Non-isothermal 3D SDPD Simulations
NASA Astrophysics Data System (ADS)
Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos
2012-11-01
The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.
3D Finite Element Analysis of Spider Non-isothermal Forging Process
NASA Astrophysics Data System (ADS)
Niu, Ling; Wei, Wei; Wei, Kun Xia; Alexandrov, Igor V.; Hu, Jing
2016-06-01
The differences of effective stress, effective strain, velocity field, and the load-time curves between the spider isothermal and non-isothermal forging processes are investigated by making full use of 3D FEA, and verified by the production experiment of spider forging. Effective stress is mainly concentrated on the pin, and becomes lower closer to the front of the pin. The maximum effective strain in the non-isothermal forging is lower than that in the isothermal. The great majority of strain in the non-isothermal forging process is 1.76, which is larger than the strain of 1.31 in the isothermal forging. The maximum load required in the isothermal forging is higher than that in the non-isothermal. The maximum experimental load and deformation temperature in the spider production are in good agreement with those in the non-isothermal FEA. The results indicate that the non-isothermal 3D FEA results can guide the design of the spider forging process.
3D time dependent thermo-fluid dynamic model of ground deformation at Campi Flegrei caldera
NASA Astrophysics Data System (ADS)
Castaldo, R.; Tizzani, P.; Manconi, A.; Manzo, M.; Pepe, S.; Pepe, A.; Lanari, R.
2012-04-01
In active volcanic areas deformation signals are generally characterized by non-linear spatial and temporal variations [Tizzani P. et al., 2007]. This behaviour has been revealed in the last two decades by the so-called advanced DInSAR processing algorithms, developed to analyze surface deformation phenomena [Berardino P. et al., 2002; Ferretti C. et al., 2001]. Notwithstanding, most of the inverse modelling attempts to characterize the evolution of the volcanic sources are based on the assumption that the Earth's crust behaves as a homogeneous linear elastic material. However, the behaviour of the upper lithosphere in thermally anomalous regions (as active volcanoes are) might be well described as a non-Newtonian fluid, where some of the material proprieties of the rocks (i.e., apparent viscosities) can change over time [Pinkerton H. et al., 1995]. In this context, we considered the thermal proprieties and mechanical heterogeneities of the upper crust in order to develop a new 3D time dependent thermo-fluid dynamic model of Campi Flegrei (CF) caldera, Southern Italy. More specifically, according to Tizzani P. et al. (2010), we integrated in a FEM environment geophysical information (gravimetric, seismic, and borehole data) available for the considered area and performed two FEM optimization procedures to constrain the 3D distribution of unknown physical parameters (temperature and viscosity distributions) that might help explaining the data observed at surface (geothermal wells and DInSAR measurements). First, we searched for the heat production, the volume source distribution and surface emissivity parameters providing the best-fit of the geothermal profiles data measured at six boreholes [Agip ESGE, 1986], by solving the Fourier heat equation over time (about 40 kys). The 3D thermal field resulting from this optimization was used to calculate the 3D brittle-ductile transition. This analysis revealed the presence of a ductile region, located beneath the centre of
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
3D non-LTE time-dependent spectrum synthesis for type Ia supernovae
NASA Astrophysics Data System (ADS)
Kromer, M.; Sim, S. A.; Hillebrandt, W.
2009-09-01
Despite the importance of Type Ia supernovae as standard candles for cosmology and to the chemical evolution of the Universe, it is still not completely understood how these explosions take place and which are the progenitor systems. In this contribution we present a Monte Carlo code for modelling the time-dependent 3D radiative transfer problem in chemically inhomogeneous models of supernova ejecta. We avoid free parameters so that a direct comparison between synthetic spectra and light curves calculated from hydrodynamic explosion models and observations becomes feasible. Calculations for the well known W7 explosion model and first applications to multidimensional toy models are shown.
Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries
NASA Astrophysics Data System (ADS)
Ciarlet, Patrick, Jr.; Jamelot, Erell
2007-09-01
A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D geometries with the help of a continuous approximation of the electromagnetic field. In this paper, we investigate how their framework can be adapted to compute the solution to the time-dependent Maxwell equations. In addition, we propose some extensions, such as the introduction of a mixed variational setting and its discretization, to handle the constraint on the divergence of the field.
A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.
Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank
2014-10-21
Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields
A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions
NASA Astrophysics Data System (ADS)
Podesta, Mark; CGG Persoon, Lucas; Verhaegen, Frank
2014-10-01
Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors. The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)
2001-01-01
For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model
Zhang, Haocheng; Diltz, Chris; Bottcher, Markus
2016-09-23
We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less
Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model
Zhang, Haocheng; Diltz, Chris; Bottcher, Markus
2016-09-23
We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.
Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model
Zhang, Haocheng; Diltz, Chris; Bottcher, Markus
2016-09-23
We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.
A 3D moisture-stress FEM analysis for time dependent problems in timber structures
NASA Astrophysics Data System (ADS)
Fortino, Stefania; Mirianon, Florian; Toratti, Tomi
2009-11-01
This paper presents a 3D moisture-stress numerical analysis for timber structures under variable humidity and load conditions. An orthotropic viscoelastic-mechanosorptive material model is specialized on the basis of previous models. Both the constitutive model and the equations needed to describe the moisture flow across the structure are implemented into user subroutines of the Abaqus finite element code and a coupled moisture-stress analysis is performed for several types of mechanical loads and moisture changes. The presented computational approach is validated by analyzing some wood tests described in the literature and comparing the computational results with the reported experimental data.
3D viscous time dependent analysis of a slow moving landslide by finite elements
NASA Astrophysics Data System (ADS)
Bru, Guadalupe; Fernández-Merodo, Josè Antonio; García-Davalillo, Juan Carlos; Herrera, Gerardo
2017-04-01
A methodology to study the cinematic behavior in time and 3D effects of slow moving landslides is presented by its application to the Portalet landslide, located in the Spanish Central Pyrenees. The area is characterize by the presence of several complex landslides triggered by glacial retreat and developed in weathered Devonian and Carboniferous slate materials. In summer 2004, the toe of two paleolanslides was excavated in order to construct a parking area, which reactivated the preexistent rupture surfaces and generated a new and smaller roto-translational landslide of about 5·105m3. Works were paralyzed and the road A-136 connecting Spain and France was temporary closed. In 2006 stabilizing solutions were performed, although surface and deep monitoring data reveal that the landslide is currently active. In this work the cinematic behavior of the Portalet parking landslide has been reproduced since the excavation in 2004 until 2016 by an advanced 3D finite element model (FEM) analysis. A detailed 3D litho-stratigraphic geometry has been defined using the information available from previous works(1-3): real topography, geological profiles, ground water level and material properties. The first step has been a stability analysis using the shear stress reduction (SSR) technique to calibrate the value of the friction angle of the soil layer where the rupture surface develops. In this step the sensibility of the mesh size has been studied, as is a critical parameter. Secondly, stability analysis results have been verified by simulating the parking excavation with a static analysis using Mohr-Coulomb elastoplastic failure criteria. In the last step the behavior of the landslide has been recreated using a hydromechanic coupled formulation for displacements and interstitial water pressure (u-pw), a simple elevation ground water model calculated from daily rainfall and a Perzyna viscous constitutive model of the solid skeleton which represent the creep detected by
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.
2017-09-01
Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). However, the computational cost of this method makes it difficult to perform calculations with more than two collective degree of freedom. Meanwhile, it is well-known from both semi-phenomenological and fully microscopic approaches that at least four or five dimensions may play a role in the dynamics of fission. To overcome this limitation, we develop the code FELIX aiming to solve the TDGCM+GOA equation for an arbitrary number of collective variables. In this talk, we report the recent progress toward this enriched description of fission dynamics. We will briefly present the numerical methods adopted as well as the status of the latest version of FELIX. Finally, we will discuss fragments yields obtained within this approach for the low energy fission of major actinides.
NASA Astrophysics Data System (ADS)
Chen, Yu; Xie, Xilin
2016-05-01
E and Liu [J. Comput. Phys. 138 (1997) 57-82] put forward a finite difference method for 3D viscous incompressible flows in the vorticity-vector potential formulation on non-staggered grids. In this paper, we will extend this method to the case of flows in the presence of a deformable surface. By use of two kinds of surface differential operators, the implementation of boundary conditions on a plane is generalized to a curved smooth surface with given velocity distribution, whether this be an inflow/outflow interface or a curved wall. To deal with the irregular and varying physical domain, time-dependent curvilinear coordinates are constructed and the corresponding tensor analysis is adopted in deriving the component form of the governing equations. Therefore, the equations can be discretized and solved in a regular and fixed parametric domain. Numerical results are presented for a 3D lid-driven cavity with a deforming surface and a 3D duct flow with a deforming boundary. A new way to validate numerical simulations is proposed based on an expression for the rate-of-strain tensor on a deformable surface.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-10-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
NASA Astrophysics Data System (ADS)
Gainullin, I. K.; Sonkin, M. A.
2015-03-01
A parallelized three-dimensional (3D) time-dependent Schrodinger equation (TDSE) solver for one-electron systems is presented in this paper. The TDSE Solver is based on the finite-difference method (FDM) in Cartesian coordinates and uses a simple and explicit leap-frog numerical scheme. The simplicity of the numerical method provides very efficient parallelization and high performance of calculations using Graphics Processing Units (GPUs). For example, calculation of 106 time-steps on the 1000ṡ1000ṡ1000 numerical grid (109 points) takes only 16 hours on 16 Tesla M2090 GPUs. The TDSE Solver demonstrates scalability (parallel efficiency) close to 100% with some limitations on the problem size. The TDSE Solver is validated by calculation of energy eigenstates of the hydrogen atom (13.55 eV) and affinity level of H- ion (0.75 eV). The comparison with other TDSE solvers shows that a GPU-based TDSE Solver is 3 times faster for the problems of the same size and with the same cost of computational resources. The usage of a non-regular Cartesian grid or problem-specific non-Cartesian coordinates increases this benefit up to 10 times. The TDSE Solver was applied to the calculation of the resonant charge transfer (RCT) in nanosystems, including several related physical problems, such as electron capture during H+-H0 collision and electron tunneling between H- ion and thin metallic island film.
Non-isothermal extrudate swell
NASA Astrophysics Data System (ADS)
Konaganti, Vinod Kumar; Derakhshandeh, Maziar; Ebrahimi, Marzieh; Mitsoulis, Evan; Hatzikiriakos, Savvas G.
2016-12-01
The non-isothermal extrudate swell of a high molecular weight high-density polyethylene (HDPE) in long capillary and slit dies is studied numerically (ANSYS POLYFLOW®) using an integral K-BKZ constitutive model including crystallization kinetics, determined experimentally. The Nakamura model is used for crystallization of the HDPE, where the crystallization rate parameter is evaluated by using the well-known Ziabicki equation. This non-isothermal extrudate swell phenomenon is simulated using the pseudo-time integral K-BKZ model with the Wagner damping function along with the differential form of the Nakamura model to account for the crystallization of the extrudate. The swell measurements were carried out under non-isothermal conditions by extruding the polymer melt at 200 °C through long capillary and slit dies to ambient air at 25 °C, 110 °C, and 200 °C. The numerical results are found to be in excellent agreement with experimental observations.
2009-01-01
phase matrix were determined by letting the elements of the reduced phase matrix ( ˜ P ij = Pij /P11) be equal to those of the reduced Rayleigh...for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional...F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for Randomly Oriented
2013-09-30
vector Monte Carlo code to calculate what is known as SOES (Spatial Offset Elastic Scattering ). We have used our method to calculate the SOES signal... scattering properties, such as different single scattering albedo, different phase function and different phase matrix. Our new 3D vector Monte Carlo ...feature about the asymptotic light field is that it depends profoundly on both the single scattering albedo as well as the phase function of the medium
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.
Time dependence of Fe/O ratio within a 3D solar energetic particle propagation model including drift
NASA Astrophysics Data System (ADS)
Dalla, S.; Marsh, M. S.; Zelina, P.; Laitinen, T.
2017-02-01
Context. The intensity profiles of iron and oxygen in Solar Energetic Particle (SEP) events often display differences that result in a decreasing Fe/O ratio over time. The physical mechanisms behind this behaviour are not fully understood, but these observational signatures provide important tests of physical modelling efforts. Aims: In this paper we study the propagation of iron and oxygen SEP ions using a 3D model of propagation which includes the effect of guiding centre drift in a Parker spiral magnetic field. We derive time intensity profiles for a variety of observer locations and study the temporal evolution of the Fe/O ratio. Methods: We use a 3D full orbit test particle model which includes scattering. The configuration of the interplanetary magnetic field is a unipolar Parker spiral. Particles are released instantaneously from a compact region at two solar radii and allowed to propagate in 3D. Results: Both Fe and O experience significant transport across the magnetic field due to gradient and curvature drifts. We find that Fe ions drift more than O ions due to their larger mass-to-charge ratio, so that an observer that is not magnetically well connected to the source region will observe Fe arriving before O, for particles within the same range in energy per nucleon. As a result, for the majority of observer locations, the Fe/O ratio displays a decrease in time. Conclusions: We conclude that propagation effects associated with drifts produce a decay over time of the Fe/O ratio, qualitatively reproducing that observed in SEP event profiles.
2007-09-30
An efficient method for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski ...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for...Operator Theory of Radiative Transfer. II. Scattering from Maritime Haze,” Appl. Opt. l2, 1071-1084 (1973). PUBLICATIONS 1. P . Zhai, G. W. Kattawar
Cullen, D.E
2000-11-22
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
Cullen, D E
1998-11-22
TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.
NASA Astrophysics Data System (ADS)
Taramón, Jorge M.; Rodríguez-González, Juan; Negredo, Ana M.; Billen, Magali I.
2015-09-01
Several mechanisms have been suggested for the formation of flat slabs including buoyant features on the subducting plate, trenchward motion and thermal or cratonic structure of the overriding plate. Analysis of episodes of flat subduction indicate that not all flat slabs can be attributed to only one of these mechanisms and it is likely that multiple mechanisms work together to create the necessary conditions for flat slab subduction. In this study we examine the role of localized regions of cratonic lithosphere in the overriding plate in the formation and evolution of flat slabs. We explicitly build on previous models, by using time-dependent simulations with three-dimensional variation in overriding plate structure. We find that there are two modes of flat subduction: permanent underplating occurs when the slab is more buoyant (shorter or younger), while transient flattening occurs when there is more negative buoyancy (longer or older slabs). Our models show how regions of the slab adjacent to the subcratonic flat portion continue to pull the slab into the mantle leading to highly contorted slab shapes with apparent slab gaps beneath the craton. These results show how the interpretation of seismic images of subduction zones can be complicated by the occurrence of either permanent or transient flattening of the slab, and how the signature of a recent flat slab episode may persist as the slab resumes normal subduction. Our models suggest that permanent underplating of slabs may preferentially occur below thick and cold lithosphere providing a built-in mechanism for regeneration of cratons.
NASA Astrophysics Data System (ADS)
Zawdie, K. A.; Drob, D. P.; Huba, J. D.; Coker, C.
2016-07-01
One of the challenges for the utilization of HF radiowaves in practical applications is to understand how the signals propagate in time- and range-dependent multipath environments. For typical quiescent ionospheric conditions it is often reasonably straightforward to interpret received HF signals. For disturbed ionospheric conditions, however, such as in the presence of large tilts, irregularities, and medium-scale traveling ionospheric disturbances (MSTIDs), data interpretation and utilization often becomes challenging. This paper presents a theoretical HF propagation modeling study that exploits the capabilities of a first principles, mesoscale resolution ionosphere code, SAMI3 (Sami3 is Another Model of the Ionosphere) and a new implementation of the 3-D ray trace equations, MoJo-15 (Modernized Jones Code) in order to examine the relationship between various HF propagation observables and MSTID characteristics. This paper demonstrates the implications of MSTIDS on high angle of incidence HF propagation during typical low-latitude, postsunset ionospheric conditions and examines the spatiotemporal evolution of multiple propagation paths that may connect a given source and receiver.
Khaled, S.M.
2015-07-01
This work presents the Verification and testing both the neutronic and thermal-hydraulics response of the positive reactivity-initiated power excursion accidents in small light water research reactors. Some research reactors have to build its own severe accidents code system. In this sense, a 3D space-time-dependent neutron diffusion models with thermal hydraulic feedback have been introduced, compared and tested both experimentally at criticality 14-cent and theoretically up to 1.5 $ with a number of similar codes. The results shows that no expected core failure or moderator boiling. (author)
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-11-01
A time-dependent simulation of C-Mod pulsed ICRF power is made calculating minority hydrogen ion distribution functions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. ICRF fields are calculated with the AORSA full wave code, and RF diffusion coefficients are obtained from these fields using the DC Lorentz gyro-orbit code. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, in general agreement with experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these effects on the the NPA synthetic diagnostic time-dependence. The new NPA results give increased agreement with experiment, particularly in the ramp-down time after the ICRF pulse. Funded, through subcontract with Massachusetts Institute of Technology, by USDOE sponsored SciDAC Center for Simulation of Wave-Plasma Interactions.
Computer Modeling of Non-Isothermal Crystallization
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Narayan, K. Lakshmi; Levine, L. E.; Cull, T. C.; Ray, C. S.
1996-01-01
A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated.
NASA Astrophysics Data System (ADS)
Ghosh, Sandip; Sharma, Rahul; Adhikari, Satrajit; Varandas, António J. C.
2017-05-01
We report quantum dynamics calculations of the O + OH → H + O2 reaction on the CHIPR (Varandas, 2013) and DMBE IV (Pastrana et al., 1990) potential energy surfaces (PESs) for ground-state HO2 using the 3D time-dependent wavepacket formalism based on hyperspherical coordinates. Reaction probabilities for J = 0 are calculated for several initial rovibrational states of the OH radical (v = 0; j = 0-5). The J-shifting approximation is used to obtain initial state selected rate-coefficients in the range 0-400 K. Total and state-to-state rate-coefficients are predicted in good agreement with recent experimental studies and theoretical calculations.
Sahoo, Tapas; Ghosh, Sandip; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2014-07-03
We explore a coupled three-dimensional (3D) time-dependent wave packet formalism in hyperspherical coordinates for a 4D reactive scattering problem on the lowest adiabatic singlet surface (1(1)A') of the D(+) + H2 reaction. The coupling among the wavepackets arises through quantization of the rotation matrix, which represents the orientation of the three particles in space. The required transformation from Jacobi to hyperspherical coordinates and vice versa during initialization and projection of the wave packet on the asymptotic state(s), and the coupled equations of motion, are briefly discussed. With the long-range potential known to contribute significantly on the D(+) + H2 system, we demonstrate the workability of our approach, where the convergence profiles of the reaction probability for the reactive noncharge transfer (RNCT) process [D(+) + H2(v=0, j=0,1) → HD(v',j') + H(+)] are shown for three different collisional energies (1.7, 2.1, and 2.5 eV) with respect to the helicity (K) and total angular momentum (J) quantum numbers. The calculated reactive cross-section is presented as a function of the collision energy for two different initial states of the diatom (v = 0, j = 0, 1).
Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C
2015-12-17
We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed. PMID:27433511
NASA Astrophysics Data System (ADS)
Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team
2016-10-01
Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.
2015-12-01
A time-dependent simulation of C-Mod pulsed TCRF power is made obtaining minority hydrogen ion distributions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. Cyclotron-resonant TCRF fields are calculated with the AORSA full wave code. The RF diffusion coefficients used in CQL3D are obtained with the DC Lorentz gyro-orbit code for perturbed particle trajectories in the combined equilibrium and TCRF electromagnetic fields. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, and this substantially increased the rampup rate of the observed vertically-viewed neutral particle analyzer (NPA) flux, in general agreement with experiment. However, ramp down of the NPA flux after the pulse, remained long compared to the experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these new effects on the the NPA time-dependence.
Non-Isothermal effects on Be Disks
NASA Astrophysics Data System (ADS)
Vieira, R. G.; Carciofi, A. C.; Bjorkman, J. E.
2016-11-01
In the last decade, the viscous decretion disk model has emerged as the new paradigm for Be star disks. In this contribution, we propose a simple analytical model to estimate the continuum infrared excess arising from these circumstellar disks, in the light of the currently accepted scenario. We demonstrate that the disk can be satisfactorily described by a two component system: an inner optically thick region, which we call the pseudo-photosphere, and a diffuse outer part. In particular, a direct connexion between the disk brightness profile and the thermal structure is derived, and then confronted to realistic numerical simulations. This result quantifies how the non-isothermality of the disk ultimately affects both infrared measured fluxes and visibilities.
NASA Astrophysics Data System (ADS)
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-01
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3+ system (11A', 21A', and 31A') using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D+ + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3+. We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit
2017-08-21
The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H3(+) system (1(1)A('), 2(1)A('), and 3(1)A(')) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D(+) + H2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H3(+). We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.
Numerical Model for Isothermal and Non-Isothermal Crystallization of Liquids and Glasses
NASA Technical Reports Server (NTRS)
Kelton, K. F.
1993-01-01
A new numerical model of isothermal and non-isothermal first order phase transformations, such as the crystallization of liquids and glasses, is presented. This model computes directly the volume fraction transformed, taking into account time-dependent nucleation rates and cluster-size-dependent growth velocities. The model is applied to the crystallization of lithium disilicate glass, using the appropriate kinetic and thermodynamic parameters. The model is used (1) to determine the validity of common methods for computing the volume fraction transformed as a function of time in isothermal experiments when a time-dependent nucleation rate is expected, (2) to simulate non-isothermal differential scanning calorimetry (DSC) studies of glass devitrification as a function of scan rate, and (3) to compute the effect of preannealing on the DSC peak parameters. A novel behavior of the nucleation rate with scan rate is predicted, arising because the relaxation of the cluster distribution cannot be described by a single relaxation time. Comparisons of the calculations with experimental data on this glass demonstrate the validity of the model.
Non-isothermal reduction kinetics of titanomagnetite by hydrogen
NASA Astrophysics Data System (ADS)
Dang, Jie; Zhang, Guo-hua; Hu, Xiao-jun; Chou, Kuo-chih
2013-12-01
Reduction of titanomagnetite (TTM) powders by H2-Ar gas mixtures was investigated under a non-isothermal condition by using a thermogravimetric analysis system. It was found that non-isothermal reduction of TTM proceeded via a dual-reaction mechanism. The first reaction was reduction of TTM to wüstite and ilmenite, whereas the second one was reduction of wüstite and ilmenite to iron and titanium dioxide. By using a new model for the dual reactions, which was in an analytical form and incorporated different variables, such as time, temperature, particle size, and hydrogen partial pressure, rate-controlling steps for the dual reactions were obtained with the apparent activation energies calculated to be 90-98 and 115-132 kJ/mol for the first and second reactions, respectively.
Non-isothermal buckling behavior of viscoplastic shell structures
NASA Technical Reports Server (NTRS)
Riff, Richard; Simitses, G. J.
1988-01-01
Described are the mathematical model and solution methodologies for analyzing the structural response of thin, metallic elasto-viscoplastic shell structures under large thermomechanical loads and their non-isothermal buckling behavior. Among the system responses associated with these loads and conditions are snap-through, buckling, thermal buckling, and creep buckling. This geometric and material nonlinearities (of high order) can be anticipated and are considered in the model and the numerical treatment.
A hybrid optimization approach in non-isothermal glass molding
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Kreilkamp, Holger; Krishnamoorthi, Bharathwaj Janaki; Dambon, Olaf; Klocke, Fritz
2016-10-01
Intensively growing demands on complex yet low-cost precision glass optics from the today's photonic market motivate the development of an efficient and economically viable manufacturing technology for complex shaped optics. Against the state-of-the-art replication-based methods, Non-isothermal Glass Molding turns out to be a promising innovative technology for cost-efficient manufacturing because of increased mold lifetime, less energy consumption and high throughput from a fast process chain. However, the selection of parameters for the molding process usually requires a huge effort to satisfy precious requirements of the molded optics and to avoid negative effects on the expensive tool molds. Therefore, to reduce experimental work at the beginning, a coupling CFD/FEM numerical modeling was developed to study the molding process. This research focuses on the development of a hybrid optimization approach in Non-isothermal glass molding. To this end, an optimal configuration with two optimization stages for multiple quality characteristics of the glass optics is addressed. The hybrid Back-Propagation Neural Network (BPNN)-Genetic Algorithm (GA) is first carried out to realize the optimal process parameters and the stability of the process. The second stage continues with the optimization of glass preform using those optimal parameters to guarantee the accuracy of the molded optics. Experiments are performed to evaluate the effectiveness and feasibility of the model for the process development in Non-isothermal glass molding.
Multiscale simulation of non-isothermal microchannel gas flows
NASA Astrophysics Data System (ADS)
Patronis, Alexander; Lockerby, Duncan A.
2014-08-01
This paper describes the development and application of an efficient hybrid continuum-molecular approach for simulating non-isothermal, low-speed, internal rarefied gas flows, and its application to flows in Knudsen compressors. The method is an extension of the hybrid continuum-molecular approach presented by Patronis et al. (2013) [4], which is based on the framework originally proposed by Borg et al. (2013) [3] for the simulation of micro/nano flows of high aspect ratio. The extensions are: 1) the ability to simulate non-isothermal flows; 2) the ability to simulate low-speed flows by implementing a molecular description of the gas provided by the low-variance deviational simulation Monte Carlo (LVDSMC) method; and 3) the application to three-dimensional geometries. For the purposes of validation, the multiscale method is applied to rarefied gas flow through a periodic converging-diverging channel (driven by an external acceleration). For this flow problem it is computationally feasible to obtain a solution by the direct simulation Monte Carlo (DSMC) method for comparison: very close agreement is observed. The efficiency of the multiscale method, allows the investigation of alternative Knudsen-compressor channel configurations to be undertaken. We characterise the effectiveness of the single-stage Knudsen-compressor channel by the pressure drop that can be achieved between two connected reservoirs, for a given temperature difference. Our multiscale simulations indicate that the efficiency is surprisingly robust to modifications in streamwise variations of both temperature and cross-sectional geometry.
Laser velocimetry measurements in non-isothermal CVD systems
NASA Technical Reports Server (NTRS)
Johnson, E. J.; Hyer, P. V.; Culotta, P. W.; Clark, I. O.
1991-01-01
Researchers at the NASA Langley Research Center are applying laser velocimetry (LV) techniques to characterize the fluid dynamics of non-isothermal flows inside fused silica chambers designed for chemical vapor deposition (CVD). Experimental issues involved in the application of LV techniques to this task include thermophoretic effects on the LV seed particles, seeding the hazardous gases, index of refraction gradients in the flow field and surrounding media, optical access, relatively low flow velocities, and analysis and presentation of sparse data. An overview of the practical difficulties these issues represent to the use of laser velocimetry instrumentation for CVD applications is given. A fundamental limitation on the application of LV techniques in non-isothermal systems is addressed which involves a measurement bias due to the presence of thermal gradients. This bias results from thermophoretic effects which cause seed particle trajectories to deviate from gas streamlines. Data from a research CVD reactor are presented which indicate that current models for the interaction of forces such as Stokes drag, inertia, gravity, and thermophoresis are not adequate to predict thermophoretic effects on particle-based velocimetry measurements in arbitrary flow configurations.
Non-isothermal deformation of gamma titanium aluminide
Mohan, B.; Srinivasan, R.; Weiss, I.
1995-12-31
Gamma titanium aluminide is being considered as a material for use in internal combustion (IC) engine valves. At the present time IC engine valves are made from steel by a combination of extrusion and forging operations using a heated workpiece and relatively cold dies. In order to develop similar deformation processing technologies for gamma titanium aluminide, limits of formability under different processing conditions need to be established. Non-isothermal deformation with heated dies were carried out on samples of materials which had been processed by different routes to yield microstructures with grain sizes in the range of 3 to 10,000 {micro}m. Processing parameters such as strain rate, specimen temperature, total strain, and type of lubricant were varied in order to establish processing windows for uniform deformation of the different materials. During non-isothermal forming, the highest strain rate for uniform deformation is about 0.1 s{sup {minus}1}. Strain rates slower than 0.01 s{sup {minus}1} result in extensive chilling of the workpiece resulting in fracture. The maximum amount of deformation that could be obtained was a 40% reduction in height (strain of 0.5). The type of lubricant used plays a significant role in the formation of cracks on the specimen at the specimen/die interfaces.
The non-isothermal rheology of low viscosity magmas.
NASA Astrophysics Data System (ADS)
Kolzenburg, Stephan; Giordano, Daniele; Dingwell, Donald B.
