Science.gov

Sample records for 3d transition-metal oxides

  1. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  2. Microscopic magnetic nature of K2NiF4-type 3d transition metal oxides

    NASA Astrophysics Data System (ADS)

    Sugiyama, J.; Nozaki, H.; Umegaki, I.; Higemoto, W.; Ansaldo, E. J.; Brewer, J. H.; Sakurai, H.; Kao, T.-H.; Yang, H.-D.; Månsson, M.

    2014-12-01

    In order to elucidate the magnetic nature of K2NiF4-type 3d transition metal oxides, we have measured μ+SR spectra for Sr2VO4, LaSrVO4, and Sr2CrO4 using powder samples. ZF- and wTF-μ+SR measurements propose that Sr2VO4 enters into the static antiferromagnetic (AF) order phase below 8 K. In addition, TF-μ+SR measurements evidence that the transition at 105 K is not magnetic but structural and/or electronic in origin. For LaSrVO4, static long-range order has not been observed down to 20 K, while, as T decreases from 145 K, wTF asymmetry starts to decrease below 60 K, suggesting the appearance and evolution of localized magnetic moments below 60 K. For Sr2CrO4, by contrast, both ZF- and wTF-μ+SR have confirmed the presence of antiferromagnetic order below 117 K, as predicted in the χ(T) curve.

  3. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    SciTech Connect

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  4. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

    PubMed

    Bhattacharya, Jishnu; Wolverton, C

    2013-05-01

    Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation. PMID:23529669

  5. Thermomechanical properties of 3d transition metals

    SciTech Connect

    Karaoglu, B.; Rahman, S.M.M. . Dept. of Physics)

    1994-05-15

    The authors have investigated the density variation of the Einstein temperatures and elastic constants of the 3d transition metals. In this respect they have employed the transition metal (TM) pair potentials involving the sp contribution with an appropriate exchange and correlation function, the d-band broadening contribution and the d-band hybridization term. These calculations are aimed at testing the TM pair potentials in generating the quasilocal and local thermomechanical properties.

  6. Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution.

    PubMed

    Mitterbauer, C; Kothleitner, G; Grogger, W; Zandbergen, H; Freitag, B; Tiemeijer, P; Hofer, F

    2003-09-01

    Near-edge fine structures of the metal L(2,3) and O K-edges in transition metal-oxides have been studied with a transmission electron microscope equipped with a monochromator and a high-resolution imaging filter. This system enables the recording of EELS spectra with an energy resolution of 0.1eV thus providing new near-edge fine structure details which could not be observed previously by EELS in conventional TEM instruments. EELS-spectra from well-defined oxides like titanium oxide (TiO(2)), vanadium oxide (V(2)O(5)), chromium oxide (Cr(2)O(3)), iron oxide (Fe(2)O(3)), cobalt oxide (CoO) and nickel oxide (NiO) have been measured with the new system. These spectra are compared with EELS data obtained from a conventional microscope and the main spectral features are interpreted. Additionally, the use of monochromised TEMs is discussed in view of the natural line widths of K and L(2,3) edges. PMID:12871809

  7. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    NASA Astrophysics Data System (ADS)

    Xu, Zhongnan; Joshi, Yogesh V.; Raman, Sumathy; Kitchin, John R.

    2015-04-01

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  8. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  9. Magnetism In 3d Transition Metals at High Pressures

    SciTech Connect

    Iota, V

    2006-02-09

    This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

  10. Correlated electron pseudopotentials for 3d-transition metals

    SciTech Connect

    Trail, J. R. Needs, R. J.

    2015-02-14

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  11. Correlated electron pseudopotentials for 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Trail, J. R.; Needs, R. J.

    2015-02-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc - Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature.

