochemistry, metabolism, and function, also has the capacity to reveal neuroprotective mechanisms. By measuring the motion of water, diffusion imaging can provide information about the orientation, size, and geometry of tissue damage in white and gray matter. These advanced non-conventional MRI techniques relate better to clinical impairment, disease progression, accumulation of disability, and have the potential to detect neuroprotective effects of treatment. Although detecting the status of neuronal integrity using MRI techniques continues to improve, a "gold standard" model remains to be established. PMID:18317678

  9. Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging

    NASA Astrophysics Data System (ADS)

    Hashim, Zeina; Green, Mark; Chung, Pei Hua; Suhling, Klaus; Protti, Andrea; Phinikaridou, Alkystis; Botnar, Rene; Khanbeigi, Raha Ahmad; Thanou, Maya; Dailey, Lea Ann; Nicola J., Commander; Rowland, Caroline; Scott, Jo; Jenner, Dominic

    2014-06-01

    Aqueous bifunctional semiconductor polymer nanoparticles (SPNs), approximately 30 nm in diameter (as measured from electron microscopy), were synthesised using hydrophobic conjugated polymers, amphiphilic phospholipids and a gadolinium-containing lipid. Their fluorescence quantum yields and extinction coefficients were determined, and their MRI T1-weighted relaxation times in water were measured. The bimodal nanoparticles were readily taken up by HeLa and murine macrophage-like J774 cells as demonstrated by confocal laser scanning microscopy, and were found to be MRI-active, generating a linear relationship between T1-weighted relaxation rates and gadolinium concentrations The synthesis is relatively simple, and can easily result in milligrams of materials, although we fully expect scale-up to the gram level to be easily realised.

  10. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  11. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  12. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  13. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  15. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  16. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  17. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  18. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  19. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  20. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  1. Radiofrequency Ablated Lesion in the Normal Porcine Lung: Long-Term Follow-Up with MRI and Pathology

    SciTech Connect

    Oyama, Yoshimasa E-mail: yoshimasa03155@ych.or.jp; Nakamura, Kenji; Matsuoka, Toshiyuki; Toyoshima, Masami; Yamamoto, Akira; Okuma, Tomohisa; Ikura, Yoshihiro; Ueda, Makiko; Inoue, Yuichi

    2005-04-15

    Purpose. To evaluate the effectiveness of magnetic resonance imaging (MRI) in reflecting histopathologic changes after radiofrequency ablation (RFA) to the lung and to assess accurately the extent of tissue necrosis for evaluating untreated lesions. Methods. Percutaneous RFA was performed on 72 lung regions in 12 pigs under computed tomographic guidance. After performing MRI, the animals were divided into three experimental phases: in the acute phase, 4 pigs were killed immediately after the procedure; in the subacute phase, 4 pigs were killed at 1 week; and in the chronic phases, 2 pigs were killed at 4 and 8 weeks after the procedure, respectively. MRI-histopathologic correlation was performed. Results. In the acute phase, the inner zone showed hypointensity on T2-weighted images and isointensity on T1-weighted images, with a lack of enhancement on contrast-enhanced T1-weighted images, representing early changes in coagulative necrosis on histopathologic examination. The outer zone showed hyperintensity on T2-weighted images and isointensity on T1-weighted images, with ring-like enhancement on contrast-enhanced T1-weighted images. The histopathologic section showed alveolar fluid collections and congestion. In the subacute phase the MR zone pattern was essentially similar to that of the acute phase, but the ablated lesion showed extensive coagulative necrosis with a fibrovascular rim on histopathologic examination. In the chronic phase, there was no change in the zone pattern on MRI. The lesions showed gradual resorption of coagulative necrosis. The area of coagulative necrosis correlated closely with the histopathologic size (p < 0.05). Conclusions. MRI effectively visualized the histopathologic changes after RFA and accurately determined the extent of the necrotic lesion. MRI is potentially a useful modality for evaluating therapeutic efficacy after RFA to the lung.