2016-04-01
Accurate prediction of the run-out distance of lava flows, as well as the understanding of magma migration in shallow dyke systems is hampered by an incomplete understanding of the transient, sub-liquidus rheology of crystallizing melts. This sets significant limits to physical property based modelling of lava flow (especially flow width, length and advancement rate) and magma migration behaviour and the resulting accuracy of volcanic hazard assessment The importance of the dynamic rheology of a lava / magma on its emplacement style becomes especially apparent in towards later stages of flow and dyke emplacement, where the melt builds increasing resistance to flow, entering rheologic regimes that determine the halting of lava flows and sealing of dykes. Thermal gradients between the interior of a melt body and the contact with air or the substratum govern these rheologic transitions that give origin to flow directing or impeding features like levees, tubes and chilled margins. Besides the critical importance of non-isothermal and sub-liquidus processes for the understanding of natural systems, accurate rheologic data at these conditions are scarce and studies capturing the transient rheological evolution of lavas at conditions encountered during emplacement virtually absent. We describe the rheologic evolution of a series of natural, re-melted lava samples during transient and non-equilibrium crystallization conditions characteristic of lava flows and shallow magmatic systems in nature. The sample suite spans from foidites to basalts; the dominant compositions producing low viscosity lava flows. Our data show that all melts undergo one or more change zones in effective viscosity when subjected to sub liquidus temperatures. The apparent viscosity of the liquid-crystal suspension increases drastically from the theoretical temperature-viscosity relationship of a pure liquid once cooled below the liquidus temperature. We find that: 1) Both cooling rate and shear rate
Drought causes substantial reductions in non-isothermal soil strength
NASA Astrophysics Data System (ADS)
Vahedifard, F.; Robinson, J. D.; Love, C. A.; AghaKouchak, A.
2016-12-01
The stability and settlement of natural slopes and engineering structures are governed primarily by the shear strength of foundation soil. Understanding soil-atmosphere interactions and their impacts on shear strength is imperative to evaluating drought impacts on the resilience of our infrastructure. This understanding is also important for assessing a variety of emerging science and engineering problems in a changing climate including analyzing existing and new infrastructures, landslides, soil carbon sequestration, land management, and managing traction and tillage in agriculture. While progress has been made in understanding shear strength response to soil moisture changes, the impacts of concurrent soil moisture and temperature changes on shear strength remain uncertain from a regional-scale perspective. Here we present a methodological framework based on various soil types, temperatures, and moistures, and surface fluxes, to quantify a non-isothermal soil shear strength. We employ a non-isothermal soil strength analysis (NISSA) to explore the extent to which elevated soil temperatures and low moistures, along with abnormal surface fluxes, during California's record-setting 2012 - 2015 drought reduced the soil's shear strength. Our results suggest that the prolonged California drought reduced the shear strength of fine-grained soil as much as 95%. In contrast, the NISSA suggests that drought impacts on coarse-grained soil were not as significant. These opposing behaviors are attributed to the existence and absence of intermolecular physico-chemical forces in fine- and coarse-grained soils, respectively. The outlined framework offers a unique avenue to explore how soil shear strength is likely to behave under extreme drought conditions.
Non isothermal model free kinetics for pyrolysis of rice straw.
Mishra, Garima; Bhaskar, Thallada
2014-10-01
The kinetics of thermal decomposition of rice straw was studied by thermogravimetry. Non-isothermal thermogravimetric data of rice straw decomposition in nitrogen atmosphere at six different heating rates of 5-40 °C/min was used for evaluating kinetics using several model free kinetic methods. The results showed that the decomposition process exhibited two zones of constant apparent activation energies. The values ranged from 142 to 170 kJ/mol (E(avg) = 155.787 kJ/mol), and 170 to 270 kJ/mol (E(avg) = 236.743 kJ/mol) in the conversion range of 5-60% and 61-90% respectively. These values were used to determine the reaction mechanism of process using master plots and compensation parameters. The results show that the reaction mechanism of whole process can be kinetically characterized by two successive reactions, a diffusion reaction followed by a third order rate equation. The kinetic results were validated using isothermal predictions. The results derived are useful for development and optimization of biomass thermochemical conversion systems.
NASA Astrophysics Data System (ADS)
Zuo, Han-song; Li, He-jun; Qi, Le-hua; Luo, Jun; Zhong, Song-yi; Wu, Yao-feng
2015-01-01
Non-isothermal deposition of uniform molten droplets as basic building blocks has a great influence on the geometric profile and microstructure of metallic components fabricated by the drop-based three-dimensional (3D) printing technology. In this paper, the thermal and dynamic behaviors of molten aluminum droplets during non-isothermal deposition were studied numerically and experimentally. The result shows that local solidification and interfacial re-melting occur during the initial period of non-isothermal deposition. The re-melting in microseconds depends greatly on the impacting droplet temperature, the deposition surface temperature, and the thermal contact resistance. Further, the coupling action of subsequent solidification and oscillation behaviors of aluminum droplet fixed on the target surface was also investigated. It is interesting to find that the formation and distribution of the solidified surface morphology, such as the typical micron-sized ripples, are significantly affected by layer-by-layer solidification and underdamped oscillation in the remaining molten metal. Based on the above research, a semiquantitative relationship between external morphology and internal microstructure was proposed, which was further certified by investigating the piled vertical columns. The works should be helpful for the process optimization and non-destructive detection of drop-based 3D printing techniques.
ERIC Educational Resources Information Center
Collyer, A. A.
1974-01-01
Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)
Modeling isothermal and non-isothermal flows in porous media
NASA Astrophysics Data System (ADS)
Mohseni Languri, Ehsan
2011-12-01
solutions obtained after applying the stress-continuity and stress-jump boundary conditions are found to work well at low porosities, which is in contradiction with the results achieved earlier by other researchers. The traditional approach of using averaged equations in the regions of sharp gradients in porous media to describe flow and transport is theoretically untenable and perhaps inaccurate. A novel ensemble averaging method is being proposed to test the accuracy of the volume averaged or smoothed description of flows in porous media in the regions of sharp gradients. In the new method, the flow in a certain arrangement of particles (called a realization) is averaged using a small unit cell, much smaller than the REV. Then such an averaged flow variable is further averaged over a whole gamut of randomly-generated particle realizations. First the accuracy of the ensemble averaging method was tested by comparing the permeability of an artificially generated porous medium obtained by the proposed method against the permeability predicted by some established theoretical models of permeability. The proposed method was found to be quite accurate. Later the ensemble average method was applied to the open-channel porous-medium interface region characterized by a sharp gradient in the flow velocities. It was discovered that the volume averaged description of such flows, characterized by the use of the Brinkman equation along with the stress-continuity and stress-jump conditions, is quite accurate for a range of Reynolds numbers. The non-isothermal transport during flow in porous media is examined next. The main focus in this area of research is the thermal dispersion term found in the heat transfer equation for single- and dual-scale porous media. Most of the previous efforts on modeling the heat transfer phenomena in porous media were devoted to isotropic porous media. However, for the anisotropic porous media widely in many industrial applications, not much research on the
NASA Astrophysics Data System (ADS)
Das, Diptarka
One of the most important results emerging from string theory is the gauge gravity duality (AdS/CFT correspondence) which tells us that certain problems in particular gravitational backgrounds can be exactly mapped to a particular dual gauge theory a quantum theory very similar to the one explaining the interactions between fundamental subatomic particles. The chief merit of the duality is that a difficult problem in one theory can be mapped to a simpler and solvable problem in the other theory. The duality can be used both ways. Most of the current theoretical framework is suited to study equilibrium systems, or systems where time dependence is at most adiabatic. However in the real world, systems are almost always out of equilibrium. Generically these scenarios are described by quenches, where a parameter of the theory is made time dependent. In this dissertation I describe some of the work done in the context of studying quantum quench using the AdS/CFT correspondence. We recover certain universal scaling type of behavior as the quenching is done through a quantum critical point. Another question that has been explored in the dissertation is time dependence of the gravity theory. Present cosmological observations indicate that our universe is accelerating and is described by a spacetime called de-Sitter(dS). In 2011 there had been a speculation over a possible duality between de-Sitter gravity and a particular field theory (Euclidean SP(N) CFT). However a concrete realization of this proposition was still lacking. Here we explicitly derive the dS/CFT duality using well known methods in field theory. We discovered that the time dimension emerges naturally in the derivation. We also describe further applications and extensions of dS/CFT. KEYWORDS: Holography, AdS/CFT correspondence, Quantum Quench, dS/CFT correspondence, Chaos.
Chen, Wei-Hsin; Wu, Zih-Ying; Chang, Jo-Shu
2014-03-01
Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus (S. obliquus) CNW-N are studied using thermogravimetric analysis. The pyrolysis of S. obliquus CNW-N with increasing temperature is characterized by four-stage decomposition. Depending on the torrefaction temperature, light, mild, and severe torrefaction from the weight loss and the maximum decomposition rate of the microalga can be classified. Under the same average temperature and torrefaction duration, non-isothermal torrefaction gives more severe pretreatment than the isothermal one. Increasing the heating rate of non-isothermal torrefaction also intensifies the pretreatment severity. Therefore, microalgae can be torrefied via non-isothermal torrefaction in a shorter time under the same pretreatment extent. The atomic H/C ratio in the microalga decreases with increasing torrefaction severity, whereas the atomic O/C ratio rises. The analysis suggests that the activation energy of isothermal torrefaction is 57.52×10(3)Jmol(-1), while it is between 40.14×10(3) and 88.41×10(3)Jmol(-1) for non-isothermal torrefaction.
The principle of the minimum of the dissipation potential for non-isothermal processes
NASA Astrophysics Data System (ADS)
Junker, Philipp; Makowski, Jerzy; Hackl, Klaus
2014-05-01
In this paper, we contribute to the methodology of material modeling by presenting a potential-based approach for non-isothermal inelastic processes. It is based on the principle of the minimum of the dissipation potential which was used previously only in the isothermal context. In contrast to the principle of maximum dissipation, the presented procedure results in mathematically simplified equations. Due to its variational character, the inclusion of constraints is very simple. After derivation of our method, we use the examples of non-isothermal perfect plasticity and shape memory alloys for demonstration of the validity and performance of the concept.
Kedward, C J; MacNaughtan, W; Mitchell, J R
2000-11-03
Differential scanning calorimetry has been used in isothermal and non-isothermal modes to provide information on the crystallization of sucrose and lactose at low water contents. Using approaches previously applied to polymer crystallization an attempt has been made to combine the isothermal and non-isothermal data into a single curve. This is achieved by the use of appropriate shift factors in the time and temperature domains. This was successful for sucrose but not for lactose. It was suggested that this was because lactose crystallizes into multiple forms whereas sucrose crystallizes in a single form.
Boundary integral approach for propagating interfaces in a binary non-isothermal mixture
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Galenko, P. K.
2017-03-01
A method based on boundary integral approach to the propagation of curved phase interface in a binary non-isothermal mixture is developed. Previously known equations and solutions for thermally controlled growth and needle-like dendrites follow from the obtained boundary integral equations as limiting cases.
Non-isothermal modelling of H2S removal in a biofilter.
Sami, Samaneh; Rahimi, Amir
2011-01-01
In this study the biodegradation of H2S in the air in a biofilter is modelled in the non-isothermal operating condition. For this purpose, using conservation laws of heat and mass transfer and considering the physical and chemical phenomena occurring in a biofilter, the governing equations in non-isothermal, isothermal, steady, and unsteady-state operations are obtained and solved numerically. The model results are compared with the available experimental data and also with the results of the isothermal model. The comparisons are made both in steady and unsteady-state situations. The results show that considering the heat effects on the modelling of a biofilter improves the accuracy of the model results. Furthermore, the effects of some operating parameters on the removal efficiency of biofilter are investigated.
NASA Astrophysics Data System (ADS)
Pouretedal, H. R.; Ebadpour, R.
2014-05-01
The non-isothermal thermogravimetric method was used to study the thermal decomposition of , and at heating rates of (5, 10, 15, and 20) . The activation energy of thermal decomposition reactions was computed by isoconversional methods of Ozawa-Flynn-Wall, Kissinger-Akahiro-Sunose, and Friedman equations. Also, the kinetic triplet of the thermal decomposition of salts was determined by the model-fitting method of the modified Coats-Redfern equation. The activation energies of , and of (293 to 307, 160 to 209, and 192 to 245) , respectively, are obtained by non-isothermal isoconversional methods. The modified Coats and Redfern method showed that the most probable mechanism functions of (model A3: Arami-Erofeev equation) and (model F2: second order) can be used to predict the decomposition mechanisms of , , and , respectively.
Non-Isothermal Calorimetric Studies of the Crystallization of Lithium Disilicate Glass
NASA Technical Reports Server (NTRS)
Ray, C. S.; Day, D. E.; Huang, W.; Narayan, K. Lakshmi; Cull, T. S.; Kelton, K. F.
1996-01-01
The influence of preannealing treatments on the polymorphic crystallization of lithium disilicate glasses is examined. As expected, glasses heated at different rates through the temperature range where there is significant nucleation develop widely different numbers of nuclei. This can dramatically influence the stability and transformation characteristics of the annealed glass. Non-isothermal differential scanning calorimetry (DSC) and differential thermal analysis (DTA) measurements are demonstrated to be useful to probe the nucleation behavior. The first systematic investigations of particle size effects on the non-isothermal transformation behavior are presented and discussed. Based on DTA and microscopy experiments, we show that small particles of lithium disilicate glasses crystallize primarily by surface crystallization. The relative importance of surface versus volume crystallization is examined by varying particle size, by introducing nucleating agents and by exposing glasses to atmospheres of different water content. These data are analyzed quantitatively using a numerical model developed in a second paper following in this volume.
Pyrolysis kinetics of coking coal mixed with biomass under non-isothermal and isothermal conditions.
Jeong, Ha Myung; Seo, Myung Won; Jeong, Sang Mun; Na, Byung Ki; Yoon, Sang Jun; Lee, Jae Goo; Lee, Woon Jae
2014-03-01
To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.
Numerical modeling of non-isothermal gas flow and NAPL vapor transport in soil
NASA Astrophysics Data System (ADS)
Pártl, Ondřej; Beneš, Michal; Frolkovič, Peter; Illangasekare, Tissa; Smits, Kathleen
2016-05-01
We introduce a mathematical model for the description of non-isothermal compressible flow of gas mixtures in heterogeneous porous media and we derive an efficient semi-implicit time-stepping numerical scheme for the solution of the governing equations. We experimentally estimate the order of convergence of the scheme in spatial variables and we present several computational studies that demonstrate the ability of the numerical scheme.
Lie-symmetry group and modeling in non-isothermal fluid mechanics
NASA Astrophysics Data System (ADS)
Razafindralandy, D.; Hamdouni, A.; Al Sayed, N.
2012-10-01
The symmetry group of the non-isothermal Navier-Stokes equations is used to develop physics-preserving turbulence models for the subgrid stress tensor and the subgrid heat flux. The Reynolds analogy is not used. The theoretical properties of the models are investigated. In particular, their compatibility with the scaling laws of the flow is proven. A numerical test, in the configuration of an air flow in a ventilated and differentially heated room is presented.
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
NASA Astrophysics Data System (ADS)
Zhou, Annan; Zhang, Yue
2015-05-01
An adaptive substepping explicit integration scheme with a novel loading-unloading decision method is developed here for the non-isothermal unified hardening (UH) model. The non-isothermal UH model includes a convex subloading surface in the - plane and a nonconvex subloading surface in the - plane. Because of the convex/nonconvex subloading surfaces, the conventional loading-unloading decision method used in stress integration schemes may lead to incorrect elasticity/elastoplasticity judgements. In addition, the conventional loading-unloading decision method is unable to determine the division point that separates the elastic segment from the elastoplastic segment. A simple but robust method, the double cosine (DC) method, is proposed in this paper to solve loading-unloading decision problems. The proposed DC method is then embedded into an adaptive substepping explicit integration scheme to implement the non-isothermal UH model. The accuracy and efficiency of the DC method are discussed by comparing the method with the conventional loading-unloading decision method (the CV method) and the root-finding loading-unloading decision method (the RF method). The performance of the proposed scheme with the DC method is also discussed.
Time-dependent drift Hamiltonian
Boozer, A.H.
1983-03-01
The lowest-order drift equations are given in a canonical magnetic coordinate form for time-dependent magnetic and electric fields. The advantages of the canonical Hamiltonian form are also discussed.
Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field
NASA Astrophysics Data System (ADS)
Lopin, I.; Nagorny, I.
2017-10-01
We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω c . The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B e /B i ≈ 0–0.8, the cutoff lies in the range ω c ≈ 0.003–0.010 s‑1 (periods 600 < P c < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω 2/ω 1 < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.
Non-isothermal buoyancy-driven exchange flows in inclined pipes
NASA Astrophysics Data System (ADS)
Eslami, B.; Shariatnia, S.; Ghasemi, H.; Alba, K.
2017-06-01
We study non-isothermal buoyancy-driven exchange flow of two miscible Newtonian fluids in an inclined pipe experimentally. The heavy cold fluid is released into the light hot one in an adiabatic small-aspect-ratio pipe under the Boussinesq limit (small Atwood number). At a fixed temperature, the two fluids involved have the same viscosity. Excellent qualitative and quantitative agreement is first found against rather recent studies in literature on isothermal flows where the driving force of the flow comes from salinity as opposed to temperature difference. The degree of flow instability and mixing enhances as the pipe is progressively inclined towards vertical. Similar to the isothermal limit, maximal rate of the fluids interpenetration in the non-isothermal case occurs at an intermediate angle, β . The interpenetration rate increases with the temperature difference. The degree of fluids mixing and diffusivity is found to increase in the non-isothermal case compared to the isothermal one. There has also been observed a novel asymmetric behavior in the flow, never reported before in the isothermal limit. The cold finger appears to advance faster than the hot one. Backed by meticulously designed supplementary experiments, this asymmetric behavior is hypothetically associated with the wall contact and the formation of a warm less-viscous film of the fluid lubricating the cold more-viscous finger along the pipe. On the other side of the pipe, a cool more-viscous film forms decelerating the hot less-viscous finger. Double diffusive effects associated with the diffusion of heat and mass (salinity) are further investigated. In this case and for the same range of inclination angles and density differences, the level of flow asymmetry is found to decrease. The asymmetric behaviour of the flow is quantified over the full range of experiments. Similar to the study of Salort et al. ["Turbulent velocity profiles in a tilted heat pipe," Phys. Fluids 25(10), 105110
Thermal stability and non-isothermal crystallization kinetics of Pd82Si18 amorphous ribbon
NASA Astrophysics Data System (ADS)
Wang, Xutong; Zeng, Mo; Nollmann, Niklas; Wilde, Gerhard; Wang, Jiang; Tang, Chengying
2017-06-01
Rapidly quenched Pd82Si18 ribbon was prepared by melt spinning. The thermal stability and non-isothermal crystallization kinetics of Pd82Si18 amorphous ribbon were investigated by differential scanning calorimeter measurements. Its structure was investigated by X-ray diffraction and transmission electronic microscopy. The activation energy was calculated by the Kissinger method, and the nucleation and growth during non-isothermal crystallization were investigated by the local activation energy and local Avrami exponent. The average activation energy for Pd82Si18 amorphous ribbon based on the Kissinger method is 330.672 kJ/mol, indicating that it has high thermal stability. The local activation energy of the glass ribbon was determined by the Kissinger-Akahira-Sunose method, and the local Avrami exponent was obtained based on the Johnson-Mehl-Avrami model. The calculated local activation energy increases to a maximum when the crystallization column fraction reaches 0.3, and it then decreases, which shows that crystallization is a multistep process. The local Avrami exponent indicates that the crystallization process of Pd82Si18 amorphous ribbon is controlled by volume nucleation with three-dimensional growth at various nucleation rates.
Modeling and predicting non-isothermal microbial growth using general purpose software.
Corradini, Maria G; Amézquita, Alejandro; Normand, Mark D; Peleg, Micha
2006-02-01
Published experimental isothermal growth curves of Clostridium perfringens cells in ground ham were fitted with a modified three-parameter version of the logistic equation as a primary model and the temperature dependence of the three parameters by ad hoc empirical secondary models. These were used to predict the organism's non-isothermal growth curves under three different cooling regimes. The assumption has been that the organism's instantaneous (or momentary) non-isothermal growth rate is the isothermal rate at the given temperature at a time that corresponds to its instantaneous population size. This could be translated into a differential rate model equation, whose coefficients are constructed from terms that reflect the changing growth parameters with temperature and hence with time. The continuous rate equation, however, can be solved incrementally by a numerical procedure that can be implemented in similar purpose software like Microsoft Excel(R). In all three cases, there was good agreement between the growth curves predicted by the model and those found experimentally. This demonstrated that the procedure can be used to generate growth curves under complicated thermal histories that may include regular and irregular temperature oscillations.
Non-isothermal FEM analyses of large-strain back extrusion forging
Flower, E.C.; Hallquist, J.O.; Shapiro, A.B.
1986-06-19
Back extrusion forging is a complex metal forming operation dominated by large-strain, non-isothermal deformation. NIKE2D, a fully vectorized implicit finite-element program developed at Lawrence Livermore National Laboratory, was applied to a two-stage isothermal back extrusion forging process. Modeling of the forging process required special features in the FEM code such as friction and interactive rezoning that allows for remeshing of the distorted mesh while maintaining a complete history of all the state variables. To model conditions of the non-isothermal forging process required implementing TOPAZ2D, our LLNL-developed two-dimensional implicit finite element code for heat conduction analysis, as a subroutine into NIKE2D. The fully coupled version maintains all the original features of both codes and can account for the contribution of heat generation during plastic deformation. NIKE/TOPAZ-2D was applied to the piercing operation of the back extrusion forging process. The thermal deformation history of the die, punch, and workpiece and the effective plastic strains were calculated.
Non-isothermal crystallization kinetics of As30Te60Ga10 glass
NASA Astrophysics Data System (ADS)
Mohamed, Mansour; Abd-Elnaiem, Alaa M.; Hassan, R. M.; Abdel-Rahim, M. A.; Hafiz, M. M.
2017-08-01
The crystallization study under non-isothermal conditions of As30Te60Ga10 glass was investigated. The studied composition was synthesized by melt-quenching technique and characterized by different techniques such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The XRD analysis revealed that the as-prepared and annealed bulk glass of As30Te60Ga10 exhibit the amorphous, and polycrystalline nature, respectively. The DSC results showed that the heating rate affects the characteristic temperatures, for instance, the glass transition, onset, and peak crystallization temperatures. Furthermore, some thermal analysis methods such as the Kissinger and Matusita et al., approximations were employed to determine the crystallization parameters: for example Avrami exponent and the activation energies for glass transition and crystallization process. In addition, we have compared the experimental DSC data with the calculated ones based on the Johnson-Mehl-Avrami (JMA) and Sestak-Berggren SB(M,N) models. The results indicated that the SB(M,N) model is more suitable for describing the non-isothermal crystallization kinetics of the investigated composition.
Finite Element Modeling of a Non-Isothermal Superplastic-Like Forming Process
Liu Jun; Tan, Ming-Jen; Castagne, Sylvie; Jarfors, Anders E. W.; Fong, Kai-Soon; Bayraktar, Emin; Aue-u-lan, Yingyot
2011-01-17
Conventional superplastic forming (SPF) has been modified to increase the productivity and reduce some of the drawbacks, such as high forming temperature and high percentage thinning, to suit the automotive industries. One of the modifications was to combine between the conventional SPF and the use of a mechanical preformed blank to form the non-superplastic grade aluminum alloy (AA5083-O). The requirement of high temperature usually results in microstructural defects during forming process. In this paper, finite element modeling was adopted to investigate the superplastic-like forming process using the non-isothermal heating system. In the simulation, two phases (mechanical pre-forming and gas blow for ming) of the process were conducted under different temperatures, where the material was mechanically drawn into the die cavity at 200 deg. C in the first phase, and it formed with gas pressure applied at a global temperature increasing from 400 deg. C to 500 deg. C. Because of the non-isothermal heating of material, it was found that it had enough ductility to flow more easily in the specific zones (die corners and radius). Additionally, FEM results showed that a better formed part can be obtained by the increasing temperature forming, compared to the stable temperature phase.
Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet.
Westerweel, Jerry; Petracci, Alberto; Delfos, René; Hunt, Julian C R
2011-02-28
The turbulent/non-turbulent interface of a jet is characterized by sharp jumps ('discontinuities') in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re=2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.
Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites
NASA Astrophysics Data System (ADS)
Kratochvíl, Jaroslav; Kelnar, Ivan
2016-05-01
The non-isothermal crystallization kinetics of the system poly(ɛ-caprolactone)/poly(lactic acid)/clay C15 and related microfibrillar composites has been studied using a simple method based on mathematical treatment of the DSC cumulative crystallization curves in their inflection point. The method provides three kinetic parameters: temperature of start of crystallization, temperature of maximum crystallization rate, and numerical value of the maximum crystallization rate. In the range of cooling rates 5 - 20°C/min, the temperatures of crystallization start and of maximum crystallization rate are determined with standard deviation of 0.3 and 0.4°C, respectively. Average standard deviation of maximum crystallization rate is 1.0 K-1 corresponding to coefficient of variation 5.8 %. Repeatability is slightly better at lower cooling rates. The modified samples show intensive nucleation effect during the non-isothermal crystallization, as demonstrated by their values of temperatures of crystallization start and of maximum crystallization rate that are significantly higher than that of neat PCL. The highest maximum crystallization rate has been found for the blend PCL/PLA 80/20. The proposed method does not refer to any crystallization model and does not require exact determination of the starting point of crystallization. On the other hand, it does not provide any information about dimensionality of crystal growth. The method is particularly useful for characterizing a series of samples derived by modification of the neat polymer.
Time dependent view factor methods
Kirkpatrick, R.C.
1998-03-01
View factors have been used for treating radiation transport between opaque surfaces bounding a transparent medium for several decades. However, in recent years they have been applied to problems involving intense bursts of radiation in enclosed volumes such as in the laser fusion hohlraums. In these problems, several aspects require treatment of time dependence.
Non-Isothermal Experimental Study of the Constrained Vapor Bubble Thermosyphon
NASA Technical Reports Server (NTRS)
Karthikeyan, Muthu; Huang, Jianming; Plawsky, Joel; Wayner, Peter, Jr.
1996-01-01
Experimental and theoretical techniques to study non-isothermal transport processes in the constrained vapor bubble thermosyphon (CVBT) were developed using a pentane/quartz system. The transport processes can be evaluated by measuring the liquid film profile, which gives the pressure field, and the temperature field. The axial variation in the capillary pressure was measured using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. Thermoelectric coolers were used to control the temperature level in the condensation region and, therefore, the length of the approximately 'adiabatic' surface region which is a function of the temperature difference between the CVBT surface and the surroundings. High values for the axial thermal conductance in the 'adiabatic' surface region were demonstrated under certain conditions.
Thermooxidative stability of poppy seeds studied by non-isothermal DSC measurements.
Cibulková, Zuzana; Čertík, Milan; Dubaj, Tibor
2014-05-01
Papaver somniferum L. is an important crop cultivated mostly for seed production. Poppy seeds have a high nutritive value and are used as a food and as a source of edible oil. This oil is a rich source of polyunsaturated fatty acids. It is well known that the unsaturated fatty acids easily undergo oxidation reactions, which lead to the reduction of shelf life, nutritional quality, development of unpleasant tastes and odors. The goal of this study was to develop the methodology for testing the stability of poppy seeds using non-isothermal DSC. For the treatment of the experimental data a method based on non-Arrhenian temperature function has been applied and the values the kinetic parameters have been obtained. In order to assess the durability of the commercial poppy seeds, the lengths of induction periods have been calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.
MHD forced convection flow adjacent to a non-isothermal wedge
Yih, K.A.
1999-08-01
The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.
Kinetic study of non-isothermal decomposition of a composite diasporic-boehmitic bauxite
NASA Astrophysics Data System (ADS)
Samouhos, M.; Angelopoulos, P.; Pilatos, G.; Taxiarchou, M.; Papageorgiou, S.
2016-04-01
In the current study, the kinetic of the thermal decomposition of a composite diasporic-boehmitic bauxite is investigated under non-isothermal heating conditions by means of thermogravimetric analysis. The calculation of activation energy (Ea) has been performed by various methods and the attained values range from 185000 to 190000 J.mol-1 for conversion rate of 0.5. The first-order kinetic model can adequately be used to describe thermal decomposition of bauxite composite, while the pre-exponential factor value was found to be 2.088*1011 min-1. The calculated activation energy value together with pre-exponential factor and the solid state kinetic model factors enable the simulation of the thermal decomposition under various heating conditions by the implementation of an ordinary differential equation. The calculated values are in satisfactory agreement with the experimental ones.
Otero, M; Calvo, L F; Gil, M V; García, A I; Morán, A
2008-09-01
The kinetics of the combustion of coal, two different sewage sludge and their blends (containing different dried weight percentages of sewage sludge) was studied by simultaneous thermogravimetric analysis. Once the weight percentage of sludge in the blend was 10%, the effects on the combustion of coal were hardly noticeable in terms of weight loss. The Arrhenius activation energy corresponding to the co-combustion of the blends was evaluated by non-isothermal kinetic analysis. This showed that, though differences between coal and sewage sludge, the combustion of their blends kept kinetically alike to that of the coal. This work illustrates how thermogravimetric analysis may be used as an easy rapid tool to asses, not only mass loss, but also kinetics of the co-combustion of sewage sludge and coal blends.
