Science.gov

Sample records for 3d topographic maps

  1. True-3D Accentuating of Grids and Streets in Urban Topographic Maps Enhances Human Object Location Memory

    PubMed Central

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  2. True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory.

    PubMed

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2015-01-01

    Cognitive representations of learned map information are subject to systematic distortion errors. Map elements that divide a map surface into regions, such as content-related linear symbols (e.g. streets, rivers, railway systems) or additional artificial layers (coordinate grids), provide an orientation pattern that can help users to reduce distortions in their mental representations. In recent years, the television industry has started to establish True-3D (autostereoscopic) displays as mass media. These modern displays make it possible to watch dynamic and static images including depth illusions without additional devices, such as 3D glasses. In these images, visual details can be distributed over different positions along the depth axis. Some empirical studies of vision research provided first evidence that 3D stereoscopic content attracts higher attention and is processed faster. So far, the impact of True-3D accentuating has not yet been explored concerning spatial memory tasks and cartography. This paper reports the results of two empirical studies that focus on investigations whether True-3D accentuating of artificial, regular overlaying line features (i.e. grids) and content-related, irregular line features (i.e. highways and main streets) in official urban topographic maps (scale 1/10,000) further improves human object location memory performance. The memory performance is measured as both the percentage of correctly recalled object locations (hit rate) and the mean distances of correctly recalled objects (spatial accuracy). It is shown that the True-3D accentuating of grids (depth offset: 5 cm) significantly enhances the spatial accuracy of recalled map object locations, whereas the True-3D emphasis of streets significantly improves the hit rate of recalled map object locations. These results show the potential of True-3D displays for an improvement of the cognitive representation of learned cartographic information. PMID:25679208

  3. Initial Results of 3D Topographic Mapping Using Lunar Reconnaissance Orbiter Camera (LROC) Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Li, R.; Oberst, J.; McEwen, A. S.; Archinal, B. A.; Beyer, R. A.; Thomas, P. C.; Chen, Y.; Hwangbo, J.; Lawver, J. D.; Scholten, F.; Mattson, S. S.; Howington-Kraus, A. E.; Robinson, M. S.

    2009-12-01

    The Lunar Reconnaissance Orbiter (LRO), launched June 18, 2009, carries the Lunar Reconnaissance Orbiter Camera (LROC) as one of seven remote sensing instruments on board. The camera system is equipped with a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NAC) for systematic lunar surface mapping and detailed site characterization for potential landing site selection and resource identification. The LROC WAC is a pushframe camera with five 14-line by 704-sample framelets for visible light bands and two 16-line by 512-sample (summed 4x to 4 by 128) UV bands. The WAC can also acquire monochrome images with a 14-line by 1024-sample format. At the nominal 50-km orbit the visible bands ground scale is 75-m/pixel and the UV 383-m/pixel. Overlapping WAC images from adjacent orbits can be used to map topography at a scale of a few hundred meters. The two panchromatic NAC cameras are pushbroom imaging sensors each with a Cassegrain telescope of a 700-mm focal length. The two NAC cameras are aligned with a small overlap in the cross-track direction so that they cover a 5-km swath with a combined field-of-view (FOV) of 5.6°. At an altitude of 50-km, the NAC can provide panchromatic images from its 5,000-pixel linear CCD at a ground scale of 0.5-m/pixel. Calibration of the cameras was performed by using precision collimator measurements to determine the camera principal points and radial lens distortion. The orientation of the two NAC cameras is estimated by a boresight calibration using double and triple overlapping NAC images of the lunar surface. The resulting calibration results are incorporated into a photogrammetric bundle adjustment (BA), which models the LROC camera imaging geometry, in order to refine the exterior orientation (EO) parameters initially retrieved from the SPICE kernels. Consequently, the improved EO parameters can significantly enhance the quality of topographic products derived from LROC NAC imagery. In addition, an analysis of the spacecraft

  4. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  5. Irrigation on Topographic Maps.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1979-01-01

    Describes how study of irrigation practices on topographic maps can help students in introductory high school and college geography courses understand man and land relationships to geography. (Author/DB)

  6. State-Of of 3d National Mapping in 2016

    NASA Astrophysics Data System (ADS)

    Stoter, Jantien; Vallet, Bruno; Lithen, Thomas; Pla, Maria; Wozniak, Piotr; Kellenberger, Tobias; Streilein, Andre; Ilves, Risto; Ledoux, Hugo

    2016-06-01

    Techniques for 3D mapping are maturing. At the same time the need for 3D data is increasing. This has pushed national (and regional) mapping agencies (NMAs) to consider extending their traditional task of providing topographic data into the third dimension. To show how research results in 3D mapping obtained over the past twenty years have been adopted by practice, this paper presents the ongoing work on 3D mapping within seven NMAs, all member of the 3D Special Interest Group of European Spatial Data Research (EuroSDR). The paper shows that some NMAs are still in the initial (experimental) phase of 3D mapping, while others have already built solid databases to maintain 2.5D and 3D topographic data covering their whole country.

  7. MOLA TOPOGRAPHIC MAP

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The context image shows the latest MOLA topographic map of Mars' from latitude 55o S to the south pole. Values of elevation on the color scale are in meters. The along-track resolution of MOLA profiles is 330 m. Vertical precision of individual elevations approaches 37 cm. Absolute accuracy of the grid with respect to Mars' center of mass is <10 m. Note that there is a gap in data within 2.8o of the south pole due to the inclination of the MGS orbit. This gap will be filled in later this month by tilting the MGS spacecraft to an off-nadir ranging configuration. The MPL landing site region is between latitudes 72o and 78o S and longitudes 130o to 190o E.

  8. Maximum likelihood topographic map formation.

    PubMed

    Van Hulle, Marc M

    2005-03-01

    We introduce a new unsupervised learning algorithm for kernel-based topographic map formation of heteroscedastic gaussian mixtures that allows for a unified account of distortion error (vector quantization), log-likelihood, and Kullback-Leibler divergence. PMID:15802004

  9. Topographic Maps and Coal Mining.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1984-01-01

    Geography teachers can illustrate the patterns associated with mineral fuel production, especially coal, by using United States Geological Survey topographic maps, which are illustrated by symbols that indicate mine-related features, such as shafts and tailings. Map reading exercises are presented; an interpretative map key that can facilitate…

  10. Topographic Map and Compass Use. Student Manual.

    ERIC Educational Resources Information Center

    Taylor, Michael

    This student manual is designed to introduce students to topographic maps and compass use. The first of five units included in the manual is an introduction to topographic maps. Among the topics discussed in this unit are uses, sources, and care and maintenance of topographic maps. Unit 2 discusses topographic map symbols and colors and provides a…

  11. Topographic mapping of the moon

    NASA Astrophysics Data System (ADS)

    Wu, S. S. C.

    1985-04-01

    Contour maps of the moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2,750,000. The map contour interval is 500 m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20 percent of the moon. This is the first step toward compiling a global topographic map of the moon at a scale of 1:5,000,000.

  12. Elevate Your Students with Topographic Maps.

    ERIC Educational Resources Information Center

    Voltmer, Rita K.; Paulson, Robert L.

    1983-01-01

    Instructions for constructing contour models from topographic maps are presented. Includes materials needed, sources of topographic maps, tips for drawing lines, and preparing the model using cardboard. Indicates that the model is a valuable instructional tool for turning topographic maps into "real" contours of land. (Author/JN)

  13. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  14. A 3D Geostatistical Mapping Tool

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  15. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  16. Learning-regulated context relevant topographical map.

    PubMed

    Hartono, Pitoyo; Hollensen, Paul; Trappenberg, Thomas

    2015-10-01

    Kohonen's self-organizing map (SOM) is used to map high-dimensional data into a low-dimensional representation (typically a 2-D or 3-D space) while preserving their topological characteristics. A major reason for its application is to be able to visualize data while preserving their relation in the high-dimensional input data space as much as possible. Here, we are seeking to go further by incorporating semantic meaning in the low-dimensional representation. In a conventional SOM, the semantic context of the data, such as class labels, does not have any influence on the formation of the map. As an abstraction of neural function, the SOM models bottom-up self-organization but not feedback modulation which is also ubiquitous in the brain. In this paper, we demonstrate a hierarchical neural network, which learns a topographical map that also reflects the semantic context of the data. Our method combines unsupervised, bottom-up topographical map formation with top-down supervised learning. We discuss the mathematical properties of the proposed hierarchical neural network and demonstrate its abilities with empirical experiments. PMID:25546864

  17. Topographic maps of multisensory attention.

    PubMed

    Anderson, Jeffrey S; Ferguson, Michael A; Lopez-Larson, Melissa; Yurgelun-Todd, Deborah

    2010-11-16

    The intraparietal sulcus (IPS) region is uniquely situated at the intersection of visual, somatosensory, and auditory association cortices, ideally located for processing of multisensory attention. We examined the internal architecture of the IPS region and its connectivity to other regions in the dorsal attention and cinguloinsular networks using maximal connectivity clustering. We show with resting state fMRI data from 58 healthy adolescent and young adult volunteers that points of maximal connectivity between the IPS and other regions in the dorsal attention and cinguloinsular networks are topographically organized, with at least seven maps of the IPS region in each hemisphere. Distinct clusters of the IPS exhibited differential connectivity to auditory, visual, somatosensory, and default mode networks, suggesting local specialization within the IPS region for different sensory modalities. In an independent task activation paradigm with 16 subjects, attention to different sensory modalities showed similar functional specialization within the left intraparietal sulcus region. The default mode network, in contrast, did not show a topographical relationship between regions in the network, but rather maximal connectivity in each region to a single central cluster of the other regions. The topographical architecture of multisensory attention may represent a mechanism for specificity in top-down control of attention from dorsolateral prefrontal and lateral orbitofrontal cortex and may represent an organizational unit for multisensory representations in the brain. PMID:21041658

  18. Airborne laser topographic mapping results

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Link, L. E.; Swift, R. N.; Butler, M. L.

    1984-01-01

    The results of terrain mapping experiments utilizing the National Aeronautics and Space Administration (NASA) Airborne Oceanographic Lidar (AOL) over forested areas are presented. The flight tests were conducted as part of a joint NASA/U.S. Army Corps of Engineers (CE) investigation aimed at evaluating the potential of an airborne laser ranging system to provide cross-sectional topographic data on flood plains that are difficult and expensive to survey using conventional techniques. The data described in this paper were obtained in the Wolf River Basin located near Memphis, TN. Results from surveys conducted under winter 'leaves off' and summer 'leaves on' conditions, aspects of day and night operation, and data obtained from decidous and coniferous tree types are compared. Data processing techniques are reviewed. Conclusions relative to accuracy and present limitations of the AOL, and airborne lidar systems in general, to terrain mapping over forested areas are discussed.

  19. A Method for Teaching Topographic Map Interpretation

    ERIC Educational Resources Information Center

    Schuit, Walter

    2011-01-01

    Students learn how to read and interpret topographic maps by using a set of simplified map exercise cards. Students learn in the field as opposed to a traditional classroom. Map symbols, distance, direction, form, and relief are among the map interpretation topics taught with this method. The multiple-choice format of the exercise also allows for…

  20. North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects

    NASA Astrophysics Data System (ADS)

    Li, Hong-lin; He, Tao; Spence, George D.

    2014-01-01

    The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.

  1. Hierarchical Manipulation of Block Copolymer Patterns on 3D Topographic Substrates: Beyond Graphoepitaxy.

    PubMed

    Park, Sungjune; Cheng, Xiao; Böker, Alexander; Tsarkova, Larisa

    2016-08-01

    Templates of complex nanopatterns in a form of hierarchically sequenced dots and stripes can be generated in block copolymer films on lithography-free 3D topographic substrates. The approach exploits thickness- and swelling-responsive morphological behavior of block copolymers, and demonstrates novel possibilities of topography-guided registration of nanopatterns due to periodic confinement and spontaneous orthogonal flow-fields. PMID:27270877

  2. A Watered-Down Topographic Map. Submarine Ring of Fire--Grades 6-8. Topographic and Bathymetric Maps.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about topographic maps and bathymetric charts. Students are expected to create a topographic map from a model landform, interpret a simple topographic map, and explain the difference between topographic and bathymetric maps. The activity provides learning objectives, a list of needed materials, key vocabulary…

  3. Geometric accuracy of topographical objects at Polish topographic maps

    NASA Astrophysics Data System (ADS)

    Ławniczak, Radzym; Kubiak, Jarosław

    2016-06-01

    The objective of research concerned verifying the accuracy of the location and shape of selected lakes presented on topographical maps from various periods, drawn up on different scales. The area of research covered lakes situated in North-Western Poland on the Międzychód-Sieraków Lakeland. An analysis was performed of vector maps available in both analogue and digital format. The scales of these studies range from 1:50 000 to 1:10 000. The source materials were current for the years 1907 through 2013. The shape and location of lakes have been verified directly by means of field measurements performed using the GPS technology with an accuracy class of RTK. An analysis was performed of the location and shape of five lakes. The analysed water regions were vectorised, and their vector images were used to determine quantitative features: the area and length of the shoreline. Information concerning the analysed lakes obtained from the maps was verified on the basis of direct field measurements performed using a GPS RTK receiver. Use was made of georeferential corrections provided by the NAVGEO service or a virtual reference station generated by the ASG EUPOS system. A compilation of cartographic and field data formed the basis for a comparison of the actual area and the length of the shoreline of the studied lakes. Cartographic analyses made it possible to single out the most reliable cartographic sources, which could be used for the purposes of hydrographical analyses. The course of shorelines shows the attached map.

  4. 183. Photocopy of map (Twin Falls Canal Company). TOPOGRAPHICAL MAP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    183. Photocopy of map (Twin Falls Canal Company). TOPOGRAPHICAL MAP OF MILNER DAM SITE, TWIN FALLS COUNTY, MILNER, IDAHO; MAP, LEFT SIDE ONLY. CROSS REFERENCE: ID-15-192. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. UAV Data Processing for Large Scale Topographical Mapping

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2014-06-01

    Large scale topographical mapping in the third world countries is really a prominent challenge in geospatial industries nowadays. On one side the demand is significantly increasing while on the other hand it is constrained by limited budgets available for mapping projects. Since the advent of Act Nr.4/yr.2011 about Geospatial Information in Indonesia, large scale topographical mapping has been on high priority for supporting the nationwide development e.g. detail spatial planning. Usually large scale topographical mapping relies on conventional aerial survey campaigns in order to provide high resolution 3D geospatial data sources. Widely growing on a leisure hobby, aero models in form of the so-called Unmanned Aerial Vehicle (UAV) bring up alternative semi photogrammetric aerial data acquisition possibilities suitable for relatively small Area of Interest (AOI) i.e. <5,000 hectares. For detail spatial planning purposes in Indonesia this area size can be used as a mapping unit since it usually concentrates on the basis of sub district area (kecamatan) level. In this paper different camera and processing software systems will be further analyzed for identifying the best optimum UAV data acquisition campaign components in combination with the data processing scheme. The selected AOI is covering the cultural heritage of Borobudur Temple as one of the Seven Wonders of the World. A detailed accuracy assessment will be concentrated within the object feature of the temple at the first place. Feature compilation involving planimetric objects (2D) and digital terrain models (3D) will be integrated in order to provide Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. By doing this research, incorporating the optimum amount of GCPs in the UAV photo data processing will increase the accuracy along with its high resolution in 5 cm Ground Sampling Distance (GSD). Finally this result will be used as the benchmark for alternative geospatial

  6. A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation.

    PubMed

    Kim, Woo-Hee; Minaye Hashemi, Fatemeh Sadat; Mackus, Adriaan J M; Singh, Joseph; Kim, Yeongin; Bobb-Semple, Dara; Fan, Yin; Kaufman-Osborn, Tobin; Godet, Ludovic; Bent, Stacey F

    2016-04-26

    Area-selective atomic layer deposition (AS-ALD) is attracting increasing interest because of its ability to enable both continued dimensional scaling and accurate pattern placement for next-generation nanoelectronics. Here we report a strategy for depositing material onto three-dimensional (3D) nanostructures with topographic selectivity using an ALD process with the aid of an ultrathin hydrophobic surface layer. Using ion implantation of fluorocarbons (CFx), a hydrophobic interfacial layer is formed, which in turn causes significant retardation of nucleation during ALD. We demonstrate the process for Pt ALD on both blanket and 2D patterned substrates. We extend the process to 3D structures, demonstrating that this method can achieve selective anisotropic deposition, selectively inhibiting Pt deposition on deactivated horizontal regions while ensuring that only vertical surfaces are decorated during ALD. The efficacy of the approach for metal oxide ALD also shows promise, though further optimization of the implantation conditions is required. The present work advances practical applications that require area-selective coating of surfaces in a variety of 3D nanostructures according to their topographical orientation. PMID:26950397

  7. Topographical mapping system for radiological and hazardous environments acceptance testing

    SciTech Connect

    Armstrong, G.A.; Dochat, G.R.

    1997-12-01

    During the summer of 1996, the Topographical Mapping System (TMS) for hazardous and radiological environments and its accompanying three-dimensional (3-D) visualization tool, the Interactive Computer-Enhanced Remote-Viewing System (ICERVS), were delivered to Oak Ridge National Laboratory (ORNL). ORNL and Mechanical Technology, Inc., performed final acceptance testing of the TMS during the next eight months. The TMS was calibrated and characterized during this period. This paper covers the calibration, characterization, and acceptance testing of the TMS. Development of the TMS and ICERVS was initiated by the US Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a 3-D, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE`s waste characterization and remediation efforts and to obtain baseline data on the content of the storage tank interiors as well as data on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Washington site, the TMS is designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  8. Topographical mapping system for radiological and hazardous environments acceptance testing

    NASA Astrophysics Data System (ADS)

    Armstrong, Gary A.; Dochat, G. R.

    1997-09-01

    During the summer of 1996, the topographical mapping system (TMS) for hazardous and radiological environments and its accompanying three-dimensional (3-D) visualization tool, the interactive computer-enhanced remote-viewing system (ICERVS), were delivered to Oak Ridge National Laboratory (ORNL). ORNL and Mechanical Technology, Inc., performed final acceptance testing of the TMS during the next eight months. The TMS was calibrated and characterized during this period. This paper covers the calibration, characterization, and acceptance testing of the TMS. Development of the TMS and the ICERVS was initiated by the U.S. Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a 3-D, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE's waste characterization and remediation efforts and to obtain baseline data on the content of the storage tank interiors as well as data on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Washington site, the TMS is designed to be a self-contained, compact, reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  9. 3D topographic correction of the BSR heat flow and detection of focused fluid flow

    NASA Astrophysics Data System (ADS)

    He, Tao; Li, Hong-Lin; Zou, Chang-Chun

    2014-06-01

    The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.

  10. Interactive photogrammetric system for mapping 3D objects

    NASA Astrophysics Data System (ADS)

    Knopp, Dave E.

    1990-08-01

    A new system, FOTO-G, has been developed for 3D photogrammetric applications. It is a production-oriented software system designed to work with highly unconventional photogrammetric image configurations which result when photographing 3D objects. A demonstration with imagery from an actual 3D-mapping project is reported.

  11. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  12. Topographical surveys: Classical method versus 3D laser scanning. Case study - An application in civil engineering

    NASA Astrophysics Data System (ADS)

    Grigoraş, I.-R.; Covăsnianu, A.; Pleşu, G.; Benedict, B.

    2009-04-01

    The paper describes an experiment which took place in Iasi town, Romania, consisted in two different topographical survey techniques applied for one and the same objective placed in a block within the city (western part) - a thermal power station. The purpose was to compare those methods and to determine which one is proper to be used in this domain in terms of fastness, optimization and speed of data processing. First technique applied for our survey was the classical one, with a total station. Using the CAD technique, we obtained a final product (a dwg file) and a list of coordinates (a text file). The second method, which we focused our attention more, was the measurement with a very precise 3D laser scanstation, also very suitable in archeology. The data obtained were processed with special software. Result was a 3D model of the thermal power plant composed of measurable cloud point data. Finally, analyzing the advantages and disadvantages of each method, we came to the conclusion that the 3D laser scanning which we used matches well the application, in this case civil engineering, but the future of accepting and implementing this technique is in the hands of Romanian authorities.

  13. Autonomous Exploration for 3D Map Learning

    NASA Astrophysics Data System (ADS)

    Joho, Dominik; Stachniss, Cyrill; Pfaff, Patrick; Burgard, Wolfram

    Autonomous exploration is a frequently addressed problem in the robotics community. This paper presents an approach to mobile robot exploration that takes into account that the robot acts in the three-dimensional space. Our approach can build compact three-dimensional models autonomously and is able to deal with negative obstacles such as abysms. It applies a decision-theoretic framework which considers the uncertainty in the map to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain taking into account possible sensor measurements. We present experimental results obtained with a real robot and in simulation.

  14. Cortical Mapping of 3D Optical Topography in Infants

    PubMed Central

    Papademetriou, Maria D; Richards, John; Correia, Teresa; Blasi, Anna; Murphy, D. G.; Lloyd-Fox, Sarah; Johnson, Mark; Elwell, Clare E

    2014-01-01

    Precise localization of cortical activation in the early development of the infant brain remains unclear. It is challenging to co-register haemodynamic responses during functional activation in infants with the underlying anatomy of the brain. We used a multispectral imaging algorithm to reconstruct 3D optical topographic images of haemodynamic responses in an infant during voice processing. In this paper we present a method for co-registering 3D optical topography images reconstructed from functional activation data in infants onto anatomical brain images obtained from MRI structurals of the individual infants. PMID:23852529

  15. 3-D Maps and Compasses in the Brain.

    PubMed

    Finkelstein, Arseny; Las, Liora; Ulanovsky, Nachum

    2016-07-01

    The world has a complex, three-dimensional (3-D) spatial structure, but until recently the neural representation of space was studied primarily in planar horizontal environments. Here we review the emerging literature on allocentric spatial representations in 3-D and discuss the relations between 3-D spatial perception and the underlying neural codes. We suggest that the statistics of movements through space determine the topology and the dimensionality of the neural representation, across species and different behavioral modes. We argue that hippocampal place-cell maps are metric in all three dimensions, and might be composed of 2-D and 3-D fragments that are stitched together into a global 3-D metric representation via the 3-D head-direction cells. Finally, we propose that the hippocampal formation might implement a neural analogue of a Kalman filter, a standard engineering algorithm used for 3-D navigation. PMID:27442069

  16. Geological mapping goes 3-D in response to societal needs

    USGS Publications Warehouse

    Thorleifson, H.; Berg, R.C.; Russell, H.A.J.

    2010-01-01

    The transition to 3-D mapping has been made possible by technological advances in digital cartography, GIS, data storage, analysis, and visualization. Despite various challenges, technological advancements facilitated a gradual transition from 2-D maps to 2.5-D draped maps to 3-D geological mapping, supported by digital spatial and relational databases that can be interrogated horizontally or vertically and viewed interactively. Challenges associated with data collection, human resources, and information management are daunting due to their resource and training requirements. The exchange of strategies at the workshops has highlighted the use of basin analysis to develop a process-based predictive knowledge framework that facilitates data integration. Three-dimensional geological information meets a public demand that fills in the blanks left by conventional 2-D mapping. Two-dimensional mapping will, however, remain the standard method for extensive areas of complex geology, particularly where deformed igneous and metamorphic rocks defy attempts at 3-D depiction.

  17. Landform Mapping Using Multiscale Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Bliss, N. B.

    2008-12-01

    Many ecological and agricultural processes depend on topographic relationships. Topography strongly influences microclimate, the types and productivity of plants, biomass, evapotranspiration rates, carbon storage rates, and fire fuel accumulation. These factors in turn influence the water cycle, stream flow, water quality, and soil formation. Most previous topographic analysis methods have focused on the elevation of a given grid cell (pixel) and very localized measures of slope and aspect (e.g., computed from elevation in a 3x3 window). Some measures have moved beyond a strictly local relationship, such as the compound topographic index, which can be used as a soil wetness index. I introduce a new method of multiscale topographic analysis which can be applied to digital elevation model (DEM) data of any resolution. The method calculates slope and curvature (change of slope) of the land not only in relation to adjacent grid cells but also for much larger distances downstream. The algorithm uses a flow direction grid to create a synthetic stream network as a set of connected line segments (a vector dataset). The multiscale measures are stored on a node attribute table, where the nodes are the endpoints of line segments connecting the original DEM grid cells. A pointer is computed for directly accessing data for nodes at selected distances down the stream network. Baseline distances are selected by counting cells down the flow path by each power of two (1, 2, 4, 8, ... cells downstream). Slope and curvature measures are defined for each of these baselines and are queried to distinguish multiscale topographic characteristics. Several applications of these methods have been tested. A floodplain measure identifies areas that are relatively low on the landscape, even as elevation changes while moving from plains into hills or mountains (study area: South Dakota). The landscape may be partitioned to provide zones for ecological analysis, including selection of field

  18. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  19. Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.

    PubMed

    Truong, Milton L; Harrington, Michael G; Schepkin, Victor D; Chekmenev, Eduard Y

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm(3) and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/. PMID:25261742

  20. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    PubMed Central

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  1. 3D Viewer Platform of Cloud Clustering Management System: Google Map 3D

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Ja; Lee, Gang-Soo

    The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].

  2. The National Map: Topographic Maps for the 21st Century

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    The U.S. Geological Survey (USGS) is committed to meeting the Nation's needs for current base geographic data and maps. Our vision is that, by working with partners, we will provide the Nation with access to current, accurate, and nationally consistent digital data and topographic maps derived from those data. This synthesis of information, products, and capabilities, The National Map, will be a seamless, continuously maintained set of geographic base information that will serve as a foundation for integrating, sharing, and using other data easily and consistently.

  3. The National Map: Topographic Maps for the 21st Century

    USGS Publications Warehouse

    U.S. Geological Survey

    2001-01-01

    The U.S. Geological Survey (USGS) is committed to meeting the Nation's needs for current base geographic data and maps. Our vision is that, by working with partners, we will provide the Nation with access to current, accurate, and nationally consistent digital data and topographic maps derived from those data. This synthesis of information, products, and capabilities, The National Map, will be a seamless, continuously maintained set of geographic base information that will serve as a foundation for integrating, sharing, and using other data easily and consistently.

  4. The National Map: Topographic Maps for the 21st Century

    USGS Publications Warehouse

    U.S. Geological Survey

    2002-01-01

    The U.S. Geological Survey (USGS) is committed to meeting the Nation's needs for current base geographic data and maps. Our vision is that, by working with partners, we will provide the Nation with access to current, accurate, and nationally consistent digital data and topographic maps derived from those data. This synthesis of information, products, and capabilities, The National Map, will be a seamless, continuously maintained set of geographic base information that will serve as a foundation for integrating, sharing, and using other data easily and consistently.

  5. Prospective in (Primate) Dental Analysis through Tooth 3D Topographical Quantification

    PubMed Central

    Guy, Franck; Gouvard, Florent; Boistel, Renaud; Euriat, Adelaïde; Lazzari, Vincent

    2013-01-01

    The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel–dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel–dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel–dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel–dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel–dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of

  6. Prospective in (Primate) dental analysis through tooth 3D topographical quantification.

    PubMed

    Guy, Franck; Gouvard, Florent; Boistel, Renaud; Euriat, Adelaïde; Lazzari, Vincent

    2013-01-01

    The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel-dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel-dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel-dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel-dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel-dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of

  7. Automatic Texture Mapping of Architectural and Archaeological 3d Models

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.

    2012-07-01

    Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.

  8. 3-D Topographic Thermal and Radiative Modeling of Ice Stability and Migration on Callisto

    NASA Astrophysics Data System (ADS)

    Wood, Stephen E.; Ivarson, K. L.; Danilina, I.; Griffiths, S. D.; Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2010-10-01

    We have been modeling landscape evolution on the Galilean satellites driven by volatile transport. Callisto's landscape shows evidence of widespread erosion hypothesized by Moore et al. (1999) to result from sublimation of near-surface ice followed by mass wasting. Bright material thought to be re-deposited frost is commonly seen on upper flanks and summits of ridges, crater rims, and Callisto's ubiquitous knobs. In order to test hypotheses related to these landform and albedo patterns, we have developed a 3-D thermal model that calculates surface and subsurface temperatures for any given topographic shape, accounting for shadowing, reflected solar radiation, and thermal radiation from surrounding points. The temperatures are then used to calculate sublimation and subsurface diffusion rates for both CO2 and H2O ice. These rates are used to compute area-averaged downward vapor fluxes within ballistic molecular jump distances from vapor sources. Where net deposition is predicted, surface albedo in increased proportional to frost thickness. Where net sublimation occurs, the thickness of a dark dust lag is increased accordingly. We will present results pertaining to the stability of bright frost-covered knobs as well as observed distribution patterns of frost on the interior walls of craters. This work is supported by NASA through the Jupiter Data Analysis Program.

  9. A MATLAB function for 3-D and 4-D topographical visualization in geosciences

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry

    2016-04-01

    Combining topographical information and spatially varying variables in visualizations is often crucial and inherent to geoscientific problems. Despite this, it is often an impossible or a very time-consuming and difficult task to create such figures by using classic software packages. This is also the case in the widely used numerical computing environment MATLAB. Here a MATLAB function is introduced for plotting a variety of natural environments with a pronounced topography, such as for instance glaciers, volcanoes and lakes in mountainous regions. Landscapes can be visualized in 3-D, with a single colour defining a featured surface type (e.g. ice, snow, water, lava), or with a colour scale defining the magnitude of a variable (e.g. ice thickness, snow depth, water depth, surface velocity, gradient, elevation). As an input only the elevation of the subsurface (typically the bedrock) and the surface are needed, which can be complemented by various input parameters in order to adapt the figure to specific needs. The figures are particularly suited to make time-evolving animations of natural processes, such as for instance a glacier retreat or a lake drainage event. Several visualization examples will be provided alongside with animations. The function, which is freely available for download, only requires the basic package of MATLAB and can be run on any standard stationary or portable personal computer.

  10. Rapid high-fidelity visualisation of multispectral 3D mapping

    NASA Astrophysics Data System (ADS)

    Tudor, Philip M.; Christy, Mark

    2011-06-01

    Mobile LIDAR scanning typically provides captured 3D data in the form of 3D 'Point Clouds'. Combined with colour imagery these data produce coloured point clouds or, if further processed, polygon-based 3D models. The use of point clouds is simple and rapid, but visualisation can appear ghostly and diffuse. Textured 3D models provide high fidelity visualisation, but their creation is time consuming, difficult to automate and can modify key terrain details. This paper describes techniques for the visualisation of fused multispectral 3D data that approach the visual fidelity of polygon-based models with the rapid turnaround and detail of 3D point clouds. The general approaches to data capture and data fusion are identified as well as the central underlying mathematical transforms, data management and graphics processing techniques used to support rapid, interactive visualisation of very large multispectral 3D datasets. Performance data with respect to real-world 3D mapping as well as illustrations of visualisation outputs are included.

  11. An Interdisciplinary Theme: Topographic Maps and Plate Tectonics

    ERIC Educational Resources Information Center

    Concannon, James P.; Aulgur, Linda

    2011-01-01

    This is an interdisciplinary lesson designed for middle school students studying landforms and geological processes. Students create a two-dimensional topographic map from a three-dimensional landform that they create using clay. Students then use other groups' topographic maps to re-create landforms. Following this, students explore some basic…

  12. Vehicle teleoperation using 3D maps and GPS time synchronization.

    PubMed

    Suzuki, Taro; Amano, Yoshiharu; Hashizume, Takumi; Kubo, Nobuaki

    2013-01-01

    In conventional vehicle teleoperation systems, using low-bandwidth, high-delay transmission links causes a serious problem for remote control of the vehicles. To solve this problem, a proposed teleoperation system employs 3D maps and GPS time synchronization. Two GPS receivers measure the transmission delay, which the system uses to estimate the vehicle's location and orientation. Field experiments show that the 3D-map-based interface lets users easily comprehend the remote environment while navigating a vehicle. The experiments also show that taking communication delays into account improves maneuverability. PMID:24808084

  13. Topographic Map of Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topographic map of the landing site, to a distance of 60 meters from the lander in the LSC coordinate system. The lander is shown schematically in the center; 2.5 meter radius circle (black) centered on the camera was not mapped. Gentle relief [root mean square (rms) elevation variation 0.5 m; rms a directional slope 4O] and organization of topography into northwest and northeast-trending ridges about 20 meters apart are apparent. Roughly 30% of the illustrated area is hidden from the camera behind these ridges. Contours (0.2 m interval) and color coding of elevations were generated from a digital terrain model, which was interpolated by kriging from approximately 700 measured points. Angular and parallax point coordinates were measured manually on a large (5 m length) anaglyphic uncontrolled mosaic and used to calculate Cartesian (LSC) coordinates. Errors in azimuth on the order of 10 are therefore likely; elevation errors were minimized by referencing elevations to the local horizon. The uncertainty in range measurements increases quadratically with range. Given a measurement error of 1/2 pixel, the expected precision in range is 0.3 meter at 10 meter range, and 10 meters at 60 meter range. Repeated measurements were made, compared, and edited for consistency to improve the range precision. Systematic errors undoubtedly remain and will be corrected in future maps compiled digitally from geometrically controlled images. Cartographic processing by U.S. Geological Survey.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  14. Topographic Mapping and Rover Localization in MER 2003 Mission Landing Sites

    NASA Astrophysics Data System (ADS)

    Li, R.; di, K.; Matthies, L.; Maimone, M.; Arvidson, R.; Crumpler, L.; Xu, F.; Wang, J.; Niu, X.; Serafy, C.; Ming, D.; Richter, L.; Marais, D.; Golombek, M.; Squyres, S.; Johnson, J.; Bell, J.; Maki, J.; Malin, M.; Parker, T.; Edwards, L.; Sims, M.; Wang, A.; Garvin, J.; Soderblom, L.

    2004-05-01

    This presentation illustrates results of topographic mapping and rover localization in Spirit and Opportunity landing sites. MOC/NA images, DIMES descent images, and surface Pancam and Navcam images are used to map regional and local topographic features of the landing sites. A new bundle adjustment method builds an image network with improved visual odometric data to supply enhance pointing data that are essential for high accuracy mapping and rover localization. Special 3D mapping products of the crater where Opportunity spacecraft landed are produced first time using rover images acquired from inside of a planetary crater. Traverse maps will show the comparison result of rover positions computed from the rover telemetry data with those from the image-based localization method. Analysis of the differences will be performed considering wheel slippage, IMU drift, and other factors. High quality topographic mapping products such as orthoimage base maps, 3D digital terrain models, and 3D interactive viewing tools are developed to support a series of mission operations and outreach activities, including long term science planning, rover path planning, geological mapping, wheel track property investigation, rock distribution estimation, crater modeling, and TV simulation scenes.

  15. A topographic feature taxonomy for a U.S. national topographic mapping ontology

    USGS Publications Warehouse

    Varanka, Dalia E.

    2013-01-01

    Using legacy feature lists from the U.S. National Topographic Mapping Program of the twentieth century, a taxonomy of features is presented for purposes of developing a national topographic feature ontology for geographic mapping and analysis. After reviewing published taxonomic classifications, six basic classes are suggested; terrain, surface water, ecological regimes, built-up areas, divisions, and events. Aspects of ontology development are suggested as the taxonomy is described.

  16. 3D resolved mapping of optical aberrations in thick tissues

    PubMed Central

    Zeng, Jun; Mahou, Pierre; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel; Débarre, Delphine

    2012-01-01

    We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications. PMID:22876353

  17. Constructing 3D interaction maps from 1D epigenomes

    PubMed Central

    Zhu, Yun; Chen, Zhao; Zhang, Kai; Wang, Mengchi; Medovoy, David; Whitaker, John W.; Ding, Bo; Li, Nan; Zheng, Lina; Wang, Wei

    2016-01-01

    The human genome is tightly packaged into chromatin whose functional output depends on both one-dimensional (1D) local chromatin states and three-dimensional (3D) genome organization. Currently, chromatin modifications and 3D genome organization are measured by distinct assays. An emerging question is whether it is possible to deduce 3D interactions by integrative analysis of 1D epigenomic data and associate 3D contacts to functionality of the interacting loci. Here we present EpiTensor, an algorithm to identify 3D spatial associations within topologically associating domains (TADs) from 1D maps of histone modifications, chromatin accessibility and RNA-seq. We demonstrate that active promoter–promoter, promoter–enhancer and enhancer–enhancer associations identified by EpiTensor are highly concordant with those detected by Hi-C, ChIA-PET and eQTL analyses at 200 bp resolution. Moreover, EpiTensor has identified a set of interaction hotspots, characterized by higher chromatin and transcriptional activity as well as enriched TF and ncRNA binding across diverse cell types, which may be critical for stabilizing the local 3D interactions. PMID:26960733

  18. 3D Regression Heat Map Analysis of Population Study Data.

    PubMed

    Klemm, Paul; Lawonn, Kai; Glaßer, Sylvia; Niemann, Uli; Hegenscheid, Katrin; Völzke, Henry; Preim, Bernhard

    2016-01-01

    Epidemiological studies comprise heterogeneous data about a subject group to define disease-specific risk factors. These data contain information (features) about a subject's lifestyle, medical status as well as medical image data. Statistical regression analysis is used to evaluate these features and to identify feature combinations indicating a disease (the target feature). We propose an analysis approach of epidemiological data sets by incorporating all features in an exhaustive regression-based analysis. This approach combines all independent features w.r.t. a target feature. It provides a visualization that reveals insights into the data by highlighting relationships. The 3D Regression Heat Map, a novel 3D visual encoding, acts as an overview of the whole data set. It shows all combinations of two to three independent features with a specific target disease. Slicing through the 3D Regression Heat Map allows for the detailed analysis of the underlying relationships. Expert knowledge about disease-specific hypotheses can be included into the analysis by adjusting the regression model formulas. Furthermore, the influences of features can be assessed using a difference view comparing different calculation results. We applied our 3D Regression Heat Map method to a hepatic steatosis data set to reproduce results from a data mining-driven analysis. A qualitative analysis was conducted on a breast density data set. We were able to derive new hypotheses about relations between breast density and breast lesions with breast cancer. With the 3D Regression Heat Map, we present a visual overview of epidemiological data that allows for the first time an interactive regression-based analysis of large feature sets with respect to a disease. PMID:26529689

  19. Multibeam Laser Altimeter for Planetary Topographic Mapping

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Bufton, J. L.; Harding, D. J.

    1993-01-01

    Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.

  20. 37. Topographical Map of Land of Atwater Kent Manufacturing Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Topographical Map of Land of Atwater Kent Manufacturing Co., 38th Ward, Philadelphia (before 1928) - Atwater Kent Manufacturing Company, North Plant, 5000 Wissahickon Avenue, Philadelphia, Philadelphia County, PA

  1. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance

  2. A 3D mosaic algorithm using disparity map

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Kakeya, Hideki

    2015-03-01

    Conventionally there exist two major methods to create mosaics in 3D videos. One is to duplicate the area of mosaics from the image of one viewpoint (the left view or the right view) to that of the other viewpoint. This method, which is not capable of expressing depth, cannot give viewers a natural perception in 3D. The other method is to create the mosaics separately in the left view and the right view. With this method the depth is expressed in the area of mosaics, but 3D perception is not natural enough. To overcome these problems, we propose a method to create mosaics by using a disparity map. In the proposed method the mosaic of the image from one viewpoint is made with the conventional method, while the mosaic of the image from the other viewpoint is made based on the data of the disparity map so that the mosaic patterns of the two images can give proper depth perception to the viewer. We confirm that the proposed mosaic pattern using a disparity map gives more natural depth perception of the viewer by subjective experiments using a static image and two videos.

  3. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  4. Exploring Arthur's Pass Topographic Map and Model Interpretation.

    ERIC Educational Resources Information Center

    Fastier, Murray; Macaulay, John

    1995-01-01

    Provides instructional materials, tasks, and activities to supplement a unit on map reading. Presents a two-page color topographical map of Arthur's Pass (New Zealand). Includes learning activities covering reading grid references, estimating distances, cross-sections, and sketch mapping. Briefly discusses and illustrates digital terrain models.…

  5. Lidar on small UAV for 3D mapping

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. Michael; Larsson, Hâkan

    2014-10-01

    Small UAV:s (Unmanned Aerial Vehicles) are currently in an explosive technical development phase. The performance of UAV-system components such as inertial navigation sensors, propulsion, control processors and algorithms are gradually improving. Simultaneously, lidar technologies are continuously developing in terms of reliability, accuracy, as well as speed of data collection, storage and processing. The lidar development towards miniature systems with high data rates has, together with recent UAV development, a great potential for new three dimensional (3D) mapping capabilities. Compared to lidar mapping from manned full-size aircraft a small unmanned aircraft can be cost efficient over small areas and more flexible for deployment. An advantage with high resolution lidar compared to 3D mapping from passive (multi angle) photogrammetry is the ability to penetrate through vegetation and detect partially obscured targets. Another advantage is the ability to obtain 3D data over the whole survey area, without the limited performance of passive photogrammetry in low contrast areas. The purpose of our work is to demonstrate 3D lidar mapping capability from a small multirotor UAV. We present the first experimental results and the mechanical and electrical integration of the Velodyne HDL-32E lidar on a six-rotor aircraft with a total weight of 7 kg. The rotating lidar is mounted at an angle of 20 degrees from the horizontal plane giving a vertical field-of-view of 10-50 degrees below the horizon in the aircraft forward directions. For absolute positioning of the 3D data, accurate positioning and orientation of the lidar sensor is of high importance. We evaluate the lidar data position accuracy both based on inertial navigation system (INS) data, and on INS data combined with lidar data. The INS sensors consist of accelerometers, gyroscopes, GPS, magnetometers, and a pressure sensor for altimetry. The lidar range resolution and accuracy is documented as well as the

  6. 3D map of the human corneal endothelial cell.