  2. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  3. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  4. A T1 and DTI fused 3D corpus callosum analysis in pre- vs. post-season contact sports players

    NASA Astrophysics Data System (ADS)

    Lao, Yi; Law, Meng; Shi, Jie; Gajawelli, Niharika; Haas, Lauren; Wang, Yalin; Leporé, Natasha

    2015-01-01

    Sports related traumatic brain injury (TBI) is a worldwide public health issue, and damage to the corpus callosum (CC) has been considered as an important indicator of TBI. However, contact sports players suffer repeated hits to the head during the course of a season even in the absence of diagnosed concussion, and less is known about their effect on callosal anatomy. In addition, T1-weighted and diffusion tensor brain magnetic resonance images (DTI) have been analyzed separately, but a joint analysis of both types of data may increase statistical power and give a more complete understanding of anatomical correlates of subclinical concussions in these athletes. Here, for the first time, we fuse T1 surface-based morphometry and a new DTI analysis on 3D surface representations of the CCs into a single statistical analysis on these subjects. Our new combined method successfully increases detection power in detecting differences between pre- vs. post-season contact sports players. Alterations are found in the ventral genu, isthmus, and splenium of CC. Our findings may inform future health assessments in contact sports players. The new method here is also the first truly multimodal diffusion and T1-weighted analysis of the CC, and may be useful to detect anatomical changes in the corpus callosum in other multimodal datasets.

  5. Evaluation of Artifacts and Distortions of Titanium Applicators on 3.0-Tesla MRI: Feasibility of Titanium Applicators in MRI-Guided Brachytherapy for Gynecological Cancer

    SciTech Connect

    Kim, Yusung; Muruganandham, Manickam; Modrick, Joseph M.; Bayouth, John E.

    2011-07-01

    Purpose: The aim of this study was to characterize the levels of artifacts and distortions of titanium applicators on 3.0-Tesla magnetic resonance imaging (MRI). Methods and Materials: Fletcher-Suit-Delclos-style tandem and ovoids (T and O) and tandem and ring applicator (T and R) were examined. The quality assurance (QA) phantoms for each applicator were designed and filled with copper sulphate solution (1.5 g/l). The artifacts were quantified with the registration of corresponding computed tomography (CT) images. A favorable MR sequence was searched in terms of artifacts. Using the sequence, the artifacts were determined. The geometric distortions induced by the applicators were quantified through each registration of CT and MRI without applicators. The artifacts of T and O were also evaluated on in vivo MRI datasets of 5 patients. Results: T1-weighted MRI with 1-mm slice thickness was found as a favorable MR sequence. Applying the sequence, the artifacts at the tandem tip of T and O and T and R were determined as 1.5 {+-} 0.5 mm in a superior direction in phantom studies. In the ovoids of T and O, we found artifacts less than 1.5 {+-} 0.5 mm. The artifacts of a T and O tandem in vivo were found as less than 2.6 {+-} 1.3 mm on T1-weighted MRI, whereas less than 6.9 {+-} 3.4 mm on T2-weighted MRI. No more than 1.2 {+-} 0.6 mm (3.0 {+-} 1.5 mm) of distortions, due to a titanium applicator, were measured on T1-weighted MRI (T2-). Conclusion: In 3.0-Tesla MRI, we found the artifact widths at the tip of tandem were less than 1.5 {+-} 0.5 mm for both T and O and T and R when using T1-weighted MRI in phantom studies. However, exclusive 3.0-Tesla MRI-guided brachytherapy planning with a titanium applicator should be cautiously implemented.

  6. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  7. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  8. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  9. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  10. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  11. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  12. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  13. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  14. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  15. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  16. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  17. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  19. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  20. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  1. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  2. MRI--the investigation of choice in syringomyelia?