Heating rate effects during non-isothermal annealing of AIK steel
NASA Astrophysics Data System (ADS)
Sahay, Satyam S.; Joshi, Kishor B.
2003-04-01
The effects of heating rate on microstructural size and shape parameters during annealing of cold rolled aluminum killed steel strips have been examined under non-isothermal condition. It is shown that decrease in the heating rate results in accelerated grain growth behavior compared with the prediction by quasi-isothermal based kinetics. The {111} and {112} crystallographic orientations, which enhance the normal anisotropy and deep drawability of cold rolled annealed sheets, are found to exhibit a strong correlation with the grain shape anisotropy. This grain shape anisotropy itself is strongly dependent on heating rates. Lower heating rates result in higher aspect ratios and thus better drawability of the cold rolled sheets. A Hall-Petch type relationship is observed between grain size and hardness of the annealed samples.
Efficient difference schemes for the three-phase non-isothermal flow problem
NASA Astrophysics Data System (ADS)
Zhumagulov, Bakytzhan; Temirbekov, Nurlan; Baigereyev, Dossan
2017-09-01
The paper focuses on constructing and investigation of cost-effective difference schemes for the numerical solution of the two-dimensional three-phase non-isothermal flow problem without capillary and gravitational forces. In this paper, the finite difference method is used to solve the problem numerically. The method of energy inequalities is applied to examine the stability of the finite difference scheme with respect to the initial data and the right-hand sides of the equations. Three cost-effective difference schemes are constructed on the base of the studied scheme. The efficiency of the proposed algorithms is analyzed on the basis of comparing the average time spent on the numerical implementation of one time layer.
Simulation of turbulent non-isothermal polydisperse bubbly flow behind a sudden tube expansion
NASA Astrophysics Data System (ADS)
Pakhomov, M. A.; Terekhov, V. I.
2016-09-01
The results of numerical simulation of the structure of non-isothermal polydisperse bubbly turbulent flow and heat transfer behind a sudden tube expansion are presented. The study was carried out at a change in the initial diameter of the air bubbles within d m1 = 1-5 mm and their volumetric void fraction β = 0-10 %. Small bubbles are available in almost the entire cross section of the tube, while the large bubbles pass mainly through the flow core. An increase in the size of dispersed phase causes the growth of turbulence in the liquid phase due to flow turbulization, when there is a separated flow of liquid past the large bubbles. Adding the air bubbles causes a significant reduction in the length of the separation zone and heat transfer enhancement, and these effects increase with increasing bubble size and their gas volumetric flow rate ratio.
Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag with High CaO Content
NASA Astrophysics Data System (ADS)
Zhou, Wang; Xie, Bing; Tan, Wen-Feng; Diao, Jiang; Zhang, Xie; Li, Hong-Yi
2016-09-01
This paper investigated the non-isothermal crystallization kinetics of the spinel crystals in vanadium slags containing high CaO content. Experiments were performed in combination with theoretical calculation to address this issue, and statistical analyses based on the Crystal Size Distribution theory. The results indicate that low cooling rate and high CaO content benefit the growth of spinel crystals. The growth mechanism is revealed to be controlled by interface reactions and diffusion at the cooling rates of 5 K/min and 15 K/min, respectively. However, at higher temperatures (>1673 K), the growth of spinel crystals is controlled by nucleation. While the temperature is decreased to 1523 K at the cooling rate of 5 K/min, the mean diameter of spinel crystals could reach 36.44 μm. Experimental results combining with theoretical reveal that low cooling rate benefits spinels growth, especially for the interval of 1523 K-1200 K.
Numerical solution of non-isothermal non-adiabatic flow of real gases in pipelines
NASA Astrophysics Data System (ADS)
Bermúdez, Alfredo; López, Xián; Vázquez-Cendón, M. Elena
2016-10-01
A finite volume scheme for the numerical solution of a mathematical model for non-isothermal non-adiabatic compressible flow of a real gas in a pipeline is introduced. In order to make an upwind discretization of the flux, the Q-scheme of van Leer is used. Unlike standard Euler equations, the model takes into account wall friction, variable height and heat transfer between the pipe and the environment. Since all these terms are sources, in order to get a well-balanced scheme they are discretized by making a similar upwinding to the one in the flux term. The performance of the overall method has been shown for some usual numerical tests. The final goal, which is beyond the scope of this paper, is to consider a network including several pipelines connected at junctions, as those employed for natural gas transport.
Spike-timing-dependent construction.
Lightheart, Toby; Grainger, Steven; Lu, Tien-Fu
2013-10-01
Spike-timing-dependent construction (STDC) is the production of new spiking neurons and connections in a simulated neural network in response to neuron activity. Following the discovery of spike-timing-dependent plasticity (STDP), significant effort has gone into the modeling and simulation of adaptation in spiking neural networks (SNNs). Limitations in computational power imposed by network topology, however, constrain learning capabilities through connection weight modification alone. Constructive algorithms produce new neurons and connections, allowing automatic structural responses for applications of unknown complexity and nonstationary solutions. A conceptual analogy is developed and extended to theoretical conditions for modeling synaptic plasticity as network construction. Generalizing past constructive algorithms, we propose a framework for the design of novel constructive SNNs and demonstrate its application in the development of simulations for the validation of developed theory. Potential directions of future research and applications of STDC for biological modeling and machine learning are also discussed.
The density structure and star formation rate of non-isothermal polytropic turbulence
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Banerjee, Supratik
2015-04-01
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.
NASA Astrophysics Data System (ADS)
Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob
2016-04-01
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
Time-dependent interstellar chemistry
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1985-01-01
Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Time-Dependent Photodissociation Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; Natta, Antonella
1995-01-01
We present theoretical models of the time-dependent thermal and chemical structure of molecular gas suddenly exposed to far-ultraviolet (FUV) (6 eV less than hv less than 13.6 eV) radiation fields and the consequent time- dependent infrared emission of the gas. We focus on the response of molecular hydrogen for cloud densities ranging from n = 10(exp 3) to 10(exp 6)/cu cm and FUV fluxes G(sub 0) = 10(exp 3)-10(exp 6) times the local FUV interstellar flux. For G(sub 0)/n greater than 10(exp -2) cu cm, the emergent H(sub 2) vibrational line intensities are initially larger than the final equilibrium values. The H(sub 2) lines are excited by FUV fluorescence and by collisional excitation in warm gas. Most of the H(sub 2) intensity is generated at a characteristic hydrogen column density of N approximately 10(exp 21)/sq cm, which corresponds to an FUV optical depth of unity caused by dust opacity. The time dependence of the H(sub 2) intensities arises because the initial abundances of H(sub 2) at these depths is much higher than the equilibrium values, so that H(sub 2) initially competes more effectively with dust in absorbing FUV photons. Considerable column densities of warm (T approximately 1000) K H(sub 2) gas can be produced by the FUV pumping of H(sub 2) vibrational levels followed by collisional de-excitation, which transfers the energy to heat. In dense (n greater than or approximately 10(exp 5)/cu cm) gas exposed to high (G(sub 0) greater than or approximately 10(exp 4)) fluxes, this warm gas produces a 2-1 S(1)/1-0 S(l) H(sub 2) line ratio of approximately 0.1, which mimics the ratio found in shocked gas. In lower density regions, the FUV pumping produces a pure-fluorescent ratio of approximately 0.5. We also present calculations of the time dependence of the atomic hydrogen column densities and of the intensities of 0 I 6300 A, S II 6730 A, Fe II 1.64 microns, and rotational OH and H20 emission. Potential applications include star-forming regions, clouds
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
Non-isothermal infiltration and tracer transport experiments on large soil columns
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Cejkova, Eva; Tesar, Miroslav
2016-04-01
Isothermal and non-isothermal infiltration experiments were carried out in the laboratory on large undisturbed soil columns (19 cm in diameter, 25 cm high) taken at the experimental catchments Roklan (Sumava Mountains, Czech Republic) and Uhlirska (Jizera Mountains, Czech republic). The aim of the study was twofold. The first goal was to obtain water flow and heat transport data for indirect parameter estimation of thermal and hydraulic properties of soils from two sites by inverse modelling. The second aim was to investigate the extent of impact of the temperature on saturated hydraulic conductivity (Ksat) and dispersity of solute transport. The temperature of infiltrating water in isothermal experiment (20 °C) was equal to the initial temperature of the sample. For non-isothermal experiment water temperature was 5°C, while the initial temperature of the sample was 20°C as in previous case. The experiment was started by flooding the sample surface. Then water level was maintained at constant level throughout the infiltration run using the optical sensor and peristaltic pump. Concentration pulse of deuterium was applied at the top of the soil sample, during the steady state flow. Initial pressure head in the sample was close to field capacity. Two tensiometers and two temperature sensors were inserted in the soil sample in two depths (9 and 15 cm below the top of the sample). Two additional temperature sensors monitored the temperature entering and leaving the samples. Water drained freely through the perforated plate at the bottom of sample by gravity. Inflow and outflow water flux densities, water pressure heads and soil temperatures were monitored continuously during experiments. Effluent was sampled in regular time intervals and samples were analysed for deuterium concentrations by laser spectroscopy to develop breakthrough curves. The outcome of experiments are the series of measured water fluxes, pressure heads and temperatures ready for inverse modelling
Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls
Vargas, Manuel; Tatsios, Giorgos; Valougeorgis, Dimitris; Stefanov, Stefan
2014-05-15
The flow of a rarefied gas in a rectangular enclosure due to the non-isothermal walls with no synergetic contributions from external force fields is investigated. The top and bottom walls are maintained at constant but different temperatures and along the lateral walls a linear temperature profile is assumed. Modeling is based on the direct numerical solution of the Shakhov kinetic equation and the Direct Simulation Monte Carlo (DSMC) method. Solving the problem both deterministically and stochastically allows a systematic comparison and verification of the results as well as the exploitation of the numerical advantages of each approach in the investigation of the involved flow and heat transfer phenomena. The thermally induced flow is simulated in terms of three dimensionless parameters characterizing the problem, namely, the reference Knudsen number, the temperature ratio of the bottom over the top plates, and the enclosure aspect ratio. Their effect on the flow configuration and bulk quantities is thoroughly examined. Along the side walls, the gas flows at small Knudsen numbers from cold-to-hot, while as the Knudsen number is increased the gas flows from hot-to-cold and the thermally induced flow configuration becomes more complex. These flow patterns with the hot-to-cold flow to be extended to the whole length of the non-isothermal side walls may exist even at small temperature differences and then, they are enhanced as the temperature difference between the top and bottom plates is increased. The cavity aspect ratio also influences this flow configuration and the hot-to-cold flow is becoming more dominant as the depth compared to the width of the cavity is increased. To further analyze the flow patterns a novel solution decomposition into ballistic and collision parts is introduced. This is achieved by accordingly modifying the indexing process of the typical DSMC algorithm. The contribution of each part of the solution is separately examined and a physical
ERIC Educational Resources Information Center
Salvador, F.; And Others
1984-01-01
Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)
ERIC Educational Resources Information Center
Salvador, F.; And Others
1984-01-01
Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)
NASA Astrophysics Data System (ADS)
Pei, Du; Ye, Ke
2016-11-01
We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Chittajallu, K. M.; Walsh, Shawn
2005-05-01
A control-volume finite-element model is developed to analyze the infiltration of a fiber preform with resin under non-isothermal conditions within a high-permeability resin-distribution medium based vacuum-assisted resin transfer molding (VARTM) process. Due to the exposure to high temperatures during preform infiltration, the resin first undergoes thermal-thinning which decreases its viscosity. Subsequently however, the resin begins to gel and its viscosity increases as the degree of polymerization increases. Therefore, the analysis of preform infiltration with the resin entails the simultaneous solution of a continuity equation, an energy conservation equation and an evolution equation for the degree of polymerization. The model is applied to simulate the infiltration of a rectangular carbon fiber based preform with the NBV-800 epoxy resin and to optimize the VARTM process with respect to minimizing the preform infiltration time. The results obtained suggest that by proper selection of the ramp/hold thermal history of the tool plate, one can reduce the preform infiltration time relative to the room-temperature infiltration time. This infiltration time reduction is the result of the thermal-thinning induced decrease in viscosity of the ungelled resin.
Non-isothermal pyrolysis of de-oiled microalgal biomass: Kinetics and evolved gas analysis.
Maurya, Rahulkumar; Ghosh, Tonmoy; Saravaia, Hitesh; Paliwal, Chetan; Ghosh, Arup; Mishra, Sandhya
2016-12-01
Non-isothermal (β=5, 10, 20, 35°C/min) pyrolysis of de-oiled microalgal biomass (DMB) of Chlorella variabilis was investigated by TGA-MS (30-900°C, Argon atmosphere) to understand thermal decomposition and evolved gas analysis (EGA). The results showed that three-stage thermal decomposition and three volatilization zone (100-400°C, 400-550°C and 600-750°C) of organic matters during pyrolysis. The highest rate of weight-loss is 8.91%/min at 302°C for 35°C/min heating-rate. Kinetics of pyrolysis were investigated by iso-conversional (KAS, FWO) and model-fitting (Coats-Redfern) method. For Zone-1and3, similar activation energy (Ea) is found in between KAS (α=0.4), FWO (α=0.4) and Avrami-Erofe'ev (n=4) model. Using the best-fitted kinetic model Avrami-Erofe'ev (n=4), Ea values (R(2)=>0.96) are 171.12 (Zone-1), 404.65 (Zone-2) and 691.42kJ/mol (Zone-3). EGA indicate the abundance of most gases observed consequently between 200-300°C and 400-500°C. The pyrolysis of DMB involved multi-step reaction mechanisms for solid-state reactions having different Ea values. Copyright © 2016 Elsevier Ltd. All rights reserved.
A NON-ISOTHERMAL THEORY FOR INTERPRETING SODIUM LINES IN TRANSMISSION SPECTRA OF EXOPLANETS
Heng, Kevin; Lavie, Baptiste; Wyttenbach, Aurélien; Ehrenreich, David; Lovis, Christophe; Sing, David K.
2015-04-10
We present a theory for interpreting the sodium lines detected in transmission spectra of exoplanetary atmospheres. Previous analyses employed the isothermal approximation and dealt only with the transit radius. By recognizing the absorption depth and the transit radius as being independent observables, we develop a theory for jointly interpreting both quantities, which allows us to infer the temperatures and number densities associated with the sodium lines. We are able to treat a non-isothermal situation with a constant temperature gradient. Our novel diagnostics take the form of simple-to-use algebraic formulae and require measurements of the transit radii (and their corresponding absorption depths) at line center and in the line wing for both sodium lines. We apply our diagnostics to the HARPS data of HD 189733b, confirm the upper atmospheric heating reported by Huitson et al., derive a temperature gradient of 0.4376 ± 0.0154 K km{sup −1}, and find densities ∼1–10{sup 4} cm{sup −3}.
Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses
NASA Astrophysics Data System (ADS)
Atyia, H. E.; Farid, A. S.
2016-02-01
Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.
Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi
2017-10-01
The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin(-1), the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D2 and F2.7, respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drop Tower Experiments on Non-isothermal Reorientation of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Kulev, Nikolai; Dreyer, Michael
2010-10-01
Capillary driven surface oscillations of liquid argon (Tsat = 87.3 K at 1,013 hPa) have been investigated in a partly filled right circular cylinder under non-isothermal boundary conditions. The oscillations take place during the reorientation from the normal gravity surface position towards a new position upon step reduction of gravity. The situation is similar to the end of thrust in a rocket tank when the cold propellant moves along the warmer tank wall driven by capillary forces. The aim was to investigate the influence of the temperature difference between the slightly subcooled cryogenic liquid and the superheated cylinder wall on the oscillations and their characteristics in a single-component, two-phase system. Axial wall temperature gradients of averaged 0.15 K/mm - 1.93 K/mm above the normal gravity surface position were implemented. A general dependence of the reorientation behavior on the gradient value was observed, concerning the apparent contact line behavior, the frequency and damping of the oscillations of the free surface center point, and the apparent contact angle. The behavior of the ullage pressure was found to follow the behavior of the contact line.
Non-isothermal two-phase flow in low-permeable porous media
NASA Astrophysics Data System (ADS)
Kolditz, O.; De Jonge, J.
In this paper, we consider non-isothermal two-phase flow of two components (air and water) in gaseous and liquid phases in extremely low-permeable porous media through the use of the finite element method (FEM). Interphase mass transfer of the components between any of the phases is evaluated by assuming local thermodynamic equilibrium between the phases. Heat transfer occurs by conduction and multiphase advection. General equations of state for phase changes (Clausius-Clapeyron and Henry law) as well as multiphase properties for the low-permeable bentonites are implemented in the code. Additionally we consider the impact of swelling/shrinking processes on porosity and permeability changes. The numerical model is implemented in the context of the simulator RockFlow/RockMech (RF/RM), which is based on object-oriented programming techniques. The finite element formulations are written in terms of dimensionless quantities. This has proved to be advantageous for preconditioning composite system matrices of coupled multi-field problems. Three application examples are presented. The first one examines differences between the Richards' approximation and the multicomponent/multiphase approach, and between two numerical coupling schemes. The second example serves as partial verification against experimental results and to demonstrate coherence between different element types. The last example shows simultaneous desaturation and resaturation in one system.
Interface reorientation of cryogenic liquids under non-isothermal boundary conditions
NASA Astrophysics Data System (ADS)
Kulev, Nikolai; Basting, Steffen; Bänsch, Eberhard; Dreyer, Michael
2014-07-01
We investigate the capillary driven oscillations of the liquid-vapor interface in cryogenic systems under non-isothermal boundary conditions. The oscillations took place in a partly filled cylinder during the interface reorientation from its 1 g equilibrium position to the microgravity equilibrium position after a step reduction of gravity. The latter was achieved by dropping the experimental device in the drop tower of Bremen, providing 4.7 s of microgravity. Liquid argon (Tsat=87.3 K at 1013 hPa) and liquid methane (Tsat=111.7 K at 1013 hPa) were used as experimental liquids. Axial wall temperature gradients, corresponding to a linear increase of the wall temperature, were applied above the interface position prior to the experiments with values varying between 0.2 K/mm and 2.9 K/mm. Both liquids showed a qualitatively similar reorientation behavior. The reorientation characteristics were found to depend on the value of the applied gradient and on the material properties of the experimental liquids. Numerical simulation showed a good qualitative agreement with a previous experiment with 1.34 K/mm using liquid argon, demonstrating main characteristic features of the experiment.
NASA Astrophysics Data System (ADS)
Kim, Jungwoo; Yim, Yeong Eun
2016-11-01
In predicting particle-laden flows related to particle transport and dispersion, better understanding and accurate parameterization of the hydrodynamic forces on the particles are one of the important subjects. Heat transfer between dispersed particle and fluid is often observed in nature and engineering applications. However, existing analytical expressions and empirical correlations used in point particle approaches are made based on the assumption that the particle and surrounding ambient flow are under thermal equilibrium conditions. So, the effect of thermal non-equilibrium state of particle motion remains an unresolved issue. Therefore, we perform three-dimensional numerical simulations for the flow around a finite-sized spherical particle in order to investigate its drag characteristics under non-isothermal conditions (heated or cooled particles). In this study, the working fluids are considered to be water and air as typical cases of liquids and gases. The heated particle experiences larger drag in air and smaller drag in water than that in the isothermal case. On the other hand, the impact of cooling is to decrease drag in air and to increase it in water. These behaviors of the drag coefficient in air and water mainly depend on the variation of the viscosity in terms of the temperature. Those results would provide useful information in understanding the particle motion in heated or cooled conditions.
Non-isothermal molding technology research of ultra-precision glass lens
NASA Astrophysics Data System (ADS)
Zang, Hongbin; Yu, Jiaxin; Zhou, Yingyue; Tao, Bo
2014-12-01
This paper aims to research a unique non-isothermal molding technology (NGMP) which is an attractive and creative manufacturing method of fabricating ultra-precision and high-quality glass components. It has numerous advantages such as high efficiency, low cost and being mass production of glass lenses in industry. This technology is an ultra precision manufacturing process and suitable for multi-scale precision glass lens, lens array and glass micro-structure. This technology overcomes the disadvantages of traditional grinding and polishing technology such as long time production cycle, profligacy of raw materials, single-piece production and difficulty to produce an aspherical lens or arrays. The characteristics of NGMP are studied by comparing with the traditional IGMP. Residual stresses inside the glass lenses are also studied by numerical simulation. Based on the experiments and simulations results, a new compression molding process is proposed. Once the glass lens is fabricated by compression molding, an annealing process can be used to reduce the residual stresses in the glass lens.
Replicative manufacturing of complex lighting optics by non-isothermal glass molding
NASA Astrophysics Data System (ADS)
Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz
2016-09-01
The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.
Bubble dynamics during the non-isothermal degassing of liquids. Exploiting microgravity conditions.
Kostoglou, Margaritis; Karapantsios, Thodoris D
2007-10-31
This work reviews the up to date state of understanding of dynamic phenomena occurring when gas bubbles grow over submerged heated surfaces. Gas bubbles are produced on hot surfaces because the adjacent liquid layers become superheated causing local desorption of dissolved gases while the liquid far afield remains at low temperatures. Non-isothermal degassing is a very complex process combining heat and mass transport coupled with momentum exchange between the two phases. Difficulties due to buoyancy effects on gas bubbles as well as natural convection of hot liquid layers hindered its thorough investigation in terrestrial conditions and only recent microgravity data allowed serious progress to be made. To reduce the complexity, gas bubble growth on a heated wall was studied here separately from bubble lateral motion and coalescence. A complete mathematical formulation was provided but given the inability to solve the problem numerically with the present resources, a series of approximate solutions were attempted. The comparison between experimental observations and theoretical predictions revealed useful information regarding the governing mechanisms of bubble growth.
Electron temperature measurement in Maxwellian non-isothermal beam plasma of an ion thruster
Zhang, Zun; Tang, Haibin Kong, Mengdi; Zhang, Zhe; Ren, Junxue
2015-02-15
Published electron temperature profiles of the beam plasma from ion thrusters reveal many divergences both in magnitude and radial variation. In order to know exactly the radial distributions of electron temperature and understand the beam plasma characteristics, we applied five different experimental approaches to measure the spatial profiles of electron temperature and compared the agreement and disagreement of the electron temperature profiles obtained from these techniques. Experimental results show that the triple Langmuir probe and adiabatic poly-tropic law methods could provide more accurate space-resolved electron temperature of the beam plasma than other techniques. Radial electron temperature profiles indicate that the electrons in the beam plasma are non-isothermal, which is supported by a radial decrease (∼2 eV) of electron temperature as the plume plasma expands outward. Therefore, the adiabatic “poly-tropic law” is more appropriate than the isothermal “barometric law” to be used in electron temperature calculations. Moreover, the calculation results show that the electron temperature profiles derived from the “poly-tropic law” are in better agreement with the experimental data when the specific heat ratio (γ) lies in the range of 1.2-1.4 instead of 5/3.
Corradini, Maria G; Normand, Mark D; Peleg, Micha
2007-05-30
Biphasic isothermal inactivation constitutes a special case of non-linear mortality kinetics. It can be modeled with a primary model that contains an 'If' statement and three temperature dependent survival parameters: the first and second logarithmic inactivation rate constants and the time of the transition from one phase to the other. The temperature dependence of the two inactivation rates of Salmonella enteritidis and that of the transition time determined from published data could be described by empirical logistic terms. These were used to construct an inactivation rate equation for non-isothermal heating and cooling regimes. The resulting differential equation, despite having an 'If' statement in its formulation, could be easily solved numerically for simple as well elaborate temperature profiles. The solutions for a variety of realistic heat treatment histories indicated that when the heating or cooling rate is high enough, the biphasic character of the inactivation disappears. This is true regardless of whether the rate at the first phase is higher than at the second, the most common scenario, or vice versa. Theoretically, the same will happen with inactivation caused by a non thermal agent whose intensity increases or diminishes, in biphasic growth under rapidly varying conditions and in enzymatic activity or inactivation.
Evaluating the Energy Recovery Potential of Nigerian Coals under Non-Isothermal Thermogravimetry
NASA Astrophysics Data System (ADS)
Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen
2017-07-01
This study investigated the fuel properties and energy recovery potential of two coal samples from Ihioma (IHM) and Ogboligbo (OGB) environs in Nigeria. The ultimate, proximate, and bomb calorimetric analyses of the coal were examined. Next, the rank classification and potential application of the coals were evaluated according to the ASTM standard D388. Lastly, thermal decomposition behaviour was examined by non-isothermal thermogravimetry (TG) under pyrolysis conditions from 30 - 900 °C. The results indicated IHM and OGB contain high proportions of combustible elements for potential thermal conversion. The higher heating value (HHV) of IHM was 20.37 MJ/kg whereas OGB was 16.33 MJ/kg. TG analysis revealed 55% weight loss for OGB and 76% for IHM. The residual mass was 23% for IHM and 44% for OGB. Based on the temperature profile characteristics (TPCs); Ton , Tmax , and Toff , IHM was more reactive than OGB due to its higher volatile matter (VM). Overall, results revealed the coals are Lignite (Brown) low-rank coals (LRCs) with potential for electric power generation.
Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media
Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.
1997-07-01
The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3d-3d correspondence revisited
Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-21
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
3D Viscoelastic traction force microscopy.
Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian
2014-10-28
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.
Time Dependent Nuclear Scattering Calculations
NASA Astrophysics Data System (ADS)
Weeks, David
2005-04-01
A new time dependent method for calculating scattering matrix elements of two and three body nuclear collisions below 50 Mev is being developed. The procedure closely follows the channel packet method (CPM) used to compute scattering matrix elements for non-adiabatic molecular reactions.ootnotetextT.A.Niday and D.E.Weeks, Chem. Phys. Letters 308 (1999) 106 Currently, one degree of freedom calculations using a simple square well have been completed and a two body scattering calculation using the Yukawa potential is anticipated. To perform nuclear scattering calculations with the CPM that will incorporate the nucleon-nucleon tensor force, we plan to position initial reactant and product channel packets in the asymptotic limit on single coupled potential energy surfaces labeled by the spin, isospin, and total angular momentum of the reactant nucleons. The wave packets will propagated numerically using the split operator method augmented by a coordinate dependant unitary transformation used to diagonalize the potential. Scattering matrix elements will be determined by the Fourier transform of the correlation function between the evolving reactant and product wave packets. A brief outline of the Argonne v18 nucleon-nucleon potentialootnotetextR.B.Wiringa, V.G.J.Stoks, and R.Schiavilla, Physical Review C 51(1995) 38 and the proposed wave packet calculations will be presented.
Network-timing-dependent plasticity
Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B.
2015-01-01
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding. PMID:26106298
Network-timing-dependent plasticity.
Delattre, Vincent; Keller, Daniel; Perich, Matthew; Markram, Henry; Muller, Eilif B
2015-01-01
Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
Time dependence of PEB effects
NASA Astrophysics Data System (ADS)
Yanagishita, Yuichiro; Shigematsu, Kazumasa; Yanagida, Kimio
1990-06-01
Though simulations of PEB (Post Exposure Bake) on the basis of PAC diffusion mode! have been carried out by a number of researchers '' (2) , it has never been confirmed that those could predict experimental data caused by PEB' s effects accurately . Because no details of chemical reactions thernlly induced by PEB are known, fundamental parameters which determine PEB' s effects must be obtained experimentally. We have acquired the volume of changes of development rate function, RATE(M) by PEB with DRM monitoring for some types of photoresist . The values of diffusion length have been obtained by means of compareing experimental B (exposure ener) vs T (development time to clear) curves with simulated ones which is based on RATEOA) data. Their dependence on the baking time has been investigated with fixed FEB temperature and it has been proved that a progress of the diffusion saturates only in less than a few seconds when the diffusion length is about lO'-l5ncn, which is much shorter than the standing wave length(= 66nm, for G-line). Profiles of low contrast resist patterns can be improved by the decrease in development rate of slightly exposed areas by PEB. The effects on these resists depend on the baking time because the volume of the decrease grows with increasing FEB time. On the other hands, for high contrast resists PEB' s diffusion enhances their resolution while the decreases in development rate have little effect on them. Time dependence cannot be observed for these resists because the diffusion length remains constant with increasing FEB time.
NASA Astrophysics Data System (ADS)
Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark
2017-04-01
We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.
Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.
2014-01-28
The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.