    PubMed

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc'h, Michel; Defoe, Dennis M; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  7. 3D map of the human corneal endothelial cell

    PubMed Central

    He, Zhiguo; Forest, Fabien; Gain, Philippe; Rageade, Damien; Bernard, Aurélien; Acquart, Sophie; Peoc’h, Michel; Defoe, Dennis M.; Thuret, Gilles

    2016-01-01

    Corneal endothelial cells (CECs) are terminally differentiated cells, specialized in regulating corneal hydration and transparency. They are highly polarized flat cells that separate the cornea from the aqueous humor. Their apical surface, in contact with aqueous humor is hexagonal, whereas their basal surface is irregular. We characterized the structure of human CECs in 3D using confocal microscopy of immunostained whole corneas in which cells and their interrelationships remain intact. Hexagonality of the apical surface was maintained by the interaction between tight junctions and a submembraneous network of actomyosin, braced like a drum. Lateral membranes, which support enzymatic pumps, presented complex expansions resembling interdigitated foot processes at the basal surface. Using computer-aided design and drafting software, we obtained a first simplified 3D model of CECs. By comparing their expression with those in epithelial, stromal and trabecular corneal cells, we selected 9 structural or functional proteins for which 3D patterns were specific to CECs. This first 3D map aids our understanding of the morphologic and functional specificity of CECs and could be used as a reference for characterizing future cell therapy products destined to treat endothelial dysfunctions. PMID:27381832

  8. Sensing and 3D Mapping of Soil Compaction

    PubMed Central

    Tekin, Yücel; Kul, Basri; Okursoy, Rasim

    2008-01-01

    Soil compaction is an important physical limiting factor for the root growth and plant emergence and is one of the major causes for reduced crop yield worldwide. The objective of this study was to generate 2D/3D soil compaction maps for different depth layers of the soil. To do so, a soil penetrometer was designed, which was mounted on the three-point hitch of an agricultural tractor, consisting of a mechanical system, data acquisition system (DAS), and 2D/3D imaging and analysis software. The system was successfully tested in field conditions, measuring soil penetration resistances as a function of depth from 0 to 40 cm at 1 cm intervals. The software allows user to either tabulate the measured quantities or generate maps as soon as data collection has been terminated. The system may also incorporate GPS data to create geo-referenced soil maps. The software enables the user to graph penetration resistances at a specified coordinate. Alternately, soil compaction maps could be generated using data collected from multiple coordinates. The data could be automatically stratified to determine soil compaction distribution at different layers of 5, 10,.…, 40 cm depths. It was concluded that the system tested in this study could be used to assess the soil compaction at topsoil and the randomly distributed hardpan formations just below the common tillage depths, enabling visualization of spatial variability through the imaging software.

  9. Children's Abilities in Topographic Map Reading.

    ERIC Educational Resources Information Center

    Carswell, Ronald J. B.

    Although over 40 studies have been done since 1925 on map reading, there is little understanding of children's ability to comprehend maps or the mental processes involved. Children's inability to read maps is well document, as are their improved skills after instruction. Yet map skills are part of the elementary curriculum. Success in teaching map…

  10. 3D Gel Map of Arabidopsis Complex I

    PubMed Central

    Peters, Katrin; Belt, Katharina; Braun, Hans-Peter

    2013-01-01

    Complex I has a unique structure in plants and includes extra subunits. Here, we present a novel study to define its protein constituents. Mitochondria were isolated from Arabidopsis thaliana cell cultures, leaves, and roots. Subunits of complex I were resolved by 3D blue-native (BN)/SDS/SDS-PAGE and identified by mass spectrometry. Overall, 55 distinct proteins were found, seven of which occur in pairs of isoforms. We present evidence that Arabidopsis complex I consists of 49 distinct types of subunits, 40 of which represent homologs of bovine complex I. The nine other subunits represent special proteins absent in the animal linage of eukaryotes, most prominently a group of subunits related to bacterial gamma-type carbonic anhydrases. A GelMap http://www.gelmap.de/arabidopsis-3d-complex-i/ is presented for promoting future complex I research in Arabidopsis thaliana. PMID:23761796

  11. Topographic Brain Mapping: A Window on Brain Function?

    ERIC Educational Resources Information Center

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  12. Temperature maps measurements on 3D surfaces with infrared thermography

    NASA Astrophysics Data System (ADS)

    Cardone, Gennaro; Ianiro, Andrea; Dello Ioio, Gennaro; Passaro, Andrea

    2012-02-01

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel.

  13. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  14. Competition is a driving force in topographic mapping.

    PubMed

    Triplett, Jason W; Pfeiffenberger, Cory; Yamada, Jena; Stafford, Ben K; Sweeney, Neal T; Litke, Alan M; Sher, Alexander; Koulakov, Alexei A; Feldheim, David A

    2011-11-22

    Topographic maps are the primary means of relaying spatial information in the brain. Understanding the mechanisms by which they form has been a goal of experimental and theoretical neuroscientists for decades. The projection of the retina to the superior colliculus (SC)/tectum has been an important model used to show that graded molecular cues and patterned retinal activity are required for topographic map formation. Additionally, interaxon competition has been suggested to play a role in topographic map formation; however, this view has been recently challenged. Here we present experimental and computational evidence demonstrating that interaxon competition for target space is necessary to establish topography. To test this hypothesis experimentally, we determined the nature of the retinocollicular projection in Math5 (Atoh7) mutant mice, which have severely reduced numbers of retinal ganglion cell inputs into the SC. We find that in these mice, retinal axons project to the anteromedialj portion of the SC where repulsion from ephrin-A ligands is minimized and where their attraction to the midline is maximized. This observation is consistent with the chemoaffinity model that relies on axon-axon competition as a mapping mechanism. We conclude that chemical labels plus neural activity cannot alone specify the retinocollicular projection; instead axon-axon competition is necessary to create a map. Finally, we present a mathematical model for topographic mapping that incorporates molecular labels, neural activity, and axon competition. PMID:22065784

  15. Topographic map of Golden Gate Estates, Collier County, Florida

    USGS Publications Warehouse

    Jurado, Antonio

    1981-01-01

    Construction of canals related to land development in the Golden Gate Estates area of Collier County, Fla., has altered the natural drainage pattern of the watershed. The area of approximately 300 square miles was topographically mapped with a contour interval of 0.5 foot to assist in determining the effects of canal construction on the surface-water and ground-water resources in the watershed. The topographic map was prepared at a scale of 1:48,000 using aerial photography and ground-control points. (USGS)

  16. Retinal input instructs alignment of visual topographic maps

    PubMed Central

    Triplett, Jason W.; Owens, Melinda T.; Yamada, Jena; Lemke, Greg; Cang, Jianhua; Stryker, Michael P.; Feldheim, David A.

    2009-01-01

    SUMMARY Sensory information is represented in the brain in the form of topographic maps, in which neighboring neurons respond to adjacent external stimuli. In the visual system, the superior colliculus receives topographic projections from the retina and primary visual cortex (V1) that are aligned. Alignment may be achieved through the use of a gradient of shared axon guidance molecules, or through a retinal-matching mechanism in which axons that monitor identical regions of visual space align. To distinguish between these possibilities, we take advantage of genetically-engineered mice that we show have a duplicated functional retinocollicular map but only a single map in V1. Anatomical tracing revealed that the corticocollicular projection bifurcates to align with the duplicated retinocollicular map in a manner dependent on the normal pattern of spontaneous activity during development. These data suggest a general model in which convergent maps use coincident activity patterns to achieve alignment. PMID:19804762

  17. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  18. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  19. Visualization and Interpretation in 3D Virtual Reality of Topographic and Geophysical Data from the Chicxulub Impact Crater

    NASA Astrophysics Data System (ADS)

    Rosen, J.; Kinsland, G. L.; Borst, C.

    2011-12-01

    We have assembled Shuttle Radar Topography Mission (SRTM) data (Borst and Kinsland, 2005), gravity data (Bedard, 1977), horizontal gravity gradient data (Hildebrand et al., 1995), magnetic data (Pilkington et al., 2000) and GPS topography data (Borst and Kinsland, 2005) from the Chicxulub Impact Crater buried on the Yucatan Peninsula of Mexico. These data sets are imaged as gridded surfaces and are all georegistered, within an interactive 3D virtual reality (3DVR) visualization and interpretation system created and maintained in the Center for Advanced Computer Studies at the University of Louisiana at Lafayette. We are able to view and interpret the data sets individually or together and to scale and move the data or to move our physical head position so as to achieve the best viewing perspective for interpretation. A feature which is especially valuable for understanding the relationships between the various data sets is our ability to "interlace" the 3D images. "Interlacing" is a technique we have developed whereby the data surfaces are moved along a common axis so that they interpenetrate. This technique leads to rapid and positive identification of spatially corresponding features in the various data sets. We present several images from the 3D system, which demonstrate spatial relationships amongst the features in the data sets. Some of the anomalies in gravity are very nearly coincident with anomalies in the magnetic data as one might suspect if the causal bodies are the same. Other gravity and magnetic anomalies are not spatially coincident indicating different causal bodies. Topographic anomalies display a strong spatial correspondence with many gravity anomalies. In some cases small gravity anomalies and topographic valleys are caused by shallow dissolution within the Tertiary cover along faults or fractures propagated upward from the buried structure. In other cases the sources of the gravity anomalies are in the more deeply buried structure from which

  20. EMPLOYING TOPOGRAPHICAL HEIGHT MAP IN COLONIC POLYP MEASUREMENT AND FALSE POSITIVE REDUCTION

    PubMed Central

    Yao, Jianhua; Li, Jiang; Summers, Ronald M.

    2008-01-01

    CT Colonography (CTC) is an emerging minimally invasive technique for screening and diagnosing colon cancers. Computer Aided Detection (CAD) techniques can increase sensitivity and reduce false positives. Inspired by the way radiologists detect polyps via 3D virtual fly-through in CTC, we borrowed the idea from geographic information systems to employ topographical height map in colonic polyp measurement and false positive reduction. After a curvature based filtering and a 3D CT feature classifier, a height map is computed for each detection using a ray-casting algorithm. We design a concentric index to characterize the concentric pattern in polyp height map based on the fact that polyps are protrusions from the colon wall and round in shape. The height map is optimized through a multi-scale spiral spherical search to maximize the concentric index. We derive several topographic features from the map and compute texture features based on wavelet decomposition. We then send the features to a committee of support vector machines for classification. We have trained our method on 394 patients (71 polyps) and tested it on 792 patients (226 polyps). Results showed that we can achieve 95% sensitivity at 2.4 false positives per patient and the height map features can reduce false positives by more than 50%. We compute the polyp height and width measurements and correlate them with manual measurements. The Pearson correlations are 0.74 (p=0.11) and 0.75 (p=0.17) for height and width, respectively. PMID:19578483

  1. Model for Improvement of Learning Using Topographic Mapping.

    ERIC Educational Resources Information Center

    Andrews, David B.

    The paper develops a method for learning improvement which incorporates the learner in the development of the learning/instructional strategy. To this end, a rate limiting model using topographical brain mapping as an educational intervention is presented. It is suggested that such intervention programs focus on those factors which are…

  2. University Students' Conceptualization and Interpretation of Topographic Maps

    ERIC Educational Resources Information Center

    Clark, Douglas; Reynolds, Stephen; Lemanowski, Vivian; Stiles, Thomas; Yasar, Senay; Proctor, Sian; Lewis, Elizabeth; Stromfors, Charlotte; Corkins, James

    2008-01-01

    This study investigates the strategies and assumptions that college students entering an introductory physical geology laboratory use to interpret topographic maps, and follows the progress of the students during the laboratory to analyze changes in those strategies and assumptions. To elicit students' strategies and assumptions, we created and…

  3. New Large-Scale Topographic Maps of Planet Mars

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Lehmann, H.; Wahlisch, M.; Albertz, J.

    Introduction: The High Resolution Stereo Camera (HRSC) instrument is well suited for the special demands of stereophotogrammetry and cartography as well. Thus, color orthoimages, Digital Terrain Models (DTM), and - based on these two data sets - high quality topographic and thematic map products are generated, mainly in standard scale 1:200,000, i.e. the new Topographic Image Map Mars 1:200,000 map series. For supporting such a challenge and also aiming for automation of the mapping process, the cartographic software package Planetary Image Mapper (PIMap) has been developed at Technische Universität Berlin. Besides an overview of the cartographic concept and map generation, two recent projects - the mapping of the Iani Chaos region in three different scales and the generation of the first map sheets of the standard series for the north polar region - are described. The Cartographic Concept: The Topographic Image Map Mars 1:200,000 is defined as the standard map series of the Mars Express mission. In general, all map sheets are based on HRSC orthoimages, supplemented by contour lines derived from HRSC DTMs, topographic names, grids, and marginal information. The planet Mars is covered by 10,372 individual sheets in equal-area map projections, i.e. 10,324 of them within the ±85° latitude zone in Sinusoidal Projection and 48 around the poles in Lambert Azimuthal Equal-area Projection. While each of the quadrangles spans 2° in latitude, longitudinal extents increase from 2° near the equator up to 360° towards the poles in order to keep the mapped area approximately constant. The Martian reference body is the IAU 2000 Ellipsoid with an equatorial axis of 3396.19 km and a polar axis of 3376.20 km. Both Martian coordinate systems - i.e. the standard consisting of eastern longitudes and planetocentric latitudes as well as the formerly used system of western longitudes and planetographic latitudes - are shown within the map sheets. An areoid, i.e. the Martian geoid

  4. 12. Photograph of a topographic map. 'HOLSTON ORDNANCE WORKS, KINGSPORT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photograph of a topographic map. 'HOLSTON ORDNANCE WORKS, KINGSPORT, TENNESSEE, VICINITY MAP: ENLARGED KINGSPORT AREA. WAR DEPARTMENT, INDUSTRIAL FACILITIES INVENTORY, PART I, SECTION 3.' From U.S. Army Corps of Engineers. Industrial Facilities Inventory, Holston Ordnance Works, Kingsport, Tennessee. Plant A, Parts I, II, III. (Nashville, TN: Office of the District Engineer, 1944). - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN

  5. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements. PMID:22051087

  6. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  7. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  8. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the

  9. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  10. Disaster Prevention Coastal Map Production by MMS & C3D

    NASA Astrophysics Data System (ADS)

    Hatake, Shuhei; Kohori, Yuki; Watanabe, Yasushi

    2016-06-01

    In March 2011, Eastern Japan suffered serious damage of Tsunami caused by a massive earthquake. In 2012, Ministry of Land, Infrastructure and Transport published "Guideline of setting assumed areas of inundation by Tsunami" to establish the conditions of topography data used for simulation of Tsunami. In this guideline, the elevation data prepared by Geographical Survey Institute of Japan and 2m/5m/10m mesh data of NSDI are adopted for land area, while 500m mesh data of Hydrographic and Oceanographic Department of Japan Coast Guard and sea charts are adopted for water area. These data, however, do not have continuity between land area and water area. Therefore, in order to study the possibility of providing information for coastal disaster prevention, we have developed an efficient method to acquire continuous topography over land and water including tidal zone. Land area data are collected by Mobile Mapping System (MMS) and water area depth data are collected by interferometry echo sounder (C3D), and both data are simultaneously acquired on a same boat. Elaborate point cloud data of 1m or smaller are expected to be used for realistic simulation of Tsunami waves going upstream around shoreline. Tests were made in Tokyo Bay (in 2014) and Osaka Bay (in 2015). The purpose the test in Osaka Bay is to make coastal map for disaster prevention as a countermeasure for predicted Nankai massive earthquake. In addition to Tsunami simulation, the continuous data covering land and marine areas are expected to be used effectively for maintenance and repair of aged port and river facilities, maintenance and investigation of dykes, and ecosystem preservation.

  11. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Cooperative 3D and 2D mapping with heterogenous ground robots

    NASA Astrophysics Data System (ADS)

    Rogers, John G., III; Baran, David; Stump, Ethan; Young, Stuart; Christensen, Henrik I.

    2012-06-01

    Efficient and accurate 3D mapping is desirable in disaster recovery as well as urban warfare situations. The speed with which these maps can be generated is vital to provide situational awareness in these situations. A team of mobile robots can work together to build maps more quickly. We present an algorithm by which a team of mobile robots can merge 2D and 3D measurements to build a 3D map, together with experiments performed at a military test facility.

  13. Nanometer depth resolution in 3D topographic analysis of drug-loaded nanofibrous mats without sample preparation.

    PubMed

    Paaver, Urve; Heinämäki, Jyrki; Kassamakov, Ivan; Hæggström, Edward; Ylitalo, Tuomo; Nolvi, Anton; Kozlova, Jekaterina; Laidmäe, Ivo; Kogermann, Karin; Veski, Peep

    2014-02-28

    We showed that scanning white light interferometry (SWLI) can provide nanometer depth resolution in 3D topographic analysis of electrospun drug-loaded nanofibrous mats without sample preparation. The method permits rapidly investigating geometric properties (e.g. fiber diameter, orientation and morphology) and surface topography of drug-loaded nanofibers and nanomats. Electrospun nanofibers of a model drug, piroxicam (PRX), and hydroxypropyl methylcellulose (HPMC) were imaged. Scanning electron microscopy (SEM) served as a reference method. SWLI 3D images featuring 29 nm by 29 nm active pixel size were obtained of a 55 μm × 40 μm area. The thickness of the drug-loaded non-woven nanomats was uniform, ranging from 2.0 μm to 3.0 μm (SWLI), and independent of the ratio between HPMC and PRX. The average diameters (n=100, SEM) for drug-loaded nanofibers were 387 ± 125 nm (HPMC and PRX 1:1), 407 ± 144 nm (HPMC and PRX 1:2), and 290 ± 100 nm (HPMC and PRX 1:4). We found advantages and limitations in both techniques. SWLI permits rapid non-contacting and non-destructive characterization of layer orientation, layer thickness, porosity, and surface morphology of electrospun drug-loaded nanofibers and nanomats. Such analysis is important because the surface topography affects the performance of nanomats in pharmaceutical and biomedical applications. PMID:24378328

  14. Topographic and location map of Bonita Point Coast Guard and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic and location map of Bonita Point Coast Guard and lighthouse station, June 1940, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Fort Barry and Bonita Ridge (upper left) before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  15. A Map of Kilometer-Scale Topographic Roughness of Mercury

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W., III; Kokhanov, A. A.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Kozlova, N. A.

    2014-12-01

    We present a new map of the multiscale topographic roughness of the northern circumpolar area of Mercury. The map utilizes high internal vertical precision surface ranging by the laser altimeter MLA onboard MESSENGER mission to Mercury. This map is analogous to global roughness maps that had been created by M.A.K. with collaborators for Mars (MOLA data) and the Moon (LOLA data). As measures of roughness, we used the interquartile range of along-track profile curvature at three baselines: 0.7 km, 2.8 km, and 11 km. Unlike in the cases of LOLA data for the Moon, and MOLA data for Mars, the MLA data allow high-quality roughness mapping only for a small part of the surface of the planet: the map covers 65N - 84N latitude zone, where the density of MLA data is the highest. The map captures the regional variations of the typical background topographic texture of the surface. The map shows the clear dichotomy between smooth northern plains and rougher cratered terrains. The lowered contrast of this dichotomy at the shortest (0.7 km) baseline indicates that regolith on Mercury is thicker and/or gardening processes are more intensive in comparison to the Moon, approximately by a factor of three. The map reveals sharp roughness contrasts within northern plains of Mercury that we interpret as geologic boundaries of volcanic plains of different age. In particular, the map suggests a younger volcanic plains unit inside Goethe basin and inside another unnamed stealth basin. -- Acknowledgement: Work on data processing was carried out at MIIGAiK by MAK, AAK, NAK and supported by Russian Science Foundation project 14-22-00197.

  16. Topographic maps of Serbia prior to the WWI

    NASA Astrophysics Data System (ADS)

    Kovács, B.

    2009-04-01

    Compilation of high or medium scale topographic surveys always played an important role in the geosciences of newly independent countries. Serbia formally has gained back its independency from the Turkish Empire sortly after the 1878 Congress of Berlin. The newly founded Institute of Military Geography in Beograd made efforts to complete a topographic series of 1:75,000 scale. Actually two serieses have been completed prior to the Balkan Wars of 1912-13, one with Latin and the other with the Cyrillic name descriptions, in French and Serbian languages, respectively. The scale of these map systems are identical to the Habsburg general mapping of Central Europe, covering also Serbia. As the Habsburg maps used the prime meridian of Ferro, their Serbian counterparts were using the one of Paris, which is a mere longitude shift of 20 degrees in round numbers. The geodetic basis behind the Serbian maps is probably the Habsburg triangulation in the Balkans (1871-75) - this would explain why the Vienna-centered Hermannskogel datum has been used also in Yugoslavia and Serbia even till nowadays. The French language series has red planar graphic elements (only the names, elevations and the railroad lines are written or drawn in back), blue, brown and green prints were used for waters, contours and vegetation. The Serbian language series mostly reminds to the modern maps albeit it has only three colors (black, brown and green).

  17. GAM & RF for 3D mapping of multinomial peat properties.

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; Aalders, Inge; Morrice, Jane; Hough, Rupert

    2013-04-01

    Different statistical methods have been proposed for fitting the empirical quantitative function linking the soil information to the scorpan factors, while taking into account the spatial structure of the data . Regression kriging extends the methods of kriging and co-kriging and it has been further extended by the use of GAMs (Generalized Additive Models) with the estimation of uncertainty. When multinomial data are modelled, advanced non-parametric methods, such as CART (Classification and Regression Tree), can be used. CARTs have been used widely to estimate soil properties. Bagging trees and Random Forest (RF) approaches have among the best performances among CART methods. CARTs have been used in DSM applications, While RF have often been used in ecological modelling, fewer examples exist in DSM, such as soil erosion occurrence, soil types prediction and soil organic carbon content. In this paper we propose a methodology to map multinomial peat properties in 3D space with a combination of GAMs and RF. The methodology was applied to the humification (according to the VonPost classification) classes in a bog (18 km2) in the north-east of Scotland. A large survey campaign was carried out in 1955 and humification information were collected at 125 points. In order to integrate the information from the GAM in the RT, a series of binary GAMs were fitted using DEM-derived information as covariates. The binary GAMs were fitted assigning 1 if the class considered was present at the location, 0 if the class considered was absent. The probability predictions resulting from the binary GAMs, were included in the pool of covariates used for the RT together with other ancillary covariates. The model diagnostics had a fair to good agreement between measured and modelled values (K statistics). The probability predictions resulting from the binary GAMs proved to be important variables, increasing the agreement of the model. The obtained spatial distribution of values on the

  18. An Investigation of Automatic Change Detection for Topographic Map Updating

    NASA Astrophysics Data System (ADS)

    Duncan, P.; Smit, J.

    2012-08-01

    Changes to the landscape are constantly occurring and it is essential for geospatial and mapping organisations that these changes are regularly detected and captured, so that map databases can be updated to reflect the current status of the landscape. The Chief Directorate of National Geospatial Information (CD: NGI), South Africa's national mapping agency, currently relies on manual methods of detecting changes and capturing these changes. These manual methods are time consuming and labour intensive, and rely on the skills and interpretation of the operator. It is therefore necessary to move towards more automated methods in the production process at CD: NGI. The aim of this research is to do an investigation into a methodology for automatic or semi-automatic change detection for the purpose of updating topographic databases. The method investigated for detecting changes is through image classification as well as spatial analysis and is focussed on urban landscapes. The major data input into this study is high resolution aerial imagery and existing topographic vector data. Initial results indicate the traditional pixel-based image classification approaches are unsatisfactory for large scale land-use mapping and that object-orientated approaches hold more promise. Even in the instance of object-oriented image classification generalization of techniques on a broad-scale has provided inconsistent results. A solution may lie with a hybrid approach of pixel and object-oriented techniques.

  19. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Gaylord, A. G.; Brady, J. J.; Cody, R. P.; Aguilar, J. A.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. Federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links take you to specific information and other web sites associated with a particular research project. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP including US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. The ARMAP suite provides tools for users of various levels of technical ability to interact with the data by importing the web services directly into their own GIS applications and virtual globes; performing advanced GIS queries; simply printing maps from a set of predefined images in the map gallery; browsing the layers in an IMS; or by choosing to "fly to" sites using a 3D globe. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  20. Sector mapping method for 3D detached retina visualization.

    PubMed

    Zhai, Yi-Ran; Zhao, Yong; Zhong, Jie; Li, Ke; Lu, Cui-Xin; Zhang, Bing

    2016-10-01

    A new sphere-mapping algorithm called sector mapping is introduced to map sector images to the sphere of an eyeball. The proposed sector-mapping algorithm is evaluated and compared with the plane-mapping algorithm adopted in previous work. A simulation that maps an image of concentric circles to the sphere of the eyeball and an analysis of the difference in distance between neighboring points in a plane and sector were used to compare the two mapping algorithms. A three-dimensional model of a whole retina with clear retinal detachment was generated using the Visualization Toolkit software. A comparison of the mapping results shows that the central part of the retina near the optic disc is stretched and its edges are compressed when the plane-mapping algorithm is used. A better mapping result is obtained by the sector-mapping algorithm than by the plane-mapping algorithm in both the simulation results and real clinical retinal detachment three-dimensional reconstruction. PMID:27480739

  1. The development of topographic plateaus in an India-Asia-like collision zone using 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2014-05-01

    The Himalayas and the adjacent Tibetan Plateau represent the most remarkable feature of the Earth's surface as the largest region of elevated topography and anomalously thick crust. Understanding the formation and evolution of the Himalayan-Tibetan region has become of high interest in the scientific community and different models have emerged over the last decades. They range from wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model to the lower crustal flow model for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. While some of these models have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, delamination, channel flow or extrusion, which are thought to be important during continental convergence, since these mechanisms require the lithosphere to interact with the underlying mantle. As such, 3D numerical models prove to be powerful tools in understanding the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continental collision zones have relied on certain explicit assumptions, either focusing on crustal dynamics or slab-mantle dynamics. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account, which allows for the development of topography. We investigate the way deep processes affect continental tectonics at convergent margins, addressing the role continent subduction and collision have on the future of the subducting and overriding plates, and we discuss the implications these offer for the Asian tectonics

  2. Topographic Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.

  3. Sheet 280—Fossombrone 3D: A study project for a new geological map of Italy in three dimensions

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Borraccini, Francesco; Susini, Sara

    2009-01-01

    The goal of this project is to define and test a method for building a three-dimensional (3D) geological model of Italy based on maps at a 1:50,000 scale, using the new national geological mapping program (CARG project). A structural model of Sheet 280—Fossombrone (Northern Apennines, central Italy) was produced using recently developed 3D visualization techniques. This area is characterized by faulted anticlines and broad synclines, involving a Triassic-Palaeogene succession detached from its underlying basement. Exhaustive knowledge of the regional and local geology, combined with available subsurface (well and seismic) data, makes this area a good test site for developing a 3D geological modeling method. The model of Sheet 280—Fossombrone was built in two steps. In the first step, we built a 2.5D geological model using the digital elevation model combined with the new 1:50,000 scale geological map of the area. This 2.5D model shows relationships between topographic elements, geology and major structures much better than traditional 2D geological maps. In the second step, we constructed an in-depth model integrating a large amount of subsurface data with field data from the recent mapping project. The geological model of Sheet 280—Fossombrone clarifies structural geometries and kinematics of this external part of the Northern Apennines. Structural and geomorphic analyses were performed on the 3D model to evaluate how additional information can be obtained from 3D cartography in order to improve knowledge of the study area. We present results of these analyses as examples.

  4. Use Models like Maps in a 3D SDI

    NASA Astrophysics Data System (ADS)

    Gietzel, Jan; Gabriel, Paul; Schaeben, Helmut; Le, Hai Ha

    2013-04-01

    Digital geological applications have become 3D up to 4D modelling of the underground. The modellers are working very heterogeneously in terms of its applied software systems. On the other hand the 3D/4D modelling of the subsurface has become part of the geological surveys all around the world. This implies a wide spread group of users working in different institutions aiming to work together on one subsurface model. Established 3D/4D-modelling software systems mainly use a file based approach to store data, which is in a high contrast to the needs of a central administrated and network based data transfer approach. At the department of geophysics and geo information sciences at the Technical University Bergakademie Freiberg, the GST system for managing 3D and 4D geosciences data in a databases system was developed and is now continued by the company GiGa infosystems. The GST-Framework includes a storage engine, a web service for sharing and a number of client software including a browser based client interface for visualising, accessing and manipulating geological CAD data. Including a check out system GST supports multi user editing on huge models, designed to manage seamless high resolution models of the subsurface. While working on complex projects various software is used for the creation of the model, the prediction of properties and final simulation. A problem rising from the use of several software is the interoperability of the models. Due to conversion errors different working groups use mainly different raw data. This results in different models, which have to be corrected with additional effort. One platform sharing the models is strongly demanded. One high potential solution is a centralized and software independent storage, which will be presented.

  5. Symobls and Meaning in Topographic Maps: Some Limintations Due to Aspects of Map Design.

    ERIC Educational Resources Information Center

    Keates, J. S.

    The approach to topographic map production has been highly organized and systematic with respect to scale, projection, grid, etc., so that the user can expect a high degree of locational accuracy. Less attention has been given by cartographers to symbolic information yielded by the map. Symbolization (information reduction) is required at all…

  6. Radargram of Mars' North Polar Layered Deposits with Topographic Map

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The upper image is a radargram from the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), showing data from the subsurface of Mars in the layered deposits that surround the north pole. The lower image shows the position of the ground track on a topographic map of the area based on Mars Orbiter Laser Altimeter data. The images are 458 kilometers (285 miles) wide.

    The MARSIS echo trace splits into two traces to the right of center, at the point where the ground track crosses from the smooth plains onto the elevated layered deposits on the right. The upper trace is the echo from the surface of the deposits, while the lower trace is interpreted to be the boundary between the lower surface of the deposits and the underlying material. The strength of the lower echo suggests that the intervening material is nearly pure water ice. The time delay between the two echoes reaches a maximum of 21 microseconds at the right of the image, corresponding to a thickness of 1.8 kilometer (1.1 mile) of ice. The total elevation difference shown in the topographic map is about 2 kilometers (1.2 mile) between the lowest surface (magenta) and the highest (orange).

    MARSIS is an instrument on the European Space Agency's Mars Express orbiter. NASA and the Italian Space Agency jointly funded the instrument. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.

  7. Synaptic rewiring for topographic mapping and receptive field development.

    PubMed

    Bamford, Simeon A; Murray, Alan F; Willshaw, David J

    2010-05-01

    A model of topographic map refinement is presented which combines both weight plasticity and the formation and elimination of synapses, as well as both activity-dependent and activity-independent processes. The question of whether an activity-dependent process can refine a mapping created by an activity-independent process is addressed statistically. A new method of evaluating the quality of topographic projections is presented which allows independent consideration of the development of the centres and spatial variances of receptive fields for a projection. Synapse formation and elimination embed in the network topology changes in the weight distributions of synapses due to the activity-dependent learning rule used (spike-timing-dependent plasticity). In this model, the spatial variance of receptive fields can be reduced by an activity-dependent mechanism with or without spatially correlated inputs, but the accuracy of receptive field centres will not necessarily improve when synapses are formed based on distributions with on-average perfect topography. PMID:20176460

  8. Topographic Hub Maps of the Human Structural Neocortical Network

    PubMed Central

    Nijhuis, Emil H. J.; van Cappellen van Walsum, Anne-Marie; Norris, David G.

    2013-01-01

    Hubs within the neocortical structural network determined by graph theoretical analysis play a crucial role in brain function. We mapped neocortical hubs topographically, using a sample population of 63 young adults. Subjects were imaged with high resolution structural and diffusion weighted magnetic resonance imaging techniques. Multiple network configurations were then constructed per subject, using random parcellations to define the nodes and using fibre tractography to determine the connectivity between the nodes. The networks were analysed with graph theoretical measures. Our results give reference maps of hub distribution measured with betweenness centrality and node degree. The loci of the hubs correspond with key areas from known overlapping cognitive networks. Several hubs were asymmetrically organized across hemispheres. Furthermore, females have hubs with higher betweenness centrality and males have hubs with higher node degree. Female networks have higher small-world indices. PMID:23935801

  9. First 3D thermal mapping of an active volcano using an advanced photogrammetric method

    NASA Astrophysics Data System (ADS)

    Antoine, Raphael; Baratoux, David; Lacogne, Julien; Lopez, Teodolina; Fauchard, Cyrille; Bretar, Frédéric; Arab-Sedze, Mélanie; Staudacher, Thomas; Jacquemoud, Stéphane; Pierrot-Deseilligny, Marc

    2014-05-01

    Thermal infrared data obtained in the [7-14 microns] spectral range are usually used in many Earth Science disciplines. These studies are exclusively based on the analysis of 2D information. In this case, a quantitative analysis of the surface energy budget remains limited, as it may be difficult to estimate the radiative contribution of the topography, the thermal influence of winds on the surface or potential imprints of subsurface flows on the soil without any precise DEM. The draping of a thermal image on a recent DEM is a common method to obtain a 3D thermal map of a surface. However, this method has many disadvantages i) errors can be significant in the orientation process of the thermal images, due to the lack of tie points between the images and the DEM; ii) the use of a recent DEM implies the use of another remote sensing technique to quantify the topography; iii) finally, the characterization of the evolution of a surface requires the simultaneous acquisition of thermal data and topographic information, which may be expensive in most cases. The stereophotogrammetry method allows to reconstitute the relief of an object from photos taken from different positions. Recently, substantial progress have been realized in the generation of high spatial resolution topographic surfaces using stereophotogrammetry. However, the presence of shadows, homogeneous textures and/or weak contrasts in the visible spectrum (e.g., flowing lavas, uniform lithologies) may prevent from the use of such method, because of the difficulties to find tie points on each image. Such situations are more favorable in the thermal infrared spectrum, as any variation in the thermal properties or geometric orientation of the surfaces may induce temperature contrasts that are detectable with a thermal camera. This system, usually functioning with a array sensor (Focal Plane Array) and an optical device, have geometric characteristics that are similar to digital cameras. Thus, it may be possible

  10. 3D Road-Mapping in the Endovascular Treatment of Cerebral Aneurysms and Arteriovenous Malformations

    PubMed Central

    Rossitti, S.; Pfister, M.

    2009-01-01

    Summary 3D road-mapping with syngo iPilot was used as an additional tool for assessing cerebral aneurysms and arteriovenous malformations (AVMs) for endovascular therapy. This method provides accurate superimposition of a live fluoroscopic image (native or vascular road-map) and its matching 2D projection of the 3D data set, delivering more anatomic information on one additional display. In the endovascular management of cases with complex anatomy, 3D road-mapping provides excellent image quality at the intervention site. This method can potentially reduce intervention time, the number of DSA runs, fluoroscopy time and the amount of contrast media used in a procedure, with reservation for these factors being mainly operator-dependent. 3D road-mapping probably does not provide any advantage in the treatment of cerebral aneurysms or AVMs with very simple configuration, and it should not be used when acquisition of an optimum 3D data set is not feasible. PMID:20465911

  11. The Topographic Data Deluge - Collecting and Maintaining Data in a 21ST Century Mapping Agency

    NASA Astrophysics Data System (ADS)

    Holland, D. A.; Pook, C.; Capstick, D.; Hemmings, A.

    2016-06-01

    In the last few years, the number of sensors and data collection systems available to a mapping agency has grown considerably. In the field, in addition to total stations measuring position, angles and distances, the surveyor can choose from hand-held GPS devices, multi-lens imaging systems or laser scanners, which may be integrated with a laptop or tablet to capture topographic data directly in the field. These systems are joined by mobile mapping solutions, mounted on large or small vehicles, or sometimes even on a backpack carried by a surveyor walking around a site. Such systems allow the raw data to be collected rapidly in the field, while the interpretation of the data can be performed back in the office at a later date. In the air, large format digital cameras and airborne lidar sensors are being augmented with oblique camera systems, taking multiple views at each camera position and being used to create more realistic 3D city models. Lower down in the atmosphere, Unmanned Aerial Vehicles (or Remotely Piloted Aircraft Systems) have suddenly become ubiquitous. Hundreds of small companies have sprung up, providing images from UAVs using ever more capable consumer cameras. It is now easy to buy a 42 megapixel camera off the shelf at the local camera shop, and Canon recently announced that they are developing a 250 megapixel sensor for the consumer market. While these sensors may not yet rival the metric cameras used by today's photogrammetrists, the rapid developments in sensor technology could eventually lead to the commoditization of high-resolution camera systems. With data streaming in from so many sources, the main issue for a mapping agency is how to interpret, store and update the data in such a way as to enable the creation and maintenance of the end product. This might be a topographic map, ortho-image or a digital surface model today, but soon it is just as likely to be a 3D point cloud, textured 3D mesh, 3D city model, or Building Information Model

  12. Analysis of Radar and Optical Space Borne Data for Large Scale Topographical Mapping

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-03-01

    Normally, in order to provide high resolution 3 Dimension (3D) geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term "Rapid Mapping". In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS) imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs) from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar) or the usage of the GCPs in both, the optical and the radar satellite data

  13. Topographic Mapping of Mars: Approaching the Human Scale

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Howington-Kraus, E.; Soderblom, L. A.; Archinal, B. A.

    2002-12-01

    In only three decades, topographic mapping of Mars has progressed from the planetary to the personal scale. The first crude contour maps of the early 1970s, based on Earth-based radar and atmospheric occultation and sounding data, revealed such continental-scale features as the Tharsis bulge. Stereoanalysis of Mariner 9 and Viking Orbiter images filled in some of the details, yielding by the late 1980s a global digital elevation model (DEM) interpolated from 1-km contours and containing systematic errors of many km. This DEM was superseded in the 1990s by data from the Mars Orbiter Laser Altimeter (MOLA), with an accuracy <10 m vertically and ~ 100 m horizontally. MOLA has provided the definitive global map of Mars for the foreseeable future; its most significant weakness is its sample spacing (300 m along-track, with many gaps >1 km and a few up to 10 km between orbit tracks). Stereoanalysis of images from the narrow-angle Mars Orbiter Camera (MOC-NA) can be used to produce local DEMs with a vertical precision similar to MOLA (e.g., ~ 3 m for 3 m/pixel images with ~ 10° convergence), horizontal resolution of 3 pixels (~ 10 m for 3 m images), and control to MOLA for absolute accuracy comparable to the latter. Over 150 MOC-NA stereopairs have been identified, and more continue to be obtained. We will describe our use of the USGS cartographic system ISIS with commercial photogrammetric software SOCET SET (© BAE Systems) to produce DEMs from such pairs. This and similar work by other groups brings topographic mapping close to the scale of features seen from the ground and processes active at the present day. We are also using high-resolution stereo DEMs (and, in some cases, altimetry) as the starting point for calibration of photoclinometry, which yields DEMs with a horizontal resolution of one pixel and a local vertical precision of a small fraction of a pixel. The techniques we describe are directly applicable to other Mars imagers both present (THEMIS) and

  14. Georeferenced LiDAR 3D Vine Plantation Map Generation

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  15. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  16. 3D strength map of the Asia region

    NASA Astrophysics Data System (ADS)

    Rebetskiy, Y. L.; Baranov, A. A.