    PubMed

    Dowling, R J; Tress, B M

    1989-11-01

    During a 12 month period of operation of a 0.3 Tesla MRI iron cored resistive scanner 74 cases of syringomyelia were diagnosed on clinical, radiological and/or surgical grounds. Without knowledge of any clinical or radiological data the syrinxes were classified into five groups--idiopathic, idiopathic associated with Chiari malformation, tumour associated, post-traumatic and arachnoiditis associated--and the lesion characteristics within each group were compared. Although MRI was extremely sensitive in picking up even small syrinxes, there was considerable overlap of MRI characteristics across the sub-groups, so that two post-traumatic syrinxes had lesion characteristics identifiable with those of tumour syrinx and one intramedullary tumour syrinx had the MRI characteristics of a benign, idiopathic syrinx. It is concluded that meticulous attention to technique, including axial as well as sagittal T1 weighted sequences, and the administration of intravenous paramagnetic contrast media are necessary for detection and accurate classification of syrinxes. PMID:2633734

  3. Pituitary Adenoma Volumetry with 3D Slicer

    PubMed Central

    Nimsky, Christopher; Kikinis, Ron

    2012-01-01

    In this study, we present pituitary adenoma volumetry using the free and open source medical image computing platform for biomedical research: (3D) Slicer. Volumetric changes in cerebral pathologies like pituitary adenomas are a critical factor in treatment decisions by physicians and in general the volume is acquired manually. Therefore, manual slice-by-slice segmentations in magnetic resonance imaging (MRI) data, which have been obtained at regular intervals, are performed. In contrast to this manual time consuming slice-by-slice segmentation process Slicer is an alternative which can be significantly faster and less user intensive. In this contribution, we compare pure manual segmentations of ten pituitary adenomas with semi-automatic segmentations under Slicer. Thus, physicians drew the boundaries completely manually on a slice-by-slice basis and performed a Slicer-enhanced segmentation using the competitive region-growing based module of Slicer named GrowCut. Results showed that the time and user effort required for GrowCut-based segmentations were on average about thirty percent less than the pure manual segmentations. Furthermore, we calculated the Dice Similarity Coefficient (DSC) between the manual and the Slicer-based segmentations to proof that the two are comparable yielding an average DSC of 81.97±3.39%. PMID:23240062

  4. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  5. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  6. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  7. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  8. Fast algorithm of 3D median filter for medical image despeckling

    NASA Astrophysics Data System (ADS)

    Xiong, Chengyi; Hou, Jianhua; Gao, Zhirong; He, Xiang; Chen, Shaoping

    2007-12-01

    Three-dimensional (3-D) median filtering is very useful to eliminate speckle noise from a medical imaging source, such as functional magnetic resonance imaging (fMRI) and ultrasonic imaging. 3-D median filtering is characterized by its higher computation complexity. N 3(N 3-1)/2 comparison operations would be required for 3-D median filtering with N×N×N window if the conventional bubble-sorting algorithm is adopted. In this paper, an efficient fast algorithm for 3-D median filtering was presented, which considerably reduced the computation complexity for extracting the median of a 3-D data array. Compared to the state-of-the-art, the proposed method could reduce the computation complexity of 3-D median filtering by 33%. It results in efficiently reducing the system delay of the 3-D median filter by software implementation, and the system cost and power consumption by hardware implementation.

  9. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  10. Dynamic 3D Visualization of Vocal Tract Shaping During Speech

    PubMed Central

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I.; Narayanan, Shrikanth S.; Nayak, Krishna S.

    2014-01-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3D dynamic MRI would be a major advance, as it would provide 3D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3D dynamic movies of vocal tract shaping based on the acquisition of 2D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /aɹa/, /asa/ and /aʃa/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms. PMID:23204279

  11. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  12. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  13. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  14. Automated segmentation of necrotic femoral head from 3D MR data.