Non-isothermal kinetic analysis of thermal decomposition of the Ca-bentonite from Santai, China
NASA Astrophysics Data System (ADS)
Zhang, Xiang-hui; He, Chuan; Wang, Ling; Li, Zhong-quan; Deng, Miao; Liu, Jing; Li, Hong-kui; Feng, Qian
2015-06-01
The thermal decompositions of Ca-bentonites (CaB) from Santai, Shichuan Province, China, over the temperature range of 30-1,100 °C were investigated by simultaneous thermal analyzer. Non-isothermal kinetic analysis was employed to study the thermal decomposition mechanism by using Netzsch Thermokinetics software. Flynn-Wall-Ozawa and Friedman isoconversional methods were used to calculate the activation energy and analyze the reaction steps. The probable mechanism and the corresponding kinetic parameters were determined by multivariate non-linear regression program. The results show that the thermal decomposition process of CaB over the temperature range of 30-800 °C is a kind of six-step, competitive reaction ( F 1 D 3 F n C 1E F n F n model). The dehydration reaction is controlled by two consecutive mechanisms, nucleation and growth, followed by a diffusion-controlled reaction ( F 1 D 3 model), the first step: E = 61.68 kJ mol-1, log A = 6.75 s-1; the second step: E = 50.73 kJ mol-1, log A = 3.11 s-1. The dehydroxylation reaction is controlled by three-step competitive mechanisms, an autocatalytically activated, initial reaction followed by n-order competitive reaction ( C 1E F n F n model), the first step: E = 124.74 kJ mol-1, log A = 5.67 s-1; the second step: E = 245.29 kJ mol-1, log A = 11.69 s-1; the third step : E = 261.73 kJ mol-1, log A = 11.23 s-1. A combination reaction of the dehydration and dehydroxylation is observed, and controlled by one n-order reaction ( F n model), E = 8.99 kJ mol-1, log A = -1.91 s-1.
Salt Precipitation and Dissolution in an Unsaturated Porous Media Under Non-Isothermal Conditions
NASA Astrophysics Data System (ADS)
Burns, E. R.; Dragila, M. I.; Weisbrod, N.; Guenther, R. B.; Selker, J. S.
2003-12-01
Salt precipitation and dissolution in unsaturated porous media is an important process to understand, both for agricultural soils (fertilizer movement) and for its effects in controlling water flux and potential contaminant transport in arid regions (migration of fluids and solutes to fractures and the land surface). Since evaporation is a key process to consider in both scenarios, it is necessary to consider heat and energy flow. A brief discussion/history of the salt precipitation/dissolution problem is given, then using the principles of continuum mechanics and mixture theory, a set of governing equations for salt precipitation and dissolution is developed. The equations are general in the sense that the following are considered: 1) non-isothermal conditions; 2) porosity is a function of solid phase salt concentration; 3) all parameters are functions of the appropriate thermodynamic variables. The equations are limited in that only near-ground surface conditions are considered. This is generally not a serious limitation since this location is likely the most seriously affected by rapid temporal changes in temperature and other boundary conditions. Further simplification of the problem is achieved by considering only "simple" salts (defined here as non-pH buffered salts that dissolve/precipitate only as a function of liquid phase ionic concentration) and flow regimes that do not result in finger flow of liquids. Initial and boundary conditions are developed for the following physically relevant conditions: 1) fertilizer salts introduced to an initially wet (but unsaturated) soil; 2) salt formation on free surfaces in arid climates; 3) water imbibition of fresh water into saline porous media. Work to date on solution of the initial boundary value problems is presented.
Weakly nonlinear stability analysis of non-isothermal Poiseuille flow in a vertical channel
NASA Astrophysics Data System (ADS)
Khandelwal, Manish K.; Bera, P.
2015-06-01
A weakly nonlinear stability theory in terms of Landau equation is developed to analyze the nonlinear saturation of stably stratified non-isothermal Poiseuille flow in a vertical channel. The results are presented with respect to fluids: mercury, gases, liquids, and heavy oils. The weakly nonlinear stability results predict only the supercritical instability, in agreement with the published result [Y. C. Chen and J. N. Chung, "A direct numerical simulation of K and H-type flow transition in heated vertical channel," Comput. Fluids 32, 795-822 (2003)] based on direct numerical simulation. Apart from this, the influence of nonlinear interaction among different superimposed waves on the heat transfer rate, real part of wavespeed, and friction coefficient on the wall is also investigated. A substantial enhancement (reduction) in heat transfer rate (friction coefficient) is found for liquids and heavy oils from the basic state beyond the critical Rayleigh number. The amplitude analysis indicates that the equilibrium amplitude decreases on increasing the value of Reynolds number. However, in the case of mercury, influence of nonlinear interaction on the variation of equilibrium amplitude, heat transfer rate, wavespeed, as well as friction coefficient is complex and subtle. The analysis of the nonlinear energy spectra for the disturbance also supports the supercritical instability at and beyond the critical point. Finally, the effect of superimposed waves on the pattern of secondary flow, based on linear stability theory, is also studied. It has been found that the impact of nonlinear interaction of waves on the pattern of secondary flow for mercury is weak compared to gases, which is the consequence of negligible modification in the buoyant production of disturbance kinetic energy of the mercury.
Thermoelastic stresses induced by non-isothermal fluid injection into fractured rock
NASA Astrophysics Data System (ADS)
Mossop, A.; Matthai, S. K.
2003-04-01
The injection of cold water into hot fractured rock occurs in a number of industrial scenarios, most commonly in the recharge of geothermal reservoirs and during waterflood operations in hydrocarbon reservoirs. The cold water cools the rock local to the fracture flow pathways, the cooled rock contracts, causing localised stress perturbations. Essentially analogous physical processes are involved in the injection of hot fluids into cooler rock such as occur in steam flood operations in viscous oil recovery. In this study we investigate such thermoelastic stresses induced by non-isothermal injection into a three dimensional fractured rock mass. The starting point of our analysis is an idealized model of injection into a single, uniform, horizontal fracture. For this case we have previously found semi-analytic solutions and analytic estimates of the stress perturbation and these are in turn used for cross-verification of an isoparametric, quadratic, finite element model of the system. In the numerical model the fractures are treated as discrete conductive channels within the matrix and an additional feature is that the matrix itself can be assigned a non-zero permeability. As the numerical simulator follows a fundamentally different methodology for solving these thermoelastic problems, the results help to validate some of the scaling relationships and non-intuitive behaviour deduced from the analytic estimates (e.g. for a broad range of flow rates, fracture normal stress perturbations decrease with increasing injection rates). The finite element model is then used to explore progressively more complex fracture geometries and networks. Finally we investigate the validity of a continuum limit as fracture densities increase to the point that fracture separation length scales are comparable with thermal diffusion length scales.
The density variance-Mach number relation in isothermal and non-isothermal adiabatic turbulence
NASA Astrophysics Data System (ADS)
Nolan, C. A.; Federrath, C.; Sutherland, R. S.
2015-08-01
The density variance-Mach number relation of the turbulent interstellar medium is relevant for theoretical models of the star formation rate, efficiency, and the initial mass function of stars. Here we use high-resolution hydrodynamical simulations with grid resolutions of up to 10243 cells to model compressible turbulence in a regime similar to the observed interstellar medium. We use FYRIS ALPHA, a shock-capturing code employing a high-order Godunov scheme to track large density variations induced by shocks. We investigate the robustness of the standard relation between the logarithmic density variance (σ _s^2) and the sonic Mach number M of isothermal interstellar turbulence, in the non-isothermal regime. Specifically, we test ideal gases with diatomic molecular (γ = 7/5) and monatomic (γ = 5/3) adiabatic indices. A periodic cube of gas is stirred with purely solenoidal forcing at low wavenumbers, leading to a fully developed turbulent medium. We find that as the gas heats in adiabatic compressions, it evolves along the relationship in the density variance-Mach number plane, but deviates significantly from the standard expression for isothermal gases. Our main result is a new density variance-Mach number relation that takes the adiabatic index into account: σ _s^2=ln (1+b^2 M^{(5γ +1)/3}) and provides good fits for b M≲ 1. A theoretical model based on the Rankine-Hugoniot shock jump conditions is derived, σ _s^2 = ln {1 + (γ +1)b^2{M}^2/[(γ -1)b^2{M}^2+2]}, and provides good fits also for b M>1. We conclude that this new relation for adiabatic turbulence may introduce important corrections to the standard relation, if the gas is not isothermal (γ ≠ 1).
Time-dependent seismic tomography
Julian, B.R.; Foulger, G.R.
2010-01-01
Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S^{3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S_{b}^{3}. This enables us to see clearly, at the level of partition function, to what extent G_{C} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.
NASA Astrophysics Data System (ADS)
Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.
2016-06-01
The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.
Xie, Wen-Jie; Zhou, Xiao-Ming
2015-01-01
Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break.
NASA Astrophysics Data System (ADS)
Biswas, Swarup; Bhattacharya, S.
2017-05-01
Polypyrrole (PPy)/Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) blend is synthesized by in situ polymerization of pyrrole. FTIR confirms the formation of Polypyrrole (PPy) within PVDF-HFP matrices. Weight percentages of different components within composites are estimated by TGA. Detailed study of nucleation and kinetics at its melt condition under non-isothermal environment is done by the DSC measurement. The presence of PPy within the PVDF-HFP matrices accelerated the nucleation rate of the polymer.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
2004-08-20
This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-01-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141
Non-isothermal kinetic parameters and models of crystallization for amorphous Fe-Co-Nb-Cu-B alloys
NASA Astrophysics Data System (ADS)
Wang, Xin; Deng, Longjiang; Xie, Jianliang; Liang, Difei
2013-02-01
The non-isothermal differential scanning calorimetry (DSC) measurements are often used to study kinetics of amorphous alloys. However non-isothermal kinetic parameters and models of amorphous alloy crystallization process were unclear. In our research, amorphous (FexCo1-x)NbCuB (x=0.33, 0.5 and 0.75) alloys were produced in the form of ribbon by a single roller melt-spinning method. DSC curves at heating rate 5, 10, 15, 20 and 25 K/min were obtained. Kissinger, Ozawa and model-free methods obtain identical activation energies at each exothermic peak of all compositions. We conclude that first exothermic reaction is determined by the migration activation energy of Fe or Co atom; second reaction determined by the energy between parent and product boride phases; and the third reaction determined by the energy between parent α-FeCo phase and product bcc-Fe/fcc-Co phases. We hypothesized a non-isothermal kinetic modelf(α)=α(1, which fit our experiment results well. In this model, m depends on nucleus shape and growth dimension, and n are determined by lattice positions participated in new phase formation.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
NASA Astrophysics Data System (ADS)
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-10-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.
NASA Astrophysics Data System (ADS)
Sobotkova, Martina; Snehota, Michal; Tesar, Miroslav
2017-04-01
Isothermal and non-isothermal infiltration experiments with tracer breakthrough were carried out in the laboratory on intact column of sandy loam soil taken from Roklan site (Sumava Mountains, Czech Republic). In the case of isothermal experiment, the temperature of infiltrating water was almost equal to the initial temperature of the sample. For the non-isothermal case the infiltration was performed using water approximately 10 °C colder than was the initial temperature of soil sample. The experiments were otherwise conducted under the same initial and boundary conditions. Pressure heads and temperatures in two depths (8.8 and 15.3 cm) inside the soil were monitored as well as the temperature of water entering and leaving the sample. Water drained freely through the perforated plate at the bottom of the sample by gravity and outflow was measured using tipping bucket flowmeter. Permeability of the sample calculated for steady state stages of the experiment showed that significant difference between water flow rates recorded during two experiment could not be justified only by temperature induced changes of water viscosity and density. Results of deuterium breakthrough were nearly identical for isothermal and non-isothermal conditions.
JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data
NASA Astrophysics Data System (ADS)
Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.
2017-09-01
Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.
NASA Astrophysics Data System (ADS)
Ionescu, Tudor Constantin
Frictional or viscous heating phenomena are found in virtually every industrial operation dealing with processing of polymeric materials. This work is aimed at addressing some of the existing shortcomings in modeling non-isothermal polymer flowing processes. Specifically, existing theories suggest that when a polymer melt is subjected to deformation, its internal energy changes very little compared to its conformational entropy. This statement forms the definition of the Theory of Purely Entropic Elasticity (PEE) applied to polymer melts. Under the auspices of this theory, the temperature evolution equation for modeling the polymer melt under an applied deformation is greatly simplified. In this study, using a combination of experimental measurements, continuum-based computer modeling and molecular simulation techniques, the validity of this theory is tested for a wide range of processing conditions. First, we present experimental evidence that this theory is only valid for low deformation regimes. Furthermore, using molecular theory, a direct correlation is found between the relaxation characteristics of the polymer and the flow regime where this theory stops being valid. We present a new and improved form of the temperature equation containing an extra term previously neglected under the PEE assumption, followed by a recipe for evaluating the extra term. The corrected temperature equation is found to give more accurate predictions for the temperature profiles in the high flow rate regimes, in excellent agreement with our experimental measurements. Next, in order to gain a molecular-level understanding of our experimental findings, a series of polydisperse linear alkane systems with average chain lengths between 24 and 78 carbon atoms are modeled with an applied "orienting field" using a highly efficient non-equilibrium Monte Carlo scheme. Our simulation results appear to substantiate our experimental findings. The internal energy change of the oriented
Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow
NASA Astrophysics Data System (ADS)
Das, Sayan; Mandal, Shubhadeep; Som, S. K.; Chakraborty, Suman
2017-01-01
The motion of a surfactant-laden viscous droplet in the presence of non-isothermal Poiseuille flow is studied analytically and numerically. Specifically, the focus of the present study is on the role of interfacial Marangoni stress generated due to imposed temperature gradient and non-uniform distribution of bulk-insoluble surfactants towards dictating the velocity and direction of motion of the droplet when the background flow is Poiseuille. Assuming the thermal convection and fluid inertia to be negligible, we obtain the explicit expression for steady velocity of a non-deformable spherical droplet when the droplet is located at the centerline of the imposed unbounded Poiseuille flow and encountering a linearly varying temperature field. Under these assumptions, the interfacial transport of surfactants is governed by the surface Péclet number which represents the relative strength of the advective transport of surfactant molecules over the diffusive transport. We obtain analytical solution for small and large values of the surface Péclet number. Analytical solution is also obtained for the case in which the surface Péclet number is of order unity by considering small surfactant Marangoni number which represents the relative strength of the surfactant-induced Marangoni stress over the viscous stress. For an arbitrary surface Péclet number, a numerical solution of the surfactant transport equation is performed using an iterative method which compares well with the analytical solutions. Depending on the direction of temperature gradient with respect to the imposed Poiseuille flow, the surfactant-induced Marangoni stress affects the droplet velocity significantly. When the imposed temperature increases in the direction of imposed Poiseuille flow, surfactants retard the droplet motion as compared with a surfactant-free droplet. However, when the imposed temperature decreases in the direction of imposed Poiseuille flow, the presence of surfactants may increase or
NASA Astrophysics Data System (ADS)
Zhang, Nan
The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the
2011-01-01
In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)
1997-07-13
Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.
2015-09-16
NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.
Spong, Donald A
2016-06-20
AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.
Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R
2011-07-07
The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be
Carle, S F; Zavarin, M; Shumaker, D E; Tompson, A B; Maxwell, R M; Pawloski, G A
2006-03-06
Temperature can significantly affect radionuclide transport behavior. In simulation of radionuclide transport originating from an underground nuclear test, temperature effects from residual test heat include non-isothermal groundwater flow behavior (e.g. convection cells), increased dissolution rates of melt glass containing refractory radionuclides, changes in water chemistry, and, in turn, changes in radionuclide sorption behavior. The low-yield (0.75 kiloton) Cambric underground nuclear test situated in alluvium below the water table offers unique perspectives on radionuclide transport in groundwater. The Cambric test was followed by extensive post-test characterization of the radionuclide source term and a 16-year pumping-induced radionuclide migration experiment that captured more mobile radionuclides in groundwater. Discharge of pumped groundwater caused inadvertent recirculation of radionuclides through a 220-m thick vadose zone to the water table and below, including partial re-capture in the pumping well. Non-isothermal flow simulations indicate test-related heat persists at Cambric for about 10 years and induces limited thermal convection of groundwater. The test heat has relatively little impact on mobilizing radionuclides compared to subsequent pumping effects. However, our reactive transport models indicate test-related heat can raise melt glass dissolution rates up to 10{sup 4} faster than at ambient temperatures depending on pH and species activities. Non-isothermal flow simulations indicate that these elevated glass dissolution rates largely decrease within 1 year. Thermally-induced increases in fluid velocity may also significantly increase rates of melt glass dissolution by changing the fluid chemistry in contact with the dissolving glass.
Li, Lin-Li; Zhan, Xian-Cheng; Tao, Jian-Lin
2008-03-01
The influence of both moisture and heat on the stability of aspirin was investigated by a single pair of experiments, one with programmed humidity control and the other non-isothermal, rather than many standard isothermal studies, each at constant relative humidity. In experiments, we adopted the acid-base back titration method to measure the content of aspirin in the presence of its degradation products. It was found that the degradation of aspirin could be expressed as ln[(c0-c)/c]=kt+D, where D was a lag time item not related to humidity and temperature. The relationship between the degradation rate constant k and humidity Hr) and temperature T could be described as Arrhenius equation multiplied by an exponential item of relative humidity: k = A . exp(mHr) . exp(-(Ea/RT)), where A, Ea and m were the pre-exponential factor, observed activation energy, and a parameter related to humidity, respectively. The results obtained from the programmed humidifying and non-isothermal experiments, A=(1.09+/-2.04)x10(12) h(-1), Ea=(93.5+/-2.2) kJ . mol(-1) and m=1.18+/-0.19, were comparable to those from isothermal studies at constant humidity, A=(1.71+/-0.35)x10(12) h(-1), Ea=(94.9+/-0.7) kJ . mol(-1) and m=1.20+/-0.02. Since the programmed humidifying and non-isothermal experiments save time, labor and materials, it is suggested that the new experimental method can be used to investigate the stability of drugs unstable to both moisture and heat, instead of many classical isothermal experiments at constant humidity.
Mohamed, Hala Sh; Dahy, AbdelRahman A; Mahfouz, Refaat M
2017-10-25
Kinetic analysis for the non-isothermal decomposition of un-irradiated and photon-beam-irradiated 5-fluorouracil (5-FU) as anti-cancer drug, was carried out in static air. Thermal decomposition of 5-FU proceeds in two steps. One minor step in the temperature range of (270-283°C) followed by the major step in the temperature range of (285-360°C). The non-isothermal data for un-irradiated and photon-irradiated 5-FU were analyzed using linear (Tang) and non-linear (Vyazovkin) isoconversional methods. The results of the application of these free models on the present kinetic data showed quite a dependence of the activation energy on the extent of conversion. For un-irradiated 5-FU, the non-isothermal data analysis indicates that the decomposition is generally described by A3 and A4 modeles for the minor and major decomposition steps, respectively. For a photon-irradiated sample of 5-FU with total absorbed dose of 10Gy, the decomposition is controlled by A2 model throughout the coversion range. The activation energies calculated in case of photon-irradiated 5-FU were found to be lower compared to the values obtained from the thermal decomposition of the un-irradiated sample probably due to the formation of additional nucleation sites created by a photon-irradiation. The decomposition path was investigated by intrinsic reaction coordinate (IRC) at the B3LYP/6-311++G(d,p) level of DFT. Two transition states were involved in the process by homolytic rupture of NH bond and ring secession, respectively. Published by Elsevier B.V.
Spectral methods for time dependent problems
NASA Technical Reports Server (NTRS)
Tadmor, Eitan
1990-01-01
Spectral approximations are reviewed for time dependent problems. Some basic ingredients from the spectral Fourier and Chebyshev approximations theory are discussed. A brief survey was made of hyperbolic and parabolic time dependent problems which are dealt with by both the energy method and the related Fourier analysis. The ideas presented above are combined in the study of accuracy stability and convergence of the spectral Fourier approximation to time dependent problems.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
NASA Astrophysics Data System (ADS)
Moore, Gregory F.
2009-05-01
This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.
Synthesis and Non-isothermal Carbothermic Reduction of FeTiO3-Fe2O3 Solid Solution Systems
NASA Astrophysics Data System (ADS)
Liu, Yiran; Zhang, Jianliang; Xing, Xiangdong; Liu, Zhengjian; Liu, Xingle; Li, Naiyao; Shen, Yansong
2017-10-01
To investigate the carbothermic reduction behaviors of xFeTiO3·(1 - x)Fe2O3 solid solutions, the solid solutions with different x values were synthesized and used in the corresponding reactions. With an increase in x, the temperature pertaining to the onset of carbothermic reduction increased, while the rate of reduction of the solid solutions, α, decreased. The lattice parameters calculated from XRD patterns indicated that the solid solution with a higher x led to a larger lattice distortion. The non-isothermal kinetics were calculated, and an average activation energy E value of 3.0 × 102 kJ/mol was obtained.
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Galenko, P. K.; Herlach, D. M.
2010-07-01
A free dendrite growth during solidification into external forced flow is analyzed using a sharp interface model. A criterion for selection of the stable growth mode is derived for the axisymmetric dendrite growing into non-isothermal binary system under convective flow. The criterion obtained rallies analytic results for dendrite growth under forced convection in a pure system [Ph. Bouissou, P. Pelce, Phys. Rev. A 40 (1989) 6673] and dendrite growth in a stagnant binary system [M. Ben Amar, P. Pelce, Phys. Rev. A 39 (1989) 4263].
Longhi, Daniel Angelo; Martins, Wiaslan Figueiredo; da Silva, Nathália Buss; Carciofi, Bruno Augusto Mattar; de Aragão, Gláucia Maria Falcão; Laurindo, João Borges
2017-01-02
In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling (TSM) approach, in which primary models are fitted to the microbial growth data, and then secondary models are fitted to the primary model parameters to represent their dependence with the environmental variables (e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental workload and costs, and the improvement of model identifiability because primary and secondary models are fitted simultaneously from non-isothermal data. Lactobacillus viridescens was selected to this study because it is a lactic acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the number of experimental data and the time needed in each approach and the confidence intervals of the model parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six temperatures (total experimental time of 3540h and 196 experimental data of microbial growth). Data for OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588h and 60 experimental data of microbial growth), two profiles with increasing temperatures (IT) and two with decreasing temperatures (DT). The Baranyi and Roberts primary model and the square root secondary model were used to describe the microbial growth, in which the parameters b and Tmin (±95% confidence interval) were estimated from the experimental data. The parameters obtained from TSM approach were b=0.0290 (±0.0020) [1/(h(0.5)°C)] and Tmin=-1.33 (±1.26) [°C], with R(2)=0.986 and RMSE=0.581, and the parameters obtained with the OED approach were b=0.0316 (±0.0013) [1/(h(0.5)°C)] and Tmin=-0.24 (±0.55) [°C], with R(2)=0.990 and RMSE=0.436. The parameters obtained from OED approach
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C_{T}. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Furlow, Bryant
2017-05-01
Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.
1993-01-01
Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.
NASA Astrophysics Data System (ADS)
Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.
2010-06-01
Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of
A Time-Dependent Anharmonic Oscillator
NASA Astrophysics Data System (ADS)
Contreras-Astorga, A.
2017-05-01
Supersymmetric Quantum Mechanics is commonly used to generate time independent Hamiltonians with a desired spectrum. This technique can be generalized to construct time dependent potentials. In this work, the harmonic oscillator and a coherent state are taken to perform a generalized SUSY transformation in order to obtain a time dependent anharmonic oscillator.
Bohr Hamiltonian with time-dependent potential
NASA Astrophysics Data System (ADS)
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
NASA Astrophysics Data System (ADS)
Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.
2016-11-01
The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.
Peleg, Micha
2003-01-01
Sigmoidal isothermal semi-logarithmic survival curves are of two main types; starting with a downward and changing to upward concavity and vice versa. Both can be described by a variety of mathematical models having 3-4 adjustable parameters. The temperature dependence of these models' parameters can be described by empirical models, which account for the progressive change in the sigmoidal shape, including its disappearance at either high or low temperatures. If the temperature history of a heat-treated population of microbial cells or spores ('temperature profile') can be described algebraically, then there is a way to estimate the survival pattern under these non-isothermal conditions without invoking the traditional D and z values, which require forcing straight lines through the curved experimental data. The described method is based on the assumption that the local slope of the non-isothermal survival curve is that of the isothermal curve at the momentary temperature, at a time, which corresponds to the momentary survival ratio. It is similar to the method previously proposed for microbial populations with a 'power law' type isothermal survival curves, except that the time, which corresponds to the momentary survival ratio, is calculated either symbolically or numerically as a procedure incorporated in the governing differential equation. The method's capabilities are demonstrated with simulated survival curves under temperature histories that resemble thermal processing of foods. They include heating to different target temperatures and starting the cooling at different times.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
NASA Astrophysics Data System (ADS)
Connors, M. G.; Schofield, I. S.
2012-12-01
Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.
Deterministic methods for time-dependent stochastic neutron transport
Baker, Randal S
2009-01-01
A numerical method is presented for solving the time-dependent survival probability equation in general (lD/2D/3D) geometries using the multi group SNmethod. Although this equation was first formulated by Bell in the early 1960's, it has only been applied to stationary systems (for other than idealized point models) until recently, and detailed descriptions of numerical solution techniques are lacking in the literature. This paper presents such a description and applies it to a dynamic system representative of a figurative criticality accident scenario.
Time-dependent photoelectron angular distributions
NASA Astrophysics Data System (ADS)
Wang, Xiangyang
1999-09-01
I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.
Stability on Time-Dependent Domains
NASA Astrophysics Data System (ADS)
Knobloch, E.; Krechetnikov, R.
2014-06-01
We explore the key differences in the stability picture between extended systems on time-fixed and time-dependent spatial domains. As a paradigm, we take the complex Swift-Hohenberg equation, which is the simplest nonlinear model with a finite critical wavenumber, and use it to study dynamic pattern formation and evolution on time-dependent spatial domains in translationally invariant systems, i.e., when dilution effects are absent. In particular, we discuss the effects of a time-dependent domain on the stability of spatially homogeneous and spatially periodic base states, and explore its effects on the Eckhaus instability of periodic states. New equations describing the nonlinear evolution of the pattern wavenumber on time-dependent domains are derived, and the results compared with those on fixed domains. Pattern coarsening on time-dependent domains is contrasted with that on fixed domains with the help of the Cahn-Hilliard equation extended here to time-dependent domains. Parallel results for the evolution of the Benjamin-Feir instability on time-dependent domains are also given.
NASA Astrophysics Data System (ADS)
Bhardwaj, Lakshya
2017-05-01
This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.
Birefringence in time-dependent moving media
NASA Astrophysics Data System (ADS)
Lin, Shirong; Zhang, Ruoyang; Zhai, Yanwang; Wei, Jianye; Zhao, Qing
2016-08-01
Electromagnetic wave propagation in one- and two-dimensional time-dependent moving media is investigated in this paper. We identify another origin of linear birefringence caused by the component of the flow perpendicular to the wave vector. Previously, birefringence is induced by applying external electric and magnetic fields to non-crystalline material. Here it is shown that the time-varying velocity field also contributes to such a phenomenon. Our results indicate that the parallel component, time-dependent or not, will not yield birefringence. Furthermore, the time-dependent flow also results in a frequency shift. One-dimensional simulation is conducted to demonstrate these effects.
Topic 5: Time-Dependent Behavior
Pfeiffer, P.A.; Tanabe, Tada-aki
1991-12-31
This chapter is a report of the material presented at the International Workshop on Finite Element Analysis of Reinforced Concrete, Session 4 -- Time Dependent Behavior, held at Columbia University, New York on June 3--6, 1991. Dr. P.A. Pfeiffer presented recent developments in time-dependent behavior of concrete and Professor T. Tanabe presented a review of research in Japan on time-dependent behavior of concrete. The chapter discusses the recent research of time-dependent behavior of concrete in the past few years in both the USA-European and Japanese communities. The author appreciates the valuable information provided by Zdenek P. Bazant in preparing the USA-European Research section.
ALCHEMIC: Advanced time-dependent chemical kinetics
NASA Astrophysics Data System (ADS)
Semenov, Dmitry A.
2017-08-01
ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.
Invariants for time-dependent Hamiltonian systems.
Struckmeier, J; Riedel, C
2001-08-01
An exact invariant is derived for n-degree-of-freedom Hamiltonian systems with general time-dependent potentials. The invariant is worked out in two equivalent ways. In the first approach, we define a special Ansatz for the invariant and determine its time-dependent coefficients. In the second approach, we perform a two-step canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The invariant is found to contain a function of time f(2)(t), defined as a solution of a linear third-order differential equation whose coefficients depend in general on the explicitly known configuration space trajectory that follows from the system's time evolution. It is shown that the invariant can be interpreted as the time integral of an energy balance equation. Our result is applied to a one-dimensional, time-dependent, damped non-linear oscillator, and to a three-dimensional system of Coulomb-interacting particles that are confined in a time-dependent quadratic external potential. We finally show that our results can be used to assess the accuracy of numerical simulations of time-dependent Hamiltonian systems.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Technical Reports Server (NTRS)
1997-01-01
The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.
The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Astrophysics Data System (ADS)
Fung, Y. C.