    2009-04-01

    The Southern and Central Asia is a tectonically complex region which characterized by the great collision between the Asian and Indian plates. Its tectonic evolution is strongly related to the active subduction process along the Pacific border. Stress investigation in the continental crust is a very important problem not only for science but also for the practical purposes. There are four main factors which produce tectonic stresses: gravity anomalies of the crust, density inhomogeneities, deformation from area with intraplate collision, residual elastic deformations and underthrust stresses conditions from convective mantle. We present the stress model of the crust and lithosphere for the Central and Southern Asia on the basis of the finite element modeling. For the crust we take the elasto-plastic rheology with Drucker-Prager criterion. In the lithosphere the elasto-plastic model with von Mises criterion is assumed. We investigated stresses which are produced by the crustal density inhomogeneities and surface relief. The calculations are done using the U-WAY finite element code developed at the Institute of Applied Mechanics Russian Academy of Sciences. (similar to the Nastran program) Density inhomogeneities are based on the AsCRUST-08 crustal model (Baranov, 2008), which has resolution of 1 x 1 degree. AsCRUST-08 was built using the data of deep seismic reflection, refraction and receiver functions studies from published papers. The complex 3D crustal model consists of three layers: upper, middle, and lower crust. Besides depth of the boundaries, we provided average P-wave velocities in the upper, middle and lower parts of the crystalline crust and sediments. The seismic P-velocity data was also recalculated to the densities and the elastic moduli of the crustal layers using the rheological properties and geological constraints. Strength parameters of rocks strongly depend on temperature, tectonic and fluid pressure. Fluid pressure can reduce resistance forces

  17. The topographic grain concept in DEM-based geomorphometric mapping

    NASA Astrophysics Data System (ADS)

    Józsa, Edina

    2016-04-01

    A common drawback of geomorphological analyses based on digital elevation datasets is the definition of search window size for the derivation of morphometric variables. The fixed-size neighbourhood determines the scale of the analysis and mapping, which can lead to the generalization of smaller surface details or the elimination of larger landform elements. The methods of DEM-based geomorphometric mapping are constantly developing into the direction of multi-scale landform delineation, but the optimal threshold for search window size is still a limiting factor. A possible way to determine the suitable value for the parameter is to consider the topographic grain principle (Wood, W. F. - Snell, J. B. 1960, Pike, R. J. et al. 1989). The calculation is implemented as a bash shell script for GRASS GIS to determine the optimal threshold for the r.geomorphon module. The approach relies on the potential of the topographic grain to detect the characteristic local ridgeline-to-channel spacing. By calculating the relative relief values with nested neighbourhood matrices it is possible to define a break-point where the increase rate of local relief encountered by the sample is significantly reducing. The geomorphons approach (Jasiewicz, J. - Stepinski, T. F. 2013) is a cell-based DEM classification method for the identification of landform elements at a broad range of scales by using line-of-sight technique. The landforms larger than the maximum lookup distance are broken down to smaller elements therefore the threshold needs to be set for a relatively large value. On the contrary, the computational requirements and the size of the study sites determine the upper limit for the value. Therefore the aim was to create a tool that would help to determine the optimal parameter for r.geomorphon tool. As a result it would be possible to produce more objective and consistent maps with achieving the full efficiency of this mapping technique. For the thorough analysis on the

  18. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  19. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    PubMed

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images. PMID:26306866

  20. Photon-counting lidars for contiguous high resolution topographic mapping of planets and moons

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2007-08-01

    Planetary scientists have long expressed interest in obtaining globally contiguous, high resolution (few meter horizontal, decimeter vertical) 3D topographic maps of planets and moons. For example, the goal of NASA's LIST mission, scheduled for launch in the 2016-2020 time frame, is a globally contiguous, 5 meter resolution, topographic map of the Earth. Unfortunately, achieving such a capability through a simple scaling of the laser power and/or telescope aperture from prior art NASA laser altimeters (e.g. MOLA, GLAS, and MLA) is not practical. This is especially true of laser altimeters destined for orbit about distant planets or moons where instrument mass and prime power usage is severely constrained. Photon counting receivers permit each range measurement to be made with a single received photon, even in daylight, and the surface sampling rate of an orbiting altimeter can be increased by three to four orders of magnitude by emitting the available laser photons in a high frequency train of low energy pulses instead of a low frequency train of high energy pulses typical of past spaceborne lidars. The feasibility of the photon-counting approach in the presence of a strong solar background was first successfully demonstrated from a high altitude aircraft under NASA's Instrument Incubator Program in 2001. Sigma Space Corporation has subsequently developed a second generation of scanning 3D imaging and polarimetric lidars for use in small aircraft and Unmanned Aerial Vehicles (UAV's). Future space applications include: (1) decimeter vertical resolution topographic mapping of extraterrestrial terrain from orbiters, balloons, or other aerial vehicles for determining safe landing sites; (2) monitoring the terrain in real time and increasingly higher resolution during spacecraft descent; or (3) for truly contiguous few meter resolution imaging of planetary terrain on a global scale from orbit. Targets of particular interest to NASA are the Earth, Moon, Mars, the Jovian

  1. Arctic Research Mapping Application (ARMAP): 2D Maps and 3D Globes Support Arctic Science

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Cody, R. P.; Kassin, A.; Gaylord, A.; Manley, W. F.; Dover, M.; Score, R.

    2012-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. With ARMAP's 2D mapping application, 3D globes, and data services (http://armap.org), users can search for research projects by location, year, funding program, keyword, investigator, and discipline, among other variables. Key information about each project is displayed within the application with links to web pages that provide additional information. The ARMAP 2D mapping application has been significantly enhanced to include support for multiple projections, improved base maps, additional reference data layers, and optimization for better performance. The additional functionality of this tool will increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate the effects of the International Polar Year (IPY) on funding of different research disciplines by the U.S. Government.

  2. Topographic Maps: Rediscovering an Accessible Data Source for Land Cover Change Research

    ERIC Educational Resources Information Center

    McChesney, Ron; McSweeney, Kendra

    2005-01-01

    Given some limitations of satellite imagery for the study of land cover change, we draw attention here to a robust and often overlooked data source for use in student research: USGS topographic maps. Topographic maps offer an inexpensive, rapid, and accessible means for students to analyze land cover change over large areas. We demonstrate our…

  3. Current State of Topographic Mapping of Ganymede: Squeezing the Most from JUICE

    NASA Astrophysics Data System (ADS)

    Schenk, P.; McKinnon, W. B.; Singer, K. N.; Moore, J. M.

    2014-12-01

    JUICE, ESA's planned Ganymede orbiter, and NASA's proposed Europa Clipper, won't arrive for some time, and many issues concerning Ganymede's geologic history and evolution remain. Topographic mapping will be a key component of JUICE orbital and Clipper flyby mapping and an understanding of Ganymede topography can also help guide instrument development. Topographic data for Ganymede are based almost entirely on Voyager and Galileo image analysis and are sparse. No more than 20% of the surface (which exceeds that of Mercury in area in total) is presently mappable. Both stereo (3D) and shape-from-shading (PC) are both possible (and nearly all possible DEM combinations have now been constructed). Unlike Europa, only an handful of sites are mappable using both techniques: these being mostly over the South Polar region with Voyager 2. Without stereo control, PC topography, while very useful, must be interpreted with caution. Only a handful of targeted stereo mosaics were possible from Galileo, but serendipitous Voyager-Galileo stereo greatly expands this data set. Topographic data allow determinations of RMS slope values for each terrain type, but currently only at length scales >100 m. Topographic amplitude can also be determined. Geologic units for which we have limited DEM data include: furrows, grooves, smooth and subdued grooved terrains, calderas, pit and dome craters, penepalimpsests, and palimpsests. Key science questions that can be guided by even the limited available topography include: relative elevations of smooth, grooved and dark terrains and the role of volcanic vs. tectonic resurfacing; relief of ancient degraded impact craters and the role of density and heat variations; density anomalies within or beneath the ice shell; the severity and history of thermal relaxation globally and the associated heat pulse. Here we focus on the issue of relaxation, where topographic evidence indicates that thermal relaxation reached a peak associated with bright terrain

  4. Derivation and Refinement of Topographic Maps of Io Using Voyager and Galileo Stereo Images

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P. M.

    2011-03-01

    Customized ISIS software developed at LPI has been used to create topographic maps of different sites on Io using Galileo stereo images. Input parameters of the software have been refined in an attempt to achieve maps of the best quality.

  5. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    NASA Technical Reports Server (NTRS)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  6. Uas Topographic Mapping with Velodyne LiDAR Sensor

    NASA Astrophysics Data System (ADS)

    Jozkow, G.; Toth, C.; Grejner-Brzezinska, D.

    2016-06-01

    Unmanned Aerial System (UAS) technology is nowadays willingly used in small area topographic mapping due to low costs and good quality of derived products. Since cameras typically used with UAS have some limitations, e.g. cannot penetrate the vegetation, LiDAR sensors are increasingly getting attention in UAS mapping. Sensor developments reached the point when their costs and size suit the UAS platform, though, LiDAR UAS is still an emerging technology. One issue related to using LiDAR sensors on UAS is the limited performance of the navigation sensors used on UAS platforms. Therefore, various hardware and software solutions are investigated to increase the quality of UAS LiDAR point clouds. This work analyses several aspects of the UAS LiDAR point cloud generation performance based on UAS flights conducted with the Velodyne laser scanner and cameras. The attention was primarily paid to the trajectory reconstruction performance that is essential for accurate point cloud georeferencing. Since the navigation sensors, especially Inertial Measurement Units (IMUs), may not be of sufficient performance, the estimated camera poses could allow to increase the robustness of the estimated trajectory, and subsequently, the accuracy of the point cloud. The accuracy of the final UAS LiDAR point cloud was evaluated on the basis of the generated DSM, including comparison with point clouds obtained from dense image matching. The results showed the need for more investigation on MEMS IMU sensors used for UAS trajectory reconstruction. The accuracy of the UAS LiDAR point cloud, though lower than for point cloud obtained from images, may be still sufficient for certain mapping applications where the optical imagery is not useful.

  7. Mapping the holes: 3D ISM maps and diffuse X-ray background

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Puspitarini, L.; Snowden, S.; Galeazzi, M.; Koutroumpa, D.

    3D maps of Galactic interstellar dust and gas reveal empty regions, including cavities carved by stellar winds and supernovae. Such cavities are often filled with hot gas and are sources of soft X-ray background emission. We discuss the combined analysis of the diffuse soft (0.25 keV) X-ray background and the 3D distribution of nearby (<1 kpc) dust, including studies of shadows cast by nearby clouds in the background. This analysis benefits from recent progress in the estimate of the foreground X-ray emission from the heliosphere. New and past X-ray data are found to be consistent with the maps if the ≃ 100-150 pc wide Local Bubble surrounding the Sun is filled with 106K gas with a pressure 2nT ≃ 10,000 K cm-3. On the other hand, the giant cavity found in the 3rd Galactic quadrant has a weaker volume emission than the LB and is very likely filled to a large extent with warm ionized gas. Its geometry suggests a link with the tilted Gould belt, and a potential mechanism for the formation of the whole structure has been recently proposed. According to it, the local inclination of gas and stars, the velocity pattern and enhanced star formation could have been initiated 60-70 Myr ago when a massive globular cluster crossed the Galactic Plane in the vicinity of the Sun. The destabilization of stellar orbits around the Sun may have generated enhanced asteroid falls of the Cretaceous-Tertiary (KT) extinction events. Additionally, a short gamma ray burst may have occurred in the cluster during the crossing, producing intense ionization and subsequent shock waves leading to the star formations seen today in the form of the giant ionized region and OB associations at its periphery. Gaia measurements of nearby stars and clusters should help shedding light on the local history.

  8. 3D Globe Support for Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Brady, J.; Johnson, G. W.; Gaylord, A. G.; Cody, R.; Gonzalez, J. C.; Franko, J. C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2008-12-01

    Virtual Globes or 3D Geobrowsers play a crucial role in the visualization of spatial data for scientific research. While many applications provide the ability to visualize data, they lack the necessary GIS functionality to query the information. In addition, many users want to overlay their own tabular, vector and raster data on a virtual globe. The 3D Arctic Research Mapping Application (ARMAP 3D) provides a free 3D geobrowser that includes query functionality and support for many data formats and map services. ARMAP 3D was developed on top of a free software application from the Environmental Systems Research Institute (ESRI) called ArcGIS Explorer (AGX). Several custom tasks as well as a customizable interface have been developed for ARMAP 3D with AGX's own software development kit (SDK) using .NET framework. ARMAP 3D includes high resolution imagery and information from the Arctic Research Logistics Support Service (ARLSS) database which is funded by the National Science Foundation (NSF). ARLSS includes information about NSF research locations plus locations from National Aeronautics and Space Administration (NASA), and National Oceanic and Atmospheric Administration (NOAA) locations. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. Information on the ARMAP suite of applications and services may be accessed via the gateway web site at http://www.armap.org.

  9. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.

    PubMed

    Gual, Jaume; Puyuelo, Marina; Lloveras, Joaquim

    2015-05-01

    Point, linear and areal elements, which are two-dimensional and of a graphic nature, are the morphological elements employed when designing tactile maps and symbols for visually impaired users. However, beyond the two-dimensional domain, there is a fourth group of elements - volumetric elements - which mapmakers do not take sufficiently into account when it comes to designing tactile maps and symbols. This study analyses the effect of including volumetric, or 3D, symbols within a tactile map. In order to do so, the researchers compared two tactile maps. One of them uses only two-dimensional elements and is produced using thermoforming, one of the most popular systems in this field, while the other includes volumetric symbols, thus highlighting the possibilities opened up by 3D printing, a new area of production. The results of the study show that including 3D symbols improves the efficiency and autonomous use of these products. PMID:25683526

  10. Maps of Lunar Topographic Roughness: Correlation with Geological Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    Lunar Orbiter Laser Altimeter LOLA [Smith et al. 2010 Space Sci. Rev. 150, 209] on board the Lunar Reconnaissance Orbiter is accumulating high-precision lunar surface elevation measurements. This data set is an excellent source for mapping lunar topographic roughness [Rosenburg et al. 2011 JGR 116, E02001]. Such maps are useful in planetary geology for the following reasons. (1) Roughness maps provide a convenient one-glance synoptic overview of small-scale textures. (2) They help focus on typical background topography, while researcher's eyes usually pick prominent features. (3) Roughness maps utilize the exceptional along-orbit precision of laser altimeter data. In a series of roughness maps that we present here, we use the interquartile range of along-profile curvature at a given baseline as a measure of roughness. We use a progression of baselines starting from the double LOLA probing step: 0.12, 0.46, 0.92, 1.8 km. We also show some useful color composites combining these maps and showing the scale dependence of roughness. Available data allow roughness mapping at 8 pixels per degree resolution. The nature of the lunar roughness changes abruptly at sub-km scale. At 0.46 km baseline and longer, the most prominent feature on the roughness maps is the dichotomy between smooth maria and rough highlands. At 0.12 km baseline, the mare/highland boundary disappears; some mare surfaces are rougher and some are smoother than typical highlands. At this baseline the surface topography is controlled by regolith gardening and reflects small-scale resurfacing during the Copernican and Eratosthenian periods, while for longer baselines the topography is defined by bedrock geology and "remembers" Imbrian and earlier events. At short scales (0.12 km baseline) both the roughest and the smoothest terrains are related to Copernican-aged large impact craters. Craters themselves and their proximal ejecta are extremely rough; the roughest ejecta is separated from craters by prominent

  11. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  12. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  13. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  14. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  15. Spirit rover localization and topographic mapping at the landing site of Gusev crater, Mars

    USGS Publications Warehouse

    Li, R.; Archinal, B.A.; Arvidson, R. E.; Bell, J.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Di, K.; Duxbury, T.; Golombek, M.P.; Grant, J. A.; Greeley, R.; Guinn, J.; Johnson, Aaron H.; Kirk, R.L.; Maimone, M.; Matthies, L.H.; Malin, M.; Parker, T.; Sims, M.; Thompson, S.; Squyres, S. W.; Soderblom, L.A.

    2006-01-01

    By sol 440, the Spirit rover has traversed a distance of 3.76 km (actual distance traveled instead of odometry). Localization of the lander and the rover along the traverse has been successfully performed at the Gusev crater landing site. We localized the lander in the Gusev crater using two-way Doppler radio positioning and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were used to verify the determined lander position. Visual odometry and bundle adjustment technologies were applied to compensate for wheel slippage, azimuthal angle drift, and other navigation errors (which were as large as 10.5% in the Husband Hill area). We generated topographic products, including 72 ortho maps and three-dimensional (3-D) digital terrain models, 11 horizontal and vertical traverse profiles, and one 3-D crater model (up to sol 440). Also discussed in this paper are uses of the data for science operations planning, geological traverse surveys, surveys of wind-related features, and other science applications. Copyright 2006 by the American Geophysical Union.

  16. The application of iterative closest point (ICP) registration to improve 3D terrain mapping estimates using the flash 3D ladar system

    NASA Astrophysics Data System (ADS)

    Woods, Jack; Armstrong, Ernest E.; Armbruster, Walter; Richmond, Richard

    2010-04-01

    The primary purpose of this research was to develop an effective means of creating a 3D terrain map image (point-cloud) in GPS denied regions from a sequence of co-bore sighted visible and 3D LIDAR images. Both the visible and 3D LADAR cameras were hard mounted to a vehicle. The vehicle was then driven around the streets of an abandoned village used as a training facility by the German Army and imagery was collected. The visible and 3D LADAR images were then fused and 3D registration performed using a variation of the Iterative Closest Point (ICP) algorithm. The ICP algorithm is widely used for various spatial and geometric alignment of 3D imagery producing a set of rotation and translation transformations between two 3D images. ICP rotation and translation information obtain from registering the fused visible and 3D LADAR imagery was then used to calculate the x-y plane, range and intensity (xyzi) coordinates of various structures (building, vehicles, trees etc.) along the driven path. The xyzi coordinates information was then combined to create a 3D terrain map (point-cloud). In this paper, we describe the development and application of 3D imaging techniques (most specifically the ICP algorithm) used to improve spatial, range and intensity estimates of imagery collected during urban terrain mapping using a co-bore sighted, commercially available digital video camera with focal plan of 640×480 pixels and a 3D FLASH LADAR. Various representations of the reconstructed point-clouds for the drive through data will also be presented.

  17. Develop Advanced Nonlinear Signal Analysis Topographical Mapping System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1997-01-01

    During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.

  18. Mapping long-term temporal change in imperviousness using topographic maps

    NASA Astrophysics Data System (ADS)

    Miller, James D.; Grebby, Stephen

    2014-08-01

    Change in urban land use and impervious surface cover are valuable sources of information for determining the environmental impacts of urban development. However, our understanding of these impacts is limited due to the general lack of historical data beyond the last few decades. This study presents two methodologies for mapping and revealing long-term change in urban land use and imperviousness from topographic maps. Method 1 involves the generation of maps of fractional impervious surface for direct computation of catchment-level imperviousness. Method 2 generates maps of urban land use for subsequent computation of estimates of catchment imperviousness based on an urban extent index. Both methods are applied to estimate change in catchment imperviousness in a town in the South of England, at decadal intervals for the period 1960-2010. The performance of each method is assessed using contemporary reference data obtained from aerial photographs, with the results indicating that both methods are capable of providing good estimates of catchment imperviousness. Both methods reveal that peri-urban developments within the study area have undergone a significant expansion of impervious cover over the period 1960-2010, which is likely to have resulted in changes to the hydrological response of the previously rural areas. Overall, results of this study suggest that topographic maps provide a useful source for determining long-term change in imperviousness in the absence of suitable data, such as remotely sensed imagery. Potential applications of the two methods presented here include hydrological modelling, environmental investigations and urban planning.

  19. Flood inundation mapping uncertainty introduced by topographic data accuracy, geometric configuration and modeling approach

    NASA Astrophysics Data System (ADS)

    Papaioannou, G.; Loukas, Athanasios

    2010-05-01

    Floodplain modeling is a recently new and applied method in river engineering discipline and is essential for prediction of flood hazards. The issue of flood inundation of upland environments with topographically complex floodplains is an understudied subject. In most areas of the U.S.A., the use of topographic information derived from Light Detection and Ranging (LIDAR) has improved the quality of river flood inundation predictions. However, such high quality topographical data are not available in most countries and the necessary information is obtained by topographical survey and/or topographical maps. Furthermore, the optimum dimensionality of hydraulic models, cross-section configuration in one-dimensional (1D) models, mesh resolution in two-dimensional models (2D) and modeling approach is not well studied or documented. All these factors introduce significant uncertainty in the evaluation of the floodplain zoning. This study addresses some of these issues by comparing flood inundation maps developed using different topography, geometric description and modeling approach. The methodology involves use of topographic datasets with different horizontal resolutions, vertical accuracies and bathymetry details. Each topographic dataset is used to create a flood inundation map for different cross-section configurations using 1D (HEC-RAS) model, and different mesh resolutions using 2D models for steady state and unsteady state conditions. Comparison of resulting maps indicates the uncertainty introduced in floodplain modeling by the horizontal resolution and vertical accuracy of topographic data and the different modeling approaches.

  20. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    NASA Astrophysics Data System (ADS)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  1. Vulnerability mapping of groundwater contamination based on 3D lithostratigraphical models of porous aquifers.

    PubMed

    Ducci, Daniela; Sellerino, Mariangela

    2013-03-01

    The aim of this paper is to apply a methodology in order to reconstruct a lithostratigraphic 3D model of an aquifer so as to define some parameters involved in the evaluation of the aquifer vulnerability to contamination of porous aquifers. The DRASTIC, SINTACS and AVI methods have been applied to an alluvial coastal aquifer of southern Italy. The stratigraphic reconstruction has been obtained by interpolating stratigraphic data from more than one borehole per 2 km. The lithostratigraphic reconstruction of a 3D model has been applied and used for three-dimensional or two-dimensional representations. In the first two methods, the layers of the vadose zone and the aquifer media have been evaluated not only by the interpolation of the single boreholes and piezometers, but also by the 3D model, assigning the scores of the parameters of each layer of the 3D model. The comparison between the maps constructed from the weighted values in each borehole and the maps deriving from the attribution of the values of each layer of the 3D model, highlights that the second representation avoids or minimizes the "bullseye" effect linked to the presence of boreholes with higher or lower values. The study has demonstrated that it is possible to integrate a 3D lithostratigraphic model of an aquifer in the assessment of the parameters involved in the evaluation of the aquifer vulnerability to contamination by Point Count System methods. PMID:23391897

  2. A volumetric sensor for real-time 3D mapping and robot navigation

    NASA Astrophysics Data System (ADS)

    Fournier, Jonathan; Ricard, Benoit; Laurendeau, Denis

    2006-05-01

    The use of robots for (semi-) autonomous operations in complex terrains such as urban environments poses difficult mobility, mapping, and perception challenges. To be able to work efficiently, a robot should be provided with sensors and software such that it can perceive and analyze the world in 3D. Real-time 3D sensing and perception in this operational context are paramount. To address these challenges, DRDC Valcartier has developed over the past years a compact sensor that combines a wide baseline stereo camera and a laser scanner with a full 360 degree azimuth and 55 degree elevation field of view allowing the robot to view and manage overhang obstacles as well as obstacles at ground level. Sensing in 3D is common but to efficiently navigate and work in complex terrain, the robot should also perceive, decide and act in three dimensions. Therefore, 3D information should be preserved and exploited in all steps of the process. To achieve this, we use a multiresolution octree to store the acquired data, allowing mapping of large environments while keeping the representation compact and memory efficient. Ray tracing is used to build and update the 3D occupancy model. This model is used, via a temporary 2.5D map, for navigation, obstacle avoidance and efficient frontier-based exploration. This paper describes the volumetric sensor concept, describes its design features and presents an overview of the 3D software framework that allows 3D information persistency through all computation steps. Simulation and real-world experiments are presented at the end of the paper to demonstrate the key elements of our approach.

  3. The Use of Uas for Rapid 3d Mapping in Geomatics Education

    NASA Astrophysics Data System (ADS)

    Teo, Tee-Ann; Tian-Yuan Shih, Peter; Yu, Sz-Cheng; Tsai, Fuan

    2016-06-01

    With the development of technology, UAS is an advance technology to support rapid mapping for disaster response. The aim of this study is to develop educational modules for UAS data processing in rapid 3D mapping. The designed modules for this study are focused on UAV data processing from available freeware or trial software for education purpose. The key modules include orientation modelling, 3D point clouds generation, image georeferencing and visualization. The orientation modelling modules adopts VisualSFM to determine the projection matrix for each image station. Besides, the approximate ground control points are measured from OpenStreetMap for absolute orientation. The second module uses SURE and the orientation files from previous module for 3D point clouds generation. Then, the ground point selection and digital terrain model generation can be archived by LAStools. The third module stitches individual rectified images into a mosaic image using Microsoft ICE (Image Composite Editor). The last module visualizes and measures the generated dense point clouds in CloudCompare. These comprehensive UAS processing modules allow the students to gain the skills to process and deliver UAS photogrammetric products in rapid 3D mapping. Moreover, they can also apply the photogrammetric products for analysis in practice.

  4. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of

  5. Develop advanced nonlinear signal analysis topographical mapping system

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1993-01-01

    The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate

  6. Vector Topographic Map Data over the BOREAS NSA and SSA in SIF Format

    NASA Technical Reports Server (NTRS)

    Knapp, David; Nickeson, Jaime; Hall, Forrest G. (Editor)

    2000-01-01

    This data set contains vector contours and other features of individual topographic map sheets from the National Topographic Series (NTS). The map sheet files were received in Standard Interchange Format (SIF) and cover the BOReal Ecosystem-Atmosphere Study (BOREAS) Northern Study Area (NSA) and Southern Study Area (SSA) at scales of 1:50,000 and 1:250,000. The individual files are stored in compressed Unix tar archives.

  7. Landscape features, standards, and semantics in U.S. national topographic mapping databases

    USGS Publications Warehouse

    Varanka, Dalia

    2009-01-01

    The objective of this paper is to examine the contrast between local, field-surveyed topographical representation and feature representation in digital, centralized databases and to clarify their ontological implications. The semantics of these two approaches are contrasted by examining the categorization of features by subject domains inherent to national topographic mapping. When comparing five USGS topographic mapping domain and feature lists, results indicate that multiple semantic meanings and ontology rules were applied to the initial digital database, but were lost as databases became more centralized at national scales, and common semantics were replaced by technological terms.

  8. Pilot Application of 3d Underwater Imaging Techniques for Mapping Posidonia Oceanica (L.) Delile Meadows

    NASA Astrophysics Data System (ADS)

    Rende, F. S.; Irving, A. D.; Lagudi, A.; Bruno, F.; Scalise, S.; Cappa, P.; Montefalcone, M.; Bacci, T.; Penna, M.; Trabucco, B.; Di Mento, R.; Cicero, A. M.

    2015-04-01

    Seagrass communities are considered one of the most productive and complex marine ecosystems. Seagrasses belong to a small group of 66 species that can form extensive meadows in all coastal areas of our planet. Posidonia oceanica beds are the most characteristic ecosystem of the Mediterranean Sea, and should be constantly monitored, preserved and maintained, as specified by EU Habitats Directive for priority habitats. Underwater 3D imaging by means of still or video cameras can allow a detailed analysis of the temporal evolution of these meadows, but also of the seafloor morphology and integrity. Video-photographic devices and open source software for acquiring and managing 3D optical data rapidly became more and more effective and economically viable, making underwater 3D mapping an easier task to carry out. 3D reconstruction of the underwater scene can be obtained with photogrammetric techniques that require just one or more digital cameras, also in stereo configuration. In this work we present the preliminary results of a pilot 3D mapping project applied to the P. oceanica meadow in the Marine Protected Area of Capo Rizzuto (KR, Calabria Region - Italy).

  9. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  10. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  11. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  12. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  13. Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest

    NASA Astrophysics Data System (ADS)

    Cisewski, Jessi; Croft, Rupert A. C.; Freeman, Peter E.; Genovese, Christopher R.; Khandai, Nishikanta; Ozbek, Melih; Wasserman, Larry

    2014-05-01

    Visualizing the high-redshift Universe is difficult due to the dearth of available data; however, the Lyman-alpha forest provides a means to map the intergalactic medium at redshifts not accessible to large galaxy surveys. Large-scale structure surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS), have collected quasar (QSO) spectra that enable the reconstruction of H I density fluctuations. The data fall on a collection of lines defined by the lines of sight (LOS) of the QSO, and a major issue with producing a 3D reconstruction is determining how to model the regions between the LOS. We present a method that produces a 3D map of this relatively uncharted portion of the Universe by employing local polynomial smoothing, a non-parametric methodology. The performance of the method is analysed on simulated data that mimics the varying number of LOS expected in real data, and then is applied to a sample region selected from BOSS. Evaluation of the reconstruction is assessed by considering various features of the predicted 3D maps including visual comparison of slices, probability density functions (PDFs), counts of local minima and maxima, and standardized correlation functions. This 3D reconstruction allows for an initial investigation of the topology of this portion of the Universe using persistent homology.

  14. The Design and Product of National 1:1000000 Cartographic Data of Topographic Map

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi

    2016-06-01

    National administration of surveying, mapping and geoinformation started to launch the project of national fundamental geographic information database dynamic update in 2012. Among them, the 1:50000 database was updated once a year, furthermore the 1:250000 database was downsized and linkage-updated on the basis. In 2014, using the latest achievements of 1:250000 database, comprehensively update the 1:1000000 digital line graph database. At the same time, generate cartographic data of topographic map and digital elevation model data. This article mainly introduce national 1:1000000 cartographic data of topographic map, include feature content, database structure, Database-driven Mapping technology, workflow and so on.

  15. Automated 3d Road Sign Mapping with Stereovision-Based Mobile Mapping Exploiting Disparity Information from Dense Stereo Matching

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Nebiker, S.

    2012-07-01

    This paper presents algorithms and investigations on the automated detection, classification and mapping of road signs which systematically exploit depth information from stereo images. This approach was chosen due to recent progress in the development of stereo matching algorithms enabling the generation of accurate and dense depth maps. In comparison to mono imagery-based approaches, depth maps also allow 3D mapping of the objects. This is essential for efficient inventory and for future change detection purposes. Test measurements with the mobile mapping system by the Institute of Geomatics Engineering of the FHNW University of Applied Sciences and Arts Northwestern Switzerland demonstrated that the developed algorithms for the automated 3D road sign mapping perform well, even under difficult to poor lighting conditions. Approximately 90% of the relevant road signs with predominantly red, blue and yellow colors in Switzerland can be detected, and 85% can be classified correctly. Furthermore, fully automated mapping with a 3D accuracy of better than 10 cm is possible.

  16. New Maps of the 3-D Distribution of Cold and Warm Interstellar Gas within 500pc

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Lallement, R.; Vergely, J.

    2006-12-01

    We present preliminary maps of the 3-D spatial distribution of cold (T <1000K) neutral and warm (T 5000K) partially ionized interstellar gas as traced by the NaI and CaII absorption lines observed towards stars with distances < 500pc from the Sun. These maps have been constructed from high-resolution (R 80,000) spectral data collected towards 1600 sight-lines, with the 3-D local gas density distribution being calculated from an inversion of the derived column density values. Our new maps, which trace the gas density within a 1kpc 3-D data cube surrounding the Sun, clearly show the neutral boundaries to several interstellar cavities that surround our own Local Bubble region (e.g. Loop I) and also reveal several adjacent interstellar tunnels and chimneys. Our final goal is to obtain maps based on 2000 interstellar sight-line measurements, and these data will be a valuable tool in solving several anomalies linked to the distribution of local gas such as the puzzling distribution of D-to-H values as measured within 1kpc by the NASA FUSE satellite.

  17. 3D maps of the local ISM from inversion of individual color excess measurements

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.

    2014-01-01

    Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends

  18. Comparison of interferometric and stereo-radargrammetric 3D metrics in mapping of forest resources

    NASA Astrophysics Data System (ADS)

    Karila, K.; Karjalainen, M.; Yu, X.; Vastaranta, M.; Holopainen, M.; Hyyppa, J.

    2015-04-01

    Accurate forest resources maps are needed in diverse applications ranging from the local forest management to the global climate change research. In particular, it is important to have tools to map changes in forest resources, which helps us to understand the significance of the forest biomass changes in the global carbon cycle. In the task of mapping changes in forest resources for wide areas, Earth Observing satellites could play the key role. In 2013, an EU/FP7-Space funded project "Advanced_SAR" was started with the main objective to develop novel forest resources mapping methods based on the fusion of satellite based 3D measurements and in-situ field measurements of forests. During the summer 2014, an extensive field surveying campaign was carried out in the Evo test site, Southern Finland. Forest inventory attributes of mean tree height, basal area, mean stem diameter, stem volume, and biomass, were determined for 91 test plots having the size of 32 by 32 meters (1024 m2). Simultaneously, a comprehensive set of satellite and airborne data was collected. Satellite data also included a set of TanDEM-X (TDX) and TerraSAR-X (TSX) X-band synthetic aperture radar (SAR) images, suitable for interferometric and stereo-radargrammetric processing to extract 3D elevation data representing the forest canopy. In the present study, we compared the accuracy of TDX InSAR and TSX stereo-radargrammetric derived 3D metrics in forest inventory attribute prediction. First, 3D data were extracted from TDX and TSX images. Then, 3D data were processed as elevations above the ground surface (forest canopy height values) using an accurate Digital Terrain Model (DTM) based on airborne laser scanning survey. Finally, 3D metrics were calculated from the canopy height values for each test plot and the 3D metrics were compared with the field reference data. The Random Forest method was used in the forest inventory attributes prediction. Based on the results InSAR showed slightly better

  19. SU-F-BRF-08: Conformal Mapping-Based 3D Surface Matching and Registration

    SciTech Connect

    Song, Y; Zeng, W; Gu, X; Liu, C

    2014-06-15

    Purpose: Recently, non-rigid 3D surface matching and registration has been used extensively in engineering and medicine. However, matching 3D surfaces undergoing non-rigid deformation accurately is still a challenging mathematical problem. In this study, we present a novel algorithm to address this issue by introducing intrinsic symmetry to the registration Methods: Our computational algorithm for symmetric conformal mapping is divided into three major steps: 1) Finding the symmetric plane; 2) Finding feature points; and 3) Performing cross registration. The key strategy is to preserve the symmetry during the conformal mapping, such that the image on the parameter domain is symmetric and the area distortion factor on the parameter image is also symmetric. Several novel algorithms were developed using different conformal geometric tools. One was based on solving Riemann-Cauchy equation and the other one employed curvature flow Results: Our algorithm was implemented using generic C++ on Windows XP and used conjugate gradient search optimization for acceleration. The human face 3D surface images were acquired using a high speed 3D scanner based on the phase-shifting method. The scanning speed was 30 frames/sec. The image resolution for each frame was 640 × 480. For 3D human face surfaces with different expressions, postures, and boundaries, our algorithms were able to produce consistent result on the texture pattern on the overlapping region Conclusion: We proposed a novel algorithm to improve the robustness of conformal geometric methods by incorporating the symmetric information into the mapping process. To objectively evaluate its performance, we compared it with most existing techniques. Experimental results indicated that our method outperformed all the others in terms of robustness. The technique has a great potential in real-time patient monitoring and tracking in image-guided radiation therapy.

  20. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  1. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  2. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  3. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  4. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  5. VizieR Online Data Catalog: 3D interstellar extinct. map within nearest kpc (Gontcharov, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    The product of the previously constructed 3D maps of stellar reddening (2010AstL...36..584G) and Rv variations (2012AstL...38...12G) has allowed us to produce a 3D interstellar extinction map within the nearest kiloparsec from the Sun with a spatial resolution of 100pc and an accuracy of 0.2m. This map is compared with the 2D reddening map by Schlegel et al. (1998ApJ...500..525S), the 3D extinction map at high latitudes by Jones et al. (2011AJ....142...44J), and the analytical 3D extinction models by Arenou et al. (1992A&A...258..104A) and Gontcharov (2009AstL...35..780G). In all cases, we have found good agreement and show that there are no systematic errors in the new map everywhere except the direction toward the Galactic center. We have found that the map by Schlegel et al. (1998ApJ...500..525S) reaches saturation near the Galactic equator at E(B-V)>0.8m, has a zero-point error and systematic errors gradually increasing with reddening, and among the analytical models those that take into account the extinction in the Gould Belt are more accurate. Our extinction map shows that it is determined by reddening variations at low latitudes and Rv variations at high ones. This naturally explains the contradictory data on the correlation or anticorrelation between reddening and Rv available in the literature. There is a correlation in a thin layer near the Galactic equator, because both reddening and Rv here increase toward the Galactic center. There is an anticorrelation outside this layer, because higher values of Rv correspond to lower reddening at high and middle latitudes. Systematic differences in sizes and other properties of the dust grains in different parts of the Galaxy manifest themselves in this way. The largest structures within the nearest kiloparsec, including the Local Bubble, the Gould Belt, the Great Tunnel, the Scorpius, Perseus, Orion, and other complexes, have manifested themselves in the constructed map. (1 data file).

  6. 3D Mapping of Glacially-Sculpted Bedrock in Central Park

    NASA Astrophysics Data System (ADS)

    Laderman, L.; Stark, C. P.; Creyts, T. T.

    2014-12-01

    The movement of glaciers and ice sheets through sliding over bedrock depends on the configuration of the subglacial hydrological system. Over time, the glacier erodes the bedrock, which in turn changes water drainage pathways, the overall interaction with the ice, and potentially sliding rates. Drainage can take many forms. At the largest scale, subglacial lakes tens of kilometers in length store water, but the individual pathways are often on the order of meters or smaller. Studies at such a fine scale are only possible by looking at deglaciated beds to infer water drainage. 3D mapping can resolve centimeter scale features and inform studies of the processes that created them. In this survey, Agisoft Photoscan's structure from motion algorithm is used to create a map of Umpire Rock in New York's Central Park from digital photographs. Over 3300 photographs are taken at a separation of roughly half a meter to cover the 1000 square meter survey area. The surface is imaged in separate sections and the resulting point clouds are each aligned with a central section using Photoscan's Align Chunks tool. This process allows additional areas to easily be added to the 3D map. The scale of the final model is accurate to 1mm across the survey area and 3D meshes with a surface resolution of up to 5mm can be created. The distribution of striation directions and sizes on surfaces across the outcrop gives the overall flow direction of the ice and, more locally, illustrates how ice deforms around bedrock features. In addition to striations, we identify cavities and subtle drainage features that are oblique to ice flow. This study demonstrates the relative ease of 3D mapping bedrock outcrops from digital photographs, and indicates the utility of applying this process to more recently deglaciated areas.

  7. A Photo-Realistic 3-D Mapping System for Extreme Nuclear Environments: Chornobyl

    NASA Technical Reports Server (NTRS)

    Maimone, M.; Matthies, L.; Osborn, J.; Teza, J.; Thayer, S.

    1998-01-01

    We present a novel stereoscopic mapping system for use in nuclear accident settings. First we discuss a radiation shielded sensor array desigtned to tolerate 10(sup 6)R of cumulative dose. Next we give procedures to ensure timely, accurate range estimation using trinocular stereo. Finally, we review the implementation of a system for the integration of range information into a 3-D, textured, metrically accurate surface mesh.

  8. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  9. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life.

    PubMed

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  10. B1 Mapping of Short T2* Spins Using a 3D Radial Gradient Echo Sequence

    PubMed Central

    Kobayashi, Naoharu; Garwood, Michael

    2014-01-01

    Purpose To develop a method to acquire a radiofrequency (B1) field map when the signal has a short T2*. Theory and Methods The method is based on the actual flip angle imaging (AFI) technique and a radial 3D gradient-echo sequence known as COncurrent Dephasing and Excitation (CODE) which preserves short T2* signals. CODE was implemented with Gradient-modulated Offset-Independent Adiabaticity (GOIA) pulses to obtain high estimation sensitivity with AFI. The correlation method, that removes the quadratic phase from the frequency-modulated pulse excitation, was modified to handle gradient-modulated pulses. Validity of the modified correlation procedure was tested by Bloch simulations. CODE experiments with sinc, hyperbolic secant, and GOIA pulses were performed in order to see effects from the frequency- and gradient-modulation. Finally, GOIA-CODE AFI was conducted and compared with conventional AFI with 3D GRE. Results The modified correlation method developed to accommodate frequency- and gradient-modulations of GOIA performed well as judged by the minimal impact on reconstructed image quality. GOIA-CODE AFI provided flip angle maps consistent with those measured by GRE AFI when the T2* was long (> 2 ms) and continued to perform well for short T2* signals. Conclusion The proposed technique provides a means to obtain a 3D B1 field map when imaging spins with short T2*. PMID:23754634

  11. Web GIS in practice V: 3-D interactive and real-time mapping in Second Life

    PubMed Central

    Boulos, Maged N Kamel; Burden, David

    2007-01-01

    This paper describes technologies from Daden Limited for geographically mapping and accessing live news stories/feeds, as well as other real-time, real-world data feeds (e.g., Google Earth KML feeds and GeoRSS feeds) in the 3-D virtual world of Second Life, by plotting and updating the corresponding Earth location points on a globe or some other suitable form (in-world), and further linking those points to relevant information and resources. This approach enables users to visualise, interact with, and even walk or fly through, the plotted data in 3-D. Users can also do the reverse: put pins on a map in the virtual world, and then view the data points on the Web in Google Maps or Google Earth. The technologies presented thus serve as a bridge between mirror worlds like Google Earth and virtual worlds like Second Life. We explore the geo-data display potential of virtual worlds and their likely convergence with mirror worlds in the context of the future 3-D Internet or Metaverse, and reflect on the potential of such technologies and their future possibilities, e.g. their use to develop emergency/public health virtual situation rooms to effectively manage emergencies and disasters in real time. The paper also covers some of the issues associated with these technologies, namely user interface accessibility and individual privacy. PMID:18042275

  12. Low Cost and Efficient 3d Indoor Mapping Using Multiple Consumer Rgb-D Cameras

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, B. S.; Song, S.

    2016-06-01

    Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside each

  13. Regular Characterisation of Volcán de Colima's Dome Through Photo-based 3D Topographic and Thermal Surveys

    NASA Astrophysics Data System (ADS)

    James, M. R.; Moss-Davies, H.; Varley, N. R.

    2014-12-01

    Following an 18-month period of quiescence at Volcán de Colima - the longest seen since the beginning of the 1998 eruptive regime - the latest effusive period was heralded by the partial destruction of the 2007 lava dome by a significant explosion on 6th January, 2013. Subsequent small Vulcanian explosions, which have been more frequent than during the preceding 2007-2011 effusive period, have accompanied the extrusion of new lava. The effusion, which continues to the present day (July, 2014), has been monitored by monthly overflights in a light aircraft, allowing aerial surveys of the activity through the capture of oblique photographs and thermal infrared imagery. Using 'structure from motion' based photogrammetric analysis of the photographs has enabled metre-to-sub-metre resolution digital elevation models (DEMs) to be produced[1], from which volumetric and morphological changes to the dome can be assessed. Although extrusion of lava was observed on the 10th January, it was not until a subsequent survey on 25th February, in which a newly emplaced blocky dome was apparent in the excavated crater, that a reliable effusion rate could be calculated. The derived volumetric change, excluding losses due to minor explosions during this period, represents an effusion rate of <0.1 m3s-1, similar to that of that of the 2007-2011 effusion period (~0.02 m3s-1) and indicative of another period of slow growth. Continued growth of the dome led it to overflow the crater and form a lava flow, as detected in the survey of 21st March. The combination of regular oblique photography with a consumer camera and the use of modern 3D photo-based reconstruction software has enabled unprecedented numbers of DEMs to be produced for activity at Colima. We explore the potential of integrating the thermal data with the surface models for visualisation of areas of elevated activity. [1] James & Varley (2012) Identification of structural controls in an active lava dome with high resolution

  14. Large-scale Inference Problems in Astronomy: Building a 3D Galactic Dust Map

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas

    2016-03-01

    The term ''Big Data'' has become trite, as modern technology has made data sets of terabytes or even petabytes easy to store. Such data sets provide a sandbox in which to develop new statistical inference techniques that can extract interesting results from increasingly rich (and large) databases. I will give an example from my work on mapping the interstellar dust of the Milky Way. 2D emission-based maps have been used for decades to estimate the reddening and emission from interstellar dust, with applications from CMB foregrounds to surveys of large-scale structure. For studies within the Milky Way, however, the third dimension is required. I will present our work on a 3D dust map based on Pan-STARRS1 and 2MASS over 3/4 of the sky (http://arxiv.org/abs/1507.01005), assess its usefulness relative to other dust maps, and discuss future work. Supported by the NSF.