    PubMed

    Zoroofi, Reza A; Sato, Yoshinobu; Nishii, Takashi; Sugano, Nobuhiko; Yoshikawa, Hideki; Tamura, Shinichi

    2004-07-01

    Segmentation of diseased organs is an important topic in computer assisted medical image analysis. In particular, automatic segmentation of necrotic femoral head is of importance for various corresponding clinical tasks including visualization, quantitative assessment, early diagnosis and adequate management of patients suffering from avascular necrosis of the femoral head (ANFH). Early diagnosis and treatment of ANFH is crucial since the disease occurs in relatively young individuals with an average age of 20-50, and since treatment options for more advanced disease are frequently unsuccessful. The present paper describes several new techniques and software for automatic segmentation of necrotic femoral head based on clinically obtained multi-slice T1-weighted MR data. In vivo MR data sets of 50 actual patients are used in the study. An automatic method built up to manage the segmentation task according to image intensity of bone tissues, shape of the femoral head, and other characters. The processing scheme consisted of the following five steps. (1) Rough segmentation of non-necrotic lesions of the femur by applying a 3D gray morphological operation and a 3D region growing technique. (2) Fitting a 3D ellipse to the femoral head by a new approach utilizing the constraint of the shape of the femur, and employing a principle component analysis and a simulated annealing technique. (3) Estimating the femoral neck location, and also femoral head axis by integrating anatomical information of the femur and boundary of estimated 3D ellipse. (4) Removal of non-bony tissues around the femoral neck and femoral head ligament by utilizing the estimated femoral neck axis. (5) Classification of necrotic lesions inside the estimated femoral head by a k-means technique. The above method was implemented in a Microsoft Windows software package. The feasibility of this method was tested on the data sets of 50 clinical cases (3000 MR images). PMID:15249072

  15. High-quality breast MRI.

    PubMed

    Hendrick, R Edward

    2014-05-01

    Breast magnetic resonance imaging (MRI) demands the competing factors of high spatial resolution, good temporal resolution, high signal-to-noise ratios, and complete bilateral breast coverage. Achieving these competing factors requires modern MRI equipment with high magnetic field strength and homogeneity, high maximum gradient strength with short rise times, dedicated multichannel bilateral breast coils with prone patient positioning, and 3D (volume) gradient-echo MRI pulse sequences with short TR, short TE, high spatial resolution, and reasonably short acquisition times. This article discusses the equipment and pulse sequences needed to achieve high-quality breast MRI and summarizes requirements of the ACR Breast MRI Accreditation Program. PMID:24792656

  16. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  17. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  18. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  19. Magnetic Resonance Imaging (MRI) Markers for MRI-Guided High-Dose-Rate Brachytherapy: Novel Marker-Flange for Cervical Cancer and Marker Catheters for Prostate Cancer

    SciTech Connect

    Schindel, Joshua; Muruganandham, Manickam; Pigge, F. Christopher; Anderson, James; Kim, Yusung

    2013-06-01

    Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic, ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.

  20. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  1. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  3. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  4. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  5. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  6. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  7. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  8. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  9. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  10. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  11. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  12. Synthesis and characterization of a redox- and light-sensitive MRI contrast agent

    PubMed Central

    Tu, Chuqiao; Osborne, Elizabeth A.; Louie, Angelique Y.

    2009-01-01

    A redox- and light-sensitive, T1-weighted magnetic resonance imaging (MRI) contrast agent which tethers a spiropyran(SP)/merocyanine(MC) motif to a Gd-DO3A moiety was synthesized and characterized. When in the dark, the probe is in its MC form which has an r1 relaxivity of 2.51 mM−1s−1 (60MHz, 37°C). After irradiation with visible light or mixing with NADH, the probe experiences an isomerization and the r1 relaxivity decreased 18% and 26%, respectively. Additionally, the signal intensity in MRI showed an observable decrease after the compound was mixed with NADH. PMID:20126289

  13. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  14. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  15. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  16. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  17. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  18. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  19. High resolution MRI anatomy of the cat brain at 3 Tesla

    PubMed Central

    Gray-Edwards, Heather L.; Salibi, Nouha; Josephson, Eleanor M.; Hudson, Judith A.; Cox, Nancy R.; Randle, Ashley N.; McCurdy, Victoria J.; Bradbury, Allison M.; Wilson, Diane U.; Beyers, Ronald J.; Denney, Thomas S.; Martin, Douglas R.