1995-05-01
This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Ho, Ai Ling; Carvalheiro, Florbela; Duarte, Luís C; Roseiro, Luísa B; Charalampopoulos, Dimitris; Rastall, Robert A
2014-01-01
Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.6g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 °C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74-78% purity, of which 83-85% was XOS with degree of polymerisation (DP) between 5 and 40. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ullah, Saif; Ullah, Arshad; Iqbal, Mohsan
2015-12-01
This investigation deals with analytical solutions of thin film flow for withdrawal and drainage of an incompressible generalized Oldroyd-B fluid on a vertical cylinder under the influence of non-isothermal effects. The derived solutions are presented under series form for velocity profile, temperature distribution, volume flux, average film velocity and shear stress in both cases. These solutions satisfy both the governing equations and all imposed initial and boundary conditions. The corresponding exact solutions for Newtonian fluid are also obtained as a special case of our derived solutions. Moreover, solutions for generalized Maxwell fluid and Power Law model, performing the same motion, can be obtained as limiting cases of our general solutions. The influence of pertinent parameters on the fluid motion is also underlined by graphical illustration.
Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge
NASA Astrophysics Data System (ADS)
Rashad, A. M.
2017-01-01
This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.
NASA Astrophysics Data System (ADS)
Kraus, Ju. A.; Ivanov, R. N.; Grinevich, V. A.; Pakhotin, A. N.
2017-08-01
The paper examines hydraulic pressure testing of main oil pipelines. The research objective is to identify and describe the characteristic features of pressure changes in pressure testing of the main pipeline, caused by temperature changes. The notions on the interpretation and evaluation of the results for pipeline pressure testing under non-isothermal conditions are given, the number of pressure sampling points and temperature information being limited; and considering the elevation difference along the length of the test section (where applicable). A formula for calculating the fresh water volumetric expansion coefficient correlation with temperature and pressure is proposed. A method for interpreting the hydraulic pressure testing results is developed, considering the parameters spread effect on the coefficients of the volumetric expansion and the modulus of elasticity for the test fluid, as well as the coefficients of linear expansion and Young's modulus for pipe steel. The application of the method allows to monitor the hydraulic pressure testing for main oil pipelines.
NASA Astrophysics Data System (ADS)
Guo, Boling; Xi, Xiaoyu; Xie, Binqiang
2017-02-01
The Cauchy problem for the three-dimensional non-isothermal model for compressible nematic liquid crystals is considered. Existence of global-in-time smooth solutions is established provided that the initial datum is close to a steady state (ρ bar , 0 , d bar , θ bar). By using the Lq-Lp estimates and the Fourier splitting method, if the initial perturbation is small in H3-norm and bounded in Lq (q ∈ [ 1 ,6/5)) norm, we obtain the optimal decay rates for the first and second order spatial derivatives of solutions. In addition, the third and fourth order spatial derivatives of director field d in L2-norm are achieved.
Majeed Khan, M.A.; Kumar, Sushil; Alsalhi, M.S.; Ahamed, Maqusood; Alhoshan, Mansour; Alrokayan, Salman A.; Ahamad, Tansir
2012-03-15
Nanocrystals of copper indium disulphide (CuInS{sub 2}) were synthesized by a solvo-thermal method. The structure, morphology and non-isothermal crystallization kinetic behavior of samples were investigated using X-ray diffraction, field emission scanning electron microscopy, field emission transmission electron microscopy, thermogravimetric analysis and differential thermal analysis techniques. Non-isothermal measurements at different heating rates were carried out and the crystallization kinetics of samples were analyzed using the most reliable non-isothermal kinetic methods. The kinetic parameters such as glass transition temperature, thermal stability, activation energy, Avrami exponent etc. were evaluated. - Highlights: Black-Right-Pointing-Pointer CuInS{sub 2} nanocrystals have scientific and technological importance. Black-Right-Pointing-Pointer Samples have been prepared by solvo-thermal method. Black-Right-Pointing-Pointer Synthesized samples exhibit excellent morphology and thermal properties. Black-Right-Pointing-Pointer Investigated properties may be utilized in design and fabrication of solar cell devices.
Time-dependent rates of molecular evolution.
Ho, Simon Y W; Lanfear, Robert; Bromham, Lindell; Phillips, Matthew J; Soubrier, Julien; Rodrigo, Allen G; Cooper, Alan
2011-08-01
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events. © 2011 Blackwell Publishing Ltd.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
Pulsar braking: Time dependent moment of inertia?
NASA Astrophysics Data System (ADS)
Urbanec, Martin
2017-08-01
Pulsars rotate with extremely stable rotational frequency enabling one to measure its first and second time derivatives. These observed values can be combined to the so-called braking index. However observed values of braking index differ from the theoretical value of 3 corresponding to braking by magnetic dipole radiation being the dominant theoretical model. Such a difference can be explained by contribution of other mechanism like pulsar wind or quadrupole radiation, or by time dependency of magnetic field or moment of inertia. In this presentation we focus on influence of time dependent moment of inertia on the braking index. We will also discuss possible physical models for time-dependence of moment of inertia.
Time-Dependent Molecular Reaction Dynamics
NASA Astrophysics Data System (ADS)
Öhrn, Yngve
2007-11-01
This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.
Investigations of Low Temperature Time Dependent Cracking
Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J
2002-09-30
The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.
Time-dependent Flare Models with MALI
NASA Astrophysics Data System (ADS)
Kašparová, J.; Heinzel, P.; Varady, M.; Karlický, M.
2003-01-01
Temporal variations of Hα line profile intensities related to electron beams are presented. We show first results of time dependent simulations of a chromospheric response to a 1 sec monoenergetic electron beam. 1-D hydrodynamic code together with particle representation of the beam have been used to calculate atmospheric evolution. Time dependent radiative transfer problem has been solved for the resulting atmosphere in the MALI approach, using the Crank-Nicholson implicit scheme. Non-thermal collisional rates were included in linearised equations of statistical equilibrium.
Time-dependent freezing rate parcel model
NASA Astrophysics Data System (ADS)
Vali, G.; Snider, J. R.
2015-02-01
The time-dependent freezing rate (TDFR) model here described represents the formation of ice particles by immersion freezing within an air parcel. The air parcel trajectory follows an adiabatic ascent and includes a period in time when the parcel remains stationary at the top of its ascent. The description of the ice nucleating particles (INPs) in the air parcel is taken from laboratory experiments with cloud and precipitation samples and is assumed to represent the INP content of the cloud droplets in the parcel. Time dependence is included to account for variations in updraft velocity and for the continued formation of ice particles under isothermal conditions. The magnitudes of these factors are assessed on the basis of laboratory measurements. Results show that both factors give rise to three-fold variations in ice concentration for a realistic range of the input parameters. Refinements of the parameters specifying time dependence and INP concentrations are needed to make the results more specific to different atmospheric aerosol types. The simple model framework described in this paper can be adapted to more elaborate cloud models. The results here presented can help guide decisions on whether to include a time-dependent ice nucleation scheme or a simpler singular description in models.
Time-dependent freezing rate parcel model
NASA Astrophysics Data System (ADS)
Vali, G.; Snider, J. R.
2014-11-01
The Time-Dependent Freezing Rate (TDFR) model here described represents the formation of ice particles by immersion freezing within an air parcel. The air parcel trajectory follows an adiabatic ascent and includes a period at time with the parcel remaining stationary at the top of its ascent. The description of the ice nucleating particles (INPs) in the air parcel is taken from laboratory experiments with cloud and precipitation samples and is assumed to represent the INP content of the cloud droplets in the parcel. Time-dependence is included to account for variations in updraft velocity and for the continued formation of ice particles at isothermal conditions. The magnitudes of these factors are assessed on the basis of laboratory measurements. Results show that both factors give rise to factors of about 3 variations in ice concentration for a realistic range of the input parameters. Refinements of the parameters specifying time-dependence and INP concentrations are needed to make the results more specific to different atmospheric aerosol types. The simple model framework described in this paper can be adapted to more elaborate cloud models. The results here presented can help guide decisions on whether to include a time-dependent ice nucleation scheme or a simpler singular description in models.
Eigenfunction expansions for time dependent hamiltonians
NASA Astrophysics Data System (ADS)
Jauslin, H. R.; Guerin, S.; Deroussiaux, A.
We describe a generalization of Floquet theory for non periodic time dependent Hamiltonians. It allows to express the time evolution in terms of an expansion in eigenfunctions of a generalized quasienergy operator. We discuss a conjecture on the extension of the adiabatic theorem to this type of systems, which gives a procedure for the physical preparation of Floquet states. *** DIRECT SUPPORT *** A3418380 00004
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
2015-10-23
Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032
NASA Astrophysics Data System (ADS)
Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther
2007-09-01
Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
3D Printing and 3D Bioprinting in Pediatrics
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-01-01
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542
3D Printing and 3D Bioprinting in Pediatrics.
Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng
2017-07-13
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
Photodetachment microscopy in time-dependent fields
NASA Astrophysics Data System (ADS)
Ambalampitiya, H.; Fabrikant, I. I.
2017-05-01
Photodetachment of negative ions in combined laser and low-frequency fields is investigated. The time-dependent Green's function method is used for calculation of electron flux at a macroscopic distance from the photodetachment source, typical for a photodetachment microscopy experiment. In calculating the electron flux, we use the stationary phase method for the time integral, equivalent to the semiclassical approximation, to compute the time-dependent wave function. The stationary points t1(i ), i =1 ,...,n correspond to time instances of launching of classical trajectories arriving at the detector at a given spacetime point (r ,t ) . The number of trajectories n contributing to the electron flux at any point in the classically allowed spacetime domain can be controlled by varying the switching interval of the high-frequency laser which initiates the photodetachment process. The divergences inherent in the electron flux in the semiclassical treatment are removed by using the uniform Airy approximation near the caustics.
Time-Dependent Erosion of Ion Optics
NASA Technical Reports Server (NTRS)
Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.
2008-01-01
The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.
On time-dependent radiative transfer
NASA Technical Reports Server (NTRS)
Streater, A.; Cooper, J.; Sandle, W.
1987-01-01
An integral equation is developed for application to time-dependent laboratory experiments in which partial redistribution effects are important. The equation of transport with the Heasly-Kneer (1976) emission coefficient and the equation of statistical equilibrium lead to a time-dependent redistribution function containing an absorption - reemission term which decays exponentially in time and a scattering term which is instantaneous. This integral equation does not agree with an equation written by Payne et al. (1974) that has been used to compare theory with experiments. The difference between the Payne equation and the equation developed here needs to be examined in detail, since it might under some circumstances be on the same order as the difference between partial and complete redistribution.
On time-dependent radiative transfer
NASA Astrophysics Data System (ADS)
Streater, A.; Cooper, J.; Sandle, W.
1987-02-01
An integral equation is developed for application to time-dependent laboratory experiments in which partial redistribution effects are important. The equation of transport with the Heasly-Kneer (1976) emission coefficient and the equation of statistical equilibrium lead to a time-dependent redistribution function containing an absorption - reemission term which decays exponentially in time and a scattering term which is instantaneous. This integral equation does not agree with an equation written by Payne et al. (1974) that has been used to compare theory with experiments. The difference between the Payne equation and the equation developed here needs to be examined in detail, since it might under some circumstances be on the same order as the difference between partial and complete redistribution.
Time-dependent species sensitivity distributions.
Fox, David R; Billoir, Elise
2013-02-01
Time is a central component of toxicity assessments. However, current ecotoxicological practice marginalizes time in concentration-response (C-R) modeling and species sensitivity distribution (SSD) analyses. For C-R models, time is invariably fixed, and toxicity measures are estimated from a function fitted to the data at that time. The estimated toxicity measures are used as inputs to the SSD modeling phase, which similarly avoids explicit recognition of the temporal component. The present study extends some commonly employed probability models for SSDs to derive theoretical results that characterize the time-dependent nature of hazardous concentration (HCx) values. The authors' results show that even from very simple assumptions, more complex patterns in the SSD time dependency can be revealed.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Time Dependent Behavior in the Weissenberg Effect
NASA Astrophysics Data System (ADS)
Degen, Michael M.; Andereck, C. David
1997-03-01
The Weissenberg effect is the climb of a non-Newtonian fluid up a rotating rod. We have found novel transitional effects in the behavior of a particular climbing fluid, STP(STP Oil Treatment distributed by First Brands Corporation.). The first state is a time-independent axisymmetric concave climb. As the rotation rate of the rod is increased, the first transition is to an axisymmetric climb with an ``onion dome'' shape. At higher rotation rates, the flow undergoes a symmetry breaking bifurcation to a time-dependent state. This time-dependent state exhibits an oscillation with a single frequency. Upon further increase of the rod rotation rate, the oscillation becomes modulated by a second frequency. The nature of each transition will be characterized, including the measurement of oscillation amplitudes and the frequency (or frequencies) of the time dependent states. These results will be compared with previous work.(G.S. Beavers, D.D. Joseph, J. Fluid Mech. 69), 475 (1975).(D.D. Joseph, R.L. Fosdick, Arch. Rational Mech. 49), 321 (1973).
Time-dependent projected Hartree-Fock
Tsuchimochi, Takashi; Van Voorhis, Troy
2015-03-28
Projected Hartree-Fock (PHF) has recently emerged as an alternative approach to describing degenerate systems where static correlation is abundant, when the spin-symmetry is projected. Here, we derive a set of linearized time-dependent equations for PHF in order to be able to access excited states. The close connection of such linear-response time-dependent PHF (TDPHF) to the stability condition of a PHF wave function is discussed. Expanding this analysis also makes it possible to give analytical expressions for the projected coupling terms of Hamiltonian and overlaps between excited Slater determinants. TDPHF with spin-projection (TDSUHF) and its Tamm-Dancoff approximation are benchmarked for several electronically degenerate molecules including the dissociating H{sub 2}, F{sub 2} and O{sub 3} at equilibrium, and the distorted ethylene. It is shown that they give consistently better descriptions of excited states than does time-dependent HF (TDHF). Furthermore, we demonstrate that they offer not only singly but also doubly excited states, which naturally arise upon spin-projection. We also address the thermodynamic limit of TDSUHF, using non-interacting He gas. While TDPHF singly excited states tend to converge to those of HF with the size of the system due to the lack of size-extensivity of PHF, doubly excited states remain reasonable even at the thermodynamic limit. We find that the overall performance of our method is systematically better than the regular TDHF in many cases at the same computational scaling.
Noninvasive time-dependent cytometry monitoring by digital holography.
Kemmler, Manuel; Fratz, Markus; Giel, Dominik; Saum, Norbert; Brandenburg, Albrecht; Hoffmann, Christian
2007-01-01
Using a digital holographic microscope setup, it is possible to measure dynamic volume changes in living cells. The cells were investigated time-dependently in transmission mode for different kinds of stimuli affecting their morphology. The measured phase shift was correlated to the cellular optical thickness, and then of the cell volume as well as the refractive index were calculated and interpreted. For the characterization of the digital holographic microscope setup, we have developed a transparent three-dimensional (3-D) reference chart that can be used as a lateral resolution chart and step-height resolution chart included in one substrate. For the monitoring of living cells, a biocompatible and autoclavable flow chamber was designed, which allows us to add, exchange, or dilute the fluid within the flow chamber. An integrated changeable coverslip enables inverse microscopic applications. Trypsinization, cell swelling and shrinking induced by osmolarity changes, and apoptosis served as model processes to elucidate the potential of the digital holographic microscopy (DHM).
Ma, Haixia; Yan, Biao; Li, Zhaona; Guan, Yulei; Song, Jirong; Xu, Kangzhen; Hu, Rongzu
2009-09-30
NTOxDNAZ was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. The thermal behavior of the title compound was studied under a non-isothermal condition by DSC and TG/DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG/DTG curves by Kissinger method, Ozawa method, the differential method and the integral method. The main exothermic decomposition reaction mechanism of NTOxDNAZ is classified as chemical reaction, and the kinetic parameters of the reaction are E(a)=149.68 kJ mol(-1) and A=10(15.81)s(-1). The specific heat capacity of the title compound was determined with continuous C(p) mode of microcalorimeter. The standard mole specific heat capacity of NTOxDNAZ was 352.56 J mol(-1)K(-1) in 298.15K. Using the relationship between C(p) and T and the thermal decomposition parameters, the time of the thermal decomposition from initialization to thermal explosion (adiabatic time-to-explosion) was obtained.
Makarov, S. V.; Plotnikov, V. A. Lysikov, M. V.; Kolubaev, E. A.
2015-10-27
The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPa makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-12-07
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.
NASA Astrophysics Data System (ADS)
De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta
2016-04-01
Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.
Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T.; Kolditz, O.
2010-03-15
The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
Alvarez, María Dolores; Cuesta, Francisco Javier; Herranz, Beatriz; Canet, Wenceslao
2017-01-01
An attempt was made to analyze the elastic modulus (G′) of chickpea flour (CF)-based muffin batters made with CF alone and with added biopolymers (whey protein (WP), xanthan gum (XG), inulin (INL), and their blends) in order to evaluate their suitability to be a wheat flour (WF) substitute in muffins, and to model the heat-induced gelatinization of batters under non-isothermal heating condition from 25 °C to 90 °C. A rheological approach is proposed to determine the kinetic parameters (reaction order (n), frequency factor (k0), and activation energy (Ea)) using linearly-increasing temperature. Zero-order reaction kinetics adequately described batter gelatinization process, therefore assuming a constant rate independent of the initial G′ value. The change of the derivative of G′ with respect to time (dG′/dt) versus temperature is described by one exponential function with activation energies ranging from 118 to 180 kJ·mol−1. Control wheat gluten batter, with higher and lower starch and protein contents, respectively, than CF-based batters, exhibited the highest Ea value. Formulation of CF-based gluten-free batters with starch and protein contents closer to the levels of WF-based batter could be a strategy to decrease differences in kinetic parameters of muffin batters and, therefore, in technological characteristics of baked muffins. PMID:28231082
Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
NASA Astrophysics Data System (ADS)
Makarov, S. V.; Plotnikov, V. A.; Lysikov, M. V.; Kolubaev, E. A.
2015-10-01
The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (Tb) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the Tb value increases, while an increase up to 200 MPa makes Tb shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.
Time-dependent tomographic reconstruction of the solar corona
NASA Astrophysics Data System (ADS)
Vibert, D.; Peillon, C.; Lamy, P.; Frazin, R. A.; Wojak, J.
2016-10-01
Solar rotational tomography (SRT) applied to white-light coronal images observed at multiple aspect angles has been the preferred approach for determining the three-dimensional (3D) electron density structure of the solar corona. However, it is seriously hampered by the restrictive assumption that the corona is time-invariant which introduces significant errors in the reconstruction. We first explore several methods to mitigate the temporal variation of the corona by decoupling the "fast-varying" inner corona from the "slow-moving" outer corona using multiple masking (either by juxtaposition or recursive combination) and radial weighting. Weighting with a radial exponential profile provides some improvement over a classical reconstruction but only beyond ≈ 3R⊙. We next consider a full time-dependent tomographic reconstruction involving spatio-temporal regularization and further introduce a co-rotating regularization aimed at preventing concentration of reconstructed density in the plane of the sky. Crucial to testing our procedure and properly tuning the regularization parameters is the introduction of a time-dependent MHD model of the corona based on observed magnetograms to build a time-series of synthetic images of the corona. Our procedure, which successfully reproduces the time-varying model corona, is finally applied to a set of 53 LASCO-C2 pB images roughly evenly spaced in time from 15 to 29 March 2009. Our procedure paves the way to a time-dependent tomographic reconstruction of the coronal electron density to the whole set of LASCO-C2 images presently spanning 20 years.
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
NASA Astrophysics Data System (ADS)
Blaizot, J. P.; Schulz, H.
1982-03-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schrödinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory.
Time-dependent Dyson orbital theory.
Gritsenko, O V; Baerends, E J
2016-08-21
Although time-dependent density functional theory (TDDFT) has become the tool of choice for real-time propagation of the electron density ρ(N)(t) of N-electron systems, it also encounters problems in this application. The first problem is the neglect of memory effects stemming from the, in TDDFT virtually unavoidable, adiabatic approximation, the second problem is the reliable evaluation of the probabilities P(n)(t) of multiple photoinduced ionization, while the third problem (which TDDFT shares with other approaches) is the reliable description of continuum states of the electrons ejected in the process of ionization. In this paper time-dependent Dyson orbital theory (TDDOT) is proposed. Exact TDDOT equations of motion (EOMs) for time-dependent Dyson orbitals are derived, which are linear differential equations with just static, feasible potentials of the electron-electron interaction. No adiabatic approximation is used, which formally resolves the first TDDFT problem. TDDOT offers formally exact expressions for the complete evolution in time of the wavefunction of the outgoing electron. This leads to the correlated probability of single ionization P(1)(t) as well as the probabilities of no ionization (P(0)(t)) and multiple ionization of n electrons, P(n)(t), which formally solves the second problem of TDDFT. For two-electron systems a proper description of the required continuum states appears to be rather straightforward, and both P(1)(t) and P(2)(t) can be calculated. Because of the exact formulation, TDDOT is expected to reproduce a notorious memory effect, the "knee structure" of the non-sequential double ionization of the He atom.
Time-Dependent Protein Thermostability Assay.
Vandecaetsbeek, Ilse; Vangheluwe, Peter
2016-01-01
Membrane protein purification often yields rather unstable proteins impeding functional and structural protein characterization. Low protein stability also leads to low purification yields as a result of protein degradation, aggregation, precipitation, and folding instability. It is often required to optimize buffer conditions through numerous iterations of trial and error to improve the homogeneity, stability, and solubility of the protein sample demanding high amounts of purified protein. Therefore we have set up a fast, simple, and high-throughput time-dependent thermostability-based assay at low protein cost to identify protein stabilizing factors to facilitate the handling and characterization of membrane proteins by subsequent structural and functional studies.
A Time Dependent Transport Equation Solver
1991-05-01
Using TWIGL Mesh Spacing ............. 63 11 Initial FEMP2D Flux Using 2X TWIGL Mesh Spacing ........ .. 64 12 Time Dependent Thermal Absorption...energy group, and g = G is the lowest ( thermal ) energy group. ?oo(r, E, t) the coefficient in the P approximation that phys- ically r’iDresents the total...than these MrPs. This suggest that the thermal flux calculations could be suspect. Indeed, both the FEMP2D and FMP2DT calculations showed that the
The spike timing dependence of plasticity
Feldman, Daniel E.
2012-01-01
In spike timing-dependent plasticity (STDP), the order and precise temporal interval between presynaptic and postsynaptic spikes determine the sign and magnitude of long-term potentiation (LTP) or depression (LTD). STDP is widely utilized in models of circuit-level plasticity, development, and learning. However, spike timing is just one of several factors (including firing rate, synaptic cooperativity, and depolarization) that govern plasticity induction, and its relative importance varies across synapses and activity regimes. This review summarizes the forms, cellular mechanisms, and prevalence of STDP, and evaluates the evidence that spike timing is an important determinant of plasticity in vivo. PMID:22920249
Exact time dependence of solutions to the time-dependent Schrödinger equation
NASA Astrophysics Data System (ADS)
Lohe, M. A.
2009-01-01
Solutions of the Schrödinger equation with an exact time dependence are derived as eigenfunctions of dynamical invariants which are constructed from time-independent operators using time-dependent unitary transformations. Exact solutions and a closed form expression for the corresponding time evolution operator are found for a wide range of time-dependent Hamiltonians in d dimensions, including non-Hermitean {\\cal PT} -symmetric Hamiltonians. Hamiltonians are constructed using time-dependent unitary spatial transformations comprising dilatations, translations and rotations and solutions are found in several forms: as eigenfunctions of a quadratic invariant, as coherent state eigenfunctions of boson operators, as plane wave solutions from which the general solution is obtained as an integral transform by means of the Fourier transform, and as distributional solutions for which the initial wavefunction is the Dirac δ-function. For the isotropic harmonic oscillator in d dimensions radial solutions are found which extend known results for d = 1, including Barut-Girardello and Perelomov coherent states (i.e., vector coherent states), which are shown to be related to eigenfunctions of the quadratic invariant by the ζ-transformation. This transformation, which leaves the Ermakov equation invariant, implements SU(1, 1) transformations on linear dynamical invariants. \\mathfrak{su}(1, 1) coherent states are derived also for the time-dependent linear potential. Exact solutions are found for Hamiltonians with electromagnetic interactions in which the time-dependent magnetic and electric fields are not necessarily spatially uniform. As an example, it is shown how to find exact solutions of the time-dependent Schrödinger equation for the Dirac magnetic monopole in the presence of time-dependent magnetic and electric fields of a specified form.
High-fidelity numerical solution of the time-dependent Dirac equation
Almquist, Martin; Mattsson, Ken; Edvinsson, Tomas
2014-04-01
A stable high-order accurate finite difference method for the time-dependent Dirac equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis. The method is applied to time-resolved quantum tunneling where a comparison with the solution to the time-dependent Schrödinger equation in 1-D illustrates the differences between the two equations. In contrast to the conventional tunneling probability decay predicted by the Schrödinger equation, the Dirac equation exhibits Klein tunneling. Solving the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin affects the tunneling process. The observed spin-dependent reflection allows for a new type of spin-selective measurements.
Pindzola, Michael S; Schultz, David Robert
2008-01-01
Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate excitation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schroedinger equation is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coordinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agreement for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions, the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its lattice.
Time-dependent convection at high latitudes
NASA Astrophysics Data System (ADS)
Idenden, D. W.; Moffett, R. J.; Quegan, S.; Fuller-Rowell, T. J.
1996-11-01
A fully time-dependent ionospheric convection model, in which electric potentials are derived by an analytic solution of Laplace's equation, is described. This model has been developed to replace the empirically derived average convection patterns currently used routinely in the Sheffield/SEL/UCL coupled thermosphere/ionosphere/plasmasphere model (CTIP) for modelling disturbed periods. Illustrative studies of such periods indicate that, for the electric field pulsation periods imposed, long-term averages of parameters such as Joule heating and plasma density have significantly different values in a time-dependent model compared to those derived under the same mean conditions in a steady-state model. These differences are indicative of the highly non-linear nature of the processes involved. Acknowledgements. The work done by P. Henelius and E. Vilenius in programme development is gratefully acknowledged. Topical Editor D. Alcayder thanks I. Pryse and A. Vallance-Jones for their help in evaluating this paper.--> Correspondence to: T. Nygrén-->
Time-dependent diffusion in stellar atmospheres
NASA Astrophysics Data System (ADS)
Alecian, G.; Stift, M. J.; Dorfi, E. A.
2011-12-01
The chemical peculiarities of Ap stars are due to abundance stratifications produced by atomic diffusion in their outer layers. Theoretical models can predict such stratifications, but so far only provide equilibrium solutions which correspond to the maximum depth-dependent abundances for each element that can be supported by the radiation field. However, these stratifications are actually built up through a non-linear, time-dependent process which has never been modelled for realistic stellar atmospheres. Here, we present the first numerical simulations of time-dependent diffusion. We solve the continuity equation after having computed, as accurately as possible, atomic diffusion velocities (with and without a magnetic field) for a simplified fictitious - but still realistic - chemical element: cloudium. The direct comparison with existing observations is not the immediate aim of this work but rather a general understanding of how the stratification build-up proceeds in time and space. Our results raise serious questions as to the relevance of equilibrium solutions and reinforce the suspicion that certain accumulations of chemical elements might prove unstable.
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
Spherical 3D isotropic wavelets
NASA Astrophysics Data System (ADS)
Lanusse, F.; Rassat, A.; Starck, J.-L.
2012-04-01
Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-05-24
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-04-14
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten
2001-01-01
FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.
Yang, Wenchao; Ji, Shouxun; Huang, Lanping; Sheng, Xiaofei; Li, Zhou; Wang, Mingpu
2014-08-15
The characterization of precipitation and hardening mechanism during non-isothermal aging had been investigated using high resolution transmission electron microscopy for an Al–Mg–Si–Cu 6005A alloy. It was proposed that the needle-shaped β″ precipitates with a three-dimension coherency strain-field and an increased number density in the Al matrix provided the maximum strengthening effect for the Al–Mg–Si–Cu 6005A alloy. Simultaneously, it was also found that the formation and evolution of clusters in the early precipitation were associated with the vacancy binding energy, during which Si atoms played an important role in controlling the numbers density of Mg/Si co-clusters, and the excess Si atoms provided the increased number of nucleation sites for the subsequent precipitates to strengthen and improve the precipitation rate. Finally, based on the experimental observation and theoretical analysis, the precipitation sequence during the early precipitation in the Al–Mg–Si–Cu 6005A alloy was proposed as: supersaturated solid solution → Si-vacancy pairs, Mg-vacancy pairs and Mg clusters → Si clusters, and dissolution of Mg clusters → Mg atoms diffusion into the existing Si clusters → Mg/Si co-clusters → GP zone. - Highlights: • β″ precipitates provide the maximum strengthening effect for the 6005A alloy. • Si atoms play an important role in controlling the numbers of Mg/Si co-clusters. • The early aging sequence is deduced based on the solute-vacancy binding energy.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Chan, William; Williams, Robert
2002-01-01
Unsteady flow simulations for RLV (Reusable Launch Vehicles) 2nd Generation baseline turbopump for one and half impeller rotations have been completed by using a 34.3 Million grid points model. MLP (Multi-Level Parallelism) shared memory parallelism has been implemented in INS3D, and benchmarked. Code optimization for cash based platforms will be completed by the end of September 2001. Moving boundary capability is obtained by using DCF module. Scripting capability from CAD (computer aided design) geometry to solution has been developed. Data compression is applied to reduce data size in post processing. Fluid/Structure coupling has been initiated.