  15. A Topographic Image Map of the Sabrina Valles Region Including Information on Large Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Köhring, R.; Barlow, N. G.; Gwinner, K.; Scholten, F.; Lehmann, H.; Albertz, J.

    2007-03-01

    The Catalog of Large Martian Impact Craters provides detailed information on 42,283 craters >5 km; it is planned to be integrated in the Topographic Image Map Mars 1:200,000 series. Such an update is shown in a special target map, based on HRSC data.

  16. Probabilistic Seismic Hazard Maps for Seattle, Washington, Based on 3D Ground-Motion Simulations

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D. L.; Williams, R. A.; Odum, J. K.; Rhea, S.

    2007-12-01

    We have produced probabilistic seismic hazard maps for Seattle using over 500 3D finite-difference simulations of ground motions from earthquakes in the Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep source areas. The maps depict 1 Hz response spectral accelerations with 2, 5, and 10% probabilities of being exceeded in 50 years. The simulations were used to generate site and source dependent amplification factors that are applied to rock-site attenuation relations. The maps incorporate essentially the same fault sources and earthquake recurrence times as the 2002 national seismic hazard maps. The simulations included basin surface waves and basin-edge focusing effects from a 3D model of the Seattle basin. The 3D velocity model was validated by modeling several earthquakes in the region, including the 2001 M6.8 Nisqually earthquake, that were recorded by our Seattle Urban Seismic Network and the Pacific Northwest Seismic Network. The simulations duplicate our observation that earthquakes from the south and southwest typically produce larger amplifications in the Seattle basin than earthquakes from other azimuths, relative to rock sites outside the basin. Finite-fault simulations were run for earthquakes along the Seattle fault zone, with magnitudes ranging from 6.6 to 7.2, so that the effects of rupture directivity were included. Nonlinear amplification factors for soft-soil sites of fill and alluvium were also applied in the maps. For the Cascadia subduction zone, 3D simulations with point sources at different locations along the zone were used to determine amplification factors across Seattle expected for great subduction-zone earthquakes. These new urban seismic hazard maps are based on determinations of hazard for 7236 sites with a spacing of 280 m. The maps show that the highest hazard locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and

  17. Evaluating a topographical mapping from speech acoustics to tongue positions

    SciTech Connect

    Hogden, J.; Heard, M.

    1995-05-01

    The {ital continuity} {ital mapping} algorithm---a procedure for learning to recover the relative positions of the articulators from speech signals---is evaluated using human speech data. The advantage of continuity mapping is that it is an unsupervised algorithm; that is, it can potentially be trained to make a mapping from speech acoustics to speech articulation without articulator measurements. The procedure starts by vector quantizing short windows of a speech signal so that each window is represented (encoded) by a single number. Next, multidimensional scaling is used to map quantization codes that were temporally close in the encoded speech to nearby points in a {ital continuity} {ital map}. Since speech sounds produced sufficiently close together in time must have been produced by similar articulator configurations, and speech sounds produced close together in time are close to each other in the continuity map, sounds produced by similar articulator positions should be mapped to similar positions in the continuity map. The data set used for evaluating the continuity mapping algorithm is comprised of simultaneously collected articulator and acoustic measurements made using an electromagnetic midsagittal articulometer on a human subject. Comparisons between measured articulator positions and those recovered using continuity mapping will be presented.

  18. Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-06-01

    RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method

  19. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  20. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  1. 'Distance mapping' and the 3D structure of BD +30° 3639

    NASA Astrophysics Data System (ADS)

    Akras, S.; Steffen, W.

    2012-06-01

    BD +30° 3639 is a member of a group of uncommon planetary nebulae with Wolf-Rayet central star and higher expansion velocities in [O III] than in [N II] lines. Images and high-resolution spectra from the literature are used in order to construct a 3D model of the nebula using the morpho-kinematic code SHAPE. We find that two homologous expansion laws are needed for the [N II] and [O III] shells. We conclude that the internal velocity field of BD +30° 3639 decreases with the distance from the central star at least between the [O III] and [N II] shells. A cylindrical velocity component is used to replicate the high-speed bipolar collimated outflows. We also present a new kinematic analysis technique called 'distance mapping'. It uses the observed proper motion vectors and the 3D velocity field to generate maps that can be used as a constraint to the morpho-kinematic modelling with SHAPE as well as improve the accuracy for distance determination. It is applied to BD +30° 3639 using 178 internal proper motion vectors from Li, Harrington & Borkowski and our 3D velocity field to determine a distance of 1.52 ± 0.21 kpc. Finally, we find evidence for an interaction between the eastern part of the nebula and the ambient H2 molecular gas.

  2. 3D mapping of somatotopic reorganization with small animal functional MRI

    PubMed Central

    Yu, Xin; Wang, Shumin; Chen, Der-Yow; Dodd, Stephen; Goloshevsky, Artem; Koretsky, Alan P.

    2009-01-01

    There are few in vivo noninvasive methods to study neuroplasticity in animal brains. Functional MRI (fMRI) has been developed for animal brain mapping, but few fMRI studies have analyzed functional alteration due to plasticity in animal models. One major limitation is that fMRI maps are characterized by statistical parametric mapping making the apparent boundary dependent on the statistical threshold used. Here, we developed a method to characterize the location of center-of-mass in fMRI maps that is shown not to be sensitive to statistical threshold. Utilizing centers-of-mass as anchor points to fit the spatial distribution of the BOLD response enabled quantitative group analysis of altered boundaries of functional somatosensory maps. This approach was used to study cortical reorganization in the rat primary somatosensory cortex (S1) after sensory deprivation to the barrel cortex by follicle ablation (F.A.). FMRI demonstrated an enlarged nose S1 representation in the 3D somatotopic functional maps. This result clearly demonstrates that fMRI enables the spatial mapping of functional changes that can characterize multiple regions of S1 cortex and still be sensitive to changes due to plasticity. PMID:19770051

  3. Topographic indices for improved mapping of forested wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The best management of wetlands and associated ecosystem services requires accurate and up to date knowledge of wetland location and character. Unfortunately even the most accurate US wetland maps contain relatively high levels of error in areas that are difficult to map, such as forests. Furthermor...

  4. 2D Maps, 3D Globes, and OGC Web Services Supporting Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gaylord, A. G.; Brady, J.; Cody, R.; Ramirez, G.; Gonzalez, J. C.; Rubio, C.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C.

    2008-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services designed to provide support for Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS), 3D globe applications (Google Earth and ArcGIS Explorer), Open Geospatial Consortium (OGC) Web Map Service (WMS) and Keyhole Markup Language (KML) Service , and a prototype 2D ArcGIS Server Web Mapping Application (WMA). Avoiding a duplication of effort has been a primary objective of the ARMAP project which incorporates best practices (e.g. OGC standard web services and metadata) and off the shelf technologies. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of all the ARMAP services and includes US research funded by the National Science Foundation, National Aeronautics and Space Administration and National Oceanic and Atmospheric Administration. With ARMAP's 2D maps and 3D globes, users can navigate to areas of interest, view a variety of map layers, and explore U.S. federally funded research projects. Projects can be queried by location, year, funding program, discipline, and keyword. Links to specific information and other web sites associated with particular research projects are included. . The ARMAP suite provides tools for users of various levels of technical ability to interact with data by running text based queries, browsing in 2D or 3D, or importing the KML and OGC web services directly into their own GIS applications and virtual globes. With special emphasis on the International Polar Year (IPY), ARMAP has targeted science planners, scientists, educators, and the general public. In sum, ARMAP goes beyond a simple map display to enable analysis, synthesis, and coordination of Arctic research. ARMAP may be accessed via the gateway web site at http://www.armap.org.

  5. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  6. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    NASA Astrophysics Data System (ADS)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  7. On topological mapping of yarn structures in 3-D braided composite preforms

    SciTech Connect

    Wang, Y.Q.; Wang, A.S.D.

    1994-12-31

    Previous studies have established that the internal yarn structure in a 3-D braided preform possesses a certain topological character which is determined by the braiding method alone, regardless of the preform shape or the yarn size used. This unique geometric property provides the possibility that yarn structures in preforms of different shapes may be mathematically connected from one to another, as long as the preforms are produced by the same braiding procedure. Exploring this possibility, the present paper discusses a geometric mapping method for the determination of the internal yarn structures in preforms of complex shapes. The idea is to obtain the desired mapping between two preform shapes, the mapping being able to also link analytically the respective yarn structures. Thus, if the yarn structure in one shape (simple) is known, the yarn structure in the other shape (complex) can be determined by the mapping. Illustrative examples using preforms braided by the 4-step 1x1 method are presented in detail. In general, determination of the desired mapping between two preforms of complex shapes requires a numerical and iterative procedure; between two preforms of relatively simple shapes, closed form mapping functions can be obtained.

  8. 3D Globe Support for Arctic Science through the Arctic Research Mapping Application (ARMAP)

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Gaylord, A. G.; Johnson, G.; Cody, R. P.; Dover, M.; Garcia-Lavigne, D.; Manley, W.; Score, R.; Tweedie, C. E.

    2007-12-01

    The Arctic Research Mapping Application (ARMAP) is a suite of online services to provide support of Arctic science. These services include: a text based online search utility, 2D Internet Map Server (IMS); 3D globes and Open Geospatial Consortium (OGC) Web Map Services (WMS). With special emphasis on the International Polar Year (IPY), ARMAP has a target audience of science planners, scientists, educators, and the general public. The Arctic Research Logistics Support Service (ARLSS) database is the foundation of ARMAP and includes information on US research funded by the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and the United States Geological Survey. Avoiding a duplication of effort has been a primary objective of the ARMAP project, which incorporates best practices (e.g. Spatial Data Infrastructure and OGC standard web services and metadata) and off the shelf technologies where appropriate. ARMAP services may be accessed via the gateway web site at http://www.armap.org. ARMAP's 3D globe services includes a layer users can download into Google Earth and a prototype ArcGIS Explorer (ESRI) application. A comparison of the strengths and weaknesses of the two virtual globe applications will be presented.

  9. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  10. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  11. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  12. Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo

    PubMed Central

    Milkovich, Stephanie; Goldman, Daniel; Ellis, Christopher G.

    2012-01-01

    We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models. PMID:22140042

  13. A novel technique for visualizing high-resolution 3D terrain maps

    NASA Astrophysics Data System (ADS)

    Dammann, John

    2007-02-01

    A new technique is presented for visualizing high-resolution terrain elevation data. It produces realistic images at small scales on the order of the data resolution and works particularly well when natural objects are present. Better visualization at small scales opens up new applications, like site surveillance for security and Google Earth-type local search and exploration tasks that are now done with 2-D maps. The large 3-D maps are a natural for high-resolution stereo display. The traditional technique drapes a continuous surface over the regularly spaced elevation values. This technique works well when displaying large areas or in cities with large buildings, but falls apart at small scales or for natural objects like trees. The new technique visualizes the terrain as a set of disjoint square patches. It is combined with an algorithm that identifies smooth areas within the scene. Where the terrain is smooth, such as in grassy areas, roads, parking lots and rooftops, it warps the patches to create a smooth surface. For trees or shrubs or other areas where objects are under-sampled, however, the patches are left disjoint. This has the disadvantage of leaving gaps in the data, but the human mind is very adept at filling in this missing information. It has the strong advantage of making natural terrain look realistic, trees and bushes look stylized but still look natural and are easy to interpret. Also, it does not add artifacts to the map, like filling in blank vertical walls where there are alcoves and other structure and extending bridges and overpasses down to the ground. The new technique is illustrated using very large 1-m resolution 3-D maps from the Rapid Terrain Visualization (RTV) program, and comparisons are made with traditional visualizations using these maps.

  14. Image mosaic and topographic map of the moon

    USGS Publications Warehouse

    Hare, Trent M.; Hayward, Rosalyn K.; Blue, Jennifer S.; Archinal, Brent A.

    2015-01-01

    Sheet 2: This map is based on data from the Lunar Orbiter Laser Altimeter (LOLA; Smith and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The image used for the base of this map represents more than 6.5 billion measurements gathered between July 2009 and July 2013, adjusted for consistency in the coordinate system described below, and then converted to lunar radii (Mazarico and others, 2012). For the Mercator portion, these measurements were converted into a digital elevation model (DEM) with a resolution of 0.015625 degrees per pixel, or 64 pixels per degree. In projection, the pixels are 473.8 m in size at the equator. For the polar portion, the LOLA elevation points were used to create a DEM at 240 meters per pixel. A shaded relief map was generated from each DEM with a sun angle of 45° from horizontal, and a sun azimuth of 270°, as measured clockwise from north with no vertical exaggeration. The DEM values were then mapped to a global color look-up table, with each color representing a range of 1 km of elevation. For this map sheet, only larger feature names are shown. For references listed above, please open the full PDF.

  15. A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum.

    PubMed

    Hyde, P S; Knudsen, E I

    2001-11-01

    Maps of auditory space in the midbrain of the barn owl (Tyto alba) are calibrated by visual experience. When owls are raised wearing prismatic spectacles that displace the visual field in azimuth, the auditory receptive fields of neurons in the optic tectum shift to compensate for the optical displacement of the visual field. This shift results primarily from a shift in the tuning of tectal neurons for interaural time difference. The visually based instructive signal that guides this plasticity could be based on a topographic, point-by-point comparison between auditory and visual space maps or on a foveation-dependent visual assessment of the accuracy of auditory orienting responses. To distinguish between these two possibilities, we subjected owls to optical conditions that differed in the center of gaze and the visual periphery. A topographic signal would cause the portions of the space map representing the central and peripheral regions of visual space to adjust differently, according to the optical conditions that exist in each region. In contrast, a foveation-based signal would cause both portions of the map to adjust similarly, according to the optical conditions that exist at the center of gaze. In six of seven experiments, adaptive changes were as predicted by a topographic instructive signal. Although the results do not rule out the possible contribution of a foveation-based signal, they demonstrate that a topographic instructive signal is, indeed, involved in the calibration of the auditory space map in the barn owl optic tectum. PMID:11606646

  16. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps.

    PubMed

    Owens, Melinda T; Feldheim, David A; Stryker, Michael P; Triplett, Jason W

    2015-09-23

    Topographic maps in visual processing areas maintain the spatial order of the visual world. Molecular cues and neuronal activity both play critical roles in map formation, but their interaction remains unclear. Here, we demonstrate that when molecular- and activity-dependent cues are rendered nearly equal in force, they drive topographic mapping stochastically. The functional and anatomical representation of azimuth in the superior colliculus of heterozygous Islet2-EphA3 knockin (Isl2(EphA3/+)) mice is variable: maps may be single, duplicated, or a combination of the two. This heterogeneity is not due to genetic differences, since map organizations in individual mutant animals often differ between colliculi. Disruption of spontaneous waves of retinal activity resulted in uniform map organization in Isl2(EphA3/+) mice, demonstrating that correlated spontaneous activity is required for map heterogeneity. Computational modeling replicates this heterogeneity, revealing that molecular- and activity-dependent forces interact simultaneously and stochastically during topographic map formation. PMID:26402608

  17. Oscillatory and burst discharge across electrosensory topographic maps.

    PubMed

    Turner, R W; Plant, J R; Maler, L

    1996-10-01

    1. Three parallel maps of the distribution of tuberous electroreceptor inputs are found in the medullary electrosensory lateral line lobe (ELL) of weakly electric fish. Pyramidal cells in each map are known to respond differentially to the frequency of amplitude modulations (AMs) of external electric fields in vivo. We used an in vitro ELL slice preparation of Apteronotus leptorhynchus to compare the characteristics of spontaneously active single units across the three tuberous maps. It was our objective to determine whether spontaneous bursting activity of pyramidal cells in each map correlates with the known AM frequency selectivities of pyramidal cells in vivo. 2. Single-unit discharges were recorded from the pyramidal cell layer of the centromedial segment (CMS), centrolateral segment (CLS), and lateral segment (LS) of the ELL. Stochastic analysis of interspike intervals (ISIs) was used to identify bursting and nonbursting unit activity, and to separately analyze intra- and interburst ISIs. Four ISI patterns were identified as 1) bursting, 2) regular spiking, 3) irregular spiking, and 4) highly irregular spiking. This work focuses primarily on the characteristics of bursting units across the ELL segments. 3. Spontaneous bursting discharge was identified in all three maps (68 of 97 units), with several characteristics changing in a gradual manner across the maps. The coefficient of variation (CV) of ISIs and intraburst ISIs decreased significantly from the CMS to the LS, whereas the CV of burst periods increased significantly from the CMS to the LS. Autocorrelations and power spectral density analysis identified units discharging in an oscillatory manner with the following ratio: CMS, 75%; CLS, 4%; LS, 8%. 4. The mean period of spike bursts decreased significantly across the segments (CMS, 2.7 s; CLS, 1.2 s; LS, 1.1 s) primarily because of a shortening of mean burst duration (CMS, 1.0 s; CLS, 0.1 s; LS, 0.05 s). The average number of spikes per burst decreased

  18. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps

    PubMed Central

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  19. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

    PubMed

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  20. Efficient dense blur map estimation for automatic 2D-to-3D conversion

    NASA Astrophysics Data System (ADS)

    Vosters, L. P. J.; de Haan, G.

    2012-03-01

    Focus is an important depth cue for 2D-to-3D conversion of low depth-of-field images and video. However, focus can be only reliably estimated on edges. Therefore, Bea et al. [1] first proposed an optimization based approach to propagate focus to non-edge image portions, for single image focus editing. While their approach produces accurate dense blur maps, the computational complexity and memory requirements for solving the resulting sparse linear system with standard multigrid or (multilevel) preconditioning techniques, are infeasible within the stringent requirements of the consumer electronics and broadcast industry. In this paper we propose fast, efficient, low latency, line scanning based focus propagation, which mitigates the need for complex multigrid or (multilevel) preconditioning techniques. In addition we propose facial blur compensation to compensate for false shading edges that cause incorrect blur estimates in people's faces. In general shading leads to incorrect focus estimates, which may lead to unnatural 3D and visual discomfort. Since visual attention mostly tends to faces, our solution solves the most distracting errors. A subjective assessment by paired comparison on a set of challenging low-depth-of-field images shows that the proposed approach achieves equal 3D image quality as optimization based approaches, and that facial blur compensation results in a significant improvement.

  1. Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.

    2015-12-01

    We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.

  2. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage.

    PubMed

    Christen, David; Levchuk, Alina; Schori, Stefan; Schneider, Philipp; Boyd, Steven K; Müller, Ralph

    2012-04-01

    The resistance to forming microcracks is a key factor for bone to withstand critical loads without fracturing. In this study, we investigated the initiation and propagation of microcracks in murine cortical bone by combining three-dimensional images from synchrotron radiation-based computed tomography and time-lapsed biomechanical testing to observe microdamage accumulation over time. Furthermore, a novel deformable image registration procedure utilizing digital volume correlation and demons image registration was introduced to compute 3D strain maps allowing characterization of the mechanical environment of the microcracks. The displacement and strain maps were validated in a priori tests. At an image resolution of 740 nm the spatial resolution of the strain maps was 10 μm (MTF), while the errors of the displacements and strains were 130 nm and 0.013, respectively. The strain maps revealed a complex interaction of the propagating microcracks with the bone microstructure. In particular, we could show that osteocyte lacunae play a dual role as stress concentrating features reducing bone strength, while at the same time contributing to the bone toughness by blunting the crack tip. We conclude that time-lapsed biomechanical imaging in combination with three-dimensional strain mapping is suitable for the investigation of crack initiation and propagation in many porous materials under various loading scenarios. PMID:22402165

  3. Significance probability mapping: an aid in the topographic analysis of brain electrical activity.

    PubMed

    Duffy, F H; Bartels, P H; Burchfiel, J L

    1981-05-01

    We illustrate the application of significance probability mapping (SPM) to the analysis of topographic maps of spectral analyzed EEG and visual evoked potential (VEP) activity from patients with brain tumors, boys with dyslexia, and control subjects. When the VEP topographic plots of tumor patients were displayed as number of standard deviations from a reference mean, more subjects were correctly identified than by inspection of the underlying raw data. When topographic plots of EEG alpha activity obtained while listening to speech or music were compared by t statistic to plots of resting alpha activity, regions of cortex presumably activated by speech or music were delineated. DIfferent regions were defined in dyslexic boys and controls. We propose that SPM will prove valuable in the regional localization of normal and abnormal functions in other clinical situations. PMID:6165544

  4. Mapping 3D Large-Scale Structure at z ˜2 with Lyman-α Forest Tomographic Mapping

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan; Hennawi, J. F.; White, M.; Croft, R. A.; Prochaska, J. X.; Schlegel, D. J.; Suzuki, N.; Kneib, J.; Bailey, S. J.; Spergel, D. N.; Rix, H.; Strauss, M. A.

    2014-01-01

    The Lyman-α (Lyα) forest absorption at z>2 traces the underlying dark-matter distribution, and with a sufficient density of background sightlines can be used to create 3D tomographic maps of large-scale structure. Since the useful Lyα forest in each sightline spans ˜400-500 h-1Mpc, Lyα forest tomography can efficiently map out large-scale structure at z˜2. The Cosmic Lyman-Alpha Program for the Tomographic Reconstruction of Absorption Probes (CLAPTRAP) will be the first survey to attempt this technique. We aim to obtain spectra for a background grid of faint quasars and bright LBGs at 23D map with similar 3 h-1Mpc resolution to be reconstructed from the data. In a recent paper, we have found that spectra with S/N ˜ 4 per Å are sufficient to make excellent-quality tomographic maps that clearly trace the underlying dark-matter distribution at overdensities of order unity. This requires integrations of several hours on moderate-resolution spectrographs mounted on existing 8-10m telescopes, such as LRIS on the Keck-I telescope and VIMOS on the Very Large Telescopes. We aim to observe ˜1500-2000 background sources over 1 sq deg of the COSMOS field with Lyα forest coverage over 2.0map out a total comoving volume of ˜106h-3Mpc3, equivalent to the zCOSMOS and DEEP2 galaxy redshift maps out to z˜1. The total time requirement is 16 nights on either VLT-VIMOS or Keck-LRIS. The resulting tomographic maps will be the first 3D maps of large-scale structure at z>1. In conjunction with the rich multi-wavelength data from the COSMOS survey, these maps will facilitate the study of galaxies in the context of the large-scale environment, reveal the topology of large-scale structure at high-redshifts, and allow the direct detection of galaxy protoclusters at the intersections of the cosmic web. The

  5. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  6. Evaluation Model for Pavement Surface Distress on 3d Point Clouds from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.; Shimamura, H.

    2012-07-01

    This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS). The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments' specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  7. Mass Movement Susceptibility in the Western San Juan Mountains, Colorado: A Preliminary 3-D Mapping Approach

    NASA Astrophysics Data System (ADS)

    Kelkar, K. A.; Giardino, J. R.

    2015-12-01

    Mass movement is a major activity that impacts lives of humans and their infrastructure. Human activity in steep, mountainous regions is especially at risk to this potential hazard. Thus, the identification and quantification of risk by mapping and determining mass movement susceptibility are fundamental in protecting lives, resources and ensuring proper land use regulation and planning. Specific mass-movement processes including debris flows, rock falls, snow avalanches and landslides continuously modify the landscape of the San Juan Mountains. Historically, large-magnitude slope failures have repeatedly occurred in the region. Common triggers include intense, long-duration precipitation, freeze-thaw processes, human activity and various volcanic lithologies overlying weaker sedimentary formations. Predicting mass movement is challenging because of its episodic and spatially, discontinuous occurrence. Landslides in mountain terrain are characterized as widespread, highly mobile and have a long duration of activity. We developed a 3-D model for landslide susceptibility using Geographic Information Systems Technology (GIST). The study area encompasses eight USGS quadrangles: Ridgway, Dallas, Mount Sneffels, Ouray, Telluride, Ironton, Ophir and Silverton. Fieldwork consisted of field reconnaissance mapping at 1:5,000 focusing on surficial geomorphology. Field mapping was used to identify potential locations, which then received additional onsite investigation and photographic documentation of features indicative of slope failure. A GIS module was created using seven terrain spatial databases: geology, surficial geomorphology (digitized), slope aspect, slope angle, vegetation, soils and distance to infrastructure to map risk. The GIS database will help determine risk zonation for the study area. Correlations between terrain parameters leading to slope failure were determined through the GIS module. This 3-D model will provide a spatial perspective of the landscape to

  8. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  9. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  10. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  11. Improved Uav-Borne 3d Mapping by Fusing Optical and Laserscanner Data

    NASA Astrophysics Data System (ADS)

    Jutzi, B.; Weinmann, M.; Meidow, J.

    2013-08-01

    In this paper, a new method for fusing optical and laserscanner data is presented for improved UAV-borne 3D mapping. We propose to equip an unmanned aerial vehicle (UAV) with a small platform which includes two sensors: a standard low-cost digital camera and a lightweight Hokuyo UTM-30LX-EW laserscanning device (210 g without cable). Initially, a calibration is carried out for the utilized devices. This involves a geometric camera calibration and the estimation of the position and orientation offset between the two sensors by lever-arm and bore-sight calibration. Subsequently, a feature tracking is performed through the image sequence by considering extracted interest points as well as the projected 3D laser points. These 2D results are fused with the measured laser distances and fed into a bundle adjustment in order to obtain a Simultaneous Localization and Mapping (SLAM). It is demonstrated that an improvement in terms of precision for the pose estimation is derived by fusing optical and laserscanner data.

  12. Multi-layer 3D imaging using a few viewpoint images and depth map

    NASA Astrophysics Data System (ADS)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  13. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  14. Motion processing across multiple topographic maps in the electrosensory system

    PubMed Central

    Khosravi‐Hashemi, Navid; Chacron, Maurice J.

    2014-01-01

    Abstract Animals can efficiently process sensory stimuli whose attributes vary over orders of magnitude by devoting specific neural pathways to process specific features in parallel. Weakly electric fish offer an attractive model system as electrosensory pyramidal neurons responding to amplitude modulations of their self‐generated electric field are organized into three parallel maps of the body surface. While previous studies have shown that these fish use parallel pathways to process stationary stimuli, whether a similar strategy is used to process motion stimuli remains unknown to this day. We recorded from electrosensory pyramidal neurons in the weakly electric fish Apteronotus leptorhynchus across parallel maps of the body surface (centromedial, centrolateral, and lateral) in response to objects moving at velocities spanning the natural range. Contrary to previous observations made with stationary stimuli, we found that all cells responded in a similar fashion to moving objects. Indeed, all cells showed a stronger directionally nonselective response when the object moved at a larger velocity. In order to explain these results, we built a mathematical model incorporating the known antagonistic center–surround receptive field organization of these neurons. We found that this simple model could quantitatively account for our experimentally observed differences seen across E and I‐type cells across all three maps. Our results thus provide strong evidence against the hypothesis that weakly electric fish use parallel neural pathways to process motion stimuli and we discuss their implications for sensory processing in general. PMID:24760508

  15. New 3D seismicity maps using chromo-stereoscopy with two alternative freewares

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.

    2011-12-01

    Seismicity maps play a key role in an introduction of geosciences studies or outreach programs. Various techniques are used in order to show earthquakes in a three dimensional field. To use "chromo-stereoscopy" is our simple and easier-making solution. The Chroma Depth 3D Glasses are employed for this purpose. The glasses consist of two transparent blazed grating films covered with a paper holder and cost a little (1 US$). Looking through these glasses, the colored chart turns into three dimensional perspective due to the mechanism that the color codes make a depth dimension with dispersion. We use two complementary freewares to make maps, the GMT (Generic Mapping Tools, Wessel and Smith.1988) and the POV-Ray (Persistence of Vision Pty. Ltd. 2004). The two softwares have their own advantages; the GMT is specialized for map making with simple scripts, while the POV-Ray produces realistic 3D rendering images with more complicated scripts. The earthquakes are plotted with the rainbow color codes depending on their depths in a black background as printed or PC images. Therefore, the red colored shallow earthquakes are float in front and blue colored ones sink deeper. This effect is so amazing that the students who first wear these glasses are strongly moved and fascinated with this simple mechanism. The data used here are from JMA seismicity catalogue and USGS (ANSS) catalogue. The POV-Ray version needs coastline data, so we got them from the Coastline Extractor (NGDC) web site. Also, the POR-Ray has no function to draw lines in three dimensions, so we had to make some trials for showing them in relief. The main target of our map is "the Wadati-Beniof zone", in which the sub-ducting oceanic plate surface is fringed by deeper earthquakes colored yellow, green to blue. The active volcanic regions such as the Hawaii islands or the active fault regions such as the San Andreas Fault are also effective targets of our method. However, since their shallow complicated seismic

  16. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  17. Short-term synaptic plasticity across topographic maps in the electrosensory system.

    PubMed

    Mileva, G R; Kozak, I J; Lewis, J E

    2016-03-24

    The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps. PMID:26791523

  18. Sperry versus Hebb: Topographic mapping in Isl2/EphA3 mutant mice

    PubMed Central

    2010-01-01

    Background In wild-type mice, axons of retinal ganglion cells establish topographically precise projection to the superior colliculus of the midbrain. This means that axons of neighboring retinal ganglion cells project to the proximal locations in the target. The precision of topographic projection is a result of combined effects of molecular labels, such as Eph receptors and ephrins, and correlated neural activity. In the Isl2/EphA3 mutant mice the expression levels of molecular labels are changed. As a result the topographic projection is rewired so that the neighborhood relationships between retinal cell axons are disrupted. Results Here we study the computational model for retinocollicular connectivity formation that combines the effects of molecular labels and correlated neural activity. We argue that the effects of correlated activity presenting themselves in the form of Hebbian learning rules can facilitate the restoration of the topographic connectivity even when the molecular labels carry conflicting instructions. This occurs because the correlations in electric activity carry information about retinal cells' origin that is independent on molecular labels. We argue therefore that partial restoration of the topographic property of the retinocollicular projection observed in Isl2/EphA3 heterozygous knockin mice may be explained by the effects of correlated neural activity. We address the maps observed in Isl2/EphA3 knockin/EphA4 knockout mice in which the levels of retinal labels are uniformly reduced. These maps can be explained by either the saturation of EphA receptor mapping leading to the relative signaling model or by the reverse signaling conveyed by ephrin-As expressed by retinal axons. Conclusion According to our model, experiments in Isl2/EphA3 knock-in mice test the interactions between effects of molecular labels and correlated activity during the development of neural connectivity. Correlated activity can partially restore topographic order even

  19. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  20. Geologic and topographic maps of the Kabul South 30' x 60' quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with three highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in Geospatial PDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts

  1. Geologic and Topographic Maps of the Kabul North 30' x 60' Quadrangle, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2010-01-01

    This report consists of two map sheets, this pamphlet, and a collection of database files. Sheet 1 is the geologic map with two highly speculative cross sections, and sheet 2 is a topographic map that comprises all the support data for the geologic map. Both maps (sheets 1 and 2) are produced at 1:100,000-scale and are provided in GeoPDF format that preserves the georegistration and original layering. The database files include images of the topographic hillshade (shaded relief) and color-topography files used to create the topographic maps, a copy of the Landsat image, and a gray-scale basemap. Vector data from each of the layers that comprise both maps are provided in the form of Arc/INFO shapefiles. Most of the geologic interpretations and all of the topographic data were derived exclusively from images. A variety of image types were used, and each image type corresponds to a unique view of the geology. The geologic interpretations presented here are the result of comparing and contrasting between the various images and making the best uses of the strengths of each image type. A limited amount of fieldwork, in the spring of 2004 and the fall of 2006, was carried out within the quadrangle, but all the war-related dangers present in Afghanistan restricted its scope, duration, and utility. The maps that are included in this report represent works-in-progress in that they are simply intended to be the best possible product for the time available and conditions that exist during the early phases of reconstruction in Afghanistan. This report has been funded by the United States Agency for International Development (USAID) as a part of several broader programs that USAID designed to stimulate growth in the energy and mineral sectors of the Afghan economy. The main objective is to provide maps that will be used by scientists of the Afghan Ministry of Mines, the Afghanistan Geological Survey, and the Afghan Geodesy and Cartography Head Office in their efforts to rebuild

  2. Grids in Topographic Maps Reduce Distortions in the Recall of Learned Object Locations

    PubMed Central

    Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank

    2014-01-01

    To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information (“spatial chunks”). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses. PMID:24869486

  3. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation.

    PubMed

    Langkammer, Christian; Bredies, Kristian; Poser, Benedikt A; Barth, Markus; Reishofer, Gernot; Fan, Audrey Peiwen; Bilgic, Berkin; Fazekas, Franz; Mainero, Caterina; Ropele, Stefan

    2015-05-01

    Quantitative susceptibility mapping (QSM) allows new insights into tissue composition and organization by assessing its magnetic property. Previous QSM studies have already demonstrated that magnetic susceptibility is highly sensitive to myelin density and fiber orientation as well as to para- and diamagnetic trace elements. Image resolution in QSM with current approaches is limited by the long acquisition time of 3D scans and the need for high signal to noise ratio (SNR) to solve the dipole inversion problem. We here propose a new total-generalized-variation (TGV) based method for QSM reconstruction, which incorporates individual steps of phase unwrapping, background field removal and dipole inversion in a single iteration, thus yielding a robust solution to the reconstruction problem. This approach has beneficial characteristics for low SNR data, allowing for phase data to be rapidly acquired with a 3D echo planar imaging (EPI) sequence. The proposed method was evaluated with a numerical phantom and in vivo at 3 and 7 T. Compared to total variation (TV), TGV-QSM enforced higher order smoothness which yielded solutions closer to the ground truth and prevented stair-casing artifacts. The acquisition time for images with 1mm isotropic resolution and whole brain coverage was 10s on a clinical 3 Tesla scanner. In conclusion, 3D EPI acquisition combined with single-step TGV reconstruction yields reliable QSM images of the entire brain with 1mm isotropic resolution in seconds. The short acquisition time combined with the robust reconstruction may enable new QSM applications in less compliant populations, clinical susceptibility tensor imaging, and functional resting state examinations. PMID:25731991

  4. Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.

    PubMed

    Iwasaki, Tohru; Furukawa, Tetsuo

    2016-05-01

    In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. PMID:26991392

  5. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  6. Synchronous radiation sensing and 3D urban mapping for improved source identification

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Stiltner, L. Justin; Kochersberger, Kevin; McLean, Morgan; Czaja, Wojtek

    2014-05-01

    The acquisition of synchronous EO imagery and gamma radiation data in aerial overflights of an unmanned aircraft can provide valuable spatial context for radioactive source mapping. Using image-based 3D reconstruction methods, a terrain map can be generated and used to reason about more likely radiation source locations. For instance, vehicles may be likely hiding places for nuclear materials, so a source model with assigned probability is used at the vehicle to reduce the overall uncertainty in position estimation. Environment reconstructions based on EO imagery with a mapped gamma radiation overlay provide intrinsic correlations between the datasets. Using radioactive material dispersion models or point source models, the derived correlations serve to enhance coarse gamma radiation data. The use of autonomous unmanned aircraft provide a valuable tool in acquiring these data as they are capable of accurate and repeatable position control while eliminating exposure danger to the operators. In this experiment, two sources (.084 Ci 137Ce and .00048 Ci 133Ba) were distributed in a field with varying terrain and a scan was conducted using the Virginia Tech Yamaha RMAX autonomous helicopter equipped with a two-camera imaging system and a NaI scintillation-type spectrometer. Terrain reconstruction was conducted using both structure from motion (SfM) and stereo vision techniques, and radiation data synchronized to the imagery was overlaid.

  7. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece)

    NASA Astrophysics Data System (ADS)

    Grandjean, G.; Gourry, J. C.

    1996-11-01

    Ground Penetrating Radar (GPR) has been successfully applied to detect and map fractures in marble quarries. The aim was to distinguish quickly intact marketable marble areas from fractured ones in order to improve quarry management. The GPR profiling method was chosen because it is non destructive and quickly provides a detailed image of the subsurface. It was performed in domains corresponding to future working areas in real quarry-exploitation conditions. Field surveying and data processing were adapted to the local characteristics of the fractures: E-W orientation, sub-vertical dip, and karst features. After the GPR profiles had been processed, using methods adapted from seismics (amplitude compensation, filtering and Fourier migration), the interpreted fractures from a 12 × 24 × 15 m zone were incorporated into a 3D model. Due to the low electrical conductivity of the marble, GPR provides penetration depths of about 8 and 15 m, and resolutions of about 1 and 5 cm for frequencies of 900 and 300 MHz respectively. The detection power thus seems to be sufficient to recommend use of this method. As requested by the quarriers, the 3D representation can be used directly by themselves to locate high- or low-quality marble areas. Comparison between the observed surface fractures and the fractures detected using GPR showed reasonable correlation.

  8. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  9. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  10. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  11. Inter- versus intra-subject variance in topographic mapping of the electroencephalogram.

    PubMed

    Kohrman, M H; Sugioka, C; Huttenlocher, P R; Spire, J P

    1989-10-01

    The variability of the normal topographic EEG distribution between a quiet, eyes closed, resting state and the performance of cognitive tasks (listening to a story or music) was studied in 20 normal (10 male) right-handed college students or graduates ages 18-40 yrs. Amplitude changes in the topographic frequency distribution (2.5-7 SD) of alpha frequency band (8-13 Hz) were noted between tasks and resting state in individual subjects. When group data for the resting versus listening states were compared, no statistical differences could be demonstrated. The group variability was 50% of the power of the resting record. Repeat studies in 10 subjects demonstrated a test-retest variance of 10% of the mean individual power. The data suggest that inter-subject differences in the alpha frequency and individual topographic differences will require careful normalization for development of baseline "brain maps" to serve as a standard for investigation of disease states. PMID:2791314

  12. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and

  13. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  14. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron tomography in combination with electron energy-loss spectroscopy (EELS) experiments and simulations was used to unravel the interplay between structure and plasmonic properties of a silver nanocuboid dimer. The precise 3D geometry of the particles fabricated by means of electron beam lithography was reconstructed through electron tomography, and the full three-dimensional information was used as an input for simulations of energy-loss spectra and plasmon resonance maps. Excellent agreement between experiment and theory was found throughout, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic nanostructures. PMID:26495933

  15. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

    PubMed

    Rao, Suhas S P; Huntley, Miriam H; Durand, Neva C; Stamenova, Elena K; Bochkov, Ivan D; Robinson, James T; Sanborn, Adrian L; Machol, Ido; Omer, Arina D; Lander, Eric S; Aiden, Erez Lieberman

    2014-12-18

    We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats. PMID:25497547

  16. Does topographic normalization of landsat images improve fractional tree cover mapping in tropical mountains?

    NASA Astrophysics Data System (ADS)

    Adhikari, H.; Heiskanen, J.; Maeda, E. E.; Pellikka, P. K. E.

    2015-04-01

    Fractional tree cover (Fcover) is an important biophysical variable for measuring forest degradation and characterizing land cover. Recently, atmospherically corrected Landsat data have become available, providing opportunities for high-resolution mapping of forest attributes at global-scale. However, topographic correction is a pre-processing step that remains to be addressed. While several methods have been introduced for topographic correction, it is uncertain whether Fcover models based on vegetation indices are sensitive to topographic effects. Our objective was to assess the effect of topographic correction on the accuracy of Fcover modelling. The study area was located in the Eastern Arc Mountains of Kenya. We used C-correction as a digital elevation model (DEM) based correction method. We examined if predictive models based on normalized difference vegetation index (NDVI), reduced simple ratio (RSR) and tasseled cap indices (Brightness, Greenness and Wetness) are improved if using topographically corrected data. Furthermore, we evaluated how the results depend on the DEM by correcting images using available global DEM (ASTER GDEM, SRTM) and a regional DEM. Reference Fcover was obtained from wall-to-wall airborne LiDAR data. Landsat images corresponding to minimum and maximum sun elevation were analyzed. We observed that topographic correction could only improve models based on Brightness and had very small effect on the other models. Cosine of the solar incidence angle (cos i) derived from SRTM DEM showed stronger relationship with spectral bands than other DEMs. In conclusion, our results suggest that, in tropical mountains, predictive models based on common vegetation indices are not sensitive to topographic effects.

  17. 3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites

    NASA Astrophysics Data System (ADS)

    Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin

    2016-04-01

    Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites

  18. 3D models mapping optimization through an integrated parameterization approach: cases studies from Ravenna

    NASA Astrophysics Data System (ADS)

    Cipriani, L.; Fantini, F.; Bertacchi, S.

    2014-06-01

    Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.

  19. Radar Interferometer for Topographic Mapping of Glaciers and Ice Sheets

    NASA Technical Reports Server (NTRS)

    Moller, Delwyn K.; Sadowy, Gregory A.; Rignot, Eric J.; Madsen, Soren N.