    2014-01-01

    Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models. PMID:24525327

  20. Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders.

    PubMed

    Starosolski, Zbigniew A; Kan, J Herman; Rosenfeld, Scott D; Krishnamurthy, Rajesh; Annapragada, Ananth

    2014-02-01

    Three-dimensional printing called rapid prototyping, a technology that is used to create physical models based on a 3-D computer representation, is now commercially available and can be created from CT or MRI datasets. This technical innovation paper reviews the specific requirements and steps necessary to apply biomedical 3-D printing of pediatric musculoskeletal disorders. We discuss its role for the radiologist, orthopedist and patient. PMID:24202430

  1. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  2. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  3. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms

    SciTech Connect

    Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S.

    2015-10-15

    Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed

  4. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI

    NASA Astrophysics Data System (ADS)

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T 1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T 1-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status.

  5. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI.

    PubMed

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T(1)-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T(1)-weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  6. Monitoring Redox-Sensitive Paramagnetic Contrast Agent by EPRI, OMRI and MRI

    PubMed Central

    Hyodo, Fuminori; Murugesan, Ramachandran; Matsumoto, Ken-ichiro; Hyodo, Emi; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2008-01-01

    A comparative study of tissue redox-status imaging using commonly used redox sensitive nitroxides has been carried out using electron paramagnetic resonance imaging (EPRI), Overhauser magnetic resonance imaging (OMRI) and conventional T1-weighted magnetic resonance imaging, MRI. Imaging studies using phantoms of different nitroxides at different concentration levels showed that EPRI and OMRI sensitivities were found to be linearly dependent on line width of nitroxides up to 2 mM, and the enhancement in MRI intensity was linear up to 5 mM. The sensitivity and resolution of EPRI and OMRI images depended significantly on the line width of the nitroxides whereas the MRI images were almost independent of EPR line width. Reduction of the paramagnetic 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP) by ascorbic acid (AsA) to the diamagnetic by hydroxylamine was monitored from a sequence of temporal images, acquired using the three imaging modalities. The decay rates determined by all the three modalities were found to be similar. However the results suggest that T1 weighted MRI can monitor the redox status, in addition to providing detailed anatomical structure in a short time. Therefore, a combination of MRI with nitroxides as metabolically responsive contrast agents can be a useful technique for the in vivo imaging probing tissue redox status. PMID:18006345

  7. Live nephron imaging by MRI.

    PubMed

    Qian, Chunqi; Yu, Xin; Pothayee, Nikorn; Dodd, Stephen; Bouraoud, Nadia; Star, Robert; Bennett, Kevin; Koretsky, Alan

    2014-11-15

    The local sensitivity of MRI can be improved with small MR detectors placed close to regions of interest. However, to maintain such sensitivity advantage, local detectors normally need to communicate with the external amplifier through cable connections, which prevent the use of local detectors as implantable devices. Recently, an integrated wireless amplifier was developed that can efficiently amplify and broadcast locally detected signals, so that the local sensitivity was enhanced without the need for cable connections. This integrated detector enabled the live imaging of individual glomeruli using negative contrast introduced by cationized ferritin, and the live imaging of renal tubules using positive contrast introduced by gadopentetate dimeglumine. Here, we utilized the high blood flow to image individual glomeruli as hyperintense regions without any contrast agent. These hyperintense regions were identified for pixels with signal intensities higher than the local average. Addition of Mn(2+) allowed the simultaneous detection of both glomeruli and renal tubules: Mn(2+) was primarily reabsorbed by renal tubules, which would be distinguished from glomeruli due to higher enhancement in T1-weighted MRI. Dynamic studies of Mn(2+) absorption confirmed the differential absorption affinity of glomeruli and renal tubules, potentially enabling the in vivo observation of nephron function. PMID:25186296

  8. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  9. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  10. MRI and MRS of human brain tumors.