Time Dependent Simulation of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kiris, Cetin C.; Kwak, Dochan; Chan, William; Williams, Robert
2001-01-01
The objective of this viewgraph presentation is to enhance incompressible flow simulation capability for developing aerospace vehicle components, especially unsteady flow phenomena associated with high speed turbo pumps. Unsteady Space Shuttle Main Engine (SSME)-rig1 1 1/2 rotations are completed for the 34.3 million grid points model. The moving boundary capability is obtained by using the DCF module. MLP shared memory parallelism has been implemented and benchmarked in INS3D. The scripting capability from CAD geometry to solution is developed. Data compression is applied to reduce data size in post processing and fluid/structure coupling is initiated.
Time-dependent Turbulence in Stars
NASA Astrophysics Data System (ADS)
Arnett, W. David; Meakin, Casey
2011-08-01
Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning by Meakin & Arnett (2007b) exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a global instability in the convective region, which has been suppressed in simulations of stellar evolution which use mixing-length theory (MLT). Quantitatively similar behavior occurs in the model of a convective roll (cell) of Lorenz (1963), which is known to have a strange attractor that gives rise to random fluctuations in time. An extension of the Lorenz model, which includes Kolmogorov damping and nuclear burning, is shown to exhibit bursty, recurrent fluctuations like those seen in the 3D simulations. A simple model of a convective layer (composed of multiple Lorenz cells) gives luminosity fluctuations which are suggestive of irregular variables (red giants and supergiants, see Schwarzschild (1975). Details and additional discussion may be found in Arnett & Meakin (2011). Apparent inconsistencies between Arnett, Meakin, & Young (2009) and Nordlund, Stein, & Asplund (2009) on the nature of convective driving have been resolved, and are discussed.
Time dependent thermal properties of disordered solids
NASA Astrophysics Data System (ADS)
Ochiai, Moyuru
2009-04-01
In experiments, the entropy of glass is measured by heat flow, and this leads the fact that the entropy determined by cooling and heating shows respectively lower and upper bounds of the entropy defined by statistical thermodynamics. This report presents a new theoretical approach by stochastic theory to the above phenomenon obtained by experiments of glass and makes clear the relation between calorimetric entropy and statistical mechanical one caused by the non-equilibrium process of a glass state with heat exchange. The method shown here can be applied not only so-called glass but also disordered solids. In this theory, a master equation used in non-equilibrium statistical mechanics is basic. Furthermore, a canonical distribution of fluctuations extended to the time-dependent case and detailed balance equation are the key of our theory.
Time-dependent Cooling in Photoionized Plasma
NASA Astrophysics Data System (ADS)
Gnat, Orly
2017-02-01
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts (z = 0 ‑ 3), for a range of temperatures (108–104 K), densities (10‑7–103 cm‑3), and metallicities (10‑3–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibrium (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).
Determination of Time Dependent Virus Inactivation Rates
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Vogler, E. T.
2003-12-01
A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.
Time-dependent landslide probability mapping
Campbell, Russell H.; Bernknopf, Richard L.; ,
1993-01-01
Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.
Time Dependent Fluid Occurrence Offshore Taiwan
NASA Astrophysics Data System (ADS)
Chen, L.
2010-12-01
Time Dependent Fluid Occurrence Offshore Taiwan Liwen Chenab, Wu-Cheng Chia, Char-Shine Liuc (mma@earth.sinica.edu.tw)(wchi@gate.sinica.edu.tw) ; aInstitute of Earth Sciences, Academia Sinica, Taipei, Taiwan bInstitute of Geosciences, National Taiwan University, Taipei, Taiwan ; cInstitute of Oceanography, National Taiwan University, Taipei, Taiwan Earthquake-induced groundwater flows have been observed recently. Such fluid flow might temporarily change the temperature field in the crust. Here we used seismically detected gas hydrate under seafloor to study the temperature fields at a few hundred meters subbottom depth before, and after the 2006 Henchuan earthquake (Mw7.0). We used the hydrate-related bottom-simulating-reflector (BSR) in seismic profiles to study the effects of gas/fluid migration on the BSR attributes. We have conducted two seismic experiments before and after the earthquake across the same transects near the hypocenter of the earthquake using similar air gun arrays and streamers. By analyzing this unique dataset, we found enhanced BSR reflectivity in average after the earthquake (~0.03), but the Sea-floor reflectivity is very similar (~0.5). We also found changed amplitudes versus offset (AVO) in the dataset (the gradient of reflection coefficient versus the angles was ~-0.34). We interpret these results as a consequence of earthquake-induced gas and fluid migration, bringing the gases underneath the BSR, thus the enhanced reflection coefficients. Next we will explore new methods to use the BSR as a flow meter. Using time-dependent seismic attribute analyses across transects before and after a large earthquake, we found strong evidences of earthquake-related fluid migrations and possibly associated temperature perturbations. This is among the first studies to document such feature in the offshore region.
NASA Astrophysics Data System (ADS)
Paul, S. N.; Chatterjee, A.; Paul, Indrani
2017-01-01
Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.
Perception of 3D spatial relations for 3D displays
NASA Astrophysics Data System (ADS)
Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.
2004-05-01
We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
None
2016-07-12
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
NASA Astrophysics Data System (ADS)
van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin
2014-03-01
We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
NASA Astrophysics Data System (ADS)
Dev, Apul N.; Deka, Manoj Kr.
2017-10-01
The evolution characteristics of dust-acoustic shock wave phenomenon in an arbitrarily charged dusty plasma in presence of pair-ion are investigated by deriving modified Complex Burgers' equation. In this work, the effect of state of both the ions on the shock wave potential is analysed and discussed in detail. It has been observed that the variation of the non-linear coefficient is more consistent with the non-isothermal positive ions moving toward thermal equilibrium than with non-isothermal negative ions. A significant effect on the amplitude of the shock wave potential is observed as the distribution of the non-isothermal positive and negative ions changes from a hump shape through the flat-topped to Boltzmann type. A weighty effect on the height of the shock wave is observed as and when the Mach number of positive and negative ions changes. The shock wave potential shows a greater (lesser) value with negative (positive) ions moving ahead for thermal equilibrium.
Franco-Vega, Avelina; Ramírez-Corona, Nelly; López-Malo, Aurelio; Palou, Enrique
2015-12-01
Estimation of Listeria monocytogenes survival during thermoultrasonic treatments in non-isothermal conditions was determined considering an increment from 45 to 70 °C, assessing the adequacy of predictions through experimental data obtained in laboratory media model systems. In order to characterize the sonication effect on the survival pattern, observed behavior was compared to that obtained when only thermal treatment was applied. A noticeable impact on L. monocytogenes survival in non-isothermal conditions was observed when heat is combined with ultrasound, since the sonication effect modifies not only the temperature profile, but also the dynamic survival pattern. It was observed that both treatments were able to achieve a reduction of 5.5 log cycles of the initial population, although the inactivation temperature and the required time to reach such temperature were lower for thermoultrasonic treatments than for thermal treatments. Furthermore, as the temperature dependent parameters required to estimate the dynamic responses in non-isothermal treatments were initially determined from isothermal conditions, the sonication effect on these parameters and its implications for dynamic estimations, which are closely related to the nonlinearity of the systems, were also addressed; for thermal treatments, obtained isothermal curves were properly described by the Weibull model and first order kinetics, while for thermoultrasonication treatments a clear non-linear behavior was observed and only the Weibullian model was able to adequately describe the inactivation pattern.
El Sherif, Hazem; Di Martino, Silvana; Travascio, Paola; De Maio, Anna; Portaccio, Marianna; Durante, Daniela; Rossi, Sergio; Canciglia, Paolo; Mita, Damiano G
2002-05-08
The behavior of three different catalytic membranes, obtained by immobilizing urease on nylon sheets chemically grafted with methyl methacrylate, was studied in a bioreactor operating under isothermal and non-isothermal conditions. Membrane activation was carried out by condensation or acyl azide reaction, and spacers of different lengths, such as hexamethylendiamine or hydrazine, were used. Under isothermal conditions, the activities of the catalytic membranes and soluble urease were characterized as a function of pH, temperature, and urea concentration. Both enzyme forms showed the same optimum pH, whereas the optimum temperature was lower for the immobilized enzymes. The spacer length appeared to determine broader pH- and temperature-activity profiles for the urease derivatives. The apparent K(m) values of the insoluble urease were dependent on membrane type and were higher than those of the soluble counterpart, thus indicating an affinity loss for urea. Under non-isothermal conditions, all membranes exhibited an increase of percentage activity proportional to the applied temperature difference and decreasing with the increase of urea concentrations. A decrease of the apparent K(m) was also observed. These results suggest that substrate diffusion limitations due to the immobilization process can be overcome in the presence of temperature gradients. In addition, the remarkable reduction of the production times supports the use of non-isothermal bioreactors for the treatment of urea-polluted waste waters.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
INCORPORATING DYNAMIC 3D SIMULATION INTO PRA
Steven R Prescott; Curtis Smith
2011-07-01
Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Stanton, M M; Samitier, J; Sánchez, S
2015-08-07
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.
NASA Astrophysics Data System (ADS)
Vilarrasa, V.; Olivella, S.; Silva, O.; Carrera, J.
2012-04-01
Storage of carbon dioxide (CO2) in deep geological formations is considered an option for reducing greenhouse gas emissions to the atmosphere. Injecting CO2 into aquifers at depths greater than 800 m brings CO2 to a supercritical state where its density is large enough to ensure an efficient use of pore space. However, CO2 will always be lighter than the resident brine. Therefore, it will flow along the top of the aquifer because of buoyancy. Thus, suitable aquifers should be capped by a low-permeability rock to avoid CO2 migration to upper aquifers and the surface. Therefore, ensuring mechanical stability of the caprock is critical to avoid CO2 leakage. Yet, CO2 injection can result in significant pressure buildup, which affects the stress field and may induce large deformations (Vilarrasa et al., 2010b). These can eventually damage the caprock and open up new flow paths. Moreover, inflowing CO2 may not be in thermal equilibrium with the aquifer, which induces stress changes that may affect the caprock stability. We use the coupled thermo-hydro-mechanical finite element numerical code CODE_BRIGHT (Olivella et al., 1994, 1996) to simulate these processes. We have extended the code to simulate CO2 as a non-wetting phase. To this end, we have implemented the Redlich-Kwong equation of state for CO2. As a first step, two-phase flow studies (Vilarrasa et al., 2010a) were carried out. Next, coupled hydro-mechanical simulations were performed (Vilarrasa et al., 2010b). Finally, we have implemented CO2 thermal properties to simulate non-isothermal CO2 injection in deformable deep saline formations. Coupled thermo-hydro-mechanical simulations of CO2 injection produce a region in thermal equilibrium with the injected CO2. The thermal transition is abrupt. A small rise in the temperature of the supercritical CO2 region is produced by the exothermal reaction of CO2 dissolution into the brine. An induced thermal stress change due to thermal contraction/expansion of the rock
2007-11-02
AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems
Time dependent particle emission from fission products
Holloway, Shannon T; Kawano, Toshihiko; Moller, Peter
2010-01-01
Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.
Heating liquid dielectrics by time dependent fields
NASA Astrophysics Data System (ADS)
Khalife, A.; Pathak, U.; Richert, R.
2011-10-01
Steady state and time-resolved dielectric relaxation experiments are performed at high fields on viscous glycerol and the effects of energy absorption from the electric field are studied. Time resolution is obtained by a sinusoidal field whose amplitude is switched from a low to a high level and by recording voltage and current traces with an oscilloscope during this transition. Based on their distinct time and frequency dependences, three sources of modifying the dynamics and dielectric loss via an increase in the effective temperature can be distinguished: electrode temperature, real sample temperature, and configurational temperatures of the modes that absorbed the energy. Isothermal conditions that are desired for focusing on the configurational temperature changes (as in dielectric hole burning and related techniques) are maintained only for very thin samples and for moderate power levels. For high frequencies, say ν > 1 MHz, changes of the real temperature will exceed the effects of configurational temperatures in the case of macroscopic samples. Regarding microwave chemistry, heating via cell phone use, and related situations in which materials are subject to fields involving frequencies beyond the MHz regime, we conclude that changes in the configurational (or fictive) temperatures remain negligible compared with the increase of the real temperature. This simplifies the assessment of how time dependent electric fields modify the properties of materials.
Tunable Time-Dependent Colloidal Interactions
NASA Astrophysics Data System (ADS)
Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.
Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.
Infrared Blobs : Time-dependent Flags
NASA Astrophysics Data System (ADS)
McCullough, P. R.; Mack, J.; Dulude, M.; Hilbert, B.
2014-10-01
We describe the creation of time-dependent flags for pixels associated with "blobs" on the WFC3 IR detector. We detect the blobs on flat fields obtained by repeated observations of the night side of the Earth. We provide the most complete census of IR blobs' positions, radii, and times of first appearance. In aggregate, a set of 46 blobs, 27 "strong" and 19 "medium" in their effective scattering cross section, affect slightly less than 1% of the pixels of the detector. A second set of 81 "weak" (and typically smaller) blobs affect another 1% of the pixels. In the past, the "blob" flag, bit 9 (i.e. value = 512) in the data quality (DQ) array described in Table 2.5 of the WFC3 Data Handbook (Rajan et al. 2010) has been a static 2-D array; henceforth a set of such arrays, each associated with a "use after" date corresponding to the appearance of one or more new blobs, can be used. We prepared such DQ arrays using the 46 "strong" and "medium" blobs and discuss why we did not include the fainter blobs therein. As an added data product, we create and test a blob flat field that corrects the effects of blobs on extended emission; however, it should not be applied if stellar photometry is the goal.
NASA Astrophysics Data System (ADS)
Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo
2017-07-01
The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature
Time-Dependent, Parallel Neutral Particle Transport Code System.
BAKER, RANDAL S.
2009-09-10
Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and the Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D (slab, two
1997-07-13
The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.
This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.
Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik
2011-01-01
We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.
Rich, D.O.; Pope, S.C.; DeLapp, J.G.
1994-10-01
In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.
[Tridimensional (3D) endoscopic ultrasonography].
Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R
2007-01-01
A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
Time-dependence in mixture toxicity prediction.
Dawson, Douglas A; Allen, Erin M G; Allen, Joshua L; Baumann, Hannah J; Bensinger, Heather M; Genco, Nicole; Guinn, Daphne; Hull, Michael W; Il'Giovine, Zachary J; Kaminski, Chelsea M; Peyton, Jennifer R; Schultz, T Wayne; Pöch, Gerald
2014-12-04
The value of time-dependent toxicity (TDT) data in predicting mixture toxicity was examined. Single chemical (A and B) and mixture (A+B) toxicity tests using Microtox(®) were conducted with inhibition of bioluminescence (Vibrio fischeri) being quantified after 15, 30 and 45-min of exposure. Single chemical and mixture tests for 25 sham (A1:A2) and 125 true (A:B) combinations had a minimum of seven duplicated concentrations with a duplicated control treatment for each test. Concentration/response (x/y) data were fitted to sigmoid curves using the five-parameter logistic minus one parameter (5PL-1P) function, from which slope, EC25, EC50, EC75, asymmetry, maximum effect, and r(2) values were obtained for each chemical and mixture at each exposure duration. Toxicity data were used to calculate percentage-based TDT values for each individual chemical and mixture of each combination. Predicted TDT values for each mixture were calculated by averaging the TDT values of the individual components and regressed against the observed TDT values obtained in testing, resulting in strong correlations for both sham (r(2)=0.989, n=25) and true mixtures (r(2)=0.944, n=125). Additionally, regression analyses confirmed that observed mixture TDT values calculated for the 50% effect level were somewhat better correlated with predicted mixture TDT values than at the 25 and 75% effect levels. Single chemical and mixture TDT values were classified into five levels in order to discern trends. The results suggested that the ability to predict mixture TDT by averaging the TDT of the single agents was modestly reduced when one agent of the combination had a positive TDT value and the other had a minimal or negative TDT value. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Time dependence of Hawking radiation entropy
Page, Don N.
2013-09-01
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.
Time-dependent radioactivity distribution in MAFF
NASA Astrophysics Data System (ADS)
Nebel, F.; Zech, E.; Faestermann, T.; Krücken, R.; Maier-Komor, P.; Assmann, W.; Szerypo, J.; Groß, M.; Kester, O.; Thirolf, P. G.; Grötzschel, R.
2006-05-01
The Munich Accelerator for Fission Fragments is planned to be installed at the FRM II in Garching. It will operate a uranium-carbide-loaded graphite matrix as a target for neutron-induced fission. The radioactive reaction fragments leave the ion source as both, atoms and ions. For radiation safety it is imperative to have a basic understanding of the fragment distribution within the beam line. Atoms leaving the graphite matrix will spread like a gas and stick to surfaces depending on their species. A probabilistic Monte-Carlo approach is used to predict the surface coating of internal surfaces of the beam line for all fission nuclides. To decrease calculation time, the problem is reduced to two dimensions with the surface areas being a measure for the probability, that they are hit by a particle. The program is completely time dependent to implement radioactive decay. Ions leaving the fission ion source are transported by electrostatic means towards the mass pre-separator, a low-resolution dipole magnet with a complex slit system in the focal plane. All unwanted ions are stopped at the slits, resulting in a high level of radioactive contamination. While it is advantageous for shielding purposes to have the majority of the contamination in one point, precautions must be taken to ensure that it stays that way. Material corrosion caused by sputtering will release previously implanted radionuclides. To reduce this effect, different methods are under investigation, one of which is changing the slit geometry. The considered designs will be described and experimental results will be shown.
Time dependence of Hawking radiation entropy
NASA Astrophysics Data System (ADS)
Page, Don N.
2013-09-01
If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.
Modelling Polymer Deformation and Welding Behaviour during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
2016-11-01
3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.
2012-09-30
This study will serve as the genesis to the future evolution of an inversion algorithm whereby one could reconstruct images that have been... Evolution of Polarization of Light in the Ocean” which has been accepted for publication in Applied Optics. RESULTS a) Raman Scattering. The...input to our codes in our MURI study of cephalopods . REFERENCES 1. G. W. Kattawar and G. N. Plass, “Asymptotic Radiance and Po1arization in
2010-01-01
RaDyO platforms, the R/ P FLoating Instrument Platform (FLIP) and the R/V Kilo Moana (KM), are usually different. Among other important results, it is... Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete ordinates method”, Atmos. Res. 33, 283-308, (1994), 4. J. L...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for
2011-09-30
1 m 440 nm (b) 488 nm (c) 0.0 0.2 0.4 0.6 0.8 1.0 510 nm D oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 0.0 0.2 0.4 0.6 0.8 1.0 650 nm (g) -90...1 m 440 nm (b) 488 nm (c) -90 -45 0 45 90 510 nm A oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 -90 -45 0 45 90 650 nm (g) -90 -45 0 45 90 135...47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete
2008-01-01
the detector and the surface. The simulated radiance I, Stokes parameters Q, U, and degree of linear polarization P , as well as the counterparts...from field measurements, are shown in Fig. 6. 8 Numerical Simulations Measurements I Q U 9 P Fig. 6. The angular distributions of the downward...radiance (I), Stokes parameters Q and U, and the degree of linear polarization ( P ), as given by a Monte Carlo simulation (left panel) and by
Glimm, J.; Grove, J. W.; Li, X. L.; Li, Y.; Xu, Z.
2002-01-01
Front tracking traces the dynamic evolution of an interface separating differnt materials or fluid components. In this paper, they describe three types of the grid generation methods used in the front tracking method. One is the unstructured surface grid. The second is a structured grid-based reconstruction method. The third is a time-space grid, also grid based, for a conservative tracking algorithm with improved accuracy.
Spin fluctuations in 3d paramagnetic metals
NASA Astrophysics Data System (ADS)
Wysocki, Aleksander; Kutepov, Andrey; Antropov, Vladimir
Spin fluctuations (SFs) in 3d paramagnetic metals were investigated using the linear response formalism within the time dependent density functional theory. An efficient scheme of frequency integration using the Matsubara technique has been implemented and tested. The SFs spectrum in 3d paramagnets is analyzed in real and reciprocal spaces as a function of frequency and temperature. For all materials the SFs are characterized by the coexistence of low and high energy branches which originate from different regions of the Brillouin zone. The low-energy ones can be measured by neutron scattering experiments while the high-energy SFs appear to be more localized. Further, we studied the nature of square of fluctuating magnetic moment in these materials. This work was supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), and by the Office of Basic Energy Science, Division of Materials Science and Engineering. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kris, Cetin C.; Kwak, Dochan
2001-01-01
The objective of the current effort is to provide a computational framework for design and analysis of the entire fuel supply system of a liquid rocket engine, including high-fidelity unsteady turbopump flow analysis. This capability is needed to support the design of pump sub-systems for advanced space transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not been available for real-world engineering applications. The present effort will provide developers with information such as transient flow phenomena at start up, impact of non-uniform inflows, system vibration and impact on the structure. In the proposed paper, the progress toward the capability of complete simulation of the turbo-pump for a liquid rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as a test case for evaluation of the hybrid MPI/Open-MP and MLP versions of the INS3D code. The relative motion of the grid systems for the rotor-stator interaction was obtained using overset grid techniques. Time-accuracy of the scheme has been evaluated with simple test cases. Unsteady computations for the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried out on Origin 2000 systems at NASA Ames Research Center. Results from these time-accurate simulations with moving boundary capability will be presented along with the performance of parallel versions of the code.
LASTRAC.3d: Transition Prediction in 3D Boundary Layers
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.
NASA Astrophysics Data System (ADS)
Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen
2008-02-01
Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
Time-Dependent Rate Phenomenon in Viruses
Aiewsakun, Pakorn
2016-01-01
ABSTRACT Among the most fundamental questions in viral evolutionary biology are how fast viruses evolve and how evolutionary rates differ among viruses and fluctuate through time. Traditionally, viruses are loosely classed into two groups: slow-evolving DNA viruses and fast-evolving RNA viruses. As viral evolutionary rate estimates become more available, it appears that the rates are negatively correlated with the measurement timescales and that the boundary between the rates of DNA and RNA viruses might not be as clear as previously thought. In this study, we collected 396 viral evolutionary rate estimates across almost all viral genome types and replication strategies, and we examined their rate dynamics. We showed that the time-dependent rate phenomenon exists across multiple levels of viral taxonomy, from the Baltimore classification viral groups to genera. We also showed that, by taking the rate decay dynamics into account, a clear division between the rates of DNA and RNA viruses as well as reverse-transcribing viruses could be recovered. Surprisingly, despite large differences in their biology, our analyses suggested that the rate decay speed is independent of viral types and thus might be useful for better estimation of the evolutionary time scale of any virus. To illustrate this, we used our model to reestimate the evolutionary timescales of extant lentiviruses, which were previously suggested to be very young by standard phylogenetic analyses. Our analyses suggested that these viruses are millions of years old, in agreement with paleovirological evidence, and therefore, for the first time, reconciled molecular analyses of ancient and extant viruses. IMPORTANCE This work provides direct evidence that viral evolutionary rate estimates decay with their measurement timescales and that the rate decay speeds do not differ significantly among viruses despite the vast differences in their molecular features. After adjustment for the rate decay dynamics, the
NASA Astrophysics Data System (ADS)
Billy, F.; Coisne, D.; Sanchez, L.; Perrault, R.
2001-10-01
Color Doppler is routinely used for visualisation of intra cardiac flows and quantification of valvular heart disease, Nevertheless the 2D visualization of a complex 3D phenomenon is the major limitation of this technique, In particular, in clinical setting, the flow rate calculation upstream a regurgitant orifice (i,e, mitral valve insufficiency), assumes that the velocity field in the convergent region have hemispheric shapes and introduce miscalculation specially in case of prolaps regurgitant orifices, The main objective of this study was to characterize the dynamic 3D velocity field of the convergent region upstream a prolaps model of regurgitant orifice based on 2D time dependent PIV reconstruction.
NASA Astrophysics Data System (ADS)
Lill, J. V.; Haftel, M. I.; Herling, G. H.
1989-05-01
A quantum mechanical time-dependent variational principle is generalized using the classical theory of fluids to obtain a variational principle suitable for the fluid dynamical description of mixed state quantum mechanics. A newly derived set of moment equations, in both standard and renormalized form, can be derived with the aid of this principle through minimization of the error in expressing the total derivative of the Wigner function. Coupled systems are studied in the time-dependent Hartree (TDH) approximation using a novel variational principle, and the renormalization procedure used earlier in the examination of single particle dynamics is extended to the TDH analysis. Use of a local Maxwellian ansatz for each particle results in a particularly simple ``two-fluid'' theory, the TDH/LM approximation, which does not violate the standard and renormalized energy conservation theorems derived earlier for the single particle equations. The fluid dynamical TDH/LM approximation is shown to possess a simple semiclassical interpretation.
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
3D Printed Bionic Nanodevices.
Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C
2016-06-01
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the
Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.
2016-01-01
Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with
Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique
2011-01-01
Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Jiang, Fulin; Zurob, Hatem S.; Purdy, Gary R.; Zhang, Hui
2016-07-15
In situ electrical resistivity monitoring technique was employed to continuously evaluate the precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during typical artificial aging treatments. The effects of artificial aging on the precipitates stability during non-isothermal heat treatments were also explored. Conventional hardness test, transmission electron microscopy and differential scanning calorimetry were also adopted to verify the electrical resistivity results. The results indicated that both the precipitation process and its timely rate could be followed by the monitored electrical resistivity during artificial aging treatments. The electrical resistivity results gave overall information on continuous precipitation and dissolution processes, especially under high heating rates. Samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h presented more stable state and coarser precipitates than the samples only artificial aging heat treated at 120 °C for 24 h or triple artificial aging heat treated at 120 °C/24 h + 195 °C/15 min + 120 °/24 h. While the incoherent η precipitates in the samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h were more easiness to coarsening and dissolve during non-isothermal heat treatments as well. - Highlights: • In situ electrical resistivity monitoring technique was employed on an Al-Zn-Mg-Cu alloy. • The precipitate evolution during typical artificial aging treatments was studied. • The precipitate stability during non-isothermal heat treatments was explored. • The electrical resistivity wonderfully monitored continuous precipitation and dissolution. • The alloy submitted to a T7 treatment presents a more stable state during heating due to incoherent η precipitates.
Time dependent deformation of Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Montgomery-Brown, Emily Kvietka Desmarais
to a decollement structure 8 km under the south flank, and the locations of the microearthquakes suggest that both occur on the same structure. In 2007, Episode 56 of the Pu'u 'O'o-Kupianaha eruption occurred. This episode was exciting both because it was the largest intrusion in the last decade, and because it occurred concurrently with a flank slow-slip event. The intrusion started on Father's day (June 17th), 2007 with increased seismicity and abrupt tilts at the summit and rift zones. Quasi-static models of the total deformation determined from GPS, tilt, and InSAR indicate that the intrusion occurred on two en echelon dike segments in the upper East Rift Zone along with deformation consistent with slow-slip in the same areas of previous events. The ˜ 2 m maximum opening occurred on the eastern segment near Makaopui crater. Unlike previous intrusions in 1997, 1999, and 2000, the dike model was not sufficient to explain deformation on the western flank. Additionally, a coastal tiltmeter installed in anticipation of a slow-slip event recorded tilts consistent with those observed during the 2005 slow-slip event. These observations led to the conclusion that a concurrent slow-slip event occurred. Geodetic models indicate a similar amount of decollement slip occurred as in previous slow-slip events. Sub-daily GPS positions were used to study the spatio-temporal distribution of the dike intrusion. The time-dependent intrusion model shows that the intrusion began on the western en echelon segment before jumping to the eastern segment, which accumulated the majority of the 2 m of opening. Sub-daily GPS positions limit the number of stations available since there are very few continuous stations north of the East Rift Zone, where coverage is critical for separating the intrusion from the slow-slip. However, an ENVISAT interferogram at 08:22 on June 18, 2007 provides additional spatial coverage of deformation up to that point. Combining this image with the GPS and tilt
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
2010-02-23
This anaglyph from images captured by NASA Cassini spacecraft shows a dramatic, 3-D view of one of the deep fractures nicknamed tiger stripes on Saturn moon Enceladus which are located near the moon south pole, spray jets of water ice.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
1999-06-25
Ganges Chasma is part of the Valles Marineris trough system that stretches nearly 5,000 kilometers 3,000 miles across the western equatorial region of Mars. This stereo anaglyph is from NASA Mars Global Surveyor. 3D glasses are necessary.
2004-02-02
This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
ERIC Educational Resources Information Center
Mayshark, Robin K.
1991-01-01
Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)
2014-11-21
A 3D image shows what it would look like to fly over the surface of comet 67P/Churyumov-Gerasimenko. The image was generated by data collected by ESA Philae spacecraft during the decent to the spacecraft initial touchdown on the comet Nov. 12, 2014.