  12. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Pickup, David M; Liu, Yi-Sheng; Edström, Kristina; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-07-01

    During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates. PMID:27325095

  13. Voltage controlled magnetism in 3d transitional metals

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2015-03-01

    Despite having attracted much attention in multiferroic materials and diluted magnetic semiconductors, the impact of an electric field on the magnetic properties remains largely unknown in 3d transitional ferromagnets (FMs) until recent years. A great deal of effort has been focused on the voltage-controlled magnetic anisotropy (VCMA) effect where the modulation of anisotropy field is understood by the change of electron density among different d orbitals of FMs in the presence of an electric field. Here we demonstrate another approach to alter the magnetism by electrically controlling the oxidation state of the 3d FM at the FM/oxide interface. The thin FM film sandwiched between a heavy metal layer and a gate oxide can be reversibly changed from an optimally-oxidized state with a strong perpendicular magnetic anisotropy to a metallic state with an in-plane magnetic anisotropy, or to a fully-oxidized state with nearly zero magnetization, depending on the polarity and time duration of the applied electric fields. This is a voltage controlled magnetism (VCM) effect, where both the saturation magnetization and anisotropy field of the 3d FM layer can be simultaneously controlled by voltage in a non-volatile fashion. We will also discuss the impact of this VCM effect on magnetic tunnel junctions and spin Hall switching experiments. This work, in collaboration with C. Bi, Y.H. Liu, T. Newhouse-Illige, M. Xu, M. Rosales, J.W. Freeland, O. Mryasov, S. Zhang, and S.G.E. te Velthuis, was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  14. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.

    PubMed

    Luo, Kun; Roberts, Matthew R; Guerrini, Niccoló; Tapia-Ruiz, Nuria; Hao, Rong; Massel, Felix; Pickup, David M; Ramos, Silvia; Liu, Yi-Sheng; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-09-01

    Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials. PMID:27498756

  15. Magnetic Behavior of 3d Transition Metals in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng; Lambrecht, Walter R. L.

    2002-03-01

    The magnetic properties of cubic silicon carbide (SiC) doped by first row transition metals (TM) are studied within the local spin density functional approach using the linearized muffin-tin orbital method in the atomic sphere approximation. It is found that the couplings between the TM d orbitals and the dangling bond states are stronger for the Si site doping, which gives a larger e-t2 splitting. The stronger coupling also delocalizes the t2 states and hence reduces the spin polarization. As a result the TMs tend to have a low spin configuration at the Si site and a high spin one at the C site. On the other hand, the strong couplings lower the formation energy at the Si site and TMs prefer to dope the Si site in both the Si-rich and C-rich limits. For Si site doping, Cr and Mn exhibit the most pronounced magnetic behavior with Cr favoring ferromagnetic and Mn antiferromagnetic nearest neighbor coupling.

  16. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  17. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  18. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  19. Structure and magnetic exchange in heterometallic 3d-3d transition metal triethanolamine clusters.

    PubMed

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2012-01-21

    Synthetic methods are described that have resulted in the formation of seven heterometallic complexes, all of which contain partially deprotonated forms of the ligand triethanolamine (teaH(3)). These compounds are [Mn(III)(4)Co(III)(2)Co(II)(2)O(2)(teaH(2))(2)(teaH)(0.82)(dea)(3.18)(O(2)CMe)(2)(OMe)(2)](BF(4))(2)(O(2)CMe)(2)·3.18MeOH·H(2)O (1), [Mn(II)(2)Mn(III)(2)Co(III)(2)(teaH)(4)(OMe)(2)(acac)(4)](NO(3))(2)·2MeOH (2), [Mn(III)(2)Ni(II)(4)(teaH)(4)(O(2)CMe)(6)]·2MeCN (3), [Mn(III)(2)Co(II)(2)(teaH)(2)(sal)(2)(acac)(2)(MeOH)(2)]·2MeOH (4), [Mn(II)(2)Fe(III)(2)(teaH)(2)(paa)(4)](NO(3))(2)·2MeOH·CH(2)Cl(2) (5), [Mn(II)Mn(III)(2)Co(III)(2)O(teaH)(2)(dea)(Iso)(OMe)(F)(2)(Phen)(2)](BF(4))(NO(3))·3MeOH (6) and [Mn(II)(2)Mn(III)Co(III)(2)(OH)(teaH)(3)(teaH(2))(acac)(3)](NO(3))(2)·3CH(2)Cl(2) (7). All of the compounds contain manganese, combined with 3d transition metal ions such as Fe, Co and Ni. The crystal structures are described and examples of 'rods', tetranuclear 'butterfly' and 'triangular' Mn(3) cluster motifs, flanked in some cases by diamagnetic cobalt(III) centres, are presented. Detailed DC and AC magnetic susceptibility and magnetization studies, combined with spin Hamiltonian analysis, have yielded J values and identified the spin ground states. In most cases, the energies of the low-lying excited states have also been obtained. The features of note include the 'inverse butterfly' spin arrangement in 2, 4 and 5. A S = 5/2 ground state occurs, for the first time, in the Mn(III)(2)Mn(II) triangular moiety within 6, the many other reported [Mn(3)O](6+) examples having S = ½ or 3/2 ground states. Compound 7 provides the first example of a Mn(II)(2)Mn(III) triangle, here within a pentanuclear Mn(3)Co(2) cluster. PMID:22113523