    2007-01-01

    A report discusses Ka-band (35-GHz) radar for mapping the surface topography of glaciers and ice sheets at high spatial resolution and high vertical accuracy, independent of cloud cover, with a swath-width of 70 km. The system is a single- pass, single-platform interferometric synthetic aperture radar (InSAR) with an 8-mm wavelength, which minimizes snow penetration while remaining relatively impervious to atmospheric attenuation. As exhibited by the lower frequency SRTM (Shuttle Radar Topography Mission) AirSAR and GeoSAR systems, an InSAR measures topography using two antennas separated by a baseline in the cross-track direction, to view the same region on the ground. The interferometric combination of data received allows the system to resolve the pathlength difference from the illuminated area to the antennas to a fraction of a wavelength. From the interferometric phase, the height of the target area can be estimated. This means an InSAR system is capable of providing not only the position of each image point in along-track and slant range as with a traditional SAR but also the height of that point through interferometry. Although the evolution of InSAR to a millimeter-wave center frequency maximizes the interferometric accuracy from a given baseline length, the high frequency also creates a fundamental problem of swath coverage versus signal-to-noise ratio. While the length of SAR antennas is typically fixed by mass and stowage or deployment constraints, the width is constrained by the desired illuminated swath width. As the across-track beam width which sets the swath size is proportional to the wavelength, a fixed swath size equates to a smaller antenna as the frequency is increased. This loss of antenna size reduces the two-way antenna gain to the second power, drastically reducing the signal-to-noise ratio of the SAR system. This fundamental constraint of high-frequency SAR systems is addressed by applying digital beam-forming (DBF) techniques to

  20. Techniques and applications of SAR interferometry for ERS-1: Topographic mapping, change detection, and slope measurement

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Hensley, Scott; Goldstein, Richard M.; Rosen, Paul A.; Zebker, Howard A.

    1993-01-01

    SAR (Synthetic Aperture Radar) interferometry allows the measurement of high resolution topography of terrain from repeat orbit SAR data sets obtained by the ERS-1 AMI (Active Microwave Instrument). The system parameters which affect the accuracy of the topographic maps are errors in determination of the interferometric baseline, non parallel orbit tracks, decorrelation caused by baseline length, thermal noise, and surface change. Surface change can be observed in the interferograms either through decorrelation of the interferometric phase, or coherent phase shifts caused by locally uniform surface displacements. Phase gradient maps can be derived directly from the complex interferograms and can be transformed into surface slopes mapped onto a geometrically corrected grid.

  1. A fast approach to generate large-scale topographic maps based on new Chinese vehicle-borne Lidar system

    NASA Astrophysics Data System (ADS)

    Youmei, Han; Bogang, Yang

    2014-03-01

    Large -scale topographic maps are important basic information for city and regional planning and management. Traditional large- scale mapping methods are mostly based on artificial mapping and photogrammetry. The traditional mapping method is inefficient and limited by the environments. While the photogrammetry methods(such as low-altitude aerial mapping) is an economical and effective way to map wide and regulate range of large scale topographic map but doesn't work well in the small area due to the high cost of manpower and resources. Recent years, the vehicle-borne LIDAR technology has a rapid development, and its application in surveying and mapping is becoming a new topic. The main objective of this investigation is to explore the potential of vehicle-borne LIDAR technology to be used to fast mapping large scale topographic maps based on new Chinese vehicle-borne LIDAR system. It studied how to use the new Chinese vehicle-borne LIDAR system measurement technology to map large scale topographic maps. After the field data capture, it can be mapped in the office based on the LIDAR data (point cloud) by software which programmed by ourselves. In addition, the detailed process and accuracy analysis were proposed by an actual case. The result show that this new technology provides a new fast method to generate large scale topographic maps, which is high efficient and accuracy compared to traditional methods.

  2. Probabilistic Seismic Hazard Maps of Seattle, Washington, Including 3D Sedimentary Basin Effects and Rupture Directivity: Implications of 3D Random Velocity Variations (Invited)

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D.; Odum, J.; Williams, R. A.; Rhea, S.

    2010-12-01

    We have produced probabilistic seismic hazard maps of Seattle for 1 Hz spectral acceleration, using over five hundred 3D finite-difference simulations of earthquakes on the Seattle fault, Southern Whidbey Island fault, and Cascadia subduction zone, as well as for random deep and shallow earthquakes at various locations. The 3D velocity model was validated by modeling the observed waveforms for the 2001 M6.8 Nisqually earthquake and several smaller events in the region. At these longer periods (≥ 1 sec) that are especially important to the response of buildings of ten stories or higher, seismic waves are strongly influenced by sedimentary basins and rupture directivity. We are investigating how random spatial variations in the 3D velocity model affect the simulated ground motions for M6.7 earthquakes on the Seattle fault. A fractal random variation of shear-wave velocity with a Von Karman correlation function produces spatial variations of peak ground velocity with multiple scale lengths. We find that a 3D velocity model with a 10% standard deviation in shear-wave velocity in the top 1.5 km and 5% standard deviation from 1.5-10 km depth produces variations in peak ground velocities of as much as a factor of two, relative to the case with no random variations. The model with random variations generally reduces the peak ground velocity of the forward rupture directivity pulse for sites near the fault where basin-edge focusing of S-waves occurs. It also tends to reduce the peak velocity of localized areas where basin surface waves are focused. However, the medium with random variations also causes small-scale amplification of ground motions over distances of a few kilometers. We are also evaluating alternative methods of characterizing the aleatory uncertainty in the probabilistic hazard calculations.

  3. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing

    PubMed Central

    Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E.; Pilleul, Frank; Beuf, Olivier

    2013-01-01

    An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today. PMID:27006915

  4. A Comparison of Spatial Analysis Methods for the Construction of Topographic Maps of Retinal Cell Density

    PubMed Central

    Garza-Gisholt, Eduardo; Hemmi, Jan M.; Hart, Nathan S.; Collin, Shaun P.

    2014-01-01

    Topographic maps that illustrate variations in the density of different neuronal sub-types across the retina are valuable tools for understanding the adaptive significance of retinal specialisations in different species of vertebrates. To date, such maps have been created from raw count data that have been subjected to only limited analysis (linear interpolation) and, in many cases, have been presented as iso-density contour maps with contour lines that have been smoothed ‘by eye’. With the use of stereological approach to count neuronal distribution, a more rigorous approach to analysing the count data is warranted and potentially provides a more accurate representation of the neuron distribution pattern. Moreover, a formal spatial analysis of retinal topography permits a more robust comparison of topographic maps within and between species. In this paper, we present a new R-script for analysing the topography of retinal neurons and compare methods of interpolating and smoothing count data for the construction of topographic maps. We compare four methods for spatial analysis of cell count data: Akima interpolation, thin plate spline interpolation, thin plate spline smoothing and Gaussian kernel smoothing. The use of interpolation ‘respects’ the observed data and simply calculates the intermediate values required to create iso-density contour maps. Interpolation preserves more of the data but, consequently includes outliers, sampling errors and/or other experimental artefacts. In contrast, smoothing the data reduces the ‘noise’ caused by artefacts and permits a clearer representation of the dominant, ‘real’ distribution. This is particularly useful where cell density gradients are shallow and small variations in local density may dramatically influence the perceived spatial pattern of neuronal topography. The thin plate spline and the Gaussian kernel methods both produce similar retinal topography maps but the smoothing parameters used may affect

  5. Developed Design for Humeral Head Replacement Using 3D Surface Mapping

    NASA Astrophysics Data System (ADS)

    Salah, H. R.

    2014-12-01

    Assessment of dimensional and geometrical data on the humeral head replacement (HHR) objects is essential for solving the relevant designing problems in the physics of reverse engineering (RE). In this work, 2D-assessment for human humerus was performed using the computed tomography (CT) technique within the RE plan, after which the 2D images of humeral objects were converted into 3D images. The conversion was successful and indicated a clear difference in the 2D and 3D estimates of sizes and geometry of the humerus. The authors have analyzed and confirmed experimentally the statistical information on the relevant anatomical objects. The results of finite-element simulation of the compressive stresses affecting the geometry of 3D surface mapping were analyzed using SolidWorks software. For developing the biomechanical design of an HHR object suitable biomaterials were selected, and different metal-based biomaterials are discussed as applied at various loads. New methodology is presented for the size estimation of humeral head - both anatomical and artificial - in 3D-shape. A detailed interpretation is given for the results of CT D-measurements. Izmēru un ģeometrisko datu novērtējums, kas attiecas uz pleca kaula galviņas nomaiņas (PKGN) objektiem, nepieciešams, lai risinātu virkni reversīvās inženierijas (RI) problēmu. Šajā darbā cilvēka pleca kaula galviņas divdimensiju novērtējums tika veikts ar datortomogrāfijas palīdzību (RI) ietvaros, un pēc tam objekta divdimensiju attēlojums tika pārveidots trīsdimensiju. Pārveidojums bija sekmīgs, parādot pleca kaula galviņas izmēru un ģeometrijas atšķirības starp 2D un 3D novērtējumiem. Autori izanalizēja un eksperimentāli apstiprināja statistisko informāciju pēc dotā veida anatomiskiem objektiem. Saspiešanas sasprindzinājumi, kuri ietekmē trīsdimensiju virsmas attēlojuma ģeometriju, tika analizēti ar gala-elementu simulācijas metodi, lietojot programmu Solid

  6. Converting Topographic Maps into Digital Form to Aid in Archeological Research in the Peten, Guatemala

    NASA Technical Reports Server (NTRS)

    Aldrich, Serena R.

    1999-01-01

    The purpose of my project was to convert a topographical map into digital form so that the data can be manipulated and easily accessed in the field. With the data in this particular format, Dr. Sever and his colleagues can highlight the specific features of the landscape that they require for their research of the ancient Mayan civilization. Digital elevation models (DEMs) can also be created from the digitized contour features adding another dimension to their research.

  7. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  8. 3D modelling of soil texture: mapping and incertitude estimation in centre-France

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Martin, Manuel P.; Saby, Nicolas P. A.; Richer de Forges, Anne C.; Nehlig, Pierre; Martelet, Guillaume; Arrouays, Dominique

    2014-05-01

    Soil texture is an important component of all soil physical-chemical processes. The spatial variability of soil texture plays a crucial role in the evaluation and modelling of all distributed processes. The object of this study is to determine the spatial variation of soil granulometric fractions (i.e., clay, silt, sand) in the region "Centre" of France in relation to the main controlling factors, and to create extended maps of these properties following GlobalSoilMap specifications. For this purpose we used 2487 soil profiles of the French soil database (IGCS - Inventory Management and Soil Conservation) and continuum depth values of the properties within the soil profiles have been calculated with a quadratic splines methodology optimising the spline parameters in each soil profile. We used environmental covariates to predict soil properties within the region at depth intervals 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm. Concerning environmental covariates, we used SRTM and ASTER DEM with 90m and 30m resolution, respectively, to generate terrain parameters and topographic indexes. Other covariates we used are Gamma Ray maps, Corine land cover, available geological and soil maps of the region at scales 1M, 250k and 50k. Soil texture is modeled with the application of the compositional data analysis theory namely, alr-transform (Aitchison, 1986) which considers in statistical calculation the complementary dependence between the different granulometric classes (i.e. 100% constraint). The prediction models of the alr-transformed variables have been developed with the use of boosting regression trees (BRT), then, using a LMM - Linear Mixed Model - that separates a fixed effect from a random effect related to the continuous spatially correlated variation of the property. In this case, the LMM is applied to the two co-regionalized properties (clay and sand alr-transforms). Model uncertainty mapping represents a practical way to describe efficiency and limits of

  9. Hot deformation characterization of duplex low-density steel through 3D processing map development

    SciTech Connect

    Mohamadizadeh, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Mehtonen, S.; Porter, D.

    2015-09-15

    The high temperature deformation behavior of duplex low-density Fe–18Mn–8Al–0.8C steel was investigated at temperatures in the range of 600–1000 °C. The primary constitutive analysis indicated that the Zener–Hollomon parameter, which represents the coupled effects of temperature and strain rate, significantly varies with the amount of deformation. Accordingly, the 3D processing maps were developed considering the effect of strain and were used to determine the safe and unsafe deformation conditions in association with the microstructural evolution. The deformation at efficiency domain I (900–1100 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}) was found to be safe at different strains due to the occurrence of dynamic recrystallization in austenite. The safe efficiency domain II (700–900 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1}), which appeared at logarithmic strain of 0.4, was characterized by deformation induced ferrite formation. Scanning electron microscopy revealed that the microband formation and crack initiation at ferrite\\austenite interphases were the main causes of deformation instability at 600–800 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}. The degree of instability was found to decrease by increasing the strain due to the uniformity of microbanded structure obtained at higher strains. The shear band formation at 900–1100 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1} was verified by electron backscattered diffraction. The local dynamic recrystallization of austenite and the deformation induced ferrite formation were observed within shear-banded regions as the results of flow localization. - Graphical abstract: Display Omitted - Highlights: • The 3D processing map is developed for duplex low-density Fe–Mn–Al–C steel. • The efficiency domains shrink, expand or appear with increasing strain. • The occurrence of DRX and DIFF increases the power efficiency. • Crack initiation

  10. Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network

    PubMed Central

    Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi

    2013-01-01

    Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors. PMID:24453846

  11. Lunar Topographic Mapping Using a New High Resolution Mode for the GSSR Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Gurrola, Eric; Slade, Martin; Quirk, Kevin; Srinivasan, Meera; Lee, Clement; Yun, Sang-Ho; Jao, Joseph; Wilson, Barbara; De Jong, Eric; Marechal, Nick; Weintraub, Lawrence; Dickinson, Richard; Bloom, Ronald; Karamyan, Grant; Lilje, Anneliese; Harcke, Leif

    2010-01-01

    Mapping the Moon's topography using Earth based radar interferometric measurements by the Goldstone Solar System Radar (GSSR) has been done several times since the mid 1990s. In 2008 we reported at this conference the generation of lunar topographic maps having approximately 4 m height accuracy at a horizontal posting of 40 m. Since then GSSR radar has been improved to allow 40 MHz bandwidth imaging and consequently obtained images and interferograms with a resolution of about 4 m in range by 5 m in azimuth. The long synthetic aperture times of approximately 90 minutes in duration necessitated a migration from range/Doppler image formation techniques to spotlight mode processing and autofocusing methods. The improved resolution imagery should permit the generation of topographic maps with a factor of two better spatial resolution with about same height accuracy. Coupled the with the recent availability of new lidar topography maps of the lunar surface made by orbiting satellites of Japan and the United States the geodetic control of the radar generated maps products can be improved dramatically. This paper will discuss the hardware and software improvements made to the GSSR and present some of the new high resolution products.

  12. 3D imaging of radiation damage in silicon sensor and spatial mapping of charge collection efficiency

    NASA Astrophysics Data System (ADS)

    Jakubek, M.; Jakubek, J.; Zemlicka, J.; Platkevic, M.; Havranek, V.; Semian, V.

    2013-03-01

    Radiation damage in semiconductor sensors alters the response and degrades the performance of many devices ultimately limiting their stability and lifetime. In semiconductor radiation detectors the homogeneity of charge collection becomes distorted while decreasing the overall detection efficiency. Moreover the damage can significantly increase the detector noise and degrade other electrical properties such as leakage current. In this work we present a novel method for 3D mapping of the semiconductor radiation sensor volume allowing displaying the three dimensional distribution of detector properties such as charge collection efficiency and charge diffusion rate. This technique can visualize the spatially localized changes of local detector performance after radiation damage. Sensors used were 300 μm and 1000 μm thick silicon bump-bonded to a Timepix readout chip which serves as an imaging multichannel microprobe (256 × 256 square pixels with pitch of 55 μm, i.e. all together 65 thousand channels). Per pixel energy sensitivity of the Timepix chip allows to evaluate the local charge collection efficiency and also the charge diffusion rate. In this work we implement an X-ray line scanning technique for systematic evaluation of changes in the performance of a silicon sensor intentionally damaged by energetic protons.

  13. An analytical algorithm for 3D magnetic field mapping of a watt balance magnet

    NASA Astrophysics Data System (ADS)

    Fu, Zhuang; Zhang, Zhonghua; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong

    2016-04-01

    A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e. Li et al (2015 Metrologia 52 445), presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of Li et al (2015 Metrologia 52 445), which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, B r (z). The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.

  14. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  15. 3-D modeling useful tool for planning. [mapping groundwater and soil pollution and subsurface features

    SciTech Connect

    Calmbacher, C.W. )

    1992-12-01

    Visualizing and delineating subsurface geological features, groundwater contaminant plumes, soil contamination, geological faults, shears and other features can prove invaluable to environmental consultants, engineers, geologists and hydrogeologists. Three-dimensional modeling is useful for a variety of applications from planning remediation to site planning design. The problem often is figuring out how to convert drilling logs, map lists or contaminant levels from soil and groundwater into a 3-D model. Three-dimensional subsurface modeling is not a new requirement, but a flexible, easily applied method of developing such models has not always been readily available. LYNX Geosystems Inc. has developed the Geoscience Modeling System (GMS) in answer to the needs of those regularly having to do three-dimensional geostatistical modeling. The GMS program has been designed to allow analysis, interpretation and visualization of complex geological features and soil and groundwater contamination. This is a powerful program driven by a 30 volume modeling technology engine. Data can be entered, stored, manipulated and analyzed in ways that will present very few limitations to the user. The program has selections for Geoscience Data Management, Geoscience Data Analysis, Geological Modeling (interpretation and analysis), Geostatistical Modeling and an optional engineering component.

  16. Long-term development of the Czech landscape studied on the basis of old topographic maps

    NASA Astrophysics Data System (ADS)

    Skokanová, H.; Havlíček, M.

    2009-04-01

    The paper deals with long-term land use changes in the Czech Republic with the help of old topographic maps. Departments of Landscape Ecology and GIS Applications from the Silva Tarouca Research Institute for Landscape and Ornamental Gardening, v.v.i. study these changes mainly in the research project MSM 6293359101 Research into sources and indicators of biodiversity in cultural landscape in the context of its fragmentation dynamics, the subpart Quantitative analysis of the dynamics of the Czech landscape development. In this paper, the authors concentrate mainly on map sources, which were acquired for the purpose of the project and also introduce partial results. Maps, which are the sources for the analyses, are following: maps from 2nd Austrian military survey in the scale 1:28 800 (created for the territory of the Czech Republic in the period 1836-1852), maps from 3rd Austrian military survey in the scale 1:25 000 (created for the Czech Republic in the period 1876-1880), Czechoslovak military topographic maps in the scale 1:25 000 from 1950s and 1990s, and Czech topographic base maps in the scale 1:10 000 from 2002-2006. It is necessary to complete maps of the 2nd and 3rd Austrian military survey thanks to their incompleteness, mainly along state borders. Also maps from 1nd Austrian military survey in the scale 1:28 800 (created for the Czech Republic in the period 1764-1783) are available; however, their usage for the accurate analyses in the GIS environment is restricted by their poor cartographic accuracy. Apart of the above mentioned maps, there has been progress in collecting maps from the interwar and war period (revised maps of the 3rd Austrian military survey maps, maps of the provisional military survey from 1923-1933, maps of definitive military survey from 1934-1938 and maps from survey of Moravian part of the Protectorate of Bohemia and Moravia, so called Messtischblätter from 1939-1945). Maps from five periods are manually vectorised in the GIS

  17. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Wagner, J. E.; Schreier, S. F.; Rieder, H. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Simic, S.; Webb, A. R.

    2012-03-01

    The aim of this study is to investigate the influence of the spatial resolution of a digital elevation map (DEM) on the three-dimensional (3-D) radiative transfer performance for both spectral ultraviolet (UV) irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick observatory and surrounding area. It was found that the DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of the DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  18. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Wagner, J. E.; Schreier, S. F.; Rieder, H. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Simic, S.; Webb, A. R.

    2011-10-01

    The aim of this study was to investigate the influence of the spatial resolution of a digital elevation map (DEM) on the three-dimensional (3-D) radiative transfer performance for both spectral ultraviolet (UV) irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick Observatory and surrounding area. It was found that DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  19. Modeling and mapping temperature and precipitation climate data in Greece using topographical and geographical parameters

    NASA Astrophysics Data System (ADS)

    Feidas, Haralambos; Karagiannidis, Athanasios; Keppas, Stavros; Vaitis, Michail; Kontos, Themistoklis; Zanis, Prodromos; Melas, Dimitrios; Anadranistakis, Emmanouil

    2014-10-01

    This study presents a methodology for modeling and mapping the seasonal and annual air temperature and precipitation climate normals over Greece using several topographical and geographical parameters. Data series of air temperature and precipitation from 84 weather stations distributed evenly over Greece are used along with a set of topographical and geographical parameters extracted with Geographic Information System methods from a digital elevation model (DEM). Normalized difference vegetation index (NDVI) obtained from MODIS Aqua satellite data is also used as a geographical parameter. First, the relation of the two climate elements to the topographical and geographical parameters was investigated based on the Pearson's correlation coefficient to identify the parameters that mostly affect the spatial variability of air temperature and precipitation over Greece. Then a backward stepwise multiple regression was applied to add topographical and geographical parameters as independent variables into a regression equation and develop linear estimation models for both climate parameters. These models are subjected to residual correction using different local interpolation methods, in an attempt to refine the estimated values. The validity of these models is checked through cross-validation error statistics against an independent test subset of station data. The topographical and geographical parameters used as independent variables in the multiple regression models are mostly those found to be strongly correlated with both climatic variables. Models perform best for annual and spring temperatures and effectively for winter and autumn temperatures. Summer temperature spatial variability is rather poorly simulated by the multiple regression model. On the contrary, best performance is obtained for summer and autumn precipitation while the multiple regression model is not able to simulate effectively the spatial distribution of spring precipitation. Results revealed also

  20. Topographic Map of Chryse Planitia with Location of Possible Buried Basin

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This topographic map, based on data from the Mars Orbiter Laser Altimeter, shows the ground track of the 1,892nd and the 1,903rd orbits of Mars Express and the arc structures detected by that orbiter's Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). The arc structures are interpreted to be part of a buried impact basin about 250 kilometers (155 miles) in diameter.

    The topographic relief represented in the image is 1 kilometer (0.6 mile), from low (purple) to high (red). The projected arcs are shown in red for orbit 1892 and white for orbit 1903. There is no obvious feature in the surface topography that corresponds to the buried feature identified with MARSIS data.

    NASA and the Italian Space Agency jointly funded the MARSIS instrument on the European Space Agency's Mars Express orbiter. The Mars Orbiter Laser Altimeter is an instrument on NASA's Mars Global Surveyor orbiter.

  1. Acceleration of Topographic Map Production Using Semi-Automatic DTM from Dsm Radar Data

    NASA Astrophysics Data System (ADS)

    Rizaldy, Aldino; Mayasari, Ratna

    2016-06-01

    Badan Informasi Geospasial (BIG) is government institution in Indonesia which is responsible to provide Topographic Map at several map scale. For medium map scale, e.g. 1:25.000 or 1:50.000, DSM from Radar data is very good solution since Radar is able to penetrate cloud that usually covering tropical area in Indonesia. DSM Radar is produced using Radargrammetry and Interferrometry technique. The conventional method of DTM production is using "stereo-mate", the stereo image created from DSM Radar and ORRI (Ortho Rectified Radar Image), and human operator will digitizing masspoint and breakline manually using digital stereoplotter workstation. This technique is accurate but very costly and time consuming, also needs large resource of human operator. Since DSMs are already generated, it is possible to filter DSM to DTM using several techniques. This paper will study the possibility of DSM to DTM filtering using technique that usually used in point cloud LIDAR filtering. Accuracy of this method will also be calculated using enough numbers of check points. If the accuracy meets the requirement, this method is very potential to accelerate the production of Topographic Map in Indonesia.

  2. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  3. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  4. Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison.

    PubMed

    Kireeva, N; Baskin, I I; Gaspar, H A; Horvath, D; Marcou, G; Varnek, A

    2012-04-01

    Here, the utility of Generative Topographic Maps (GTM) for data visualization, structure-activity modeling and database comparison is evaluated, on hand of subsets of the Database of Useful Decoys (DUD). Unlike other popular dimensionality reduction approaches like Principal Component Analysis, Sammon Mapping or Self-Organizing Maps, the great advantage of GTMs is providing data probability distribution functions (PDF), both in the high-dimensional space defined by molecular descriptors and in 2D latent space. PDFs for the molecules of different activity classes were successfully used to build classification models in the framework of the Bayesian approach. Because PDFs are represented by a mixture of Gaussian functions, the Bhattacharyya kernel has been proposed as a measure of the overlap of datasets, which leads to an elegant method of global comparison of chemical libraries. PMID:27477099

  5. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  6. Topographic mapping data semantics through data conversion and enhancement: Chapter 7

    USGS Publications Warehouse

    Varanka, Dalia; Carter, Jonathan; Usery, E. Lynn; Shoberg, Thomas

    2011-01-01

    This paper presents research on the semantics of topographic data for triples and ontologies to blend the capabilities of the Semantic Web and The National Map of the U.S. Geological Survey. Automated conversion of relational topographic data of several geographic sample areas to the triple data model standard resulted in relatively poor semantic associations. Further research employed vocabularies of feature type and spatial relation terms. A user interface was designed to model the capture of non-standard terms relevant to public users and to map those terms to existing data models of The National Map through the use of ontology. Server access for the study area triple stores was made publicly available, illustrating how the development of linked data may transform institutional policies to open government data resources to the public. This paper presents these data conversion and research techniques that were tested as open linked data concepts leveraged through a user-centered interface and open USGS server access to the public.

  7. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  8. Advances in animal ecology from 3D-LiDAR ecosystem mapping.

    PubMed

    Davies, Andrew B; Asner, Gregory P

    2014-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Here, we review insights gained through the application of LiDAR to animal ecology studies, revealing the fundamental importance of structure for animals. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential compared with traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. To develop a better understanding of animal dynamics, future studies will benefit from considering 3D habitat effects in a wider variety of ecosystems and with more taxa. PMID:25457158

  9. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Creation of next generation U.S. Geological Survey topographic maps

    USGS Publications Warehouse

    Craun, Kari J.

    2010-01-01

    The U.S. Geological Survey (USGS) is 2 years into a 3-year cycle to create new digital topographic map products for the conterminous United States from data acquired and maintained as part of The National Map databases. These products are in the traditional, USGS topographic quadrangle, 7.5-minute (latitude and longitude) cell format. The 3-year cycle was conceived to follow the acquisition of National Aerial Imagery Program (NAIP) orthorectified imagery, a key layer in the new product. In fiscal year (FY) 2009 (ending September 30, 2009), the first year of the 3-year cycle, the USGS produced 13,200 products. These initial products of the “Digital MapBeta” series had limited feature content, including only the NAIP image, some roads, geographic names, and grid and collar information. The products were created in layered georegistered Portable Document Format (PDF) files, allowing users with freely available Adobe® Reader® software to view, print, and perform simple Geographic Information System-like functions. In FY 2010 (ending September 30, 2010), the USGS produced 20,380 products. These products of the “US Topo” series added hydrography (surface water features), contours, and some boundaries. In FY 2011 (ending September 30, 2011), the USGS will complete the initial coverage with US Topo products and will add additional feature content to the maps. The design, development, and production associated with the US Topo products provide management and technical challenges for the USGS and its public and private sector partners. One challenge is the acquisition and maintenance of nationally consistent base map data from multiple sources. Another is the use of these data to create a consistent, current series of cartographic products that can be used by the broad spectrum of traditional topographic map users. Although the USGS and its partners have overcome many of these challenges, many, such as establishing and funding a sustainable base data

  14. Improving the Pan-STARRs/2MASS 3-D dust map: Regularization for increased resolution and fidelity.

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas P.; Green, Gregory; Lee, Albert; Ford Schlafly, Edward

    2016-01-01

    The Green et al. (2015) 3-D map of interstellar dust uses photometry of nearly 1 billion stars from Pan-STARRS1 and 2MASS to infer the distribution of dust in the Milky Way. The current map treats each angular pixel (~ 6 arcmin) independently, and estimates the dust in 30 distance bins. However, dust structures cut across pixels and the fit could be improved by coupling the dust density in neighboring pixels. This also has the advantage that fewer stars would be required per pixel, allowing finer angular resolution. We propose a simple way to do this, and show that it allows the use of smaller angular pixels and produces sharper resolution in the distance direction for a test case in Orion. We intend to incorporate similar regularization into the next full-sky 3-D dust map.

  15. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    PubMed

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-10-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  16. PF2 fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps

    PubMed Central

    Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit

    2015-01-01

    There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938

  17. High-resolution multibeam mapping and submersible surveys of topographic features in the northwestern Gulf of Mexico

    USGS Publications Warehouse

    Hickerson, E.L.; Schmahl, G.P.; Weaver, D.C.; Gardner, J.V.

    2003-01-01

    The Flower Garden Banks National Marine Sanctuary (FGBNMS) and the USGS Pacific Seafloor Mapping Project mapped about 2000 km2 of the northwestern Gulf of Mexico continental shelf during June 2002, using a Kongsberg Simrad EM1000 multibeam echosounder. Mapping focused on select topographic highs thave hae been idetnnfied as biological features warranting protection from oil and gas activities by the Minerals Management Service (MMS). The base maps will be used for all future ROV and submersible missions.

  18. A VS30 map for California with geologic and topographic constraints

    USGS Publications Warehouse

    Thompson, Eric; Wald, David J.; Worden, Charles

    2014-01-01

    For many earthquake engineering applications, site response is estimated through empirical correlations with the time‐averaged shear‐wave velocity to 30 m depth (VS30). These applications therefore depend on the availability of either site‐specific VS30 measurements or VS30 maps at local, regional, and global scales. Because VS30 measurements are sparse, a proxy frequently is needed to estimate VS30 at unsampled locations. We present a new VS30 map for California, which accounts for observational constraints from multiple sources and spatial scales, such as geology, topography, and site‐specific VS30measurements. We apply the geostatistical approach of regression kriging (RK) to combine these constraints for predicting VS30. For the VS30 trend, we start with geology‐based VS30 values and identify two distinct trends between topographic gradient and the residuals from the geology VS30 model. One trend applies to deep and fine Quaternary alluvium, whereas the second trend is slightly stronger and applies to Pleistocene sedimentary units. The RK framework ensures that the resulting map of California is locally refined to reflect the rapidly expanding database of VS30 measurements throughout California. We compare the accuracy of the new mapping method to a previously developed map of VS30 for California. We also illustrate the sensitivity of ground motions to the new VS30 map by comparing real and scenario ShakeMaps with VS30 values from our new map to those for existingVS30 maps.

  19. Integrating historical topographic maps and SRTM data to derive the bathymetry of a tropical reservoir

    NASA Astrophysics Data System (ADS)

    Alcântara, Enner; Novo, Evlyn; Stech, José; Assireu, Arcilan; Nascimento, Renata; Lorenzzetti, João; Souza, Arley

    2010-08-01

    SummaryThis paper proposes a fast and inexpensive method for estimating the bathymetry of hydroelectric reservoirs. Brazil has more than 30 large hydroelectric reservoirs with a combined volume exceeding one billion cubic meters. The hydroelectric sector is responsible for 97% of the energy production in Brazil and is the largest hydroelectric park in the world. Among the variables affecting the environmental impacts of reservoirs, depth plays a major role because it influences the aquatic system hydrodynamics. Reservoir depth distribution (i.e., the bathymetry) is also a fundamental factor controlling the physical-chemical and biological properties of the system. However, the acquisition of bathymetric information for the large reservoirs in Brazil is not a simple task because: (1) most of the topographic maps available in the area of the lake have a very small scale (1:100,000 and smaller), (2) larger charts are the property of the hydropower companies and are classified, and (3) the size of the reservoirs prevent the use of bathymetric surveys. The proposed method of integrating historical and Shuttle Radar Topography Mission (SRTM) topographic data allowed for the estimation of the bathymetry of the Itumbiara reservoir with R2 = 0.98 ( n = 100, ρ = 0.00) and RMSE = 3.78 m. For researchers who need a rapid and simple method to develop bathymetric maps of hydroelectric reservoirs, the proposed method can provide a simple and fast alternative to more data intensive methods.

  20. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy.

    PubMed

    Mohapatra, Saswat; Nandi, Somen; Chowdhury, Rajdeep; Das, Gaurav; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-07-21

    A tumor-like multi-cellular spheroid (3D) differs from a 2D cell in a number of ways. This is demonstrated using time resolved confocal microscopy. Two different tumor spheroids - HeLa (cervical cancer) and A549 (lung cancer) - are studied using 3 different fluorescent dyes - C153 (non-covalent), CPM (covalent) and doxorubicin (non-covalent, anti-cancer drug). The pattern of localization of these three fluorescent probes in the 3D tumor cell exhibits significant differences from that in the conventional 2D cells. For both the cells (HeLa and A549), the total uptake of doxorubicin in the 3D cell is much lower than that in the 2D cell. The uptake of doxorubicin molecules in the A549 spheroid is significantly different compared to the HeLa spheroid. The local polarity (i.e. emission maxima) and solvation dynamics in the 3D tumor cell differ from those in 2D cells. The covalent probe CPM exhibits intermittent fluorescence oscillations in the 1-2 s time scale. This is attributed to redox processes. These results may provide new insights into 3D tumors. PMID:27336201

  1. Advances in animal ecology from 3D ecosystem mapping with LiDAR

    NASA Astrophysics Data System (ADS)

    Davies, A.; Asner, G. P.

    2015-12-01

    The advent and recent advances of Light Detection and Ranging (LiDAR) have enabled accurate measurement of 3D ecosystem structure. Although the use of LiDAR data is widespread in vegetation science, it has only recently (< 14 years) been applied to animal ecology. Despite such recent application, LiDAR has enabled new insights in the field and revealed the fundamental importance of 3D ecosystem structure for animals. We reviewed the studies to date that have used LiDAR in animal ecology, synthesising the insights gained. Structural heterogeneity is most conducive to increased animal richness and abundance, and increased complexity of vertical vegetation structure is more positively influential than traditionally measured canopy cover, which produces mixed results. However, different taxonomic groups interact with a variety of 3D canopy traits and some groups with 3D topography. LiDAR technology can be applied to animal ecology studies in a wide variety of environments to answer an impressive array of questions. Drawing on case studies from vastly different groups, termites and lions, we further demonstrate the applicability of LiDAR and highlight new understanding, ranging from habitat preference to predator-prey interactions, that would not have been possible from studies restricted to field based methods. We conclude with discussion of how future studies will benefit by using LiDAR to consider 3D habitat effects in a wider variety of ecosystems and with more taxa to develop a better understanding of animal dynamics.

  2. Space based topographic mapping experiment using Seasat synthetic aperture radar and LANDSAT 3 return beam vidicon imagery

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1981-01-01

    A technique for producing topographic information is described which is based on same side/same time viewing using a dissimilar combination of radar imagery and photographic images. Common geographic areas viewed from similar space reference locations produce scene elevation displacements in opposite direction and proper use of this characteristic can yield the perspective information necessary for determination of base to height ratios. These base to height ratios can in turn be used to produce a topographic map. A test area covering the Harrisburg, Pennsylvania region was observed by synthetic aperture radar on the Seasat satellite and by return beam vidicon on by the LANDSAT - 3 satellite. The techniques developed for the scaling re-orientation and common registration of the two images are presented along with the topographic determination data. Topographic determination based exclusively on the images content is compared to the map information which is used as a performance calibration base.

  3. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques

    NASA Astrophysics Data System (ADS)

    Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José

    2014-07-01

    Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R 2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.

  4. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques.

    PubMed

    Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José

    2014-07-01

    Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data. PMID:23686111

  5. Mobile 3d Mapping with a Low-Cost Uav System

    NASA Astrophysics Data System (ADS)

    Neitzel, F.; Klonowski, J.

    2011-09-01

    In this contribution it is shown how an UAV system can be built at low costs. The components of the system, the equipment as well as the control software are presented. Furthermore an implemented programme for photogrammetric flight planning and its execution are described. The main focus of this contribution is on the generation of 3D point clouds from digital imagery. For this web services and free software solutions are presented which automatically generate 3D point clouds from arbitrary image configurations. Possibilities of georeferencing are described whereas the achieved accuracy has been determined. The presented workflow is finally used for the acquisition of 3D geodata. On the example of a landfill survey it is shown that marketable products can be derived using a low-cost UAV.

  6. The Use of Multiple Data Sources in the Process of Topographic Maps Updating

    NASA Astrophysics Data System (ADS)

    Cantemir, A.; Visan, A.; Parvulescu, N.; Dogaru, M.

    2016-06-01

    The methods used in the process of updating maps have evolved and become more complex, especially upon the development of the digital technology. At the same time, the development of technology has led to an abundance of available data that can be used in the updating process. The data sources came in a great variety of forms and formats from different acquisition sensors. Satellite images provided by certain satellite missions are now available on space agencies portals. Images stored in archives of satellite missions such us Sentinel, Landsat and other can be downloaded free of charge.The main advantages are represented by the large coverage area and rather good spatial resolution that enables the use of these images for the map updating at an appropriate scale. In our study we focused our research of these images on 1: 50.000 scale map. DEM that are globally available could represent an appropriate input for watershed delineation and stream network generation, that can be used as support for hydrography thematic layer update. If, in addition to remote sensing aerial photogrametry and LiDAR data are ussed, the accuracy of data sources is enhanced. Ortophotoimages and Digital Terrain Models are the main products that can be used for feature extraction and update. On the other side, the use of georeferenced analogical basemaps represent a significant addition to the process. Concerning the thematic maps, the classic representation of the terrain by contour lines derived from DTM, remains the best method of surfacing the earth on a map, nevertheless the correlation with other layers such as Hidrography are mandatory. In the context of the current national coverage of the Digital Terrain Model, one of the main concerns of the National Center of Cartography, through the Cartography and Photogrammetry Department, is represented by the exploitation of the available data in order to update the layers of the Topographic Reference Map 1:5000, known as TOPRO5 and at the

  7. The Status of Topographic Mapping in the World a Unggim-Isprs Project 2012-2015

    NASA Astrophysics Data System (ADS)

    Konecny, G.; Breitkopf, U.; Radtke, A.

    2016-06-01

    In December 2011, UNGGIM initiated a cooperative project with ISPRS to resume the former UN Secretariat studies on the status of topographic mapping in the world, conducted between 1968 and 1986. After the design of a questionnaire with 27 questions, the UNGGIM Secretariat sent the questionnaires to the UN member states. 115 replies were received from the 193 member states and regions thereof. Regarding the global data coverage and age, the UN questionnaire survey was supplemented by data from the Eastview database. For each of the 27 questions, an interactive viewer was programmed permitting the analysis of the results. The authoritative data coverage at the various scale ranges has greatly increased between 1986 and 2012. Now, a 30 % 1 : 25 000 map data coverage and a 75 % 1 : 50 000 map data coverage has been completed. Nevertheless, there is still an updating problem, as data for some countries is 10 to 30 years old. Private Industry, with Google, Microsoft and Navigation system providers, have undertaken huge efforts to supplement authoritative mapping. For critical areas on the globe, MGCP committed to military mapping at 1 : 50 000. ISPRS has decided to make such surveys a sustainable issue by establishing a working group.

  8. Demonstration of volumetric analysis using the topographical mapping system at Hanford

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Carteret, B.A.; Pardini, A.F.; Samuel, T.J.

    1997-07-01

    During the spring of 1997, the Topographical Mapping System (TMS) for hazardous and radiological environments was used to perform volumetric measurements of simulated waste in the cold test cell in the Fuel Materials and Examination Facility at the Hanford site. The TMS was used to measure the volume of five simulated waste mounds. Custom software designed by Oak Ridge National Laboratory was used to calculate the volume of waste from the surface maps supplied by the TMS. The results of the measurements were analyzed using the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) and were documented. Development of the TMS and ICERVS was initiated by the US Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a three-dimensional TMS suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE`s waste characterization and remediation efforts to obtain baseline data on the content of storage tank interiors as well as on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford site, the TMS was designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention. An appendix contains the source code for calculating the volume from two surface maps.

  9. A mapping of an ensemble of mitochondrial sequences for various organisms into 3D space based on the word composition.

    PubMed

    Aita, Takuyo; Nishigaki, Koichi

    2012-11-01

    To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. PMID:22776549

  10. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  11. 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs

    PubMed Central

    Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger

    2015-01-01

    We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256

  12. Measuring distances and reddenings for a billion stars: Toward a 3D dust map from Pan-STARRS 1

    SciTech Connect

    Green, Gregory Maurice; Finkbeiner, Douglas P.; Schlafly, Edward F.; Rix, Hans-Walter; Jurić, Mario; Burgett, Will; Chambers, Kenneth C.; Flewelling, Heather; Kudritzki, Rolf Peter; Magnier, Eugene; Tonry, John; Wainscoat, Richard; Waters, Christopher; Draper, Peter W.; Metcalfe, Nigel; Martin, Nicolas

    2014-03-10

    We present a method to infer reddenings and distances to stars based only on their broad-band photometry, and show how this method can be used to produce a three-dimensional (3D) dust map of the Galaxy. Our method samples from the full probability density function of distance, reddening, and stellar type for individual stars, as well as the full uncertainty in reddening as a function of distance in the 3D dust map. We incorporate prior knowledge of the distribution of stars in the Galaxy and the detection limits of the survey. For stars in the Pan-STARRS 1 (PS1) 3π survey, we demonstrate that our reddening estimates are unbiased and accurate to ∼0.13 mag in E(B – V) for the typical star. Based on comparisons with mock catalogs, we expect distances for main-sequence stars to be constrained to within ∼20%-60%, although this range can vary, depending on the reddening of the star, the precise stellar type, and its position on the sky. A later paper will present a 3D map of dust over the three quarters of the sky surveyed by PS1. Both the individual stellar inferences and the 3D dust map will enable a wealth of Galactic science in the plane. The method we present is not limited to the passbands of the PS1 survey but may be extended to incorporate photometry from other surveys, such as the Two Micron All Sky Survey, the Sloan Digital Sky Survey (where available), and in the future, LSST and Gaia.