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
Dimensional crossover in Rayleigh Taylor flows driven by time dependent accelerations
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
We investigate the nature of dimensional crossover i.e. transition between the nearly isotropic 3D square bubbflows les to highly anisotropic 2D flows in Rayleigh Taylor (RT) instability. Power law time dependence of the acceleration is considered with the emphasis on sub-regime, where the behavior is RT type. We consider flow with rectangular symmetry and obtain the 3D square and 2D limits with leading order rectangular corrections. Solutions evolve as power law and solutions form a two parameter family parametrized by the principal curvatures of the bubble. The bubbles with ``near circular contour'' separate the 2-dimensional solution space into two distinct regimes having distinct properties under the dimensional crossover. In one regime, the elongated bubbles transform to 2D solutions, whereas in the other the elongated bubbles flatten under a dimensional crossover. 3D square bubbles are universally stable whereas 2D bubbles are unstable with respect to 3D modulations, implying that the dimensional crossover is discontinuous. The time dependence affects the growth/decay of perturbations and has no consequence on the overall stability properties of the solution. The work is supported by the US National Science Foundation.
Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M
2014-04-01
The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua
2016-11-01
The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.
NASA Astrophysics Data System (ADS)
Ravikumar, V. V.; Kumaran, S.
2017-02-01
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400°C to 100°C in 100°C steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of α-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room temperature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.
Aldars-García, Laila; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia
2015-10-01
Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four theoretical temperature scenarios, including temperature levels observed in pistachio nuts during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. Logistic models, with temperature and time as explanatory variables, were fitted to the probability of growth and AFB1 production under a constant temperature. Subsequently, they were used to predict probabilities under non-isothermal scenarios, with levels of concordance from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information obtained in the present work could be used by producers and processors to predict the time for AFB1 production by A. flavus on pistachio nuts during transport and storage.
Ma, Haixia; Song, Jirong; Xiao, Heming; Hu, Rongzu; Wang, Huali; Jin, Penggang; Wang, Yuan
2006-02-06
3-Nitro-1,2,4-triazol-5-one (NTO) rubidium and cesium complexes were synthesized by mixing the aqueous solution of NTO and their respective metal carbonates. Their thermal decomposition and the non-isothermal kinetics of the dehydration reaction were studied under the non-isothermal condition by DSC and TG-DTG methods. The kinetic parameters were obtained from analysis of the DSC and TG-DTG curves by Kissinger method, Ozawa method, the differential method and the integral method. The most probable mechanism functions for the dehydration reaction of the title complexes were suggested by comparing the kinetic parameters. The dehydration decomposition reaction of RbNTO.H2O and CsNTO.H2O appears to be the same as Avrami-Erofeev equation: f(alpha) = (5/2)(1-alpha)[-ln(1-alpha)](3/5), G(alpha)=[-ln(1-alpha)](2/5), n = 2/5. The critical temperature of thermal explosion is 240.88 degrees C for RbNTO.H2O and 246.27 degrees C for CsNTO.H2O.
Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M
2013-02-05
This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.
Non-isothermal crystallization kinetics of the BaTiO3-KNbO3-SiO2 glass
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Yang, Y. S.; Choi, H. W.
2015-04-01
We have investigated the non-isothermal formation kinetics of nanocrystals from the BaTiO3-KNbO3-SiO2 (BKSO) glass at temperatures from room temperature to 800 °C. The thermal characteristics and the structural transformations of the BKSO glass have been studied by means of a differential thermal analysis and X-ray diffraction. The crystallization of BKSO glass is found to accompany a single-step occurrence of a tetragonal Ba3TiNb4O15 nanocrystal structure. During the crystallization, a nanocrystals with a size of ˜40 nm at the initial stage grow with increasing temperature and reach a size of ˜120 nm by the time the crystallization finishes. We use the non-isothermal model of Johnson-Mehl-Avrami-Kolmogorov to characterize the kinetics of the crystallization process for the BKSO glass. The Avrami exponent of 3.5 indicates that the crystallization mechanisms is an increasing nucleation rate with diffusion-controlled growth. In the view of applications, providing information on how to control the size of nanograins systematically by simply controlling the annealing temperature of the glass state, as described in this study, should be useful.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib
2012-01-01
In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.
Belenkov, E. A. Ali-Pasha, V. A.
2011-01-15
The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.
DAGON: a 3D Maxwell-Bloch code
NASA Astrophysics Data System (ADS)
Oliva, Eduardo; Cotelo, Manuel; Escudero, Juan Carlos; González-Fernández, Agustín.; Sanchís, Alberto; Vera, Javier; Vicéns, Sergio; Velarde, Pedro
2017-05-01
The amplification of UV radiation and high order harmonics (HOH) in plasmas is a subject of raising interest due to its different potential applications in several fields like environment and security (detection at distance), biology, materials science and industry (3D imaging) and atomic and plasma physics (pump-probe experiments). In order to develop these sources, it is necessary to properly understand the amplification process. Being the plasma an inhomogeneous medium which changes with time, it is desirable to have a full time-dependent 3D description of the interaction of UV and XUV radiation with plasmas. For these reasons, at the Instituto de Fusíon Nuclear we have developed DAGON, a 3D Maxwell-Bloch code capable of studying the full spationtemporal structure of the amplification process abovementioned.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
[Real time 3D echocardiography
NASA Technical Reports Server (NTRS)
Bauer, F.; Shiota, T.; Thomas, J. D.
2001-01-01
Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
GPU-Accelerated Denoising in 3D (GD3D)
2013-10-01
The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.
NASA Astrophysics Data System (ADS)
Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.
2002-12-01
Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated
The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses
NASA Astrophysics Data System (ADS)
Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart
2012-01-01
This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.
Interactive 3D Mars Visualization
NASA Technical Reports Server (NTRS)
Powell, Mark W.
2012-01-01
The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Technical Reports Server (NTRS)
2004-01-01
This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.
Love, Lonnie
2015-01-09
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Structure and evolution of time-dependent intermediate shocks
NASA Technical Reports Server (NTRS)
Wu, C. C.; Kennel, C. F.
1992-01-01
A quantitative description of time-dependent intermediate shocks is formulated using the Cohen-Kulsrud-Burgers equations. In noncoplanar Riemann problems, time-dependent two-three transition intermediate shocks evolve in time as a localized self-similar structure whose strength decreases as 1/the square root of t, and whose width expands as the square root of t. Time-dependent intermediate shocks offer a way of solving the noncoplanar MHD Riemann problem.
NASA Astrophysics Data System (ADS)
Amado, Antonio; Schmid, Manfred; Wegener, Konrad
2015-05-01
Polymer processing using Additive Manufacturing Technologies (AM) has experienced a remarkable growth during the last years. The application range has been expanding rapidly, particularly driven by the so-called consumer 3D printing sector. However, for applications demanding higher requirements in terms of thermo-mechanical properties and dimensional accuracy the long established AM technologies such as Selective Laser Sintering (SLS) do not depict a comparable development. The higher process complexity hinders the number of materials that can be currently processed and the interactions between the different physics involved have not been fully investigated. In case of thermoplastic materials the crystallization kinetics coupled to the shrinkage strain development strongly influences the stability of the process. Thus, the current investigation presents a transient Finite Element simulation of the warpage effect during the SLS process of a new developed polyolefin (co-polypropylene) coupling the thermal, mechanical and phase change equations that control the process. A thermal characterization of the material was performed by means of DSC, integrating the Nakamura model with the classical Hoffmann-Lauritzen theory. The viscoelastic behavior was measured using a plate-plate rheometer at different degrees of undercooling and a phase change-temperature superposition principle was implemented. Additionally, for validation porpoises the warpage development of the first sintered layers was captured employing an optical device. The simulation results depict a good agreement with experimental measurements of deformation, describing the high sensitivity of the geometrical accuracy of the sintered parts related to the processing conditions.
Positional Awareness Map 3D (PAM3D)
NASA Technical Reports Server (NTRS)
Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise
2012-01-01
The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.
Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.
2013-01-01
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097
3D Printable Graphene Composite
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
3D Printable Graphene Composite
NASA Astrophysics Data System (ADS)
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-07-01
In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.
3D medical thermography device
NASA Astrophysics Data System (ADS)
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
3D acoustic atmospheric tomography
NASA Astrophysics Data System (ADS)
Rogers, Kevin; Finn, Anthony
2014-10-01
This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.
Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C
2013-06-12
The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.
3D structured illumination microscopy
NASA Astrophysics Data System (ADS)
Dougherty, William M.; Goodwin, Paul C.
2011-03-01
Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Martian terrain & airbags - 3D
NASA Technical Reports Server (NTRS)
1997-01-01
Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
Larry Lawrence; Bruce Miller
2004-09-01
The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data
A time-dependent vector field topology based on streak surfaces.
Uffinger, Markus; Sadlo, Filip; Ertl, Thomas
2013-03-01
It was shown recently how the 2D vector field topology concept, directly applicable to stationary vector fields only, can be generalized to time-dependent vector fields by replacing the role of stream lines by streak lines. The present paper extends this concept to 3D vector fields. In traditional 3D vector field topology separatrices can be obtained by integrating stream lines from 0D seeds corresponding to critical points. We show that in our new concept, in contrast, 1D seeding constructs are required for computing streak-based separatrices. In analogy to the 2D generalization we show that invariant manifolds can be obtained by seeding streak surfaces along distinguished path surfaces emanating from intersection curves between codimension-1 ridges in the forward and reverse finite-time Lyapunov exponent (FTLE) fields. These path surfaces represent a time-dependent generalization of critical points and convey further structure in time-dependent topology of vector fields. Compared to the traditional approach based on FTLE ridges, the resulting streak manifolds ease the analysis of Lagrangian coherent structures (LCS) with respect to visual quality and computational cost, especially when time series of LCS are computed. We exemplify validity and utility of the new approach using both synthetic examples and computational fluid dynamics results.
NASA Astrophysics Data System (ADS)
Culas, Sunil; Samuel, Jadu
2013-05-01
The kinetics of the thermal decomposition of untreated and γ-irradiated strontium nitrate, Sr(NO3)2 was studied under non-isothermal conditions at different heating rates (5, 10, 15 and 20 °C min-1) in nitrogen atmosphere. The data were analysed using both isoconversional and non-isoconversional methods. The activation energies were calculated by Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman (FR) methods. The results show that the irradiation enhances the decomposition and the effect increases with the irradiation dose. The activation energy decreases on irradiation. The appropriate conversion model for the thermal decomposition process selected by means of the master-plot method agrees with three-dimensional diffusion model (D3 mechanism), g(α)=[1-(1-α)1/3]2 for both untreated and irradiated salts at all heating rates.
NASA Astrophysics Data System (ADS)
Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin
2016-08-01
Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)
Time-dependent Radial Transport of Electron Distributions Due to ECCD in DIII-D
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Smirnov, A. P.; Prater, R.; Petty, C. C.
2007-11-01
The radial transport modeling capability in the CQL3D bounce-averaged Fokker-Planck collisional-rf quasilinear code[1] has been greatly improved and the self-consistent time-dependent toroidal electric field added, making the code truly a ``Fokker-Planck-Transport'' code. The time-dependent, coupled 3D Fokker-Planck equation and the Ampere-Faraday Law equation are solved for the electron distribution, f( u,θu,ρ,t ), and the toroidal loop voltage, Vloop( ρ,t ). A fully 3D, time-implicit solution of the FP equation using sparse-matrix methods[2] is coupled to a new iterative toroidal electric field solve. The DIII-D ECH experiment is in an intermediate driven regime with τtransport τslowing[3] for the EC driven electrons. Results will be reported for time-evolution of radial profiles of current density, fast electrons, and toroidal loop voltage due to EC heating and current drive in DIII-D. [1] R.W. Harvey and M.G. McCoy, IAEA TCM on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, 1992; USDOC NTIS No. 93002962. [2] Y. Peysson et al., Radio Frequency Power in Plasmas, 15th Topical Conference, Moran, Wyoming (2003). [3] R.W. Harvey et al., Phys. Rev. Lett. 88, 205001 (2002).
NASA Astrophysics Data System (ADS)
Mahfouz, R. M.; Ahmed, G. A.-W.; Alshammari, M. R.
2014-06-01
The non-isothermal decomposition of unirradiated and γ-irradiated hydrated gadolinium acetylacetone with 102 kGy γ-ray absorbed dose was carried out in air and in nitrogen atmospheres and in the temperature range of 25-1000°C. The results indicate that gadolinium acetylacetonate decomposes through four main decomposition steps leading to the formation of intermediate products whose chemical structure is independent of the gas atmosphere applied and on the investigated absorbed dose. The final product at 820°C was found to be Gd2O3 irrespective of the gas atmosphere and the irradiation conditions. The non-isothermal data were analyzed using linear Flynn-Wall-Ozawa and non-linear Vyazovkin (VYZ) iso-conversional methods. The results of the application of these free models on the present kinetic data showed that the activation energy, Ea is independent of α in a very wide conversion range (0.1-0.9) indicating that the decomposition process is controlled by a unique kinetic model. The results of the model-fitting analysis showed that the decomposition course of the four decomposition steps of hydrated gadolinium acetylacetone was controlled by the D3 Jander diffusion model. Pure phase of Gd2O3 nanoparticles was obtained by thermal oxidation of γ-irradiated GdAcAc.3 H2O at 800°C for 6 h. X-ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM) techniques were employed for characterization of the as-synthesized nanoparticles. This is the first attempt to prepare Gd2O3 nanoparticles by solid-state thermal decomposition of γ-irradiated hydrated gadolinium acetylacetone.
Love, Lonnie
2016-11-02
ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energyâs Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a âplug-n-playâ laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.
Quasi 3D dispersion experiment
NASA Astrophysics Data System (ADS)
Bakucz, P.
2003-04-01
This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.
Sinclair, Michael B
2012-01-05
ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.
Reactor transient analyses with KIN3D/PARTISN
Gabrielli, F.; Rineiski, A.; Maschek, W.; Marchetti, M.
2013-07-01
Efforts are going on at the Karlsruhe Institute of Technology (KIT) to extend the kinetics capability of the PARTISN code in order to run in parallel two- and three-dimensional transient analyses with the quasistatic method, while taking into account delayed neutrons. In the original code version, time-dependent transport problems are solved by employing a semi-implicit direct kinetics option, the delayed neutrons being not taken into account. The PARTISN 5.97 code has been extended and then coupled with KIN3D, a time-dependent model embedded in the ERANOS code system. In the coupled code, PARTISN 5.97 is used as neutron transport solver to perform transient analyses while employing direct and quasi-static kinetics options of KIN3D. The coupled code can be also applied for first-order and exact perturbation theory calculations. In the paper, the PARTISN 5.97 extensions and coupling procedure are described and the performances of the KIN3D/PARTISN coupled code are investigated by analyzing transients induced by a source-jerk in a three-dimensional ADS model driven by an external source. (authors)
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
NASA Technical Reports Server (NTRS)
2009-01-01
wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.
The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.
This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.
High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these
3D Printing of Graphene Aerogels.
Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong
2016-04-06
3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.
Chaotic Advections in a Time-Dependent, Three-Dimensional, Ekman-Driven Eddy
NASA Astrophysics Data System (ADS)
Pratt, L. J.; Rypina, I.; Ozgokmen, T. M.; Wang, P.; Mezic, I.
2016-02-01
Our work focuses on the existence and arrangement of isolate regions of Lagrangian chaos in models of time-dependent, 3D flows with horizontal swirl and vertical overturning. Possible applications include mesoscale and sub-mesoscale ocean eddies, hurricanes, and convection cells, and the results demonstrate that chaotic stirring in such features can be highly nonhomogeneous. As a simple model we consider the flow in a rotating cylinder, driven by a time-dependent stress at the surface. Using numerical solutions and a multiple-scale analytical approach, we locate regions of Lagrangian chaos and compute the material barriers that contain them. These barriers are usually topological tori that evolve in time and can be quite exotic. If all the forcing is strong enough, all of these barriers can be destroyed, the entire flow becomes chaotic, and tracers are rapidly mixed throughout. We speculate on a way in which the stirring and mixing might be parameterized using ideas from critical layer theory.
Time-dependent potential-functional embedding theory.
Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A
2014-03-28
We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.
NASA Astrophysics Data System (ADS)
Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.
2013-03-01
Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed
NASA Astrophysics Data System (ADS)
Hermanns, Maria
The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
Electromagnetic Field Quantization in Time-Dependent Linear Media
Pedrosa, I. A.; Rosas, Alexandre
2009-07-03
We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.
NIF Ignition Target 3D Point Design
Jones, O; Marinak, M; Milovich, J; Callahan, D
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.
Unstructured 3D grid toolbox for modeling and simulation
George, D.
1997-11-01
Computable 3D grids that accurately represent complex multimaterial geometries are essential for both static and time-dependent modeling and simulation. LaGriT, the grid toolbox developed at Los Alamos provides a sophisticated set of initial grid generation, grid maintenance and grid optimization tools. We present example grids that demonstrate the flexibility of the grid generator. Additionally, we present the results of an electrostatic calculation and a grain growth problem that illustrate the grid optimization features and the utility of the grid server architecture.
Particle acceleration at 3D reconnecting magnetic separators
NASA Astrophysics Data System (ADS)
Threlfall, James; Neukirch, Thomas; Parnell, Clare; Stevenson, Julie
2015-04-01
We present results of test particle orbit calculations in three different environments which model separator reconnection in three dimensions. The test particle (electron and proton) orbits are calculated using the relativistic guiding centre approximation. We investigate test particle orbits in a time-dependent (analytical) electro-magnetic field configuration [detailed in Threlfall et al. (A&A, in press); arXiv:1410.6465]. These results are also compared with orbits based upon large-scale 3D MHD simulations of both a single reconnecting magnetic separator and an observationally driven 3D model of a solar active region which contains several topological features of interest, including separators. We discuss how the test-particle orbits and the energy gain depend on the initial conditions, and how observations (for example, of solar flares) may be used to constrain model parameters.
Lattice percolation approach to 3D modeling of tissue aging
NASA Astrophysics Data System (ADS)
Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy
2016-11-01
We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.
On the time-dependent Lagrangian approach in quantum chemistry
NASA Astrophysics Data System (ADS)
Pedersen, Thomas Bondo; Koch, Henrik
1998-04-01
We formulate the time-dependent variational principle in the form of the Euler-Lagrange equations, and demonstrate that standard variational as well as nonvariational wave functions may be obtained from these. We also demonstrate how inherently real expectation values of Hermitian operators can be constructed for nonvariational wave functions by using the time-dependent Hellmann-Feynman theorem which, in turn, is a simple consequence of the Euler-Lagrange equations. The procedure is illustrated by derivation of time-dependent Hartree-Fock and of time-dependent coupled cluster theory. Finally we give the fundamental equations for molecular dynamics within semiclassical electron nuclear dynamics (END) with a classical description of the nuclei and coupled cluster description of the electrons.
Functional differentiability in time-dependent quantum mechanics
NASA Astrophysics Data System (ADS)
Penz, Markus; Ruggenthaler, Michael
2015-03-01
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
Consolidation by vertical drains under time-dependent loading
NASA Astrophysics Data System (ADS)
Tang, Xiao-Wu; Onitsuka, Katsutada
2000-08-01
A solution for the consolidation by vertical drains under time-dependent loading is presented in this paper. Considering the well resistance and the smear action, the simultaneous basic partial differential equations of the consolidation by vertical drains are obtained for the arbitrary loading method. However, the impulse function method cannot be directly applied to obtain the solution. The partial differential equations and the solution conditions that satisfy the impulse function method are obtained after some mathematical processing. The solution for the consolidation by vertical drains under time-dependent loading is obtained by virtue of the impulse function method and the solution under instantaneous loading. The solutions under single ramp loading and multi-ramp loading are obtained and the feasibility of Carrillo's method under time-dependent loading is discussed. Further, the characteristics of the consolidation by vertical drains under instantaneous loading and time-dependent loading are discussed.
3-D Cavern Enlargement Analyses
EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.
2002-03-01
Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.
Time Dependent Studies of Reactive Shocks in the Gas Phase
1978-11-16
1 LEVEL NRL Memorandum Report 3W tO Time Dependent Studies of Reactive Shocks in the Gas Phase E.S. ORAN, ’T.R. YOUNG and J.P. BORIS Laboratory for...34-• TIME DEPENDENT STUDIES OF REACTIVE SHOCKS IN THE GAS PHASE I. Introduction This paper presents results obtained from a detailed numerical...chemical kinetics, reaction products, and intermediates produced in reactive gas mixtures ignited by the propagation of a shock front. The model is based
One Dimensional Time-Dependent Tunnelling of Excitons
NASA Astrophysics Data System (ADS)
Kilcullen, Patrick; Salayka-Ladouceur, Logan; Malmgren, Kevin; Reid, Matthew; Shegelski, Mark R. A.
2017-03-01
We study the time-dependent tunnelling of excitons in one dimension using numerical integration based on the Crank-Nicholson method. A complete development of the time-dependent simulator is provided. External barriers studied include single and double delta barriers. We find that the appearance of transmission resonances depends strongly on the dielectric constant, relative effective masses, and initial spatial spread of the wavefunction. A discussion regarding applications to realistic systems is provided.
Extra dimensions: 3d and time in pdf documentation
NASA Astrophysics Data System (ADS)
Graf, N. A.
2008-07-01
High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.
Extra Dimensions: 3D and Time in PDF Documentation
Graf, Norman A.; /SLAC
2011-11-10
High energy physics is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide audience. In this talk, we present examples of HEP applications which take advantage of this functionality. We demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input. Using this technique, higher dimensional data, such as LEGO plots or time-dependent information can be included in PDF files. In principle, a complete event display, with full interactivity, can be incorporated into a PDF file. This would allow the end user not only to customize the view and representation of the data, but to access the underlying data itself.
Viscoelastic properties of 3-D braided PEEK/graphite composites
Hu, Jian-Ni.
1992-01-01
In this study, 3-D braided PEEK/AS4 graphite composites were performed and processed to investigate the viscoelastic behavior of this new system. These manufactured composites were characterized to determine their fiber volume fractions and matrix crystallinity indices using matrix digestion and wide angle x-ray diffraction. After physical characterization, the mechanical response of these composites were evaluated at various temperatures. Experimental results from tensile measurements were compared to an established fabric geometry model (FGM). This model predicts tensile modules based upon fiber and matrix properties, fiber volume fraction, and braiding angle. Model predictions and experimental results are given here, and are in good agreement with each other. In order to study the time-dependent mechanical properties of these 3-D braided composites, their stress relaxation, creep and dynamic mechanical properties were evaluated. These results were then compared to a new composite model. This model combined a Quasi/linear Viscoelastic Model (QVM) for the viscoelastic behavior of PEEK with the FGM approach to predict the viscoelastic behavior of 3-D PEEK composites. The experimental stress relaxation and creep results are in good agreement with the QVM-FGM analysis. Thus, the QVM-FGM approach was used to accurately correlate these viscoelastic properties of 3-D braided PEEK/graphite composites. Through wider use and testing, this QVM/FGM approach may be used to increase our understanding and perhaps facilitate the design of composite structures.
America's National Parks 3d (4)
Atmospheric Science Data Center
2017-04-11
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 4) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (3)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 3) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (2)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 2) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
America's National Parks 3d (1)
Atmospheric Science Data Center
2016-12-30
article title: America's National Parks Viewed in 3D by NASA's MISR (Anaglyph 1) ... four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. ...
3D ultrasound in fetal spina bifida.
Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B
2008-12-01
3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.
An interactive multiview 3D display system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui
2013-03-01
The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.
[3D emulation of epicardium dynamic mapping].
Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang
2005-03-01
In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.
Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua
2011-08-28
We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.
Pan, Lehua; Oldenburg, Curtis M.
2016-10-10
TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO_{2}, multicomponent oil, and related gas components for applications including CO_{2}-enhanced oil recovery (CO_{2}-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas + oil + aqueous) and the partitioning of non-aqueous components (e.g., CO_{2}, CH_{4}, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H_{2}O) component between the gas and oil phases. All components (e.g., CO_{2}, H_{2}O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and
3-D Extensions for Trustworthy Systems
2011-01-01
modifications to the floor planning stage of the 3-D design flow that are necessary to support our design approach. We strongly recommend that the 3-D EDA ...and we outline problems, challenges, attacks, solutions, and topics for future research. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Requirements for automated 3-D IC design tools for the physical layout of components. Since fully automated Electronic Design Automation ( EDA ) for 3-D
True 3d Images and Their Applications
NASA Astrophysics Data System (ADS)
Wang, Z.; wang@hzgeospace., zheng.
2012-07-01
A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.
Microfabricating 3D Structures by Laser Origami
2011-11-09
10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can
Laser Based 3D Volumetric Display System
1993-03-01
Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye
NASA Astrophysics Data System (ADS)
Huang, Y.; Shao, H.; Thullner, M.; Kolditz, O.
2014-12-01
In applications of Deep Geothermal reservoirs, thermal recovery processes, and contaminated groundwater sites, the multiphase multicomponent flow and transport processes are often considered the most important underlying physical process. In particular, the behavior of phase appearance and disappearance is the critical to the performance of many geo-reservoirs, and great interests exit in the scientific community to simulate this coupled process. This work is devoted to the modeling and simulation of two-phase, two components flow and transport in the porous medium, whereas the phase change behavior in non-isothermal conditions is considered. In this work, we have implemented the algorithm developed by Marchand, et al., into the open source scientific software OpenGeoSys. The governing equation is formulated in terms of molar fraction of the light component and mean pressure as the persistent primary variables, which leads to a fully coupled nonlinear PDE system. One of the important advantages of this approach is avoiding the primary variables switching between single phase and two phase zones, so that this uniform system can be applied to describe the behavior of phase change. On the other hand, due to the number of unkown variables closure relationships are also formulated to close the whole equation system by using the approach of complementarity constrains. For the numerical technical scheme: The standard Galerkin Finite element method is applied for space discretization, while a fully implicit scheme for the time discretization, and Newton-Raphson method is utilized for the global linearization, as well as the closure relationship. This model is verified based on one test case developed to simulate the heat pipe problem. This benchmark involves two-phase two-component flow in saturated/unsaturated porous media under non-isothermal condition, including phase change and mineral-water geochemical reactive transport processes. The simulation results will be
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Imaging a Sustainable Future in 3D
NASA Astrophysics Data System (ADS)
Schuhr, W.; Lee, J. D.; Kanngieser, E.
2012-07-01
It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.
Expanding Geometry Understanding with 3D Printing
ERIC Educational Resources Information Center
Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi
2016-01-01
With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…
Teaching Geography with 3-D Visualization Technology
ERIC Educational Resources Information Center
Anthamatten, Peter; Ziegler, Susy S.
2006-01-01
Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…
3D Printing and Its Urologic Applications
Soliman, Youssef; Feibus, Allison H; Baum, Neil
2015-01-01
3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997
NASA Astrophysics Data System (ADS)
Engle, Rob
2008-02-01
This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
3-D Perspective Pasadena, California
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency
The UCSD Time-dependent Tomography and IPS use for Exploring Space Weather Events
NASA Astrophysics Data System (ADS)
Yu, H. S.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Tokumaru, M.; Odstrcil, D.; Kim, J.; Yun, J.
2016-12-01
The University of California, San Diego (UCSD) time-dependent, iterative, kinematic reconstruction technique has been used and expanded upon for over two decades. It provides some of the most-accurate predictions and three-dimensional (3D) analyses of heliospheric solar-wind parameters now available using interplanetary scintillation (IPS) data. The parameters provided include reconstructions of velocity, density, and three-component magnetic fields. Precise time-dependent results are now obtained at any solar distance in the inner heliosphere using ISEE (formerly STELab), Japan, IPS data sets, and can be used to drive 3D-MHD models including ENLIL. Using IPS data, these reconstructions provide a real-time prediction of the global solar wind parameters across the whole heliosphere with a time cadence of about one day (see http://ips.ucsd.edu). Here we compare the results (such as density, velocity, and magnetic fields) from the IPS tomography with different in-situ measurements and discuss several specific space weather events that demonstrate the issues resulting from these analyses.
van Meer, R; Gritsenko, O V; Baerends, E J
2017-01-28
Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In contrast, in a basis of natural orbitals (NOs) or Hartree-Fock orbitals, excitations often employ many orbitals and are accordingly hard to characterize. We demonstrate that it is possible in these cases to transform to natural excitation orbitals (NEOs) which resemble very closely the KS orbitals and afford the same simple description of excitations. The desired transformation has been obtained by diagonalization of a submatrix in the equations of linear response time-dependent 1-particle reduced density matrix functional theory (LR-TDDMFT) for the NO transformation, and that of a submatrix in the linear response time-dependent Hartree-Fock (LR-TDHF) equations for the transformation of HF orbitals. The corresponding submatrix is already diagonal in the KS basis in the LR-TDDFT equations. While the orbital shapes of the NEOs afford the characterization of the excitations as (mostly) simple orbital-to-orbital transitions, the orbital energies provide a fair estimate of excitation energies.
Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion
NASA Astrophysics Data System (ADS)
Handy Turner, Tara
2010-02-01
From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.
Mini 3D for shallow gas reconnaissance
Vallieres, T. des; Enns, D.; Kuehn, H.; Parron, D.; Lafet, Y.; Van Hulle, D.