    PubMed

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). PMID:19381963

  11. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  12. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  13. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  14. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  15. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  16. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  17. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  18. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  19. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  20. Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation

    PubMed Central

    Neuschmelting, Volker; Burton, Neal C.; Lockau, Hannah; Urich, Alexander; Harmsen, Stefan; Ntziachristos, Vasilis; Kircher, Moritz F.

    2015-01-01

    A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe. The signal decrease was more profound in relation to depth with the 3D versus the 2D probe. Both approaches were capable of imaging the melanoma tumors qualitatively at all time points. Quantitatively, the 2D approach enabled closer anatomical resemblance of the tumor compared to the 3D probe, particularly at depths beyond 3 mm. The 3D probe was shown to be superior for rapid 3D imaging and, thus, holds promise for more superficial target structures. PMID:27069872

  1. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  2. 3-D seismology in the Arabian Gulf

    SciTech Connect

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  3. A 3D Geostatistical Mapping Tool

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  4. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  5. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  6. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  7. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  8. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  9. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  10. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  11. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  12. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  13. A 3-D measurement of biomagnetic field and its application

    NASA Astrophysics Data System (ADS)

    Uchikawa, Yoshinori; Kim, Bong-Soo; Kobayashi, Koichiro

    2006-09-01

    This review paper focuses in the usefulness of three-dimensional (3-D) biomagnetic field measurement for discriminating multiple sources closely located and overlapped in time. We have developed a 3-D second-order gradiometer connected to 39-channel SQUIDs for vector measurement of magnetoencephalogram (MEG), which can simultaneously detect magnetic field components perpendicular and tangential to the scalp. To assess discrimination and separation of multiple sources overlapping in time, we showed both simulation study and 3-D vector measurement of MEG as following; (a) mixed auditory evoked field (AEF) and somatosensory evoked field (SEF), (b) separating second somatosensory (SII) activity from primary somatosensory (SI) activity in SEF. The magnetic field distribution perpendicular to the scalp was not helpful for estimating the location and number of sources, owing to the lack of a dipole pattern, but the magnetic field distribution tangential to the scalp can provide information about new constraint conditions by visual inspection and singular value decomposition (SVD) method. We estimated multiple sources of mixed AEF and SEF from the MEG data of the magnetic field tangential to the scalp, and also estimated multiple sources of SI and SII activity. These results were confirmed by comparison with superimposed source locations in MRI of subject's head.

  14. Undersampling k-space using fast progressive 3D trajectories.

    PubMed

    Spiniak, Juan; Guesalaga, Andres; Mir, Roberto; Guarini, Marcelo; Irarrazaval, Pablo

    2005-10-01

    In 3D MRI, sampling k-space with traditional trajectories can be excessively time-consuming. Fast imaging trajectories are used in an attempt to efficiently cover the k-space and reduce the scan time without significantly affecting the image quality. In many applications, further reductions in scan time can be achieved via undersampling of the k-space; however, no clearly optimal method exists. In most 3D trajectories the k-space is divided into regions that are sampled with shots that share a common geometry (e.g., spirals). A different approach is to design trajectories that gradually but uniformly cover the k-space. In the current work, successive shots progressively add sampled regions to the 3D frequency space. By cutting the sequence short, a natural undersampled method is obtained. This can be particularly efficient because in these types of trajectories the contribution of new information by later shots is less significant. In this work the performance of progressive trajectories for different degrees of undersampling is assessed with trajectories based on missile guidance (MG) ideas. The results show that the approach can be efficient in terms of reducing the scan time, and performs better than the stack of spirals (SOS) technique, particularly under nonideal conditions. PMID:16142719

  15. Quantitative 3D breast magnetic resonance imaging fibroglandular tissue analysis and correlation with qualitative assessments: a feasibility study