  13. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cushing, G. E.; Titus, T. N.; Soderblom, L. A.; Kirk, R. L.

    2009-07-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ˜0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ˜0.25, ˜6, and ˜20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  14. Spatial and Spectral Characterization, Mapping, and 3D Reconstructing of Ice-wedge Polygons Using High Resolution LiDAR Data

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Rowland, J. C.; Skurikhin, A. N.; Wilson, C. J.; Brumby, S. P.; Painter, S. L.; Gable, C. W.; Bui, Q.; Short, L. S.; Liljedahl, A.; Hubbard, S. S.; Wainwright, H. M.; Dafflon, B.; Tweedie, C. E.; Kumar, J.; Wullschleger, S. D.

    2013-12-01

    In landscapes with ice-wedge polygons, fine-scale land surface characterization is critically important because the processes that govern the carbon cycle and hydrological dynamics are controlled by features on the order of a few to tens of meters. To characterize the fine-scale features in polygonal ground in Barrow, Alaska, we use high-resolution LiDAR-derived topographic data (such as elevation, slope, curvature, and a novel 'directed distance (DD)') to develop quantitative metrics that allow for the discretization and characterization of polygons (formed by seasonal freeze and thaw processes). First, we used high resolution (0.25 m) LiDAR to show that the high and low centered polygon features exhibit a unique signature in the Fourier power spectrum where the landscape signature on freeze and thaw process (~ 5 to 100 m) is super imposed on the coarse scale fluvial eroded landscape (rudimentary river network) signature. We next convolve LiDAR elevations with multiscale wavelets and objectively choose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used a Delaunay triangulation to connect the ice-wedge network and map the topologically connected polygons. This analysis allows us to explore the 3D morphometry of these high- and low-centered polygons and develop a supervised set of ensemble characteristic templates for each polygon type as a function of directed distance (DD). These templates are used to classify the ice-wedge polygon landscape into low-centered polygons with limited troughs, and high- and low-centered polygons with well-developed trough network. We further extend the characteristic templates to polygon ensemble slopes and curvatures as a function of DD and develop a classification scheme for microtopographic features including troughs, rims, elevated ridges, and centers for both high-centered and low-centered polygon

  15. Global Topographic Mapping Of Saturn's Midsize Icy Satellites: System-wide Thermal And Impact Effects

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    2010-10-01

    Cassini stereo coverage of Saturn's 6 largest midsized icy satellites has been used to produce the first global topographic maps of major icy bodies. All except Iapetus have dynamic topography of -5 to +5 km (excepting the largest basins). Apparently all except Iapetus have been topographically reset by global heating events capable of erasing or preventing the 10's of kilometers of regional relief observed on that outer moon. In contrast to Tethys, Dione features no deep large basins and exhibits lower relief generally, and extensive crater relaxation specifically. Apparently Dione remained hot even longer than Tethys, despite geologic and topographic evidence for smooth volcanic-style plains and tectonic disruption on both satellites. No deep basins are evident on Rhea either. On Rhea, the leading side features a generally much smoother texture at length-scales of 100 km than does the (faulted) trailing hemisphere, suggesting that the leading hemisphere also experienced more pervasive heating than the trailing. On Mimas, an irregular region near the antipode to Herschel exhibits lower crater depths than elsewhere, a possible signature of seismic focusing of the type seen on Mercury. Basin disruption effects appear to be limited. The most prominent occur around Evander (Dione) and southeast of Odysseus (Tethys) , where radial "gouge” erased the preexisting cratering record in favor of much smaller densely packed craters in an annulus around the basin which terminates at a circumferential ridge up to 2 km high! This may be a ring structure or distal ejecta ridge. Radial grooves may also occur near ancient relaxed basins on Dione and Rhea. Grooves 2-3 km deep on Mimas extend nearly globally but their relationship to Herschel is uncertain. Enceladus topography is dominated by pervasive resurfacing and by large-scale depressions (or dimples) that are plausibly due to isostatic variations in shell thickness.

  16. Dynamic topographic mapping of the human bladder during voiding using functional near-infrared spectroscopy.

    PubMed

    Macnab, Andrew; Stothers, Lynn; Shadgan, Babak

    2009-01-01

    Functional near-infrared spectroscopy (fNIRS) with multichannel instruments and grids of source-detector pairs can map regional change in oxygenation/hemodynamics. Developed for cortical brain mapping, fNIRS technology has relevance in other organs where pathology affects the microcirculation. We describe fNIRS of the human bladder for evaluation of hemodynamic change during voiding. A 5x5-cm grid with two source-detector pairs is placed on the abdomen suprapubically in an asymptomatic male. In four separate trials, after natural bladder filling NIRS-derived changes in oxyhemoglobin (O(2)Hb), deoxyhemoglobin (HHb), and total hemoglobin (tHb) concentration are recorded during voiding (measured via uroflow), using four channels of a four wavelength continuous wave instrument. Graphic and video images (topographic mapping software) are generated. Changes in tHb occur following permission to void that predominantly reflected variation in O(2)Hb; tHb peaks at maximum urine flow then falls to a nadir lasting to uroflow end. Change in fNIRS video color intensity correlates with graphic change in chromophore concentration. Color variations across the mapped area suggest regional hemodynamic variation. fNIRS bladder studies generate reproducible chromophore data consistent with single channel studies, but the dynamic color video and larger tissue area monitored potentially offer new methodology for investigating regional variations in bladder oxygenation and hemodynamics. PMID:19405712

  17. Dynamic topographic mapping of the human bladder during voiding using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Stothers, Lynn; Shadgan, Babak

    2009-03-01

    Functional near-infrared spectroscopy (fNIRS) with multichannel instruments and grids of source-detector pairs can map regional change in oxygenation/hemodynamics. Developed for cortical brain mapping, fNIRS technology has relevance in other organs where pathology affects the microcirculation. We describe fNIRS of the human bladder for evaluation of hemodynamic change during voiding. A 5×5-cm grid with two source-detector pairs is placed on the abdomen suprapubically in an asymptomatic male. In four separate trials, after natural bladder filling NIRS-derived changes in oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), and total hemoglobin (tHb) concentration are recorded during voiding (measured via uroflow), using four channels of a four wavelength continuous wave instrument. Graphic and video images (topographic mapping software) are generated. Changes in tHb occur following permission to void that predominantly reflected variation in O2Hb; tHb peaks at maximum urine flow then falls to a nadir lasting to uroflow end. Change in fNIRS video color intensity correlates with graphic change in chromophore concentration. Color variations across the mapped area suggest regional hemodynamic variation. fNIRS bladder studies generate reproducible chromophore data consistent with single channel studies, but the dynamic color video and larger tissue area monitored potentially offer new methodology for investigating regional variations in bladder oxygenation and hemodynamics.

  18. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces

    PubMed Central

    2016-01-01

    Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450

  19. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein-Protein Interaction Interfaces.

    PubMed

    Rooklin, David; Wang, Cheng; Katigbak, Joseph; Arora, Paramjit S; Zhang, Yingkai

    2015-08-24

    Inhibition of protein-protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy--that builds on the principles of fragment-based drug discovery (FBDD)--is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein's Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features--alpha-atom and alpha-space--and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450

  20. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  1. A web-based archive for topographic maps of retinal cell distribution in vertebrates.

    PubMed

    Collin, Shaun P

    2008-01-01

    Clinical and Experimental Optometry, in conjunction with Optometrists Association Australia and Professor Shaun P Collin of the University of Queensland, announce the launch of a web-based archive of previously published topographic maps of retinal cell distribution in vertebrates. At present, the archive boasts more than 770 different maps of the distribution of retinal neurons (for example, photoreceptors, bipolar cells, amacrine cells, horizontal cells and ganglion cells) in nearly 200 species within all vertebrate classes (Cephalospidomorpha, Actinopterygii, Sarcopterygii, Amphibia, Reptilia, Aves and Mammalia). The distribution of retinal neurons has been studied for more than 100 years and has become a powerful means of predicting the spatial resolving power of the eye and the retinal regions containing specialisations, such as areae centrales, horizontal streaks and foveae, where increased densities of neurons define the way in which a species visually samples its environment. The location of these retinal specialisations thereby identifies the part(s) of the visual field of critical importance for localising food and mates and for predator surveillance. The distribution of sampling elements even reflects the symmetry of a species' ecological habitat. The archive is a unique collection of most of the currently available retinal maps, which also presents relevant information, where known, about eye size, retinal cell density, retinal orientation, cell number, spatial resolving power and the type of specialisation, in addition to basic physical parameters of each species (body size, weight, sex and developmental stage). The archive is accessible at http://www.optometrists.asn.au/ceo/retinalsearch and will be updated regularly. The powerful database is interactive and freely available, providing the opportunity to upload both published and unpublished topographic maps. Following a review process, previously unpublished maps will be 'published' and available

  2. Data-Driven Topographic Feature Selection for Mean Wind Speed Mapping

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    Accurate spatial mapping of long term mean wind speeds is of great importance for renewable resources evaluation and wind farm location planning. This task is conventionally approached with a physical model further corrected with some geostatistical or semi-empirical method to take into account local topography and land cover effects. In mountainous regions of complex topographies, however, the evaluation of mean wind speed with this procedure is less precise. A variety of small-scale topographic features has to be incorporated into the model to take into account the factors affecting the wind speed, such as hill and tunnel effects. Large number of topographic features can be computed from digital elevation models to be integrated into a prediction model. Spatial prediction of the wind speeds by using a large set of input features is a high dimensional and non-linear problem. In conventional scheme, one relies here on many empirical correction coefficients and various topographic indices to take into account the influence of terrain. However, there is an emerging field of machine learning algorithms, which are the data-driven methods well-suited to solve such problems. They are aimed at modelling the non-linear dependencies between the high dimensional input features and a target variable such as the wind speed. There is a noticeable interest for using these methods for wind mapping. The presented research provides an application of machine learning methods (neural networks and support vector methods) for spatial prediction of mean wind speeds with a particular attention paid to the problem of feature selection. The number of features which can be generated from digital elevation model is countless as the features can be computed at various spatial scales. For example, a difference of terrains smoothed at different spatial scales enables to highlight the ridges and valleys. Feature selection methods allow finding the features and correspondingly the spatial scales

  3. An efficient algorithm for mapping imaging data to 3D unstructured grids in computational biomechanics.

    PubMed

    Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066

  4. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  5. Mapping Soil Depth with Topographic and Land Cover Attributes from Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh; Lau, Va-Khin

    2016-04-01

    Soil depth is an important parameter for identification of the overused slope land in Taiwan. The retrieval of high resolution soil depth at a large scale is costly and time-consuming. The main objective of this study is to develop an approach to estimate soil depths using satellite data with the aid of field survey data in Taiwan. The data were processed using the soil-landscape regression kriging model. The predictor variables, including elevation, slope, aspect, curvature, topographic wetness, spectral indices, and land use, derived from remotely sensed data were used as model inputs for the soil depth estimation. In this study, topographic attributes were derived from an 5-m resolution digital elevation model, and the land-use map and spectral indices were obtained through interpretation of Landsat-8 data. The absolute mean and root mean-square errors were used to access the reliability of the prediction, indicating a goodness-of-fit of the estimation model. The results of soil depth estimation compared with the field survey data indicated close relationship between these two datasets. The results obtained from this study could spatially provide quantitative information of soil depths, which is an important indicator for assessing the overused slope land. The methods were thus proposed for retrieval of soil depths in Taiwan.

  6. Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta.

    PubMed

    Ghaninia, Majid; Olsson, Shannon B; Hansson, Bill S

    2014-10-01

    The hawkmoth, Manduca sexta, has been a keystone system for developmental, neurobiological, and ecological studies for several decades. Because many of its behaviors are driven by olfactory cues, a thorough understanding of the Manduca olfactory system is essential to studying its biology. With the aim of functionally characterizing single antennal olfactory sensory neurons (OSNs) and determining their detailed topographic location, we performed systematic single-sensillum recordings on 4 morphological types of olfactory sensilla: trichoid-A and -B and basiconic-A and -B. We were able to unambiguously differentiate the colocalized cells associated with single sensilla based on their spike amplitudes. Using a panel of 61 biologically relevant compounds established in behavioral and gas chromatography-electrophysiology experiments, we made 223 recordings from these sensilla. Based on the response spectra of 187 responding OSNs, the sensilla fell into 12 distinct functional classes encompassing 29 OSNs. Selectivity of the 25 responding OSNs varied from narrowly tuned (responding to only one or a subset of compounds), to very broadly tuned (responding to multiple compounds), in a concentration-dependent manner. Four OSNs, however, did not respond to the tested components. Topographic mapping of the sensilla revealed that some physiological sensillum types are confined to particular locations on the antennal surface while other classes are more or less irregularly scattered all over the antennal annuli. Such information will prove beneficial for future receptor deorphanization, in situ hybridization, and molecular manipulation experiments. PMID:25092901

  7. System Considerations and Challendes in 3d Mapping and Modeling Using Low-Cost Uav Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2015-08-01

    In the last few years, low-cost UAV systems have been acknowledged as an affordable technology for geospatial data acquisition that can meet the needs of a variety of traditional and non-traditional mapping applications. In spite of its proven potential, UAV-based mapping is still lacking in terms of what is needed for it to become an acceptable mapping tool. In other words, a well-designed system architecture that considers payload restrictions as well as the specifications of the utilized direct geo-referencing component and the imaging systems in light of the required mapping accuracy and intended application is still required. Moreover, efficient data processing workflows, which are capable of delivering the mapping products with the specified quality while considering the synergistic characteristics of the sensors onboard, the wide range of potential users who might lack deep knowledge in mapping activities, and time constraints of emerging applications, are still needed to be adopted. Therefore, the introduced challenges by having low-cost imaging and georeferencing sensors onboard UAVs with limited payload capability, the necessity of efficient data processing techniques for delivering required products for intended applications, and the diversity of potential users with insufficient mapping-related expertise needs to be fully investigated and addressed by UAV-based mapping research efforts. This paper addresses these challenges and reviews system considerations, adaptive processing techniques, and quality assurance/quality control procedures for achievement of accurate mapping products from these systems.

  8. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  9. Comparative Analysis of 3D Expression Patterns of Transcription Factor Genes and Digit Fate Maps in the Developing Chick Wing

    PubMed Central

    Delgado, Irene; Bain, Andrew; Planzer, Thorsten; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-01-01

    Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage. PMID:21526123

  10. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  11. 3D mapping of geological contacts by coupling Aerial Laser Scanning, Gigapixel photography and open access pictures

    NASA Astrophysics Data System (ADS)

    Nguyen, Liliane; Guerin, Antoine; Abellán, Antonio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel

    2015-04-01

    Multiple sources of geological data exist nowadays, most of them are in 2D (e.g. geological maps, geological panoramic sketch), and only a few are in 3D (e.g. block diagram). One of the current challenges in geological mapping consists not only in providing a more consistent 3D data, but also in pursuing a gathering and a harmonisation of the geological information in order to obtain a more consistent interpretations of the 3D geological models. New remote sensing techniques have significantly improved the representation of three-dimensional surfaces during the last decade, especially for steep and inaccessible rockcliffs. Therefore, we present an exploratory study aiming to find a reliable method for carrying out a three-dimensional mapping of geological contacts using a High Resolution Digital Elevation Model (HRDEM) with a 1 meter cell size. To this end, we selected the "Scex Rouge Mountain" as pilot study area. This outcrop, which is located in the Diablerets Massif (Vaud, Swiss Alps), has the particularity to present very distinguishable folded geological boundaries on its Southern face. The Southern slope belongs to the Wildhorn nappe, which is mainly composed of sedimentary rocks. The top-layer is composed of siliceous limestones, the well-visible fold layer is the "Pygurus layer" and consist of sandy limestone. Finally the bottom-layer includes marly schist and clayey limestones. At first, different sources of information has been draped on the HRDEM of the Scex Rouge Mountain, including not only classical geological maps (1:25 000) but also different sources of imagery (e.g. gigapixel panoramas, open access images, etc.). In a second step, several three-dimensional polylines have been drawn following the geological limit on each drapped HRDEM. Then we investigated the accuracy of 2D classical geological maps by comparing these geological limits with the drawn 3D polylines. Furthermore, in order to evaluate the accuracy of the method, a ground truth needs

  12. GPU-based rapid reconstruction of cellular 3D refractive index maps from tomographic phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dardikman, Gili; Shaked, Natan T.

    2016-03-01

    We present highly parallel and efficient algorithms for real-time reconstruction of the quantitative three-dimensional (3-D) refractive-index maps of biological cells without labeling, as obtained from the interferometric projections acquired by tomographic phase microscopy (TPM). The new algorithms are implemented on the graphic processing unit (GPU) of the computer using CUDA programming environment. The reconstruction process includes two main parts. First, we used parallel complex wave-front reconstruction of the TPM-based interferometric projections acquired at various angles. The complex wave front reconstructions are done on the GPU in parallel, while minimizing the calculation time of the Fourier transforms and phase unwrapping needed. Next, we implemented on the GPU in parallel the 3-D refractive index map retrieval using the TPM filtered-back projection algorithm. The incorporation of algorithms that are inherently parallel with a programming environment such as Nvidia's CUDA makes it possible to obtain real-time processing rate, and enables high-throughput platform for label-free, 3-D cell visualization and diagnosis.

  13. EMRinger: Side-chain-directed model and map validation for 3D Electron Cryomicroscopy

    PubMed Central

    Barad, Benjamin A; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D; Fraser, James S

    2015-01-01

    Advances in high resolution electron cryomicroscopy (cryo-EM) have been accompanied by the development of validation metrics to independently assess map quality and model geometry. EMRinger assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM. PMID:26280328

  14. Mapping dynamic mechanical remodeling in 3D tumor models via particle tracking microrheology

    NASA Astrophysics Data System (ADS)

    Jones, Dustin P.; Hanna, William; Celli, Jonathan P.

    2015-03-01

    Particle tracking microrheology (PTM) has recently been employed as a non-destructive way to longitudinally track physical changes in 3D pancreatic tumor co-culture models concomitant with tumor growth and invasion into the extracellular matrix (ECM). While the primary goal of PTM is to quantify local viscoelasticity via the Generalized Stokes-Einstein Relation (GSER), a more simplified way of describing local tissue mechanics lies in the tabulation and subsequent visualization of the spread of probe displacements in a given field of view. Proper analysis of this largely untapped byproduct of standard PTM has the potential to yield valuable insight into the structure and integrity of the ECM. Here, we use clustering algorithms in R to analyze the trajectories of probes in 3D pancreatic tumor/fibroblast co-culture models in an attempt to differentiate between probes that are effectively constrained by the ECM and/or contractile traction forces, and those that exhibit uninhibited mobility in local water-filled pores. We also discuss the potential pitfalls of this method. Accurately and reproducibly quantifying the boundary between these two categories of probe behavior could result in an effective method for measuring the average pore size in a given region of ECM. Such a tool could prove useful for studying stromal depletion, physical impedance to drug delivery, and degradation due to cellular invasion.

  15. Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping

    NASA Astrophysics Data System (ADS)

    Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.

    2002-10-01

    This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.

  16. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  17. Quantitative analysis of nanoripple and nanoparticle patterns by grazing incidence small-angle x-ray scattering 3D mapping

    NASA Astrophysics Data System (ADS)

    Babonneau, D.; Camelio, S.; Vandenhecke, E.; Rousselet, S.; Garel, M.; Pailloux, F.; Boesecke, P.

    2012-06-01

    3D reciprocal space mapping in the grazing incidence small-angle x-ray scattering geometry was used to obtain accurate morphological characteristics of nanoripple patterns prepared by broad beam-ion sputtering of Al2O3 and Si3N4 amorphous thin films as well as 2D arrays of Ag nanoparticles obtained by glancing angle deposition on Al2O3 nanorippled buffer layers. Experiments and theoretical simulations based on the distorted-wave Born approximation make it possible to determine the average 3D shape of the ripples and nanoparticles together with crucial information on their in-plane organization. In the case of nanoparticle arrays, the approach was also used to quantify the growth conformity of an additional capping layer, which proceeds by replication of the buried ripple pattern.

  18. Large-scale 3D mapping of the intergalactic medium using the Lyman α forest

    NASA Astrophysics Data System (ADS)

    Ozbek, Melih; Croft, Rupert A. C.; Khandai, Nishikanta

    2016-03-01

    Maps of the large-scale structure of the Universe at redshifts 2-4 can be made with the Lyman α forest which are complementary to low-redshift galaxy surveys. We apply the Wiener interpolation method of Caucci et al. to construct three-dimensional maps from sets of Lyman α forest spectra taken from cosmological hydrodynamic simulations. We mimic some current and future quasar redshift surveys [Baryon Oscillation Spectroscopic Survey (BOSS), extended BOSS (eBOSS) and Mid-Scale Dark Energy Spectroscopic Instrument (MS-DESI)] by choosing similar sightline densities. We use these appropriate subsets of the Lyman α absorption sightlines to reconstruct the full three-dimensional Lyman α flux field and perform comparisons between the true and the reconstructed fields. We study global statistical properties of the intergalactic medium (IGM) maps with autocorrelation and cross-correlation analysis, slice plots, local peaks and point-by-point scatter. We find that both the density field and the statistical properties of the IGM are recovered well enough that the resulting IGM maps can be meaningfully considered to represent large-scale maps of the Universe in agreement with Caucci et al., on larger scales and for sparser sightlines than had been tested previously. Quantitatively, for sightline parameters comparable to current and near future surveys the correlation coefficient between true and reconstructed fields is r > 0.9 on scales >30 h-1 Mpc. The properties of the maps are relatively insensitive to the precise form of the covariance matrix used. The final BOSS quasar Lyman α forest sample will allow maps to be made with a resolution of ˜30 h-1 Mpc over a volume of ˜15 h-3 Gpc3 between redshifts 1.9 and 2.3.

  19. Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping

    NASA Astrophysics Data System (ADS)

    Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable

  20. Mapping of the spontaneous deletion in the Ap3d1 gene of mocha mice: fast and reliable genotyping

    PubMed Central

    Drasbek, Kim Ryun; Holm, Mai Marie; Delenclos, Marion; Jensen, Kimmo

    2008-01-01

    Background The mocha mouse carries a spontaneous deletion in the Ap3d1 gene, encoding the delta 1 subunit of the adaptor related protein complex 3, (Ap3d1), and subsequently lack the expression of functional AP-3. This leads to a deficiency in vesicle transport and storage, which affects neurotransmitter vesicle turnover and release in the central nervous system. Since the genomic sequence of the Ap3d1 gene of mocha mouse is not known, precise mapping of the deletion as well as reliable genotyping protocols are lacking. Findings We sequenced the Ap3d1 gene (HGNC GeneID: 8943) around the deletion site in the mocha mouse and revealed a 10639 bp deletion covering exon 2 to 6. Subsequently, new PCR primers were designed yielding a reliable genotyping protocol of both newborn and adult tissue. To examine the genotypes further, hippocampal neurons were cultured from mocha and control mice. Patch-clamp recordings showed that mocha neurons had a higher input resistance, and that autaptic EPSC in mocha cultures depressed faster and stronger as compared with control cultures. Conclusion Our study reports the sequence of the deleted part of the Ap3d1 gene in mocha mice, as well as a reliable PCR-based genotyping protocol. We cultured hippocampal neurons from control and mocha mice, and found a difference in input resistance of the neurons, and in the synaptic short-term plasticity of glutamatergic autapses showing a larger synaptic depression than controls. The described procedures may be useful for the future utilization of the mocha mouse as a model of defective vesicle biogenesis. Importantly, as genotyping by eye color is complicated in newborn mice, the designed protocol is so fast and reliable that newborn mice could rapidly be genotyped and hippocampal neurons dissociated and cultured, which is normally best done at P0-P2. PMID:19032734

  1. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%. PMID:26342493

  2. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGESBeta

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; Cheng, Yifan; DiMaio, Frank; Adams, Paul D.; Fraser, James S.

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  3. Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography

    PubMed Central

    Leahy, Conor; Radhakrishnan, Harsha; Weiner, Geoffrey; Goldberg, Jeffrey L.; Srinivasan, Vivek J.

    2015-01-01

    Purpose The purpose of this study is to demonstrate three-dimensional (3D) graphing based on optical coherence tomography (OCT) angiography for characterization of the inner retinal vascular architecture and determination of its topologic principles. Methods Rat eyes (N = 3) were imaged with a 1300-nm spectral/Fourier domain OCT microscope. A topologic model of the inner retinal vascular network was obtained from OCT angiography data using a combination of automated and manually-guided image processing techniques. Using a resistive network model, with experimentally-quantified flow in major retinal vessels near the optic nerve head as boundary conditions, theoretical changes in the distribution of flow induced by vessel dilations were inferred. Results A topologically-representative 3D vectorized graph of the inner retinal vasculature, derived from OCT angiography data, is presented. The laminar and compartmental connectivity of the vasculature are characterized. In contrast to sparse connectivity between the superficial vitreal vasculature and capillary plexuses of the inner retina, connectivity between the two capillary plexus layers is dense. Simulated dilation of single arterioles is shown to produce both localized and lamina-specific changes in blood flow, while dilation of capillaries in a given retinal vascular layer is shown to lead to increased total flow in that layer. Conclusions Our graphing and modeling data suggest that vascular architecture enables both local and lamina-specific control of blood flow in the inner retina. The imaging, graph analysis, and modeling approach presented here will help provide a detailed characterization of vascular changes in a variety of retinal diseases, both in experimental preclinical models and human subjects. PMID:26325417

  4. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  5. View-independent Contour Culling of 3D Density Maps for Far-field Viewing of Iso-surfaces

    PubMed Central

    Feng, Powei; Ju, Tao; Warren, Joe

    2011-01-01

    In many applications, iso-surface is the primary method for visualizing the structure of 3D density maps. We consider a common scenario where the user views the iso-surfaces from a distance and varies the level associated with the iso-surface as well as the view direction to gain a sense of the general 3D structure of the density map. For many types of density data, the iso-surfaces associated with a particular threshold may be nested and never visible during this type of viewing. In this paper, we discuss a simple, conservative culling method that avoids the generation of interior portions of iso-surfaces at the contouring stage. Unlike existing methods that perform culling based on the current view direction, our culling is performed once for all views and requires no additional computation as the view changes. By pre-computing a single visibility map, culling is done at any iso-value with little overhead in contouring. We demonstrate the effectiveness of the algorithm on a range of bio-medical data and discuss a practical application in online visualization. PMID:21673830

  6. DATA QUALIFICATION REPORT: DATA QUALIFICATION REPORT FOR 1991 1:1200 TOPOGRAPHIC MAPS FOR USE ON THE YUCCA MOUNTAIN PROJECT

    SciTech Connect

    M.F. Knop; T.A. Grant; R.W. Bonisolli

    2005-06-25

    This Data Qualification Report (DQR) is prepared in accordance with the provisions of AP-SIII.2Q, Rev. 0, ICN 3, Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data and Data Qualification Plan for 1991 Topographic Maps 1:1200 Scale for use on the Yucca Mountain Project, DQP-WHS-CI-000001, Rev. 00 (BSC 2002a). This DQR presents an evaluation of a set of 90 topographic sheets at 1:1200 scale (and an associated electronic file) that covers an approximate 18 square mile area surrounding the proposed Yucca Mountain Project repository surface facilities location in Midway Valley, Nevada. These maps, that require qualification, are now being used to determine the physical characteristics of watershed sub-areas, interconnecting channels, and drainage channel cross-sections for hydrologic engineering studies of the north portal pad and vicinity. The result of this effort is to qualify one data tracking number (DTN) containing the electronic version of the mapping data. This DTN is: M09906COV98462.000. Coverage: TOP02FTS. The underlying quality assurance (QA) issue associated with these topographic maps is that the maps were originally designated as not for use in the design of items important to safety, waste isolation, and/or of programmatic importance. The maps were therefore generated outside the U.S. Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) QA program. Based on a comparison with corroborating information, this report concludes that the topographic maps are qualified. The comparison found that the mapping was reasonably accurate when compared with other mapping and survey data within the coverage area of the maps. Relative map accuracy was found to be very good and suitable for the hydrologic engineering studies being considered. Absolute accuracy is good but could not be demonstrated to comply with national map accuracy standards. Point locations that require high absolute accuracy should be

  7. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  8. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  9. GPR Detection and 3D Mapping of Lateral Macropores II. Riparian Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphology and prevalence of 1-10 cm diameter macropores in forested riparian wetland buffers is largely unknown despite their importance as a source of preferential nutrient delivery to stream channels. Here, we validated in situ procedures for detecting and mapping the three-dimensional struct...

  10. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Dolan, James F.

    2007-06-01

    Range-front alluvial fan deposition in arid environments is episodic and results in multiple fan surfaces and ages. These distinct landforms are often defined by descriptions of their surface morphology, desert varnish accumulation, clast rubification, desert pavement formation, soil development, and stratigraphy. Although quantifying surface roughness differences between alluvial fan units has proven to be difficult in the past, high-resolution airborne laser swath mapping (ALSM) digital topographic data are now providing researchers with an opportunity to study topography in unprecedented detail. Here we use ALSM data to calculate surface roughness on two alluvial fans in northern Death Valley, California. We define surface roughness as the standard deviation of slope in a 5-m by 5-m moving window. Comparison of surface roughness values between mapped fan surfaces shows that each unit is statistically unique at the 99% confidence level. Furthermore, there is an obvious smoothing trend from the presently active channel to a deposit with cosmogenic 10Be and 36Cl surface exposure ages of ˜70 ka. Beyond 70 ka, alluvial landforms become progressively rougher with age. These data suggest that alluvial fans in arid regions smooth out with time until a threshold is crossed where roughness increases at greater wavelength with age as a result of surface runoff and headward tributary incision into the oldest surfaces.

  11. Aerial radiometric and magnetic survey: Hobbs National Topographic Map, New Mexico/Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Hobbs National Topographic Map NI13-12 are presented in this report. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  12. Aerial radiometric and magnetic survey, San Angelo National Topographic Map: Texas, West Texas Project. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Angelo National Topographic Map NH14-1 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included.

  13. Aerial radiometric and magnetic survey: San Antonio National Topographic Map, Texas. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the San Antonio National Topographic Map NH14-8 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium, and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  14. Aerial radiometric and magnetic survey: Burlington National Topographic Map, Illinois/Iowa/Missouri

    SciTech Connect

    Not Available

    1981-01-01

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Burlington National Topographic Map NK15-12 is presented in this report. The airborne data gathered is reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also.

  15. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    USGS Publications Warehouse

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  16. Noninvasive 3D elasticity mapping using phase-stabilized optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Li, Jiasong; Wang, Shang; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We demonstrate a novel method for noninvasive elasticity mapping in three dimensions using phase stabilized swept source optical coherence elastography (PhS-SSOCE). By calculating the velocity in all radial directions from the origin of the induced shear wave, a volumetric elasticity map of the sample was generated. Due to the submicrometer spatial sensitivity of PhS-SSOCE, the loading force and the induced deformation amplitude can be minimal, thus preserving the structure and function of delicate tissues such as the cornea and sclera of the eye. Tissue mimicking agar phantoms were utilized for proof of concept testing and the results show that this method can noninvasively provide a three dimensional estimation of sample elasticity.

  17. Real-time Process Monitoring and Temperature Mapping of the 3D Polymer Printing Process

    SciTech Connect

    Dinwiddie, Ralph Barton; Love, Lonnie J; Rowe, John C

    2013-01-01

    An extended range IR camera was used to make temperature measurements of samples as they are being manufactured. The objective is to quantify the temperature variation inside the system as parts are being fabricated, as well as quantify the temperature of a part during fabrication. The IR camera was used to map the temperature within the build volume of the oven and surface temperature measurement of a part as it was being manufactured. The development of the temperature map of the oven provides insight into the global temperature variation within the oven that may lead to understanding variations in the properties of parts as a function of location. The observation of the temperature variation of a part that fails during construction provides insight into how the deposition process itself impacts temperature distribution within a single part leading to failure.

  18. Fully integrated system-on-chip for pixel-based 3D depth and scene mapping

    NASA Astrophysics Data System (ADS)

    Popp, Martin; De Coi, Beat; Thalmann, Markus; Gancarz, Radoslav; Ferrat, Pascal; Dürmüller, Martin; Britt, Florian; Annese, Marco; Ledergerber, Markus; Catregn, Gion-Pol

    2012-03-01

    We present for the first time a fully integrated system-on-chip (SoC) for pixel-based 3D range detection suited for commercial applications. It is based on the time-of-flight (ToF) principle, i.e. measuring the phase difference of a reflected pulse train. The product epc600 is fabricated using a dedicated process flow, called Espros Photonic CMOS. This integration makes it possible to achieve a Quantum Efficiency (QE) of >80% in the full wavelength band from 520nm up to 900nm as well as very high timing precision in the sub-ns range which is needed for exact detection of the phase delay. The SoC features 8x8 pixels and includes all necessary sub-components such as ToF pixel array, voltage generation and regulation, non-volatile memory for configuration, LED driver for active illumination, digital SPI interface for easy communication, column based 12bit ADC converters, PLL and digital data processing with temporary data storage. The system can be operated at up to 100 frames per second.

  19. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  20. Geo-Referenced Mapping Using AN Airborne 3d Time-Of Camera

    NASA Astrophysics Data System (ADS)

    Kohoutek, T. K.; Nitsche, M.; Eisenbeiss, H.

    2011-09-01

    This paper presents the first experience of a close range bird's eye view photogrammetry with range imaging (RIM) sensors for the real time generation of high resolution geo-referenced 3D surface models. The aim of this study was to develop a mobile, versatile and less costly outdoor survey methodology to measure natural surfaces compared to the terrestrial laser scanning (TLS). Two commercial RIM cameras (SR4000 by MESA Imaging AG and a CamCube 2.0 by PMDTechnologies GmbH) were mounted on a lightweight crane and on an unmanned aerial vehicle (UAV). The field experiments revealed various challenges in real time deployment of the two state-of-the-art RIM systems, e.g. processing of the large data volume. Acquisition strategy and data processing and first measurements are presented. The precision of the measured distances is less than 1 cm for good conditions. However, the measurement precision degraded under the test conditions due to direct sunlight, strong illumination contrasts and helicopter vibrations.

  1. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.

    PubMed

    Schrof, Susanne; Varga, Peter; Galvis, Leonardo; Raum, Kay; Masic, Admir

    2014-09-01

    Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues. PMID:25025981

  2. Evaluating the presentation and usability of 2D and 3D maps generated by unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gregory, Jason; Baran, David; Evans, A. W.

    2013-05-01

    Currently fielded small unmanned ground vehicles (SUGVs) are operated via teleoperation. This method of operation requires a high level of operator involvement within, or near within, line of sight of the robot. As advances are made in autonomy algorithms, capabilities such as automated mapping can be developed to allow SUGVs to be used to provide situational awareness with an increased standoff distance while simultaneously reducing operator involvement. In order to realize these goals, it is paramount the data produced by the robot is not only accurate, but also presented in an intuitive manner to the robot operator. The focus of this paper is how to effectively present map data produced by a SUGV in order to drive the design of a future user interface. The effectiveness of several 2D and 3D mapping capabilities was evaluated by presenting a collection of pre-recorded data sets of a SUGV mapping a building in an urban environment to a user panel of Soldiers. The data sets were presented to each Soldier in several different formats to evaluate multiple factors, including update frequency and presentation style. Once all of the data sets were presented, a survey was administered. The questions in the survey were designed to gauge the overall usefulness of the mapping algorithm presentations as an information generating tool. This paper presents the development of this test protocol along with the results of the survey.

  3. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm

    PubMed Central

    Pandurangan, Arun Prasad; Vasishtan, Daven; Alber, Frank; Topf, Maya

    2015-01-01

    Summary We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. PMID:26655474

  4. Development of a numerical procedure to map a general 3-d body onto a near-circle

    NASA Technical Reports Server (NTRS)

    Hommel, M. J.

    1986-01-01

    Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.

  5. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    NASA Astrophysics Data System (ADS)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  6. Covariance of biophysical data with digital topographic and land use maps over the FIFE site

    NASA Astrophysics Data System (ADS)

    Davis, F. W.; Schimel, D. S.; Friedl, M. A.; Michaelsen, J. C.; Kittel, T. G. F.; Dubayah, R.; Dozier, J.

    1992-11-01

    Sampling design is critical in locating ground sampling stations for large-scale climatological field experiments. In the stratified sampling design adopted for the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), the study region was stratified into 14 different terrain units based on land use/land cover and topographic variables that were hypothesized to have a strong influence on surface biophysical properties. Digital terrain maps were produced to facilitate ground data integration and extrapolation. This paper describes the biophysical stratification of the FIFE site, implementation of the stratification using geographic information system (GIS) techniques, and validation of the stratification with respect to field measurements of biomass, soil moisture, Bowen ratio (β), and the greenness vegetation index (GVI) derived from thematic mapper satellite data. Maps of burning and topographic position were significantly associated with variation in biomass, GVI, and β. The effects of burning and topography were stronger for the Konza Prairie Long-Term Ecological Research (KPLTER) site than for the rest of the FIFE site, where cattle grazing was a major confounding effect. The stratified design did not appreciably change the estimated site-wide means for surface climate parameters but accounted for between 25 and 45% of the sample variance depending on the variable. The design was weakened by undersampling of several strata, by high within-station variance in soil and vegetation data, and by failure to account for diverse land management practices on private lands surrounding KPLTER. We recommend that future large-scale climatological studies include the development of a digital terrain data base well in advance of field campaigns and that multitemporal imagery be used to obtain preliminary estimates of spatial and temporal variance in surface biophysical properties. We also recommend that sampling for the most

  7. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures.

    PubMed

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  8. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  9. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  10. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  11. Development of kinematic 3D laser scanning system for indoor mapping and as-built BIM using constrained SLAM.

    PubMed

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  12. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  13. The GeoSAR program: Development of a commercially viable 3-D radar terrain mapping system

    SciTech Connect

    Carlisle, R.G.; Davis, M.

    1996-11-01

    GeoSAR is joint development between the Defense Advanced Research Project Agency (DARPA) and the California Department of Conservation (CA DOC) to determine the technical and economic viability of an airborne interferometric and foliage penetration synthetic aperture radar for mapping terrain and man made objects in geographical areas obscured by foliage, urban buildings, and other concealments. The two core technology elements of this program are Interferometric Synthetic Aperture Radar (IFSAR) and Foliage Penetration Radar (FOPEN). These technologies have been developed by NASA and ARPA, principally for defense applications.

  14. Probabilistic topographic maps from raw, full-waveform airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Gonçalves, G. R.

    2011-12-01

    The main goal of the AutoProbaDTM project is to derive new methodologies to measure the topography and terrain characteristics using the latest full-waveform airborne LiDAR technology. It includes algorithmic development, implementation, and validation over a large test area. In the long run, we wish to develop techniques that are scalable and applicable to future satellite missions such as LIST (NASA Decadal Survey), to help perform efficient and accurate large-scale mapping. One of the biggest challenges is to develop fast ways to process huge volumes of raw data without compromising the accuracy and the physical consistency of the result. Over the past decades, significant progress has been made in digital elevation model (DEM) extraction and user interaction has been much reduced, however most algorithms are still supervised. Topographic surveys currently play a central role in sensor calibration and full automation is still an unsolved problem. Moreover, very few existing methods are currently able to propose a quantitative error map with the reconstructed DEM. Traditional validation and quality control only allow to check the discrepancy between the product and a set of reference points, lacking the ability to predict the actual uncertainty related to elevations at chosen locations. We plan to provide fast and automated techniques to derive topographic maps and to compute error maps as well, based on a probabilistic approach to modeling terrains and data acquisition, solving inverse problems and handling uncertainty. Bayesian inference provides a rigorous framework for model reconstruction and error propagation, treating all quantities as random, and combining sources of information optimally. In the future, the uncertainty maps shall help scientists put error bars on quantities derived from the models. In June 2011, 200 km2 of data were acquired (100 GB of binary files, half a billion waveforms) in central Portugal, over an area of geomorphological and

  15. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture

    PubMed Central

    Topp, Christopher N.; Iyer-Pascuzzi, Anjali S.; Anderson, Jill T.; Lee, Cheng-Ruei; Zurek, Paul R.; Symonova, Olga; Zheng, Ying; Bucksch, Alexander; Mileyko, Yuriy; Galkovskyi, Taras; Moore, Brad T.; Harer, John; Edelsbrunner, Herbert; Mitchell-Olds, Thomas; Weitz, Joshua S.; Benfey, Philip N.

    2013-01-01

    Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops. PMID:23580618

  16. Scatterer size and concentration estimation technique based on a 3D acoustic impedance map from histologic sections

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Oelze, Michael L.; O'Brien, William D.; Zachary, James F.