1996-12-31
The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3D data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.
Alvarez, María Dolores; Cuesta, Francisco Javier; Herranz, Beatriz; Canet, Wenceslao
2017-01-02
An attempt was made to analyze the elastic modulus (G0) of chickpea ﬂour (CF)-based mufﬁn batters made with CF alone and with added biopolymers (whey protein (WP), xanthan gum (XG), inulin (INL), and their blends) in order to evaluate their suitability to be a wheat ﬂour (WF) substitute in mufﬁns, and to model the heat-induced gelatinization of batters under non-isothermal heating condition from 25 ◦C to 90 ◦C. A rheological approach is proposed to determine the kinetic parameters (reaction order (n), frequency factor (k0), and activation energy (Ea)) using linearly-increasing temperature. Zero-order reaction kinetics adequately described batter gelatinization process, therefore assuming a constant rate independent of the initial G0 value. The change of the derivative of G0 with respect to time (dG0/dt) versus temperature is described by one exponential function with activation energies ranging from 118 to 180 kJ·mol-1. Control wheat gluten batter, with higher and lower starch and protein contents, respectively, than CF-based batters, exhibited the highest Ea value. Formulation of CF-based gluten-free batters with starch and protein contents closer to the levels of WF-based batter could be a strategy to decrease differences in kinetic parameters of mufﬁn batters and, therefore, in technological characteristics of baked mufﬁns.
NASA Astrophysics Data System (ADS)
Fadel, M.; Shakra, A. M.; Sakr, G. B.
2016-07-01
The crystallization kinetics for a Ga5Ge15Te80 chalcogenide glass, prepared by melt quenching technique, have been studied by differential thermal analysis (DTA) under non-isothermal condition, with five different heating rates α = 10, 15, 20, 25 and 30 ° C/ min . The DTA trace indicates the presence of two crystallization peaks. The glass transition temperature Tg , the crystallization temperature Tc and the melting point temperature Tm were determined. The dependence of Tg , T_{c1} and T_{c2} on the heating rate α , were used for the determination of the activation energy of glass transition Eg and crystallization Ec . The DTA data have been analyzed in terms of activation energy, stability and dimensionality of growth ( m by different models viz. Kissinger's, Mahadeavan, Augis and Bennet's and Matusita's equations. The Avrami exponents ( n and ( m have also been determined; the obtained values of ( n and ( m are 2.959 and 1.959, respectively, indicating bulk nucleation with two-dimensional growth.
NASA Astrophysics Data System (ADS)
Gong, Pan; Zhao, Shaofan; Wang, Xin; Yao, Kefu
2015-07-01
The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger-Akahira-Sunose and Ozawa-Flynn-Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as "strong glass former." The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran-Colmenero's method.
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, Yongya; Luo, Wenqin; Li, Jingfen; Li, Jianyou
2017-03-01
Fe2O3-CaO-SiO2 glass ceramics containing nucleation agent P2O5/TiO2 were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe2O3-CaO-SiO2 glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe2O3-CaO-SiO2 glass, f(α) = 2.3(1-α)[-ln(1-α)]0.57, was also obtained. The addition of nucleation agent P2O5/TiO2 could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.
Information theories for time-dependent harmonic oscillator
Choi, Jeong Ryeol; Kim, Min-Soo; Kim, Daeyeoul; Maamache, Mustapha; Menouar, Salah; Nahm, In Hyun
2011-06-15
Highlights: > Information theories for the general time-dependent harmonic oscillator based on invariant operator method. > Time dependence of entropies and entropic uncertainty relation. > Characteristics of Shannon information and Fisher information. > Application of information theories to particular systems that have time-dependent behavior. - Abstract: Information theories for the general time-dependent harmonic oscillator are described on the basis of invariant operator method. We obtained entropic uncertainty relation of the system and discussed whether it is always larger than or equal to the physically allowed minimum value. Shannon information and Fisher information are derived by means of density operator that satisfies Liouville-von Neumann equation and their characteristics are investigated. Shannon information is independent of time, but Fisher information is explicitly dependent on time as the time functions of the Hamiltonian vary. We can regard that the Fisher information is a local measure since its time behavior is largely affected by local arrangements of the density, whilst the Shannon information plays the role of a global measure of the spreading of density. To promote the understanding, our theory is applied to special systems, the so-called quantum oscillator with time-dependent frequency and strongly pulsating mass system.
Time-dependent stochastic Bethe-Salpeter approach
NASA Astrophysics Data System (ADS)
Rabani, Eran; Baer, Roi; Neuhauser, Daniel
2015-06-01
A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction with single substitution (CIS) method. This results in a time-dependent Schrödinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree
Watching excitons move: the time-dependent transition density matrix
NASA Astrophysics Data System (ADS)
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Photodetachment dynamics in a time-dependent oscillating electric field
NASA Astrophysics Data System (ADS)
Wang, De-hua; Xu, Qin-feng; Du, Jie
2017-03-01
Using the time-dependent form of closed orbit theory, as developed by Haggerty and Delos [M.R. Haggerty, J.B. Delos, Phys. Rev. A 61, 053406 (2000)], and by Yang and Robicheaux [B.C. Yang, F. Robicheaux, Phys. Rev. A 93, 053413 (2016)], we study the photodetachment dynamics of a hydrogen negative ion in a time-dependent oscillating electric field. Compared to the photodetachment in a static electric field, the photodetachment dynamics of a negative ion in the time-dependent oscillating electric field become much more complicated but more interesting. Since the applied electric field is oscillating with time, the photodetachment cross section of the negative ion in the oscillating electric field is time-dependent. In a time-dependent framework, we put forward an analytical formula for calculating the instantaneous photodetachment cross section of this system. Our study suggests that the instantaneous photodetachment cross section exhibits oscillatory structure, which depends sensitively on the frequency of the oscillating electric field. With increasing frequency of the oscillating electric field, the number of closed orbits increases and the oscillatory structure in the photodetachment cross section becomes much more complicated. The connection between the detached electron's closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the photodetachment processes of a negative ion in the presence of an oscillating electric field. We hope that our work will be useful in guiding future experimental research.
Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms
NASA Astrophysics Data System (ADS)
Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien
2014-10-01
Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.
Hoffman, Adam J. Lee, John C.
2016-02-15
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
NASA Astrophysics Data System (ADS)
Hoffman, Adam J.; Lee, John C.
2016-02-01
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
Time dependent behavior of impact angle in turbulkent pipe flows experience erosion
NASA Astrophysics Data System (ADS)
Guzman, Amador; Oyarzun, Diego; Walczak, Magdalena; Aguirre, Javiera
Erosion-corrosion in pipe systems transporting slurry turbulent flows is of a great importance in industrial and mining applications, where large volumes of suspended solids are sent up to hundreds of kilometers, to be further processed. The slurry is typically sent over large diameter steel pipes, which not always have an anti-abrasion coating. During the transport, the thickness of the pipe diminishes and eventually leaks and breaks, due to the combined effects of wear and corrosion. The processes of pipe degradation are further enhanced by the content of the slurry electrolytes that might switch from neutral to aggressive. The understanding of these processes in terms of operational parameters is critical for anticipating and mitigating a catastrophic outcome. This paper describes turbulent flow numerical simulations in a slurry transporting steel pipe with an emphasis on the correlation between the time dependent impact angle in the vicinity of the steel pipe and the rate of material loss. Full numerical simulations in a 3D long domain by using an Eulerian -Eulerian two phase flow approach coupled to a κ-epsilon turbulent model are performed for different solid particle concentration and flow velocity and compared to existing experimental and numerical results for validation with and without gravity. Time-dependent axisymmetric turbulent flow simulations are performed for determining both the time dependent behavior of the axial and radial velocities near the pipe wall and the impact angle. Finantial support from Conicyt through the Fondecyt proposal 1141107 is acknowledged.
Motivation for Using Generalized Geometry in the Time Dependent Transport Code TDKENO
Dustin Popp; Zander Mausolff; Sedat Goluoglu
2016-04-01
We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operation is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).
Reversible and Irreversible Time-Dependent Behavior of GRCop-84
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.; Ellis, David L.
2017-01-01
A series of mechanical tests were conducted on a high-conductivity copper alloy, GRCop-84, in order to understand the time dependent response of this material. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures, strain rates, and stress levels to excite various amounts of time-dependent behavior. At low applied stresses the deformation behavior was found to be fully reversible. Above a certain stress, termed the viscoelastic threshold, irreversible deformation was observed. At these higher stresses the deformation was observed to be viscoplastic. Both reversible and irreversible regions contained time dependent deformation. These experimental data are documented to enable characterization of constitutive models to aid in design of high temperature components.
Time-dependent density functional theory for quantum transport.
Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing
2010-09-21
Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.
Quadratic time dependent Hamiltonians and separation of variables
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Full-counting statistics of time-dependent conductors
NASA Astrophysics Data System (ADS)
Benito, Mónica; Niklas, Michael; Kohler, Sigmund
2016-11-01
We develop a scheme for the computation of the full-counting statistics of transport described by Markovian master equations with an arbitrary time dependence. It is based on a hierarchy of generalized density operators, where the trace of each operator yields one cumulant. This direct relation offers a better numerical efficiency than the equivalent number-resolved master equation. The proposed method is particularly useful for conductors with an elaborate time dependence stemming, e.g., from pulses or combinations of slow and fast parameter switching. As a test bench for the evaluation of the numerical stability, we consider time-independent problems for which the full-counting statistics can be computed by other means. As applications, we study cumulants of higher order for two time-dependent transport problems of recent interest, namely steady-state coherent transfer by adiabatic passage (CTAP) and Landau-Zener-Stückelberg-Majorana (LZSM) interference in an open double quantum dot.
3-D Technology Approaches for Biological Ecologies
NASA Astrophysics Data System (ADS)
Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team
Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).
Clement, T.P.; Jones, N.L.
1998-02-01
RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.
3D change detection - Approaches and applications
NASA Astrophysics Data System (ADS)
Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter
2016-12-01
Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.
Vacuum radiation induced by time dependent electric field
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian; Gu, Yu-qiu
2017-04-01
Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.
Enhanced thermopower under a time-dependent gate voltage
NASA Astrophysics Data System (ADS)
Crépieux, Adeline; Šimkovic, Fedor; Cambon, Benjamin; Michelini, Fabienne
2011-04-01
We derive formal expressions of time-dependent energy and heat currents through a nanoscopic device using the Keldysh nonequilibrium Green function technique. Numerical results are reported for a metal-dot-metal junction where the dot level energy is abruptly changed by a step-shaped voltage pulse. Analytical linear responses are obtained for the time-dependent thermoelectric coefficients. We show that in the transient regime the Seebeck coefficient can be enhanced by an amount (as much as 40%) controlled by both the dot energy and the height of the voltage step.
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Updated Time Dependent Sensitivity Corrections for STIS Spectral Modes
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Monroe, TalaWanda
2017-09-01
The sensitivities of the STIS CCD and MAMA detectors have been slowly changing over time, and these changes vary with wavelength. The STIS time dependent sensitivity monitors track these changes, which must be corrected to allow accurate flux calibration and exposure time calculation. Here, we present updated calculations of the time dependent relationships using data obtained through mid-Cycle 24. We also retested the validity of applying the relationships derived with the lower resolution spectra to the medium resolution first order modes and echelle modes, for which we find reasonable agreement in most of the modes.
Direct imaging of small scatterers using reduced time dependent data
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; Rezac, Jacob D.
2017-06-01
We introduce qualitative methods for locating small objects using time dependent acoustic near field waves. These methods have reduced data collection requirements compared to typical qualitative imaging techniques. In particular, we only collect scattered field data in a small region surrounding the location from which an incident field was transmitted. The new methods are partially theoretically justified and numerical simulations demonstrate their efficacy. We show that these reduced data techniques give comparable results to methods which require full multistatic data and that these time dependent methods require less scattered field data than their time harmonic analogs.
Time-dependent perturbation theory for inelastic scattering
NASA Astrophysics Data System (ADS)
Cross, R. J.
1982-08-01
We show by numerical integration that the first-order, time-dependent, Magnus approximation agrees with the first-order, exponential, distorted-wave approximation to within a few percent, provided that the trajectory used for the time-dependent calculation is characterized by the arithmetic mean of the initial and final velocities and the arithmetic mean of the initial and final orbital angular momenta. Calculations are done for rotational energy transfer from an exponentially repulsive potential characteristic of He+H2 and for a Lennard-Jones potential characteristic of Ar+N2.
Time-dependent Bragg diffraction by multilayer gratings
NASA Astrophysics Data System (ADS)
André, Jean-Michel; Jonnard, Philippe
2016-01-01
Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi-Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry.
Choice of Variables and Preconditioning for Time Dependent Problems
NASA Technical Reports Server (NTRS)
Turkel, Eli; Vatsa, Verr N.
2003-01-01
We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.
NASA Astrophysics Data System (ADS)
Petruk, O.; Kopytko, B.
2016-11-01
Three approaches are considered to solve the equation which describes the time-dependent diffusive shock acceleration of test particles at the non-relativistic shocks. At first, the solution of Drury for the particle distribution function at the shock is generalized to any relation between the acceleration time-scales upstream and downstream and for the time-dependent injection efficiency. Three alternative solutions for the spatial dependence of the distribution function are derived. Then, the two other approaches to solve the time-dependent equation are presented, one of which does not require the Laplace transform. At the end, our more general solution is discussed, with a particular attention to the time-dependent injection in supernova remnants. It is shown that, comparing to the case with the dominant upstream acceleration time-scale, the maximum momentum of accelerated particles shifts towards the smaller momenta with increase of the downstream acceleration time-scale. The time-dependent injection affects the shape of the particle spectrum. In particular, (i) the power-law index is not solely determined by the shock compression, in contrast to the stationary solution; (ii) the larger the injection efficiency during the first decades after the supernova explosion, the harder the particle spectrum around the high-energy cutoff at the later times. This is important, in particular, for interpretation of the radio and gamma-ray observations of supernova remnants, as demonstrated on a number of examples.
Quantitative analysis of coronary dynamics by time-dependent ultrasound imaging
NASA Astrophysics Data System (ADS)
Marraccini, Paolo; Salvetti, Ovidio; Braccini, Giovanni; Bragagni, Paolo; Levorato, Dianora; L'Abbate, Antonio; Marzilli, Mario
1995-04-01
Intravascular ultrasound imaging is a new technique that displays information on lumen and arterial walls, and is capable of providing real-time monitoring of cross-sectional high- resolution images. This technique has potential application for studying the dynamics of the arterial wall with respect to the presence or absence of pathology and the vascular response to physiological or pharmacological stimuli. Although the extraction of information related to coronary dynamics and wall pathologies is possible by manual procedures it is very time consuming and influenced by intra- and interobserver errors. We developed an evaluation system for analyzing 3D spaces defined by digitized cross-sectional ultrasound images of coronaries quantifying the vasomotion in relation to the morphology of the arterial wall. Sequences of echographic images were obtained and recorded as ordered stacks of 2D frames on a VHS videotape. For each image, an automatic lumen edge segmentation was performed, then 3D reconstruction was obtained to evaluate time-dependent lumen and vessel wall changes. These 3D representations serve to demonstrate dynamic phenomena and to perform quantitative analyses (e.g., area/hemidiameter variations, projections, sections, 'carving,' etc.).
3D Printer Coupon removal and stowage
2014-12-09
iss042e031282 (12/09/2014) ---US Astronaut Barry (Butch) Wilmore holding a 3D coupon works with the new 3D printer aboard the International Space Station. The 3D Printing experiment in zero gravity demonstrates that a 3D printer works normally in space. In general, a 3D printer extrudes streams of heated plastic, metal or other material, building layer on top of layer to create 3 dimensional objects. Testing a 3D printer using relatively low-temperature plastic feedstock on the International Space Station is the first step towards establishing an on-demand machine shop in space, a critical enabling component for deep-space crewed missions and in-space manufacturing.
3D measurement for rapid prototyping
NASA Astrophysics Data System (ADS)
Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd
1996-08-01
Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.
Expedient Gap Definition Using 3D LADAR
2006-09-01
Research and Development Center (ERDC), ASI has developed an algorithm to reduce the 3D point cloud acquired with the LADAR system into sets of 2D ...developed an algorithm to extract from this 3D point cloud any user-defined number of 2D slices. ASI has incorporated this sensor and algorithm into...direction, ASI has developed an algorithm to condense the 3D point cloud acquired with the LADAR system into sets of 2D profiles that describe the
Digital holography and 3-D imaging.
Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai
2011-03-01
This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.
Parker, Dennis L.
2015-01-01
SYNOPSIS There has been significant progress made in 3D carotid plaque magnetic resonance imaging techniques in recent years. 3D plaque imaging clearly represents the future in clinical use. With effective flow suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multi-vascular beds capability, and even can be used in fast screening. PMID:26610656
Photorefractive Polymers for Updateable 3D Displays
2010-02-24
Final Performance Report 3. DATES COVERED (From - To) 01-01-2007 to 11-30-2009 4. TITLE AND SUBTITLE Photorefractive Polymers for Updateable 3D ...ABSTRACT During the tenure of this project a large area updateable 3D color display has been developed for the first time using a new co-polymer...photorefractive polymers have been demonstrated. Moreover, a 6 inch × 6 inch sample was fabricated demonstrating the feasibility of making large area 3D
Jet methods in time-dependent Lagrangian biomechanics
NASA Astrophysics Data System (ADS)
Ivancevic, Tijana T.
2010-10-01
In this paper we propose the time-dependent generalization of an ‘ordinary’ autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation.
Jet methods in time-dependent Lagrangian biomechanics
NASA Astrophysics Data System (ADS)
Ivancevic, Tijana
2010-10-01
In this paper we propose the time-dependent generalization of an `ordinary' autonomous human biomechanics, in which total mechanical + biochemical energy is not conserved. We introduce a general framework for time-dependent biomechanics in terms of jet manifolds associated to the extended musculo-skeletal configuration manifold, called the configuration bundle. We start with an ordinary configuration manifold of human body motion, given as a set of its all active degrees of freedom (DOF) for a particular movement. This is a Riemannian manifold with a material metric tensor given by the total mass-inertia matrix of the human body segments. This is the base manifold for standard autonomous biomechanics. To make its time-dependent generalization, we need to extend it with a real time axis. By this extension, using techniques from fibre bundles, we defined the biomechanical configuration bundle. On the biomechanical bundle we define vector-fields, differential forms and affine connections, as well as the associated jet manifolds. Using the formalism of jet manifolds of velocities and accelerations, we develop the time-dependent Lagrangian biomechanics. Its underlying geometric evolution is given by the Ricci flow equation.
Shoulder pain and time dependent structure in wheelchair propulsion variability.
Jayaraman, Chandrasekaran; Moon, Yaejin; Sosnoff, Jacob J
2016-07-01
Manual wheelchair propulsion places considerable repetitive mechanical strain on the upper limbs leading to shoulder injury and pain. While recent research indicates that the amount of variability in wheelchair propulsion and shoulder pain may be related. There has been minimal inquiry into the fluctuation over time (i.e. time-dependent structure) in wheelchair propulsion variability. Consequently the purpose of this investigation was to examine if the time-dependent structure in the wheelchair propulsion parameters are related to shoulder pain. 27 experienced wheelchair users manually propelled their own wheelchair fitted with a SMARTWheel on a roller at 1.1m/s for 3min. Time-dependent structure of cycle-to-cycle fluctuations in contact angle and inter push time interval was quantified using sample entropy (SampEn) and compared between the groups with/without shoulder pain using non-parametric statistics. Overall findings were, (1) variability observed in contact angle fluctuations during manual wheelchair propulsion is structured (Z=3.15;p<0.05), (2) individuals with shoulder pain exhibited higher SampEn magnitude for contact angle during wheelchair propulsion than those without pain (χ(2)(1)=6.12;p<0.05); and (3) SampEn of contact angle correlated significantly with self-reported shoulder pain (rs (WUSPI) =0.41;rs (VAS)=0.56;p<0.05). It was concluded that the time-dependent structure in wheelchair propulsion may provide novel information for tracking and monitoring shoulder pain.
Time dependent behavior of cores from the Pleasant Bayou wells
Thompson, T.W.; Jogi, P.N.; Gray, K.E.; Richardson, J.; Bebout, D.G.; Bachman, A.L.
1981-01-01
Results of constant-load creep tests on sands from the Pleasant Bayou wells are reported. Significant time dependent behavior under both hydrostatic and non-hydrostatic states of stress have been fit to linear rheological models. The data and models are reported.
Noncommutative quantum mechanics in a time-dependent background
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas
2014-10-01
We investigate a quantum mechanical system on a noncommutative space for which the structure constant is explicitly time dependent. Any autonomous Hamiltonian on such a space acquires a time-dependent form in terms of the conventional canonical variables. We employ the Lewis-Riesenfeld method of invariants to construct explicit analytical solutions for the corresponding time-dependent Schrödinger equation. The eigenfunctions are expressed in terms of the solutions of variants of the nonlinear Ermakov-Pinney equation and discussed in detail for various types of background fields. We utilize the solutions to verify a generalized version of Heisenberg's uncertainty relations for which the lower bound becomes a time-dependent function of the background fields. We study the variance for various states, including standard Glauber coherent states with their squeezed versions and Gaussian Klauder coherent states resembling a quasiclassical behavior. No type of coherent state appears to be optimal in general with regard to achieving minimal uncertainties, as this feature turns out to be background field dependent.
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Advances in time-dependent methods for multiphoton processes
Kulander, K.C.; Schafer, K.J.; Krause, J.L.
1990-09-01
This paper discusses recent theoretical results on above threshold ionization harmonic generation and high-frequency, high intensity suppression of ionization. These studies of multiphoton processes in atoms and molecules for short, intense pulsed optical lasers have been carried out using techniques which involve the explicit solution of the time-dependent Schroedinger equation. 43 refs., 5 figs.
Pedagogical Aspects of Time-Dependent Rotation Operators.
ERIC Educational Resources Information Center
Leubner, C.
1980-01-01
Describes the reformulation of a classical magnetic moment interacting with various magnetic field configurations in terms of coordinate-free, time-dependent rotation operators. This approach provides useful exercises for the manipulation of three-dimensional rotation operators and provides examples for a number of quantum-mechanics related…
Time dependent solution for acceleration of tau-leaping
Fu, Jin; Wu, Sheng; Petzold, Linda R.
2013-02-15
The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
Time-dependent Partition Density-functional Theory
NASA Astrophysics Data System (ADS)
Mosquera, Martin; Wasserman, Adam
2012-02-01
We present an extension of time-dependent density functional theory that allows to partition the time-dependent external potential in terms of localized molecular fragment potentials. As a consequence, localized time-dependent densities arise for each molecular fragment. To enforce the condition that the sum of fragments must add up to the exact total density, a new quantity termed ``time-dependent partition potential'' is introduced. The Runge-Gross theorem is employed to show that there is a quasi one-to-one correspondence between the partition potential and the electronic density. The corresponding quantum-mechanical actions are derived by using the van Leeuwen's action and are used to derive a decomposition of the partition potential which allows for practical approximations. Linear response formulas are deduced to obtain the transition energies, and an approximation is suggested to obtain localized excitations in large molecular systems. Finally, numerical illustration of our theory is shown for one-dimensional fermions under the influence of a laser field.
Cumulative beam breakup with time-dependent parameters
Jean Delayen
2004-08-01
A general analytical formalism developed recently for cumulative beam breakup (BBU) in linear accelerators with arbitrary beam current profile and misalignments [1, 2] is extended to include time-dependent parameters such as energy chirp or rf focusing in order to reduce BBU-induced instabilities and emittance growth. Analytical results are presented and applied to practical accelerator configurations.
Time-Dependent Interfacial Properties and DNAPL Mobility
Tuck, D.M.
1999-03-10
Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.
Time-Dependent Modulation of Cosmic Rays in the Heliosphere
NASA Astrophysics Data System (ADS)
Manuel, R.; Ferreira, S. E. S.; Potgieter, M. S.
2014-06-01
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing intensities using a time-dependent modulation model. By introducing recent theoretical advances in the transport coefficients in the model, computed intensities are compared with Voyager 1, International Monitoring Platform (IMP) 8, and Ulysses proton observations in search of compatibility. The effect of different modulation parameters on computed intensities is also illustrated. It is shown that this approach produces, on a global scale, realistic cosmic-ray proton intensities along the Voyager 1 spacecraft trajectory and at Earth up to ≈ 2004, whereafter the computed intensities recover much more slowly towards solar minimum than observed in the inner heliosphere. A modified time dependence in the diffusion coefficients is proposed to improve compatibility with the observations at Earth after ≈ 2004. This modified time dependence led to an improved compatibility between computed intensities and the observations along the Voyager 1 trajectory and at Earth even after ≈ 2004. An interesting result is that the cosmic-ray modulation during the current polarity cycle is not determined only by changes in the drift coefficient and tilt angle of the wavy current sheet, but is also largely dependent on changes in the diffusion coefficients.
Time dependent solution for acceleration of tau-leaping
NASA Astrophysics Data System (ADS)
Fu, Jin; Wu, Sheng; Petzold, Linda R.
2013-02-01
The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.
Pedagogical Aspects of Time-Dependent Rotation Operators.
ERIC Educational Resources Information Center
Leubner, C.
1980-01-01
Describes the reformulation of a classical magnetic moment interacting with various magnetic field configurations in terms of coordinate-free, time-dependent rotation operators. This approach provides useful exercises for the manipulation of three-dimensional rotation operators and provides examples for a number of quantum-mechanics related…
Stability on time-dependent domains: convective and dilution effects
NASA Astrophysics Data System (ADS)
Krechetnikov, R.; Knobloch, E.
2017-03-01
We explore near-critical behavior of spatially extended systems on time-dependent spatial domains with convective and dilution effects due to domain flow. As a paradigm, we use the Swift-Hohenberg equation, which is the simplest nonlinear model with a non-zero critical wavenumber, to study dynamic pattern formation on time-dependent domains. A universal amplitude equation governing weakly nonlinear evolution of patterns on time-dependent domains is derived and proves to be a generalization of the standard Ginzburg-Landau equation. Its key solutions identified here demonstrate a substantial variety-spatially periodic states with a time-dependent wavenumber, steady spatially non-periodic states, and pulse-train solutions-in contrast to extended systems on time-fixed domains. The effects of domain flow, such as bifurcation delay due to domain growth and destabilization due to oscillatory domain flow, on the Eckhaus instability responsible for phase slips in spatially periodic states are analyzed with the help of both local and global stability analyses. A nonlinear phase equation describing the approach to a phase-slip event is derived. Detailed analysis of a phase slip using multiple time scale methods demonstrates different mechanisms governing the wavelength changing process at different stages.
3D temperature field reconstruction using ultrasound sensing system
NASA Astrophysics Data System (ADS)
Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei
2016-04-01
3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1984-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Kennedy, T.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1993-11-30
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1991-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
FastScript3D - A Companion to Java 3D
NASA Technical Reports Server (NTRS)
Koenig, Patti
2005-01-01
FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.
NASA Astrophysics Data System (ADS)
Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús
2017-02-01
Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1 Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t = 104 years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1 Ma are approximately equal to 1 and 3.3 cm thick, respectively. The hyper-alkaline front (pH > 8.5) spreads 2.5 cm into the clay formation after 1 Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1 Ma.
Mon, Alba; Samper, Javier; Montenegro, Luis; Naves, Acacia; Fernández, Jesús
2017-02-01
Radioactive waste disposal in deep geological repositories envisages engineered barriers such as carbon-steel canisters, compacted bentonite and concrete liners. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyper-alkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyper-alkaline plume at the concrete-clay interface. Here we present a non-isothermal multicomponent reactive transport model of the long-term (1Ma) interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. Model results show that magnetite is the main corrosion product. Its precipitation reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The reduction of the porosity becomes especially relevant at t=10(4)years. The zones affected by pore clogging at the canister-bentonite and concrete-clay interfaces at 1Ma are approximately equal to 1 and 3.3cm thick, respectively. The hyper-alkaline front (pH>8.5) spreads 2.5cm into the clay formation after 1Ma. Our simulation results share the key features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Pore clogging at the canister-bentonite and concrete-clay interfaces; 2) Narrow alteration zones; and 3) Limited smectite dissolution after 1Ma. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth S.
2017-05-01
We employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, Tg, in a manner that depends on whether a dynamic or pseudo-thermodynamic averaging of the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent Tg is defined in a dynamical manner. However, adopting a pseudo-thermodynamic measure of Tg leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. As a consequence, the film-averaged shear modulus can increase with decreasing film thickness, despite the Tg reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.
Mirigian, Stephen; Schweizer, Kenneth S.
2017-02-02
Here, we employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, Tg, in a manner that depends on whether a dynamic or pseudo-thermodynamic averaging ofmore » the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent Tg is defined in a dynamical manner. But, adopting a pseudo-thermodynamic measure of Tg leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. Consequently, the film-averaged shear modulus can increase with decreasing film thickness, despite the Tg reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.« less