  20. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  1. Melting points and chemical bonding properties of 3d transition metal elements

    NASA Astrophysics Data System (ADS)

    Takahara, Wataru

    2014-08-01

    The melting points of 3d transition metal elements show an unusual local minimal peak at manganese across Period 4 in the periodic table. The chemical bonding properties of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper are investigated by the DV-Xα cluster method. The melting points are found to correlate with the bond overlap populations. The chemical bonding nature therefore appears to be the primary factor governing the melting points.

  2. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  3. Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics

    NASA Astrophysics Data System (ADS)

    Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.

    Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.

  4. Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules.

    PubMed

    Doblhoff-Dier, Katharina; Meyer, Jörg; Hoggan, Philip E; Kroes, Geert-Jan; Wagner, Lucas K

    2016-06-14

    Transition metals and transition metal compounds are important to catalysis, photochemistry, and many superconducting systems. We study the performance of diffusion Monte Carlo (DMC) applied to transition metal containing dimers (TMCDs) using single-determinant Slater-Jastrow trial wavefunctions and investigate the possible influence of the locality and pseudopotential errors. We find that the locality approximation can introduce nonsystematic errors of up to several tens of kilocalories per mole in the absolute energy of Cu and CuH if Ar or Mg core pseudopotentials (PPs) are used for the 3d transition metal atoms. Even for energy differences such as binding energies, errors due to the locality approximation can be problematic if chemical accuracy is sought. The use of the Ne core PPs developed by Burkatzki et al. (J. Chem. Phys. 2008, 129, 164115), the use of linear energy minimization rather than unreweighted variance minimization for the optimization of the Jastrow function, and the use of large Jastrow parametrizations reduce the locality errors. In the second section of this article, we study the general performance of DMC for 3d TMCDs using a database of binding energies of 20 TMCDs, for which comparatively accurate experimental data is available. Comparing our DMC results to these data for our results that compare best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems (Truhlar et al. J. Chem. Theory Comput. 2015, 11, 2036-2052). The mean errors in DMC depend less on the exchange-correlation functionals used to generate the trial wavefunction than the corresponding mean errors in the underlying DFT calculations. Furthermore, the QMC results obtained for each molecule individually vary less with the functionals used. These observations are relevant for systems such as

  5. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Sun, L. Z.

    2016-06-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices.

  6. Study of Photoionization Processes of 3d Transition Metal Compound CoCl2 Using Synchrotron Radiation

    SciTech Connect

    Goerguelueer, Oe.; Tutay, A.; Al-Hada, M.; Richter, T.; Zimmermann, P.; Martins, M.

    2007-04-23

    In this work, the photoionization processes of 3d transition metal compound CoCl2 have been investigated using monochromatized synchrotron radiation of the storage ring BESSY II and the atomic-molecular beam technique.

  7. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  8. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Perdew, John P.

    2006-01-01

    We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground

  9. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    PubMed Central

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  10. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-07-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness.

  11. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites.

    PubMed

    Autieri, Carmine; Kumar, P Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  12. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    PubMed Central

    Zhou, P.; Sun, L. Z.

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  13. Magnetic ordering in digital alloys of group-IV semiconductors with 3d-transition metals

    SciTech Connect

    Otrokov, M. M.; Tugushev, V. V.; Ernst, A.; Ostanin, S. A.; Kuznetsov, V. M.; Chulkov, E. V.