    2001-05-01

    Accurate estimates of scatterer parameters (size and acoustic concentration) are beneficial adjuncts to characterize disease from ultrasonic backscatterer measurements. An estimation technique was developed to obtain parameter estimates from the Fourier transform of the spatial autocorrelation function (SAF). A 3D impedance map (3DZM) is used to obtain the SAF of tissue. 3DZMs are obtained by aligning digitized light microscope images from histologic preparations of tissue. Estimates were obtained for simulated 3DZMs containing spherical scatterers randomly located: relative errors were less than 3%. Estimates were also obtained from a rat fibroadenoma and a 4T1 mouse mammary tumor (MMT). Tissues were fixed (10% neutral-buffered formalin), embedded in paraffin, serially sectioned and stained with H&E. 3DZM results were compared to estimates obtained independently against ultrasonic backscatter measurements. For the fibroadenoma and MMT, average scatterer diameters were 91 and 31.5 μm, respectively. Ultrasonic measurements yielded average scatterer diameters of 105 and 30 μm, respectively. The 3DZM estimation scheme showed results similar to those obtained by the independent ultrasonic measurements. The 3D impedance maps show promise as a powerful tool to characterize ultrasonic scattering sites of tissue. [Work supported by the University of Illinois Research Board.

  17. New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images.

    PubMed

    Cusack, R; Papadakis, N

    2002-07-01

    The phase, as well as the magnitude, of MRI images can carry useful information. It may be used to encode flow or temperature, or to map the magnetic field for the undistorting of EPIs and automated shimming. In all cases, we measure the extra spin given to nuclei. Unfortunately, we can only measure the final phase of the spins: the rotation is wrapped into the range [-pi, +pi], and to obtain a measure of the parameter of interest the missing multiples of 2pi must be replaced--a process known as phase unwrapping. While simple in principle, standard phase unwrapping algorithms fail catastrophically in the presence of even small amounts of noise. Here we present a new algorithm for robust three-dimensional phase unwrapping, in which unwrapping is guided, so that it initially works on less noisy regions. We test the algorithm on simulated phase data, and on maps of magnetic field, which were then used to successfully undistort EPI images. The unwrapping algorithm could be directly applied to other kinds of phase data. PMID:12169259

  18. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  19. 3D reconstruction and heat map of porcine recurrent laryngeal nerve anatomy: branching and spatial location.

    PubMed

    Mason, Nena Lundgreen; Christiansen, Marc; Wisco, Jonathan J

    2015-01-01

    Recurrent laryngeal nerve palsy is a common post-operative complication of many head and neck surgeries. Theoretically, the best treatment to restore partial function to a damaged recurrent laryngeal nerve would be reinnervation of the posterior cricoarytenoid muscle via anastomosis of the recurrent laryngeal and phrenic nerves. The pig is an excellent model of human laryngeal anatomy and physiology but a more thorough knowledge of porcine laryngeal anatomy is necessary before the pig can be used to improve existing surgical strategies, and develop new ones. This study first identifies the three most common recurrent laryngeal nerve branching patterns in the pig. Secondly, this study presents three-dimensional renderings of the porcine larynx onto which the recurrent laryngeal nerve patterns are accurately mapped. Lastly, heat maps are presented to display the spatial variability of recurrent laryngeal nerve trunks and primary branches on each side of 15 subjects (28 specimens). We intend for this study to be useful to groups using a porcine model to study posterior cricoarytenoid muscle reinnervation techniques. PMID:27086418

  20. 3D maps of the local interstellar medium: searching for the imprints of past events

    NASA Astrophysics Data System (ADS)

    Lallement, R.

    2015-01-01

    Inversion of interstellar (IS) gas or dust absorbing columns measured along the path to stars distributed in distance and direction allows reconstructing the distribution of interstellar matter (ISM) in three dimensions. A low resolution IS dust map based on reddening measurements towards 23,000 nearby stars is used to illustrate the potential of the more detailed maps that are expected within the next several years. The map reveals the location of the main IS cloud complexes up to distances on the order of 600 to 1200 pc depending on directions. Owing to target selection biases towards weakly reddened, brighter stars, the map is especially revealing in terms of regions devoid of IS matter. It traces the Local Bubble and its neighboring cavities, including a conspicuous, giant, >=1000 pc long cavity in the third quadrant located beyond the so-called βMa tunnel. This cavity is bordered by the main constituents of the Gould belt, the well-known and still unexplained rotating and expanding ring of clouds and young stars, inclined by ~ 20° to the galactic plane. Comparing the dust distribution with X-ray emission maps and IS gas observations shows that the giant cavity contains a large fraction of warm, fully ionized and dust-poor gas in addition to million K, X-ray bright gas. This set of structures must reflect the main events that occurred in the past; today however even the formation of the Gould belt is still a matter of controversy. It has been suggested recently that the Cretaceus-Tertiary (KT) mass extinction is potentially due to a gamma-ray burst (GRB) that occurred in the massive globular cluster (GC) 47 Tuc during its close encounter with the Sun ~70 Myrs ago. Such a hypothesis is based on computations of the cluster and Sun trajectories and the frequency of short GRBs in GC's. Given the mass, speed and size of 47 Tuc, wherever it crossed the Galactic plane it must have produced at the crossing site significant dynamical effects on the disk stars and IS

  1. Mapping and Modelling of the PNG Slump - 3-D Evidence to demonstrate a Tsunami Source?

    NASA Astrophysics Data System (ADS)

    Tappin, D. R.; McMurtry, G. M.; Smith, J. R.; Watts, P.

    2004-12-01

    The original offshore data set for the slump that is now generally accepted as the source of the 1998 PNG tsunami was originally presented as 2-D bathymetry images, seismic sections and as seabed photographs. The dataset images a cohesive rotational failure offshore off the north coast of Papua New Guinea, mathematical modelling of which provides appropriate run-ups comparable with onshore measurements from field surveys. The regional bathymetry and seismic data acquired off the north coast of PNG images a deeply incised, sediment-starved convergent margin subsiding along the New Guinea Trench. An arcuate shaped feature off the Sissano Lagoon, termed the `amphitheatre', is identified as the source location of the failure that is located in the east of this feature. The presence of a slump in this eastern area is confirmed by seismic data and observations from Remote and Manned Submersibles, that show seabed features, such as fissures and fractured limestone, on the surface of the slump and interpreted as due to sediment movement. Absolute dating of slump failure is not possible with the present data set, but the relative, recent, age of failure is based on the fresher appearance of fissures in the slump area as well as a greater concentration of a chemosynthetic cold-water biota together with active fluid expulsion on the slump surface. The chemosynthetic biotas comprise mussels and tubeworms and bacterial mats. Laminar bedded chemosynthetic limestone was only observed on the slump surface and represents a low volume background sulphide and methane rich fluid seepage. The concentration of living cold-water faunas on the slump surface is interpreted as the result of an increased fluid expulsion rate associated with the slumping. This presentation uses new interactive software, Fledermaus, to image the northern PNG offshore area, including the amphitheatre, to show the seabed morphology in 3-D and the relationships between the regional geology and the slump area. Use

  2. A 3D map of the islet routes throughout the healthy human pancreas

    PubMed Central

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  3. 3D Vegetation Mapping Using UAVSAR, LVIS, and LIDAR Data Acquisition Methods

    NASA Technical Reports Server (NTRS)

    Calderon, Denice

    2011-01-01

    The overarching objective of this ongoing project is to assess the role of vegetation within climate change. Forests capture carbon, a green house gas, from the atmosphere. Thus, any change, whether, natural (e.g. growth, fire, death) or due to anthropogenic activity (e.g. logging, burning, urbanization) may have a significant impact on the Earth's carbon cycle. Through the use of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and NASA's Laser Vegetation Imaging Sensor (LVIS), which are airborne Light Detection and Ranging (LIDAR) remote sensing technologies, we gather data to estimate the amount of carbon contained in forests and how the content changes over time. UAVSAR and LVIS sensors were sent all over the world with the objective of mapping out terrain to gather tree canopy height and biomass data; This data is in turn used to correlate vegetation with the global carbon cycle around the world.

  4. Photocurrent mapping of 3D CdSe/CdTe windowless solar cells.

    PubMed

    Hangarter, Carlos M; Debnath, Ratan; Ha, Jong Y; Sahiner, Mehmet A; Reehil, Christopher J; Manners, William A; Josell, Daniel

    2013-09-25

    This paper details the use of scanning photocurrent microscopy to examine localized current collection efficiency of thin-film photovoltaic devices with in-plane patterning at a submicrometer length scale. The devices are based upon two interdigitated comb electrodes at the micrometer length scale prepatterned on a substrate, with CdSe electrodeposited on one electrode and CdTe deposited over the entire surface of the resulting structure by pulsed laser deposition. Photocurrent maps provide information on what limits the performance of the windowless CdSe/CdTe thin-film photovoltaic devices, revealing "dead zones" particularly above the electrodes contacting the CdTe which is interpreted as recombination over the back contact. Additionally, the impact of ammonium sulfide passivation is examined, which enables device efficiency to reach 4.3% under simulated air mass 1.5 illumination. PMID:23968397

  5. Mapping electronic ordering in chromium in 3D with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing

    2015-03-01

    In the antiferromagnetic state of chromium, electrons form spin-density waves and charge-density waves with wave vector along one of the lattice cubic axes; the spontaneous ordering of the electrons breaks the lattice symmetry and creates domains within a single crystal. We report the first 3-dimentional mapping of charge-density wave domains in bulk polycrystalline chromium samples using differential-aperture x-ray microdiffraction at the Advanced Photon Source. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

  6. 3D mapping of stellar populations in galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2015-08-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600A to 10300 A for a representative sample of 10,000 nearby galaxies. MaNGA will allow the internal kinematics and spatially-resolved properties of stellar populations and gas inside galaxies to be studied as a function of local environment and halo mass for the very first time. I will present results from our analysis of the first year MaNGA data. The main focus is on the 3-dimensional distribution of stellar population properties in galaxies - formation age, element abundance, IMF slope - studying how these vary spatially in galaxies as a function of galaxy environment and dark matter halo mass.

  7. A 3D map of the islet routes throughout the healthy human pancreas.

    PubMed

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  8. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  9. Stardust Under a Microscope - 3D maps of Wild 2/81P Cometary Samples in Aerogel

    NASA Astrophysics Data System (ADS)

    White, Amanda J.; Ebel, Denton

    2016-01-01

    The NASA Stardust mission to comet Wild 2 returned to Earth in 2006 with cometary and interstellar material captured in aerogel. Cometary particles impacted an aerogel collector at a relative velocity of 6.1 km/s, creating three-dimensional (3D) impact tracks of melted and crushed aerogel, void space, and fragmented cometary material. Each track represents the history of a unique hypervelocity capture event. The nature of each impact, including the original state of the impactor, is recorded in track morphology and material distribution. Using a combination of 3D morphological data, chemical data, and microphysical models, it is possible to reconstruct track formation events and a model of the original impactor.The focus of this work is to fully characterize whole tracks both morphologically and chemically using solely non-destructive methods. To achieve this, we combine high-resolution laser scanning confocal microscope (LSCM) 3D imaging with synchrotron X-ray fluorescence (SXRF) chemical mapping. We are also beginning to incorporate Raman spectroscopy to perform mineral phase analysis of fine track wall material. Using a Zeiss LSM 710 LSCM located in the American Museum of Natural History, we have imaged the morphology of over a dozen, whole Stardust tracks at high resolution (<80 nm/pixel in XY). We obtain the distribution of fine material along the track walls both quickly and without disturbing the sample. Complementary chemical data is acquired using the GSECARS X-ray microbe on beamline 13-IDE at the Advance Photon Source (APS) of Argonne National Laboratory. X-ray fluorescence maps of each track were collected with 100ms/pixel dwell time at a resolution of 1 or 2 micron/pixel. Many tracks were tilted and mapped a second time for stereo measurements.A thorough understanding of how cometary material and aerogel is distributed along tracks is required to understand the events which occurred after impact and to back-calculate properties of the original impactor

  10. Identification of topographic elements composition based on landform boundaries from radar interferometry segmentation (preliminary study on digital landform mapping)

    NASA Astrophysics Data System (ADS)

    Widyatmanti, Wirastuti; Wicaksono, Ikhsan; Dinta Rahma Syam, Prima

    2016-06-01

    Dense vegetation that covers most landscapes in Indonesia becomes a common limitation in mapping the landforms in tropical region. This paper aims to examine the use of radar interferometry for landform mapping in tropical region; to examine the application of segmentation method to develop landform type boundaries; and to identify the topographic elements composition for each type of landform. Using Idrisi® and “eCognition ®” softwares, toposhape analysis, segmentation and multi-spectral classification were applied to identify the composition of topographic elements i.e. the types of land-cover from Landsat 8, elevation, slope, relief intensity and curvatures from SRTM (DEM). Visual interpretation on DEM and land-cover fusion imagery was conducted to derive basic control maps of landform and land-cover. The result shows that in segmentation method, shape and compactness levels are essential in obtaining land-cover, elevation, and slope class units to determine the most accurate class borders of each element. Despite a complex procedure applied in determining landform classification, the combination of topographic elements segmentation result presents a distinct border of each landform class. The comparison between landform maps derived from segmentation process and visual interpretation method demonstrates slight dissimilarities, meaning that multi-stage segmentation approach can improve and provide more effective digital landform mapping method in tropical region. Topographic elements on each type of landforms show distinctive composition key containing the percentage of each curvature elements per area unit. Supported by GIS programming and modeling in the future, this finding is significant in reducing effort in landform mapping using visual interpretation method for a very large coverage but in detail scale level.

  11. A Neural Field Model of the Somatosensory Cortex: Formation, Maintenance and Reorganization of Ordered Topographic Maps

    PubMed Central

    Detorakis, Georgios Is.; Rougier, Nicolas P.

    2012-01-01

    We investigate the formation and maintenance of ordered topographic maps in the primary somatosensory cortex as well as the reorganization of representations after sensory deprivation or cortical lesion. We consider both the critical period (postnatal) where representations are shaped and the post-critical period where representations are maintained and possibly reorganized. We hypothesize that feed-forward thalamocortical connections are an adequate site of plasticity while cortico-cortical connections are believed to drive a competitive mechanism that is critical for learning. We model a small skin patch located on the distal phalangeal surface of a digit as a set of 256 Merkel ending complexes (MEC) that feed a computational model of the primary somatosensory cortex (area 3b). This model is a two-dimensional neural field where spatially localized solutions (a.k.a. bumps) drive cortical plasticity through a Hebbian-like learning rule. Simulations explain the initial formation of ordered representations following repetitive and random stimulations of the skin patch. Skin lesions as well as cortical lesions are also studied and results confirm the possibility to reorganize representations using the same learning rule and depending on the type of the lesion. For severe lesions, the model suggests that cortico-cortical connections may play an important role in complete recovery. PMID:22808127

  12. Delineating recharge areas for stratified-drift aquifers in Connecticut with geologic and topographic maps

    USGS Publications Warehouse

    Handman, E.H.

    1986-01-01

    Stratified-drift aquifers, the major source of large quantities of groundwater in Connecticut, are recharged principally by (1) precipitation that infiltrates the land surface overlying the aquifer and percolates downward to the saturated zone, (2) subsurface inflow of groundwater from adjacent till-and-bedrock uplands, and (3) surface water that infiltrates through streambed or lake-bottom sediments. Infiltration of surface water commonly occurs where pumping wells lower then water table sufficiently to reverse the normal hydraulic gradient between the aquifer and nearly surface-water body to which it is hydraulically connected. In most parts of Connecticut, groundwater circulation in unconsolidated deposits is probably confined within each basin drained by a major perrennial stream. Where this is the case, surface water and groundwater drainage divides commonly coincide, and areas that contribute recharge under natural conditions and under conditions of development can be estimated using geologic and topographic maps. Large stratified-drift aquifers that extend across surface water drainage, divides underlie most of north-central Connecticut and parts of the Quinnipiac and Farmington River basins. Definition of recharge areas for these aquifers is more complicated and requires more detailed hydrologic information. (USGS)

  13. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  14. Topographic Mapmaking.

    ERIC Educational Resources Information Center

    Meunier, Tony K.

    1980-01-01

    The making of topographic maps is described as a sequence of the following steps: establishment of control, photogrammetry and field operations, annotation of photographs, stereoplatting, editing, preparation of color-separation plates, and printing. Precise standards are emphasized. (Author/SA)

  15. Development and application of a ray-tracing code integrating with 3D equilibrium mapping in LHD ECH experiments

    NASA Astrophysics Data System (ADS)

    Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.

    2015-11-01

    The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.

  16. a Shared Database of Underground Utility Lines for 3d Mapping and GIS Applications

    NASA Astrophysics Data System (ADS)

    Cazzaniga, N. E.; Carrion, D.; Migliaccio, F.; Barzaghi, R.

    2013-05-01

    For the purpose of facility management it is very important to have detailed and up-to-date databases of underground utility lines, but such data are not always available with adequate accuracy. Hence, the need of collecting and organizing suitable information on underground services is a fundamental issue when dealing with urban data. Besides, by analyzing the process of designing and laying new underground infrastructures it is possible to implement an efficient and cost-effective approach to integrate and update existing maps by exploiting the surveying required for the installation of new facilities. It is also important to underline that collecting all the data in a unique integrated database (and GIS) gives the possibility to share (at least at a local level) the cartographic and thematic information for an optimal management of underground networks. In this paper, a database (DB) model for archiving the underground lines data is presented. The structure of the DB has been designed by following the standard methodology for the modelling of a relational DB, going through successive phases and originating the external, conceptual and logical model. Finally, preliminary tests have been carried on for parts of the DB to verify quality parameters.

  17. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.

    PubMed

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  18. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace

    PubMed Central

    Marini, Francesca; Squeri, Valentina; Morasso, Pietro; Konczak, Jürgen; Masia, Lorenzo

    2016-01-01

    Proprioceptive signals from peripheral mechanoreceptors form the basis for bodily perception and are known to be essential for motor control. However we still have an incomplete understanding of how proprioception differs between joints, whether it differs among the various degrees-of-freedom (DoFs) within a particular joint, and how such differences affect motor control and learning. We here introduce a robot-aided method to objectively measure proprioceptive function: specifically, we systematically mapped wrist proprioceptive acuity across the three DoFs of the wrist/hand complex with the aim to characterize the wrist position sense. Thirty healthy young adults performed an ipsilateral active joint position matching task with their dominant wrist using a haptic robotic exoskeleton. Our results indicate that the active wrist position sense acuity is anisotropic across the joint, with the abduction/adduction DoF having the highest acuity (the error of acuity for flexion/extension is 4.64 ± 0.24°; abduction/adduction: 3.68 ± 0.32°; supination/pronation: 5.15 ± 0.37°) and they also revealed that proprioceptive acuity decreases for smaller joint displacements. We believe this knowledge is imperative in a clinical scenario when assessing proprioceptive deficits and for understanding how such sensory deficits relate to observable motor impairments. PMID:27536882

  19. Full circle: 3D femoral mapping demonstrates age-related changes that influence femoral implant positioning.

    PubMed

    Tucker, Damien; Surup, Timm; Petersik, Andreas; Kelly, Michael

    2016-02-01

    The geometry of the femur is important in the final position of an intramedullary implant; we hypothesised that the femoral geometry changes with age and this may predispose the elderly to anterior mal-positioning of these implants. We used CT DICOM data of 919 intact left femora and specialist software that allowed us to defined landmarks for measurement reference - such as the linea aspera - on a template bone that could be mapped automatically to the entire database. We found that older (>80 years) cortical bone is up to 1.5 mm thinner anteriorly and 2 mm thinner posteriorly than younger (<40 years) bone but the rate of change of posterior to anterior cortex thickness is greater in the older bone. We also found the isthmus in the elderly to be more distal and less substantial than in the younger bone. This study has demonstrated femoral geometry changes with age that may explain our perception that the elderly are at increased risk for anterior mal-positioning of intramedullary implants. PMID:26686594

  20. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  1. 3D Inversion of a Self-Potential Dataset for Contaminant Detection and Mapping

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Sogade, J.; Briggs, V.; Lambert, M.; Reppert, P.; Coles, D.; Morgan, F.; Rossabi, J.; Riha, B.; Shi, W.

    2003-12-01

    Due to the complicated nature of subsurface contaminant migration, it is difficult to determine the spatial extent and severity of contamination, which can provide essential information for efficient remediation efforts. Self-potential (SP) geophysics is employed to provide a minimally invasive, fast, and inexpensive method for remote in-situ detection and three-dimensional mapping of subsurface DNAPL (Dense Non-Aqueous Phase Liquid) in conjunction with inverse methods. The self-potential method is commonly used to detect a variety of phenomena that are typically related to thermoelectric, electrochemical, or electrokinetic coupling processes. Surface self-potential surveys have been documented to show anomalies over areas known to be contaminated, but interpretation of these datasets is often mostly qualitative, and can be plagued with problems of non-uniqueness. In this study, oxidation-reduction (redox) reactions, one of the mechanisms associated with the attenuation of chemicals released into the environment, provide an electrochemical source for the SP signal. Electrochemical potentials associated with subsurface zones of redox activity are analogous to localized 'batteries' buried within native earth materials, and produce an electric field that is remotely detected using electrodes placed at the surface and in nearby boreholes. Three-dimensional inversion of the self-potential data incorporating resistivity information is the necessary step in characterizing the source parameters, which are directly related to the redox activity, and therefore to the contaminant itself. Surface and borehole SP data are collected in order to help constrain the solution in depth, and resistivity information is taken from an induced polarization survey performed over the same area during this field excursion. Inversion results are correlated with contaminant concentration data sampled from a series of ground-truth boreholes within the region of interest.

  2. Mapping mean total annual precipitation in Belgium, by investigating the scale of topographic control at the regional scale

    NASA Astrophysics Data System (ADS)

    Meersmans, J.; Van Weverberg, K.; De Baets, S.; De Ridder, F.; Palmer, S. J.; van Wesemael, B.; Quine, T. A.

    2016-09-01

    Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological models that have a spatial output component. It is well known that topography has a major influence on the spatial distribution of precipitation and that increasing topographical complexity is associated with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a climate measuring network with higher spatial density is needed in mountainous areas in order to obtain the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual precipitation mapping technique that combines topographical information (i.e. elevation and slope orientation) with average total annual rain gauge data in order to overcome this problem. A unique feature of this paper is the identification of the scale at which topography influences the precipitation pattern as well as the direction of the dominant weather circulation. This method was applied for Belgium and surroundings and shows that the identification of the appropriate scale at which topographical obstacles impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dominant weather circulation is determined at 260°. Hence, this approach allows accurate mapping of mean annual precipitation patterns in regions characterized by rather high topographical complexity using a climate data network with a relatively low density and/or when more advanced precipitation measurement techniques, such as radar, aren't available, for example in the case of historical data.

  3. Mapping the Monoceros Ring in 3D with Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Morganson, Eric; Conn, Blair; Rix, Hans-Walter; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth; Dolphin, Andrew; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene A.; Martin, Nicolas F.; Martinez-Delgado, David; Metcalfe, Nigel; Schlafly, Edward F.; Slater, Colin T.; Wainscoat, Richard J.; Waters, Christopher Z.

    2016-07-01

    Using the Pan-STARRS1 survey, we derive limiting magnitude, spatial completeness, and density maps that we use to probe the three-dimensional structure and estimate the stellar mass of the so-called Monoceros Ring. The Monoceros Ring is an enormous and complex stellar sub-structure in the outer Milky Way disk. It is most visible across the large Galactic Anticenter region, 120^\\circ \\lt l\\lt 240^\\circ , -30^\\circ \\lt b\\lt +40^\\circ . We estimate its stellar mass density profile along every line of sight in 2° × 2° pixels over the entire 30,000 deg2 Pan-STARRS1 survey using the previously developed match software. By parsing this distribution into a radially smooth component and the Monoceros Ring, we obtain its mass and distance from the Sun along each relevant line of sight. The Monoceros Ring is significantly closer to us in the south (6 kpc) than in the north (9 kpc). We also create 2D cross-sections parallel to the Galactic plane that show 135° of the Monoceros Ring in the south and 170° of the Monoceros Ring in the north. We show that the northern and southern structures are also roughly concentric circles, suggesting that they may be waves rippling from a common origin. Excluding the Galactic plane ˜ +/- 4^\\circ , we observe an excess mass of 4× {10}6{M}ȯ across 120^\\circ \\lt l\\lt 240^\\circ . If we interpolate across the Galactic plane, we estimate that this region contains 8× {10}6{M}ȯ . If we assume (somewhat boldly) that the Monoceros Ring is a set of two Galactocentric rings, its total mass is 6× {10}7{M}ȯ . Finally, if we assume that it is a set of two circles centered at a point 4 kpc from the Galactic center in the anti-central direction, as our data suggests, we estimate its mass to be 4× {10}7{M}ȯ .

  4. Comparative study of software techniques for 3D mapping of perforators in deep inferior epigastric artery perforator flap planning

    PubMed Central

    Hunter-Smith, David J.; Rozen, Warren Matthew

    2016-01-01

    Background Computed tomographic (CT) angiography (CTA) is widely considered the gold standard imaging modality for preoperative planning autologous breast reconstruction with deep inferior epigastric artery (DIEA) perforator (DIEP) flap. Improved anatomical understanding from CTA has translated to enhanced clinical outcomes. To achieve this, the use of appropriate CT hardware and software is vital. Various CT scanners and contrast materials have been demonstrated to consistently produce adequate scan data. However, the availability of affordable and easily accessible imaging software capable of generating 3D volume-rendered perforator images to clinically useful quality has been lacking. Osirix (Pixmeo, Geneva, Switzerland) is a free, readily available medical image processing software that shows promise. We have previously demonstrated in a case report the usefulness of Osirix in localizing perforators and their course. Methods In the current case series of 50 consecutive CTA scans, we compare the accuracy of Osirix to a commonly used proprietary 3D imaging software, Siemens Syngo InSpace 4D (Siemens, Erlangen, Germany), in identifying perforator number and location. Moreover, we compared both programs to intraoperative findings. Results We report a high rate of concordance with Osirix and Siemens Syngo InSpace 4D (99.6%). Both programs correlated closely with operative findings (92.2%). Most of the discrepancies were found in the lateral row perforators (90%). Conclusions In the current study, we report the accuracy of Osirix that is comparable to Siemens Syngo InSpace 4D, a proprietary software, in mapping perforators. However, it provides an added advantage of being free, easy-to-use, portable, and potentially a superior quality of 3D reconstructed image. PMID:27047778

  5. Merged Shape from Shading and Shape from Stereo for Planetary Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Tyler, Laurence; Cook, Tony; Barnes, Dave; Parr, Gerhard; Kirk, Randolph

    2014-05-01

    Digital Elevation Models (DEMs) of the Moon and Mars have traditionally been produced from stereo imagery from orbit, or from the surface landers or rovers. One core component of image-based DEM generation is stereo matching to find correspondences between images taken from different viewpoints. Stereo matchers that rely mostly on textural features in the images can fail to find enough matched points in areas lacking in contrast or surface texture. This can lead to blank or topographically noisy areas in resulting DEMs. Fine depth detail may also be lacking due to limited precision and quantisation of the pixel matching process. Shape from shading (SFS), a two dimensional version of photoclinometry, utilizes the properties of light reflecting off surfaces to build up localised slope maps, which can subsequently be combined to extract topography. This works especially well on homogeneous surfaces and can recover fine detail. However the cartographic accuracy can be affected by changes in brightness due to differences in surface material, albedo and light scattering properties, and also by the presence of shadows. We describe here experimental research for the Planetary Robotics Vision Data Exploitation EU FP7 project (PRoViDE) into using stereo generated depth maps in conjunction with SFS to recover both coarse and fine detail of planetary surface DEMs. Our Large Deformation Optimisation Shape From Shading (LDOSFS) algorithm uses image data, illumination, viewing geometry and camera parameters to produce a DEM. A stereo-derived depth map can be used as an initial seed if available. The software uses separate Bidirectional Reflectance Distribution Function (BRDF) and SFS modules for iterative processing and to make the code more portable for future development. Three BRDF models are currently implemented: Lambertian, Blinn-Phong, and Oren-Nayar. A version of the Hapke reflectance function, which is more appropriate for planetary surfaces, is under development

  6. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030. PMID:26241161

  7. C2SM: a mobile system for detecting and 3D mapping of chemical, radiological, and nuclear contamination

    NASA Astrophysics Data System (ADS)

    Jasiobedzki, Piotr; Ng, Ho-Kong; Bondy, Michel; McDiarmid, C. H.

    2009-05-01

    CBRN Crime Scene Modeler (C2SM) is a prototype mobile CBRN mapping system for First Responders in events where Chemical, Biological, Radiological and Nuclear agents where used. The prototype operates on board a small robotic platform, increases situational awareness of the robot operator by providing geo-located images and data, and current robot location. The sensor suite includes stereo and high resolution cameras, a long wave infra red (thermal) camera and gamma and chemical detectors. The system collects and sends geo-located data to a remote command post in near real-time and automatically creates 3D photorealistic model augmented with CBRN measurements. Two prototypes have been successfully tested in field trials and a fully ruggedised commercial version is expected in 2010.

  8. Combined interpretation of 3D seismic reflection attributes for geothermal exploration in the Polish Basin using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Pussak, Marcin; Stiller, Manfred; Bujakowski, Wieslaw

    2014-05-01

    Self-organizing maps (SOM) are neural network techniques which can be used for the joint interpretation of multi-disciplinary data sets. In this investigation we apply SOM within a geothermal exploration project using 3D seismic reflection data. The study area is located in the central part of the Polish basin. Several sedimentary target horizons were identified at this location based on fluid flow rate measurements in the geothermal research well Kompina-2. The general objective is a seismic facies analysis and characterization of the major geothermal target reservoir. A 3D seismic reflection experiment with a sparse acquisition geometry was carried out around well Kompina-2. Conventional signal processing (amplitude corrections, filtering, spectral whitening, deconvolution, static corrections, muting) was followed by normal-moveout (NMO) stacking, and, alternatively, by common-reflection-surface (CRS) stacking. Different signal attributes were then derived from the stacked images including root-mean-square (RMS) amplitude, instantaneous frequency and coherency. Furthermore, spectral decomposition attributes were calculated based on the continuous wavelet transform. The resulting attribute maps along major target horizons appear noisy after the NMO stack and clearly structured after the CRS stack. Consequently, the following SOM-based multi-parameter signal attribute analysis was applied only to the CRS images. We applied our SOM work flow, which includes data preparation, unsupervised learning, segmentation of the trained SOM using image processing techniques, and final application of the learned knowledge. For the Lower Jurassic target horizon Ja1 we derived four different clusters with distinct seismic attribute signatures. As the most striking feature, a corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and low frequencies. In our interpretation we assume that this combination of signal properties can be

  9. The Derivation of Fault Volumetric Properties from 3D Trace Maps Using Outcrop Constrained Discrete Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Hodgetts, David; Seers, Thomas

    2015-04-01

    Fault systems are important structural elements within many petroleum reservoirs, acting as potential conduits, baffles or barriers to hydrocarbon migration. Large, seismic-scale faults often serve as reservoir bounding seals, forming structural traps which have proved to be prolific plays in many petroleum provinces. Though inconspicuous within most seismic datasets, smaller subsidiary faults, commonly within the damage zones of parent structures, may also play an important role. These smaller faults typically form narrow, tabular low permeability zones which serve to compartmentalize the reservoir, negatively impacting upon hydrocarbon recovery. Though considerable improvements have been made in the visualization field to reservoir-scale fault systems with the advent of 3D seismic surveys, the occlusion of smaller scale faults in such datasets is a source of significant uncertainty during prospect evaluation. The limited capacity of conventional subsurface datasets to probe the spatial distribution of these smaller scale faults has given rise to a large number of outcrop based studies, allowing their intensity, connectivity and size distributions to be explored in detail. Whilst these studies have yielded an improved theoretical understanding of the style and distribution of sub-seismic scale faults, the ability to transform observations from outcrop to quantities that are relatable to reservoir volumes remains elusive. These issues arise from the fact that outcrops essentially offer a pseudo-3D window into the rock volume, making the extrapolation of surficial fault properties such as areal density (fracture length per unit area: P21), to equivalent volumetric measures (i.e. fracture area per unit volume: P32) applicable to fracture modelling extremely challenging. Here, we demonstrate an approach which harnesses advances in the extraction of 3D trace maps from surface reconstructions using calibrated image sequences, in combination with a novel semi

  10. 3D geological modelling and geothermal mapping - the first results of the transboundary Polish - Saxon project "TransGeoTherm"

    NASA Astrophysics Data System (ADS)

    Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario

    2014-05-01

    TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series

  11. Development of Inundation Map for Bantayan Island, Cebu Using Delft3D-Flow Storm Surge Simulations of Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.

  12. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. PMID:25847969

  13. Field Trial Results of a 14-channel GPR Integrated with a U.S. Program for 3-D Utility Mapping

    NASA Astrophysics Data System (ADS)

    Anspach, James H.

    2013-04-01

    utilities were mostly undetectable. Through a ground-truthing program of test holes to expose utilities, the depth values derived from the enhanced GPR were fairly consistent and within 15 cm of actual depth. The incomplete underground picture determined by the enhanced GPR reinforces previous studies that show that the mapping of existing underground utilities is a multi-tool effort that takes highly trained and skilled field technicians and data interpreters. The addition of a new GPR tool is valuable in determining continuous depth profiles of imaged utilities. A second and significant benefit is the interpretation of other geotechnical data that benefit project designers. This might include showing geometry, location, intensity, and depths of either areas of anomalies, or of known structures, such as paving thickness, substrate thickness, voids, water table, soil lenses, boulders, bedrock, and so forth. The Florida Department of Transportation has decided to take advantage of this new technology and has entered into an experimental contract with Cardno TBE to incorporate several enhanced GPR arrays with traditional utility detection tools. The goal of this contract will be to provide a 3-D model of existing underground utilities for use in automated construction. The GPR 3-D data model will be melded with conventional subsurface utility engineering and mapping practices and will be required to follow the ASCE 38 standard for utility data reliability.

  14. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping

    NASA Astrophysics Data System (ADS)

    van Oosten, Luuk N.; Pieterse, Mervin; Pinkse, Martijn W. H.; Verhaert, Peter D. E. M.

    2015-12-01

    Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides.

  15. 3D-QSAR AND CONTOUR MAP ANALYSIS OF TARIQUIDAR ANALOGUES AS MULTIDRUG RESISTANCE PROTEIN-1 (MRP1) INHIBITORS

    PubMed Central

    Kakarla, Prathusha; Inupakutika, Madhuri; Devireddy, Amith R.; Gunda, Shravan Kumar; Willmon, Thomas Mark; Ranjana, KC; Shrestha, Ugina; Ranaweera, Indrika; Hernandez, Alberto J.; Barr, Sharla; Varela, Manuel F.

    2016-01-01

    One of the major obstacles to the successful chemotherapy towards several cancers is multidrug resistance of human cancer cells to anti-cancer drugs. An important contributor to multidrug resistance is the human multidrug resistance protein-1 transporter (MRP1), which is an efflux pump of the ABC (ATP binding cassette) superfamily. Thus, highly efficacious, third generation MRP1 inhibitors, like tariquidar analogues, are promising inhibitors of multidrug resistance and are under clinical trials. To maximize the efficacy of MRP1 inhibitors and to reduce systemic toxicity, it is important to limit the exposure of MRP1 inhibitors and anticancer drugs to normal tissues and to increase their co-localization with tumor cells. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) associated with 3D-Quantitiative structure-activity relationship (3D-QSAR) studies were performed on a series of tariquidar analogues, as selective MDR modulators. Best predictability was obtained with CoMFA model r2(non-cross-validated square of correlation coefficient) = 0.968, F value = 151.768 with five components, standard error of estimate = 0.107 while the CoMSIA yielded r2 = 0.982, F value = 60.628 with six components, and standard error of estimate = 0.154. These results indicate that steric, electrostatic, hydrophobic (lipophilic), and hydrogen bond donor substituents play significant roles in multidrug resistance modulation of tariquidar analogues upon MRP1. The tariquidar analogue and MRP1 binding and stability data generated from CoMFA and CoMSIA based 3D–contour maps may further aid in study and design of tariquidar analogues as novel, potent and selective MDR modulator drug candidates. PMID:26913287

  16. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    NASA Astrophysics Data System (ADS)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  17. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea.

    PubMed

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  18. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea

    PubMed Central

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  19. Comparison of High Resolution Topographic Data Sources (SAR, IfSAR, and LiDAR) for Storm Surge Hazard Maps

    NASA Astrophysics Data System (ADS)

    Suarez, J. K. B.; Santiago, J. T.; Muldong, T. M. M.; Lagmay, A. M. A.; Caro, C. V.; Ramos, M.

    2014-12-01

    As an archipelagic country, the Philippines has experienced multiple storm surge threats. Moreover, the country's location, adjacent to the Pacific Ocean, results in an average of eight to nine typhoons that make landfall in a year. Storm surge hazard maps require high resolution topographic data to illustrate water inflow in the event of storm surges in vulnerable coastal areas and for accurate boundaries and coastline. Furthermore, potential hazard areas tend to be generalized in lower resolution data. The objective of this research is to compare three sources where accurate and quality storm surge hazard maps will draw bases from. For this purpose, the researcher used and compared SAR, IfSAR and LiDAR. The study involved comparing maps from different topographic data sources in Tacloban, in the province of Leyte. This area was one of the most heavily stricken areas during typhoon Haiyan where more than 6,000 people died and P34.37 billion worth of property was destroyed. In the comparison of the three sources, the following had be taken into consideration: cost of acquiring data, processing time, purpose, and the results. The research learned the following: Synthetic Aperture Radar or SAR produces data with a 30 meter resolution, while Interferometric Synthetic Aperture Radar (IfSAR) offers a resolution of 5 meters. Light Detection and Ranging (LiDAR) has the highest resolution of the three with 1 meter. In addition, higher costs are paid for more detailed topographic data. Also, processing time takes longer for finer details due to the memory of the computer units used for modelling. The sources were also evaluated on the necessity of the scale at which the maps are needed for specific purposes such as practicality and direct disaster response. Results from the maps have been validated through interviews with the locals on the experience of actual storm surges. Through this study, the researcher concluded that although LiDAR can offer a more detailed and

  20. Facial whisker pattern is not sufficient to instruct a whisker-related topographic map in the mouse somatosensory brainstem.

    PubMed

    Laumonnerie, Christophe; Bechara, Ahmad; Vilain, Nathalie; Kurihara, Yukiko; Kurihara, Hiroki; Rijli, Filippo M

    2015-11-01

    Facial somatosensory input is relayed by trigeminal ganglion (TG) neurons and serially wired to brainstem, thalamus and cortex. Spatially ordered sets of target neurons generate central topographic maps reproducing the spatial arrangement of peripheral facial receptors. Facial pattern provides a necessary template for map formation, but may be insufficient to impose a brain somatotopic pattern. In mice, lower jaw sensory information is relayed by the trigeminal nerve mandibular branch, whose axons target the brainstem dorsal principal sensory trigeminal nucleus (dPrV). Input from mystacial whiskers is relayed by the maxillary branch and forms a topographic representation of rows and whiskers in the ventral PrV (vPrV). To investigate peripheral organisation in imposing a brain topographic pattern, we analysed Edn1(-/-) mice, which present ectopic whisker rows on the lower jaw. We found that these whiskers were innervated by mandibular TG neurons which initially targeted dPrV. Unlike maxillary TG neurons, the ectopic whisker-innervating mandibular neuron cell bodies and pre-target central axons did not segregate into a row-specific pattern nor target the dPrV with a topographic pattern. Following periphery-driven molecular repatterning to a maxillary-like identity, mandibular neurons partially redirected their central projections from dPrV to vPrV. Thus, while able to induce maxillary-like molecular features resulting in vPrV final targeting, a spatially ordered lower jaw ectopic whisker pattern is insufficient to impose row-specific pre-target organisation of the central mandibular tract or a whisker-related matching pattern of afferents in dPrV. These results provide novel insights into periphery-dependent versus periphery-independent mechanisms of trigeminal ganglion and brainstem patterning in matching whisker topography. PMID:26417040

  1. VizieR Online Data Catalog: 3D reddening map for stars from 2MASS phot. (Gontcharov, 2010)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-07-01

    A three-dimensional reddening map for stars within 1100pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude MKs=2.5m. The shift of this maximum toward large (J-Ks) with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0.03m for spatial cells with a side of 100pc. All of the known large absorbing clouds within 1100pc of the Sun have manifested themselves in the results obtained. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1100pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. Also the data of the Rv (2012AstL...38...12G) and Av (2012AstL...38...87G) 3D maps are added. (1 data file).

  2. Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-11-01

    Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.

  3. Multigrid mapping and box relaxation for simulation of the whole process of flow transition in 3-D boundary layers

    SciTech Connect

    Liu, C.; Liu, Z.

    1994-12-31

    A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.

  4. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex.