    PubMed Central

    Mema, Eralda; Guo, Xiaotao; Mango, Victoria; Desperito, Elise; Ha, Jason; Wynn, Ralph; Zhao, Binsheng

    2016-01-01

    Background The amount of fibroglandular tissue (FGT) has been linked to breast cancer risk based on mammographic density studies. Currently, the qualitative assessment of FGT on mammogram (MG) and magnetic resonance imaging (MRI) is prone to intra and inter-observer variability. The purpose of this study is to develop an objective quantitative FGT measurement tool for breast MRI that could provide significant clinical value. Methods An IRB approved study was performed. Sixty breast MRI cases with qualitative assessment of mammographic breast density and MRI FGT were randomly selected for quantitative analysis from routine breast MRIs performed at our institution from 1/2013 to 12/2014. Blinded to the qualitative data, whole breast and FGT contours were delineated on T1-weighted pre contrast sagittal images using an in-house, proprietary segmentation algorithm which combines the region-based active contours and a level set approach. FGT (%) was calculated by: [segmented volume of FGT (mm3)/(segmented volume of whole breast (mm3)] ×100. Statistical correlation analysis was performed between quantified FGT (%) on MRI and qualitative assessments of mammographic breast density and MRI FGT. Results There was a significant positive correlation between quantitative MRI FGT assessment and qualitative MRI FGT (r=0.809, n=60, P<0.001) and mammographic density assessment (r=0.805, n=60, P<0.001). There was a significant correlation between qualitative MRI FGT assessment and mammographic density assessment (r=0.725, n=60, P<0.001). The four qualitative assessment categories of FGT correlated with the calculated mean quantitative FGT (%) of 4.61% (95% CI, 0–12.3%), 8.74% (7.3–10.2%), 18.1% (15.1–21.1%), 37.4% (29.5–45.3%). Conclusions Quantitative measures of FGT (%) were computed with data derived from breast MRI and correlated significantly with conventional qualitative assessments. This quantitative technique may prove to be a valuable tool in clinical use by

  16. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  17. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  18. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  19. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  20. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  1. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  2. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  3. Advanced MRI in malignant neoplasms of the uterus.

    PubMed

    Kido, Aki; Fujimoto, Koji; Okada, Tomohisa; Togashi, Kaori

    2013-02-01

    Conventional magnetic resonance imaging (MRI) such as T1-weighted and T2-weighted images of the female pelvis provide morphological information with excellent tissue contrast, which reflects the pathology of malignant diseases of the uterus. Owing to the recent improvement in hardware and software, in combination with extensive research in imaging techniques, not only MRI at higher magnetic field was facilitated, but also insight into tumor pathophysiology was provided. These methods include diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI) with pharmacokinetic analysis, and MR spectroscopy (MRS). The application of these techniques is expanding from the brain to the body because information on the tissue microenvironment and cytoarchitecture is helpful for lesion characterization, evaluation of treatment response after chemotherapy or radiation, differentiating posttherapeutic changes from residual active tumor, and for detecting recurrent cancer. These techniques may provide clues to optimize the treatment of patients with malignant diseases of the uterus. In the first half of this article we provide an overview of the technical aspects of MRI of the female pelvis, especially focusing on the state-of-the-art techniques such as 3 T MRI, DCE-MRI, DWI, etc. For the latter half we review the clinical aspects of these newly developed techniques, focusing on how these techniques are applicable, what has been revealed with respect to clinical impact, and the remaining problems. PMID:23355429

  4. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  5. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes. PMID:27067418

  6. Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets

    SciTech Connect

    Howison, Mark

    2010-05-06

    We compare the performance of hand-tuned CUDA implementations of bilateral and anisotropic diffusion filters for denoising 3D MRI datasets. Our tests sweep comparable parameters for the two filters and measure total runtime, memory bandwidth, computational throughput, and mean squared errors relative to a noiseless reference dataset.

  7. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  8. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  9. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879

  10. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  11. Extra Dimensions: 3D in PDF Documentation

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2012-12-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  12. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.