    2011-04-15

    The ab initio investigation of the magnetic ordering in digital alloys consisting of monolayers of 3d-transition metals Ti, V, Cr, Mn, Fe, Co, and Ni introduced into the Si, Ge, and Si{sub 0.5}Ge{sub 0.5} semiconductor hosts is reported. The calculations of the parameters of the exchange interactions and total-energy calculations indicate that the ferromagnetic order appears only in the manganese monolayers, whereas the antiferromagnetic order is more probable in V, Cr, and Fe monolayers, and Ti, Co, and Ni monolayers are nonmagnetic. The stability of the ferromagnetic phase in digital alloys containing manganese monolayers has been analyzed using the calculations of magnon spectra.

  14. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  15. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  16. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene.

    PubMed

    Zhou, P; Sun, L Z

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  17. Electronic and magnetic structure of 3d-transition-metal point defects in silicon calculated from first principles

    NASA Astrophysics Data System (ADS)

    Beeler, F.; Andersen, O. K.; Scheffler, M.

    1990-01-01

    We describe spin-unrestricted self-consistent linear muffin-tin-orbital (LMTO) Green-function calculations for Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu transition-metal impurities in crystalline silicon. Both defect sites of tetrahedral symmetry are considered. All possible charge states with their spin multiplicities, magnetization densities, and energy levels are discussed and explained with a simple physical picture. The early transition-metal interstitial and late transition-metal substitutional 3d ions are found to have low spin. This is in conflict with the generally accepted crystal-field model of Ludwig and Woodbury, but not with available experimental data. For the interstitial 3d ions, the calculated deep donor and acceptor levels reproduce all experimentally observed transitions. For substitutional 3d ions, a large number of predictions is offered to be tested by future experimental studies.

  18. 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography

    PubMed Central

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Yi, Hong; Will, Fabian; Richter, Heiko; Shin, Chong Hyun; Fahrni, Christoph J.

    2014-01-01

    Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development. PMID:24992831

  19. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  20. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  1. High-coverage stable structures of 3d transition metal intercalated bilayer graphene.

    PubMed

    Liao, Ji-Hai; Zhao, Yu-Jun; Tang, Jia-Jun; Yang, Xiao-Bao; Xu, Hu

    2016-06-01

    Alkali-metal intercalated graphite and graphene have been intensively studied for decades, where alkali-metal atoms are found to form ordered structures at the hollow sites of hexagonal carbon rings. Using first-principles calculations, we have predicted various stable structures of high-coverage 3d transition metal (TM) intercalated bilayer graphene (BLG) stabilized by the strain. Specifically, with reference to the bulk metal, Sc and Ti can form stable TM-intercalated BLG without strain, while the stabilization of Fe, Co, and Ni intercalated BLG requires the biaxial strain of over 7%. Under the biaxial strain ranging from 0% to 10%, there are four ordered sandwich structures for Sc with the coverage of 0.25, 0.571, 0.684, and 0.75, in which the Sc atoms are all distributed homogenously instead of locating at the hollow sites. According to the phase diagram, a homogenous configuration of C8Ti3C8 with the coverage of 0.75 and another inhomogeneous structure with the coverage of 0.692 were found. The electronic and magnetic properties as a function of strain were also analyzed to indicate that the strain was important for the stabilities of the high-coverage TM-intercalated BLG. PMID:27167998

  2. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  3. Kh a 1,2 hyperesatellites of 3d transition metals and their photoexcitation energy dependence.

    SciTech Connect

    Diamant, R.; Kao, C.; Huotari, S; Hamalainen, K; Sharon, R; Deutsch, M.

    2009-06-25

    Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K{sup h} {alpha}{sub 1,2} hypersatellites (HSs), were measured for the 3d transition metals, Z = 23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K{alpha}{sub 1,2}, the K{sup h}{alpha}{sub 1}-K{sup h}{alpha}{sub 2} splitting, and the K{sup h}{alpha}{sub 1}/K{sup h}{alpha}{sub 2} intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.

  4. Compositional dependence of elastic moduli for transition-metal oxide spinels

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.

    2012-12-01

    Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.

  5. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    SciTech Connect

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  6. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    NASA Astrophysics Data System (ADS)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  7. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  8. Dynamics and Control in Complex Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Averitt, R. D.

    2014-07-01

    Advances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.