    PubMed

    Janssens, Thomas; Zhu, Qi; Popivanov, Ivo D; Vanduffel, Wim

    2014-07-30

    Face perception is crucial to survival among social primates. It has been suggested that a group of extrastriate cortical regions responding more strongly to faces than to nonface objects is critical for face processing in primates. It is generally assumed that these regions are not retinotopically organized, as with human face-processing areas, showing foveal bias but lacking any organization with respect to polar angle. Despite many electrophysiological studies targeting monkey face patches, the retinotopic organization of these patches remains largely unclear. We have examined the relationship between cortical face patches and the topographic organization of extrastriate cortex using biologically relevant, phase-encoded retinotopic mapping stimuli in macaques. Single-subject fMRI results indicated a gradual shift from highly retinotopic to no topographic organization from posterior to anterior face patches in inferotemporal cortex. We also constructed a probabilistic retinotopic atlas of occipital and ventral extrastriate visual cortex. By comparing this probabilistic map to the locations of face patches at the group level, we showed that a previously identified posterior lateral temporal face patch (PL) is located within the posterior inferotemporal dorsal (PITd) retinotopic area. Furthermore, we identified a novel face patch posterior PL, which is located in retinotopically organized transitional area V4 (V4t). Previously published coordinates of human PITd coincide with the group-level occipital face area (OFA), according to a probabilistic map derived from a large population, implying a potential correspondence between monkey PL/PITd and human OFA/PITd. Furthermore, the monkey middle lateral temporal face patch (ML) shows consistent foveal biases but no obvious polar-angle structure. In contrast, middle fundus temporal (MF), anterior temporal and prefrontal monkey face patches lacked topographic organization. PMID:25080579

  5. Fiber tract-driven topographical mapping (FTTM) reveals microstructural relevance for interhemispheric visuomotor function in the aging brain

    PubMed Central

    Schulte, Tilman; Maddah, Mahnaz; Müller-Oehring, Eva M.; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2013-01-01

    We present a novel approach – DTI-based fiber tract-driven topographical mapping (FTTM) – to map and measure the influence of age on the integrity of interhemispheric fibers and challenge their selective functions with measures of interhemispheric integration of lateralized information. This approach enabled identification of spatially specific topographical maps of scalar diffusion measures and their relation to measures of visuomotor performance. Relative to younger adults, older adults showed lower fiber integrity indices in anterior than posterior callosal fibers. FTTM analysis identified a dissociation in the microstructural – function associates between age groups: in younger adults, genu fiber integrity correlated with interhemispheric transfer time, whereas in older adults, body fiber integrity was correlated with interhemispheric transfer time with topographical specificity along left-lateralized callosal fiber trajectories. Neural co-activation from redundant targets was evidenced by fMRI-derived bilateral extrastriate cortex activation in both groups, and a group difference emerged for a pontine activation cluster that was differently modulated by response hand in older than younger adults. Bilateral processing advantages in older but not younger adults further correlated with fiber integrity in transverse pontine fibers that branch into the right cerebellar cortex, thereby supporting a role for the pons in interhemispheric facilitation. In conclusion, in the face of compromised anterior callosal fibers, older adults appear to use alternative pathways to accomplish visuomotor interhemispheric information transfer and integration for lateralized processing. This shift from youthful associations may indicate recruitment of compensatory mechanisms involving medial corpus callosum fibers and subcortical pathways. PMID:23567886

  6. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  7. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  10. Land-based lidar mapping: a new surveying technique to shed light on rapid topographic change

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert

    2006-01-01

    The rate of natural change in such dynamic environments as rivers and coastlines can sometimes overwhelm the monitoring capacity of conventional surveying methods. In response to this limitation, U.S. Geological Survey (USGS) scientists are pioneering new applications of light detection and ranging (lidar), a laser-based scanning technology that promises to greatly increase our ability to track rapid topographic changes and manage their impact on affected communities.

  11. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  12. Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps

    NASA Astrophysics Data System (ADS)

    Oh, Jaehong; Lee, Changno

    2015-02-01

    As the need for efficient methods to accurately update and refine geospatial satellite image databases is increasing, we have proposed the use of 3-dimensional digital maps for the fully-automated RPCs bias compensation of high resolution satellite imagery. The basic idea is that the map features are scaled and aligned to the image features, except for the local shift, through the RPCs-based image projection, and then the shifts are automatically determined over the entire image space by template-based edge matching of the heterogeneous data set. This enables modeling of RPCs bias compensation parameters for accurate georeferencing. The map features are selected based on four suggested rules. Experiments were carried out for three Kompsat-2 images and stereo IKONOS images with 1:5000 scale Korean national topographic maps. Image matching performance is discussed with justification of the parameter selection, and the georeferencing accuracy is analyzed. The experimental results showed the automated approach can achieve one-pixel level of georeferencing accuracy, enabling economical hybrid map creation as well as large scale map updates.

  13. Quantification of Early Stages of Cortical Reorganization of the Topographic Map of V1 Following Retinal Lesions in Monkeys

    PubMed Central

    Botelho, Eliã P.; Ceriatte, Cecília; Soares, Juliana G.M.; Gattass, Ricardo; Fiorani, Mario

    2014-01-01

    We quantified the capacity for reorganization of the topographic representation of area V1 in adult monkeys. Bias-free automated mapping methods were used to delineate receptive fields (RFs) of an array of neuronal clusters prior to, and up to 6 h following retinal lesions. Monocular lesions caused a significant reorganization of the topographic map in this area, both inside and outside the cortical lesion projection zone (LPZ). Small flashed stimuli revealed responses up to 0.85 mm inside the boundaries of the LPZ, with RFs representing regions of undamaged retina immediately surrounding the lesion. In contrast, long moving bars that spanned the scotoma resulting from the lesion revealed responsive units up to 1.87 mm inside the LPZ, with RFs representing interpolated responses in this region. This reorganization is present immediately after monocular retinal lesioning. Both stimuli showed a similar and significant (5-fold) increase of the RF scatter in the LPZ, 0.56 mm (median), compared with the undamaged retina, 0.12 mm. Our results reveal an array of preexisting subthreshold functional connections of up to 2 mm in V1, which can be rapidly mobilized independently from the differential qualitative reorganization elicited by each stimulus. PMID:23010747

  14. Unveiling topographical changes using LiDAR mapping capability: case study of Belaga in Sarawak, East-Malaysia

    NASA Astrophysics Data System (ADS)

    Ganendra, T. R.; Khan, N. M.; Razak, W. J.; Kouame, Y.; Mobarakeh, E. T.

    2016-06-01

    The use of Light Detection and Ranging (LiDAR) remote sensing technology to scan and map landscapes has proven to be one of the most popular techniques to accurately map topography. Thus, LiDAR technology is the ultimate method of unveiling the surface feature under dense vegetation, and, this paper intends to emphasize the diverse techniques that can be utilized to elucidate topographical changes over the study area, using multi-temporal airborne full waveform LiDAR datasets collected in 2012 and 2014. Full waveform LiDAR data offers access to an almost unlimited number of returns per shot, which enables the user to explore in detail topographical changes, such as vegetation growth measurement. The study also found out topography changes at the study area due to earthwork activities contributing to soil consolidation, soil erosion and runoff, requiring cautious monitoring. The implications of this study not only concurs with numerous investigations undertaken by prominent researchers to improve decision making, but also corroborates once again that investigations employing multi-temporal LiDAR data to unveil topography changes in vegetated terrains, produce more detailed and accurate results than most other remote sensing data.

  15. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented

  16. AI-based technique for tracking chains of discontinuous symbols and its application to the analysis of topographic maps

    NASA Astrophysics Data System (ADS)

    Mecocci, Alessandro; Lilla, Massimiliano

    1994-12-01

    Automatic digitization of topographic maps is a very important task nowadays. Among the different elements of a topographic map discontinuous lines represent important information. Generally they are difficult to track because they show very large gaps, and abrupt direction changes. In this paper an architecture that automates the digitalization of discontinuous lines (dot-dot lines, dash-dot-dash lines, dash-asterisk lines, etc.) is presented. The tracking process must detect the elementary symbols and then concatenate these symbols into a significant chain that represents the line. The proposed architecture is composed of a common kernel, based on a suitable modification of the A* algorithm, that starts different auxiliary processes depending on the particular line to be tracked. Three auxiliary processes are considered: search strategy generation (SSG) which is responsible for the strategy used to scan the image pixels; low level symbol detection (LSD) which decides if a certain image region around the pixel selected by the SSG is an elementary symbol; cost evaluation (CE) which gives the quality of each symbol with respect to the global course of the line. The whole system has been tested on a 1:50.000 map furnished by the Istituto Geografico Militare Italiano (IGMI). The results were very good for different types of discontinuous lines. Over the whole map (i.e. about 80 Mbytes of digitized data) 95% of the elementary symbols of the lines have been correctly chained. The operator time required to correct misclassifications is a small part of the time needed to manually digitize the discontinuous lines.

  17. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  18. SRTM DTM vs. one created from 1/50.000 topographic maps: the case of Kos Island

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Vaiopoulos, Dimitris; Skianis, Georgios

    2005-10-01

    The Shuttle Radar Topography Mission (SRTM), used an Interferometric Synthetic Aperture Radar (IFSAR) instrument to produce a near-global digital elevation map of the earth's land surface with 16 m absolute vertical height accuracy at 30 meter postings. SRTM achieved the required interferometric baseline by extending a receive-only radar antenna on a 60 meter deployable mast from the shuttle payload bay. Continuous measurement of the interferometric baseline length, attitude, and position was required at the 2 mm, 9 arcsec, and 1 m (1.6 sigma) levels, respectively, in order to obtain the desired height accuracy. The collected data were used to generate a digital topographic map of 80 percent of Earth's land surface (everything between 60 degrees north and 56 degrees south latitude), with data points spaced every 1 arcsecond of latitude and longitude (approximately 30 meters). An SRTM 3-arc-second product (90m resolution) is available for the entire world. In this paper we compare a DTM created from SRTM data to a DTM created from 1/50.000 topographic maps. The area of study is Kos Island in the Aegean Sea. Since the SRTM elevation data are unedited, they contain occasional voids, or gaps, where the terrain lay in the radar beam's shadow or in areas of extremely low radar backscatter, such as sea, dams, lakes and virtually any water covered surface that are flat but they don't look so flat on SRTM tiles. We used different filters and masks in order to ameliorate the quality of the DEM. The first filter detected and removed the voids; a second one interpolated the missing values and then a mask was used in order to separate sea from land. We also created a DTM from digitized contours of 1/50.000 scale topographic maps and we used more than 1800 extra points in order to ameliorate the quality of this DTM around the coastline. We compared the two DTMs. All the results demonstrated that the SRTM DTM presents a very good accuracy.

  19. Making Accurate Topographic Maps of the Schoolyard Using Ideas and Techniques Learned and Adapted from Multi-beam Sonar Mapping of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fuerst, S. I.; Roberts, J. D.

    2010-12-01

    Having participated in a University of Rhode Island Project Armada expedition to join the University of New Hampshire Center for Coastal and Oceanographic Studies in making multi-beam sonar contour maps of the Arctic Ocean floor, I was able to bring the principles learned from this trip to my earth science high school students and create a project in our "mapping the earth" unit. Students learn basic surveying techniques and create authentic, accurately detailed topographic maps of the schoolyard. Models of their maps are then constructed of either Styrofoam or wood which enables them to make the transition from a 2-dimensional map to a 3-dimensional representation. Even though our maps are created using sticks, line levels, compasses and GPS, the scientific concepts of using location and elevation data to draw contour lines are identical to those used in underwater mapping. Once the students understand the science in mapping and creating contour maps to scale on graph paper by hand, they are able to easily relate this knowledge to what I was doing onboard ship using multi-beam sonar and computer mapping programs. We would like to share with you the lab and techniques that we have developed to make this activity possible with minimal materials and simple technology. As a background extension, it is also possible to replicate sonar measurements using an aquarium, food coloring, and a surface grid to map the topography of a teacher created landscape on the aquarium bottom. Earth Science students using simple tools to accurately map the topography of the school grounds

  20. A statistical-topographic model for mapping climatological precipitation over mountainous terrain

    SciTech Connect

    Daly, C.; Neilson, R.P.; Phillips, D.L.

    1994-02-01

    The demand for climatological precipitation fields on a regular grid is growing dramatically as ecological and hydrological models become increasingly linked to geographic information systems that spatially represent and manipulate model output. This paper presents an analytical model that distributes point measurements of monthly and annual precipitation to regularly spaced grid cells in midlatitude regions. PRISM (Precipitation-elevation Regressions on Independent Slopes Model) brings a combination of climatological and statistical concepts to the analysis of orographic precipitation. Specifically, PRISM (1) uses a digital elevation model (DEM) to estimate the {open_quotes}orographic{close_quotes} elevations of precipitation stations; (2) uses the DEM and a windowing technique to group stations onto individual topographic facets; (3) estimates precipitation at a DEM grid cell through a regression of precipitation versus DEM elevation developed from stations on the cell`s topographic facet; and (4) when possible, calculates a prediction interval for the estimate, which is an approximation of the uncertainty involved. PRISM exhibited the lowest cross-validation bias and absolute error when compared to kriging, detrended kriging, and cokriging in the Willamette River basin, Oregon. PRISM was also applied to northern Oregon and to the entire western United States; detrended kriging and cokriging could not be used, because there was no overall relationship between elevation and precipitation. Cross-validation errors in these applications were confined to relatively low levels because PRISM continually adjusts its frame of reference by using localized precipitation-DEM elevation relationships. 39 refs., 9 figs., 5 tabs.

  1. Exploring the Impact of Visual Complexity Levels in 3d City Models on the Accuracy of Individuals' Orientation and Cognitive Maps

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Çöltekin, A.; Coetzee, S.

    2015-08-01

    In this paper we report results from a qualitative user experiment (n=107) designed to contribute to understanding the impact of various levels of complexity (mainly based on levels of detail, i.e., LoD) in 3D city models, specifically on the participants' orientation and cognitive (mental) maps. The experiment consisted of a number of tasks motivated by spatial cognition theory where participants (among other things) were given orientation tasks, and in one case also produced sketches of a path they `travelled' in a virtual environment. The experiments were conducted in groups, where individuals provided responses on an answer sheet. The preliminary results based on descriptive statistics and qualitative sketch analyses suggest that very little information (i.e., a low LoD model of a smaller area) might have a negative impact on the accuracy of cognitive maps constructed based on a virtual experience. Building an accurate cognitive map is an inherently desired effect of the visualizations in planning tasks, thus the findings are important for understanding how to develop better-suited 3D visualizations such as 3D city models. In this study, we specifically discuss the suitability of different levels of visual complexity for development planning (urban planning), one of the domains where 3D city models are most relevant.

  2. Watershed boundaries and digital elevation model of Oklahoma derived from 1:100,000-scale digital topographic maps

    USGS Publications Warehouse

    Cederstrand, J.R.; Rea, A.H.

    1995-01-01

    This document provides a general description of the procedures used to develop the data sets included on this compact disc. This compact disc contains watershed boundaries for Oklahoma, a digital elevation model, and other data sets derived from the digital elevation model. The digital elevation model was produced using the ANUDEM software package, written by Michael Hutchinson and licensed from the Centre for Resource and Environmental Studies at The Australian National University. Elevation data (hypsography) and streams (hydrography) from digital versions of the U.S. Geological Survey 1:100,000-scale topographic maps were used by the ANUDEM package to produce a hydrologically conditioned digital elevation model with a 60-meter cell size. This digital elevation model is well suited for drainage-basin delineation using automated techniques. Additional data sets include flow-direction, flow-accumulation, and shaded-relief grids, all derived from the digital elevation model, and the hydrography data set used in producing the digital elevation model. The watershed boundaries derived from the digital elevation model have been edited to be consistent with contours and streams from the U.S. Geological Survey 1:100,000-scale topographic maps. The watershed data set includes boundaries for 11-digit Hydrologic Unit Codes (watersheds) within Oklahoma, and 8-digit Hydrologic Unit Codes (cataloging units) outside Oklahoma. Cataloging-unit boundaries based on 1:250,000-scale maps outside Oklahoma for the Arkansas, Red, and White River basins are included. The other data sets cover Oklahoma, and where available, portions of 1:100,000-scale quadrangles adjoining Oklahoma.

  3. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye. PMID:26563101

  4. Evaluation of the User Strategy on 2d and 3d City Maps Based on Novel Scanpath Comparison Method and Graph Visualization

    NASA Astrophysics Data System (ADS)

    Dolezalova, J.; Popelka, S.

    2016-06-01

    The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).

  5. Mapping 3D fault geometry in earthquakes using high-resolution topography: Examples from the 2010 El Mayor-Cucapah (Mexico) and 2013 Balochistan (Pakistan) earthquakes

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Walker, Richard T.; Elliott, John R.; Parsons, Barry

    2016-04-01

    Fault dips are usually measured from outcrops in the field or inferred through geodetic or seismological modeling. Here we apply the classic structural geology approach of calculating dip from a fault's 3-D surface trace using recent, high-resolution topography. A test study applied to the 2010 El Mayor-Cucapah earthquake shows very good agreement between our results and those previously determined from field measurements. To obtain a reliable estimate, a fault segment ≥120 m long with a topographic variation ≥15 m is suggested. We then applied this method to the 2013 Balochistan earthquake, getting dips similar to previous estimates. Our dip estimates show a switch from north to south dipping at the southern end of the main trace, which appears to be a response to local extension within a stepover. We suggest that this previously unidentified geometrical complexity may act as the endpoint of earthquake ruptures for the southern end of the Hoshab fault.

  6. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    SciTech Connect

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph; McEachern, Donald; Ougouag, Abderrafi

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  7. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Kim, Hannah; Hong, Helen

    2015-03-01

    We propose an automatic segmentation method of chest wall in 3D ABUS images using rib shadow enhancement and multi-planar cumulative probability enhanced map. For the identification of individual dark rib shadows, each rib shadow is enhanced using intensity transfer function and 3D sheet-like enhancement filtering. Then, wrongly enhanced intercostal regions and small fatty tissues are removed using coronal and sagittal cumulative probability enhanced maps. The large fatty tissues with globular and sheet-like shapes at the top of rib shadow are removed using shape and orientation analysis based on moment matrix. Detected chest walls are connected with cubic B-spline interpolation. Experimental results show that the Dice similarity coefficient of proposed method as comparison with two manually outlining results provides over 90% in average.

  8. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Bird, Deanne

    2009-02-01

    An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.

  9. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area. PMID

  10. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. Reduction of Fluoroscopic Exposure Using a New Fluoroscopy Integrating Technology in a 3D-Mapping System During Pulmonary Vein Isolation With a Circular Multipolar Irrigated Catheter.

    PubMed

    Blockhaus, Christian; Schmidt, Jan; Kurt, Muhammed; Clasen, Lukas; Brinkmeyer, Christoph; Katsianos, Efstratios; Müller, Patrick; Gerguri, Shqipe; Kelm, Malte; Shin, Dong-In; Makimoto, Hisaki

    2016-05-25

    Pulmonary vein isolation (PVI) is a cornerstone therapy in patients with atrial fibrillation (AF). With increasing numbers of PVI procedures, demand arises to reduce the cumulative fluoroscopic radiation exposure for both the physician and the patient. New technologies are emerging to address this issue. Here, we report our first experiences with a new fluoroscopy integrating technology in addition to a current 3D-mapping system. The new fluoroscopy integrating system (FIS) with 3D-mapping was used prospectively in 15 patients with AF. Control PVI cases (n = 37) were collected retrospectively as a complete series. Total procedure time (skin to skin), fluoroscopic time, and dose-area-product (DAP) data were analyzed. All PVI procedures were performed by one experienced physician using a commercially available circular multipolar irrigated ablation catheter. All PVI procedures were successfully undertaken without major complications. Baseline characteristics of the two groups showed no significant differences. In the group using the FIS, the fluoroscopic time and DAP were significantly reduced from 571 ± 187 seconds versus 1011 ± 527 seconds (P = 0.0029) and 4342 ± 2073 cGycm(2) versus 6208 ± 3314 cGycm(2) (P = 0.049), respectively. Mean procedure time was not significantly affected and was 114 ± 31 minutes versus 104 ± 24 minutes (P = 0.23) by the FIS.The use of the new FIS with the current 3D-mapping system enables a significant reduction of the total fluoroscopy time and DAP compared to the previous combination of 3D-mapping system plus normal fluoroscopy during PVI utilizing a circular multipolar irrigated ablation catheter. However, the concomitant total procedure time is not affected. Thus, the new system reduces the radiation exposure for both the physicians and patients. PMID:27181037

  12. The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history

    USGS Publications Warehouse

    Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A., Jr.; Hare, T.M.

    2014-01-01

    A new global geologic map of Mars has been completed in a digital, geographic information system (GIS) format using geospatially controlled altimetry and image data sets. The map reconstructs the geologic history of Mars, which includes many new findings collated in the quarter century since the previous, Viking-based global maps were published, as well as other discoveries that were made during the course of the mapping using new data sets. The technical approach enabled consistent and regulated mapping that is appropriate not only for the map's 1:20,000,000 scale but also for its widespread use by diverse audiences. Each geologic unit outcrop includes basic attributes regarding identity, location, area, crater densities, and chronostratigraphic age. In turn, units are grouped by geographic and lithologic types, which provide synoptic global views of material ages and resurfacing character for the Noachian, Hesperian, and Amazonian periods. As a consequence of more precise and better quality topographic and morphologic data and more complete crater-density dating, our statistical comparisons identify significant refinements for how Martian geologic terrains are characterized. Unit groups show trends in mean elevation and slope that relate to geographic occurrence and geologic origin. In comparison with the previous global geologic map series based on Viking data, the new mapping consists of half the number of units due to simpler, more conservative and globally based approaches to discriminating units. In particular, Noachian highland surfaces overall have high percentages of their areas now dated as an epoch older than in the Viking mapping. Minimally eroded (i.e., pristine) impact craters ≥3 km in diameter occur in greater proportion on Hesperian surfaces. This observation contrasts with a deficit of similarly sized craters on heavily cratered and otherwise degraded Noachian terrain as well as on young Amazonian surfaces. We interpret these as reflecting the

  13. The digital global geologic map of Mars: Chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; Robbins, S. J.; Fortezzo, C. M.; Skinner, J. A.; Hare, T. M.

    2014-05-01

    A new global geologic map of Mars has been completed in a digital, geographic information system (GIS) format using geospatially controlled altimetry and image data sets. The map reconstructs the geologic history of Mars, which includes many new findings collated in the quarter century since the previous, Viking-based global maps were published, as well as other discoveries that were made during the course of the mapping using new data sets. The technical approach enabled consistent and regulated mapping that is appropriate not only for the map's 1:20,000,000 scale but also for its widespread use by diverse audiences. Each geologic unit outcrop includes basic attributes regarding identity, location, area, crater densities, and chronostratigraphic age. In turn, units are grouped by geographic and lithologic types, which provide synoptic global views of material ages and resurfacing character for the Noachian, Hesperian, and Amazonian periods. As a consequence of more precise and better quality topographic and morphologic data and more complete crater-density dating, our statistical comparisons identify significant refinements for how Martian geologic terrains are characterized. Unit groups show trends in mean elevation and slope that relate to geographic occurrence and geologic origin. In comparison with the previous global geologic map series based on Viking data, the new mapping consists of half the number of units due to simpler, more conservative and globally based approaches to discriminating units. In particular, Noachian highland surfaces overall have high percentages of their areas now dated as an epoch older than in the Viking mapping. Minimally eroded (i.e., pristine) impact craters ≥3 km in diameter occur in greater proportion on Hesperian surfaces. This observation contrasts with a deficit of similarly sized craters on heavily cratered and otherwise degraded Noachian terrain as well as on young Amazonian surfaces. We interpret these as reflecting the

  14. Web-based 3D digital pathology framework for large-mapping data scanned by FF-OCT

    NASA Astrophysics Data System (ADS)

    Chang, ChiaKai; Tsai, Chien-Chung; Chien, Meng-Ting; Li, Yu-I.; Shun, Chia-Tung; Huang, Sheng-Lung

    2015-03-01

    Full-Field Optical Coherence Tomography (FF-OCT) is a high resolution instrument in 3 dimensional (3D) space, including lateral and longitudinal direction. With FF-OCT, we can perform 3D scanning for excised biopsy or cell culture sample to obtain cellular information. In this work, we have set up a high resolution FF-OCT scanning instrument that can perform cellular resolution tomography scanning of skin tissue for histopathology study. In a scan range of 1cm(x), 1cm(y), 106μm(z), for example, digital data occupies 253 GB capacity. Copying these materials is time consuming, not to mention efficient browsing and analyzing of these data. To solve the problem of information delivery, we have established a network service to browse and analyze the huge volume data.

  15. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  16. Arctic Research Mapping Application 3D Geobrowser: Accessing and Displaying Arctic Information From the Desktop to the Web

    NASA Astrophysics Data System (ADS)

    Johnson, G. W.; Gonzalez, J.; Brady, J. J.; Gaylord, A.; Manley, W. F.; Cody, R.; Dover, M.; Score, R.; Garcia-Lavigne, D.; Tweedie, C. E.

    2009-12-01

    ARMAP 3D allows users to dynamically interact with information about U.S. federally funded research projects in the Arctic. This virtual globe allows users to explore data maintained in the Arctic Research & Logistics Support System (ARLSS) database providing a very valuable visual tool for science management and logistical planning, ascertaining who is doing what type of research and where. Users can “fly to” study sites, view receding glaciers in 3D and access linked reports about specific projects. Custom “Search” tasks have been developed to query by researcher name, discipline, funding program, place names and year and display results on the globe with links to detailed reports. ARMAP 3D was created with ESRI’s free ArcGIS Explorer (AGX) new build 900 providing an updated application from build 500. AGX applications provide users the ability to integrate their own spatial data on various data layers provided by ArcOnline (http://resources.esri.com/arcgisonlineservices). Users can add many types of data including OGC web services without any special data translators or costly software. ARMAP 3D is part of the ARMAP suite (http://armap.org), a collection of applications that support Arctic science tools for users of various levels of technical ability to explore information about field-based research in the Arctic. ARMAP is funded by the National Science Foundation Office of Polar Programs Arctic Sciences Division and is a collaborative development effort between the Systems Ecology Lab at the University of Texas at El Paso, Nuna Technologies, the INSTAAR QGIS Laboratory, and CH2M HILL Polar Services.

  17. Evaluation of the altimetry from SRTM-3 and planimetry from high-resolution PALSAR FBD data for semi-detailed topographic mapping in the Amazon Region.

    PubMed

    Rodrigues, Thiago G; Paradella, Waldir R; Oliveira, Cleber G

    2011-09-01

    The Brazilian Amazon has a deficit of 35% of coverage regarding topographic mapping at semi-detailed (1:100,000) scale. This paper presents an alternative to overcome this scenario using a combination of planialtimetric information from two orbital SAR (Synthetic Aperture Radar) missions. The altimetry was acquired from Shuttle Radar Topography Mission (SRTM), while the planimetry was provided from Fine Beam Dual (FBD) images of the Phased Array L-band Synthetic Aperture Radar (PALSAR) sensor. The research was carried out in the mountainous area of the Serra dos Carajás (Pará State), located on the Amazon region. The quality of the orbital topographic information was evaluated regarding precise planialtimetric measurements acquired from Global Positioning System (GPS) field campaigns. The evaluations were performed following two approaches: (1) the use of Root Mean Square Error (RMSE) and (2) tendency and precision hypothesis tests. The investigation has shown that the planialtimetric quality of the orbital products fulfilled the Brazilian Map Accuracy Standards requirements for 1:100,000 A Class map. Thus, the use of combination of information provided by PALSAR and SRTM-3 data can be considered a promising alternative for production and update of semi-detailed topographic mapping in similar environments of the Amazon region, where topographic information is lacking or presents low quality. PMID:21861043

  18. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  19. Molecular cartography of the human skin surface in 3D

    PubMed Central

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  20. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  1. Morphometric analysis of the Koros drainage basin (Hungary/Romania) using historical topographic maps

    NASA Astrophysics Data System (ADS)

    Petrovszki, J.

    2009-04-01

    The Körös River drainage basin is located in the eastern part of the Great Hungarian Plain, west of the Apuseni Mts., in the middle of the Pannonian Basin. The channels of the river and its tributaries are mostly meandering. The channel sinuosity of this river system is analyzed in order to draw conclusions on the neotectonic activity of this area. The meandering rivers can demonstrate changes, which occurred recently, and cannot be seen with other methods. The changing sinuosity indicates the location of the vertical movements of the surface. The sinuosity calculations were made on the natural, uncontrolled riverbeds. These beds were digitized from the maps of the Second Military Survey of the Habsburg Empire, which were measured before or during river control implementation. Digitized features were made on the geo-referred maps, which are in the Hungarian National Grid (EOV) coordinate system. The estimated accuracy of the map sheets to the modern system is 50-100 m, but the accuracy in Hungary remains under 30 m. In the study area, we identified several points of sinuosity change. To prove, that these are of neotectonic origin, seismic sections crossing the study area, were also analyzed. Five fault lines are indicated to be neotectonically active according to the river planform changes. Activity of two of these five faults, and the subsidence in-between them caused the formation of the Nagy-Sárrét marshland. A Romanian river section, characterized by anastomosed planform, instead of meandering, indicates recent activity of another fault.

  2. A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex

    PubMed Central

    HD, Lu; G, Chen; DY, Ts’o; AW, Roe

    2009-01-01

    In optical imaging experiments, it is often advantageous to map the field of view and to converge the eyes without electrophysiological recording. This occurs when limited space precludes placement of an electrode or in chronic optical chambers in which one may not want to introduce an electrode each session or for determining eye position in studies of ocular disparity response in visual cortex of anesthetized animals. For these purposes, we have developed a spot imaging method that can be conducted rapidly and repeatedly throughout an experiment. Using small 0.2° – 0.5° spots, the extent of the imaged field of view is mapped by imaging cortical response to single spots, placed at different positions (0.2° steps) in either the horizontal or vertical axes. By shifting the relative positions of two spots, one presented to each eye, eye convergence can be assessed to within 0.1° resolution. Once appropriate eye alignment is determined, stimuli for further optical imaging procedures (e.g. imaging random dot stimuli for study of disparity responses) can then be confidently placed. This procedure can be quickly repeated throughout the experiment to ensure maintained eye alignment. PMID:19013530

  3. Integrating Physical and Topographic Information Into a Fuzzy Scheme to Map Flooded Area by SAR

    PubMed Central

    Pierdicca, Nazzareno; Chini, Marco; Pulvirenti, Luca; Macina, Flavia

    2008-01-01

    A flood mapping procedure based on a fuzzy sets theory has been developed. The method is based on the integration of Synthetic Aperture Radar (SAR) measurements with additional data on the inundated area, such as a land cover map and a digital elevation model (DEM). The information on land cover has allowed us to account for both specular reflection, typical of open water, and double bounce backscattering, typical of forested and urban areas. DEM has been exploited to include simple hydraulic considerations on the dependence of inundation probability on surface characteristics. Contextual information has been taken into account too. The proposed algorithm has been tested on a flood occurred in Italy on November 1994. A pair of ERS-1 images, collected before and after (three days later) the flood, has been used. The results have been compared with the data provided by a ground survey carried out when the flood reached its maximum extension. Despite the temporal mismatch between the survey and the post-inundation SAR image, the comparison has yielded encouraging results, with the 87% of the pixels correctly classified as inundated.

  4. A novel method for simultaneous 3D B(1) and T(1) mapping: the method of slopes (MoS).

    PubMed

    Chavez, Sofia; Stanisz, Greg J

    2012-09-01

    A novel three-dimensional simultaneous B(1) and T(1) mapping method is introduced: the method of slopes (MoS). The linearity of the spoiled gradient recalled echo (SPGR) signal vs flip angle relation is exploited: B(1) mapping is achieved by a two-point extrapolation to signal null with a correction scheme while T(1) mapping uses the slopes of the SPGR signal vs flip angle curves near the origin and near the signal null. This new method improves upon the existing variable flip angle (VFA) T(1)-mapping method in that (i) consistency between B(1) and T(1) maps is ensured (ii) the sampling scheme is T(1)-independent (iii) the noise bias and singularity, associated with using a linear form for the SPGR signal equation, is eliminated by using the full equation. The method is shown to yield accurate and robust results via simulations. Initial estimates of B(1) and T(1) values are obtained from three data points via simple computations and straight line approximations. Initial estimates of B(1) values, for a range of values, are shown to be accurate due to the proposed B(1) correction scheme. The accuracy and robustness of T(1) values is achieved via a non-linear fitting algorithm which includes a fourth data point sampled at high SNR. The MoS was validated by comparing resulting B(1) and T(1) maps with those obtained using other standard methods. Finally, the ability to obtain brain B(1) and T(1) maps using the MoS was demonstrated by in vivo experiments. The MoS is expected to perform well on other motion-free anatomical regions as well. PMID:22368092

  5. A Mars' Year of Topographic Mapping With The Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    2001-01-01

    Since the end of February 1999 the Mars Orbiter Laser Altimeter (MOLA) has been mapping the planet continuously except for a 2 month period around solar conjunction in June 2000. At the end of January 2001 the Mars Global Surveyor Spacecraft (MGS) had completed its prime Mission, one Mars year of observing the planet, and begun the Extended Mission of slightly more than 14 months. MOLA will had acquired over 530 million altimetric measurements by early 2001, and continued to work perfectly. During the Extended Mission the main objective for MOLA will be observations of the seasonal variations in the locations and altitudes of clouds, the changes in the elevations of the polar icecaps due to the deposition and sublimation Of CO2, as well as supporting NASA's search for suitable future landing sites.

  6. Topographic mapping of subsurface fluorescent structures in tissue using multiwavelength excitation

    PubMed Central

    Kim, Anthony; Roy, Mathieu; Dadani, Farhan N.; Wilson, Brian C.

    2010-01-01

    Different colors of visible light penetrate to varying depths in tissue due to the wavelength dependence of tissue optical absorption and elastic scattering. We exploit this to map the contour of the closest surface of a buried fluorescent object. This uses a novel algorithm based on the diffusion theory description of light propagation in tissue at each excitation wavelength to derive metrics that define the depth of the top surface of the object. The algorithm was validated using a tissue-simulating phantom. It was then demonstrated in vivo by subsurface brain tumor topography in a rodent model, using the fluorescence signal from protoporphyrin IX that is preferentially synthesized within malignant cells following systemic application of aminolevulinic acid. Comparisons to histomorphometry in the brain post mortem show the spatial accuracy of the technique. This method has potential for fluorescence image-guided tumor surgery, as well as other biomedical and nonbiological applications in subsurface sensing. PMID:21198200

  7. Automatic Texture Mapping with AN Omnidirectional Camera Mounted on a Vehicle Towards Large Scale 3d City Models

    NASA Astrophysics Data System (ADS)

    Deng, F.; Li, D.; Yan, L.; Fan, H.

    2012-07-01

    Today high resolution panoramic images with competitive quality have been widely used for rendering in some commercial systems. However the potential applications such as mapping, augmented reality and modelling which need accurate orientation information are still poorly studied. Urban models can be quickly obtained from aerial images or LIDAR, however with limited quality or efficiency due to low resolution textures and manual texture mapping work flow. We combine an Extended Kalman Filter (EKF) with the traditional Structure from Motion (SFM) method without any prior information based on a general camera model which can handle various kinds of omnidirectional and other kind of single perspective image sequences even with unconnected or weakly connected frames. The orientation results is then applied to mapping the textures from panoramas to the existing building models obtained from aerial photogrammetry. It turns out to largely improve the quality of the models and the efficiency of the modelling procedure.

  8. About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm

    PubMed Central

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  9. Predictive Modeling of Antioxidant Coumarin Derivatives Using Multiple Approaches: Descriptor-Based QSAR, 3D-Pharmacophore Mapping, and HQSAR.

    PubMed

    Mitra, Indrani; Saha, Achintya; Roy, Kunal

    2013-03-01

    The inability of the systemic antioxidants to alleviate the exacerbation of free radical formation from metabolic outputs and environmental pollutants claims an urgent demand for the identification and design of new chemical entities with potent antioxidant activity. In the present work, different QSAR approaches have been utilized for identifying the essential structural attributes imparting a potential antioxidant activity profile of the coumarin derivatives. The descriptor-based QSAR model provides a quantitative outline regarding the structural prerequisites of the molecules, while 3D pharmacophore and HQSAR models emphasize the favourable spatial arrangement of the various chemical features and the crucial molecular fragments, respectively. All the models infer that the fused benzene ring and the oxygen atom of the pyran ring constituting the parent coumarin nucleus capture the prime pharmacophoric features, imparting superior antioxidant activity to the molecules. The developed models may serve as indispensable query tools for screening untested molecules belonging to the class of coumarin derivatives. PMID:23641329

  10. About Non-Line-Of-Sight satellite detection and exclusion in a 3D map-aided localization algorithm.

    PubMed

    Peyraud, Sébastien; Bétaille, David; Renault, Stéphane; Ortiz, Miguel; Mougel, Florian; Meizel, Dominique; Peyret, François

    2013-01-01

    Reliable GPS positioning in city environment is a key issue: actually, signals are prone to multipath, with poor satellite geometry in many streets. Using a 3D urban model to forecast satellite visibility in urban contexts in order to improve GPS localization is the main topic of the present article. A virtual image processing that detects and eliminates possible faulty measurements is the core of this method. This image is generated using the position estimated a priori by the navigation process itself, under road constraints. This position is then updated by measurements to line-of-sight satellites only. This closed-loop real-time processing has shown very first promising full-scale test results. PMID:23344379

  11. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    NASA Astrophysics Data System (ADS)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  12. VERITAS: A Mission Concept for the High Resolution Topographic Mapping and Imaging of Venus

    NASA Astrophysics Data System (ADS)

    Hensley, S.; Smrekar, S. E.; Pollard, B.

    2012-12-01

    Magellan, a NASA mission to Venus in the early 1990's, mapped nearly the entire surface of Venus with an S-band (12 cm) synthetic aperture radar and microwave radiometer and made radar altimeter measurements of the topography. These measurements revolutionized our understanding of the geomorphology, geology and geophysical processes that have shaped the evolution of the surface of Venus. The Magellan spacecraft had an elliptical orbit with an apoapsis of approximately 8000 km and a periapsis of 257 km and an orbital inclination of 86°. In this way the radar was able to collect long strips of data approximately 10000 km in length running north to south with altitudes varying from 3000 km to 257 km. During the remainder of the orbit the collected data was down linked to earth. The SAR mode operated in burst mode fashion whereby it transmitted a small string of pulses up to a couple of hundred pulses in length followed by a quiescent period when the radar ceased transmission and allowed interleaved operation of the altimeter and radiometer modes. This mode of operation allowed for a significant reduction in downlinked SAR imaging data at the expense of azimuth (i.e. along-track) resolution. However, the lack of finer resolution imagery and topography of the surface than that obtained by the Magellan mission has hampered the definitive answer to key questions concerning the processes and evolution of the surface of Venus. The Venus Emissivity, Radio Science, InSAR Topography And Spectroscopy (VERITAS) Mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer coupled with a multispectral NIR emissivity mapping capability. VERITAS would map surface topography with a spatial resolution of 250 m and 5 m vertical accuracy and generate radar imagery with 30 m spatial resolution. These capabilities represent an order of magnitude or better improvement

  13. A digital version of the 1970 U.S. Geological Survey topographic map of the San Francisco Bay region, three sheets, 1:125,000

    USGS Publications Warehouse

    Aitken, Douglas S.

    1997-01-01

    This Open-File report is a digital topographic map database. It contains a digital version of the 1970 U.S. Geological Survey topographic map of the San Francisco Bay Region (3 sheets), at a scale of 1:125,000. These ARC/INFO coverages are in vector format. The vectorization process has distorted characters representing letters and numbers, as well as some road and other symbols, making them difficult to read in some instances. This pamphlet serves to introduce and describe the digital data. There is no paper map included in the Open-File report. The content and character of the database and methods of obtaining it are described herein.

  14. Reinventing the National Topographic Database

    NASA Astrophysics Data System (ADS)

    Jakobsson, A.; Ilves, R.

    2016-06-01

    The National Land Survey (NLS) has had a digital topographic database (TDB) since 1992. Many of its features are based on the Basic Map created by M. Kajamaa in 1947, mapping first completed in 1977. The basis for the renewal of the TDB begun by investigating the value of the TDB, a study made by the Aalto University in 2014 and a study on the new TDB system 2030 published by the Ministry of Agriculture in 2015. As a result of these studies the NLS set up a programme for creating a new National Topographic Database (NTDB) in beginning of 2015. First new version should be available in 2019. The new NTDB has following key features: 1) it is based on processes where data is naturally maintained, 2) it is quality managed, 3) it has persistent Ids, 4) it supports 3D, 4D, 5) it is based on standards. The technical architecture is based on interoperable modules. A website for following the development of the NTDB can be accessed for more information: http://kmtk.maanmittauslaitos.fi/.

  15. Topographical Mapping of the Rainbow Trout (Oncorhynchus mykiss) Microbiome Reveals a Diverse Bacterial Community with Antifungal Properties in the Skin.

    PubMed

    Lowrey, Liam; Woodhams, Douglas C; Tacchi, Luca; Salinas, Irene

    2015-10-01

    The mucosal surfaces of wild and farmed aquatic vertebrates face the threat of many aquatic pathogens, including fungi. These surfaces are colonized by diverse symbiotic bacterial communities that may contribute to fight infection. Whereas the gut microbiome of teleosts has been extensively studied using pyrosequencing, this tool has rarely been employed to study the compositions of the bacterial communities present on other teleost mucosal surfaces. Here we provide a topographical map of the mucosal microbiome of an aquatic vertebrate, the rainbow trout (Oncorhynchus mykiss). Using 16S rRNA pyrosequencing, we revealed novel bacterial diversity at each of the five body sites sampled and showed that body site is a strong predictor of community composition. The skin exhibited the highest diversity, followed by the olfactory organ, gills, and gut. Flectobacillus was highly represented within skin and gill communities. Principal coordinate analysis and plots revealed clustering of external sites apart from internal sites. A highly diverse community was present within the epithelium, as demonstrated by confocal microscopy and pyrosequencing. Using in vitro assays, we demonstrated that two Arthrobacter sp. skin isolates, a Psychrobacter sp. strain, and a combined skin aerobic bacterial sample inhibit the growth of Saprolegnia australis and Mucor hiemalis, two important aquatic fungal pathogens. These results underscore the importance of symbiotic bacterial communities of fish and their potential role for the control of aquatic fungal diseases. PMID:26209676