  9. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  10. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  11. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2016-02-01

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results also compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  12. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGESBeta

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  13. Chiral structures and tunable magnetic moments in 3d transition metal doped Pt6 clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Rong; Yang, Xing; Ding, Xun-Lei

    2012-09-01

    The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt6 clusters is from 0 μB to 7 μB, revealing that the MPt6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.

  14. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  15. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  16. Pseudopotentials for quantum Monte Carlo calculations of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron; Santana, Juan; Kent, Paul; Reboredo, Fernando

    2015-03-01

    Quantum Monte Carlo calculations of transition metal oxides are partially limited by the availability of high quality pseudopotentials that are both accurate in QMC and compatible with major electronic structure codes, e.g. by not being overly hard in the standard planewave basis. Following insight gained from recent GW calculations, a set of neon core pseudopotentials with small cutoff radii have been created for the early transition metal elements Sc to Zn within the local density approximation of DFT. The pseudopotentials have been tested for energy consistency within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (TM) atoms and the binding curve of each TM-O dimer. The vast majority of the ionization potentials fall within 0.3 eV of the experimental values, with exceptions occurring mainly for atoms with multiple unpaired d electrons where multireference effects are the strongest. The equilibrium bond lengths of the dimers are within 1% of experimental values and the binding energy errors are typically less than 0.3 eV. Given the uniform treatment of the core, the larger deviations occasionally observed may primarily reflect the limitations of a Slater-Jastrow trial wavefunction. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. DOE. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  17. First-Principles Study of Electronic Structure and Hydrogen Adsorption of 3d Transition Metal Exposed Paddle Wheel Frameworks

    SciTech Connect

    Bak, J. H.; Le, V. D.; Kang, J.; Wei, S. H.; Kim, Y. H.

    2012-04-05

    Open-site paddle wheels, comprised of two transition metals bridged with four carboxylate ions, have been widely used for constructing metal-organic frameworks with large surface area and high binding energy sites. Using first-principles density functional theory calculations, we have investigated atomic and electronic structures of various 3d transition metal paddle wheels before and after metal exposure and their hydrogen adsorption properties at open metal sites. Notably, the hydrogen adsorption is impeded by covalent metal-metal bonds in early transition metal paddle wheels from Sc to Cr and by the strong ferromagnetic coupling of diatomic Mn and Fe in the paddle wheel configurations. A significantly enhanced H{sub 2} adsorption is predicted in the nonmagnetic Co{sub 2} and Zn{sub 2} paddle wheel with the binding energy of {approx}0.2 eV per H{sub 2}. We also propose the use of two-dimensional Co{sub 2} and Zn{sub 2} paddle wheel frameworks that could have strongly adsorbed dihydrogen up to 1.35 wt % for noncryogenic hydrogen storage applications.

  18. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  19. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  20. Giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films on MgO

    SciTech Connect

    Nakamura, Kohji Ikeura, Yushi; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Magnetocrystalline anisotropy (MCA) of the Fe-based transition-metal thin films was investigated by means of first principles full-potential linearized augmented plane wave method. A giant perpendicular MCA (PMCA), up to 3 meV, was confirmed in a 7-layer Fe-Ni film/MgO(001), where an Fe{sub 2}/Ni/Fe/Ni/Fe{sub 2} atomic-layer alignment with a bcc-like-layer stacking and the Fe/MgO interfaces play key roles for leading to the large PMCA. Importantly, we find that the PMCA overcomes enough over the magnetic dipole-dipole anisotropy that favors the in-plane magnetization even when the film thickness increases.

  1. Transition metal oxide as anode interface buffer for impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  2. Synthesis, characterization and antifungal activities of 3d-transition metal complexes of 1-acetylpiperazinyldithioc arbamate, M(acpdtc) 2

    NASA Astrophysics Data System (ADS)

    Mohammad, Ali; Varshney, Charu; Nami, Shahab A. A.

    2009-07-01

    A series of mononuclear 3d-transition metal complexes of the type M(acpdtc) 2 have been synthesized (where acpdtc = 1-acetylpiperazinyldithiocarbamate, M = Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)). The ligand and its complexes have been characterized by micro analysis (CHNS), TG/DSC, FT-IR, UV-vis, 1H NMR, magnetic susceptibility and conductance measurements. On the basis IR spectroscopy a symmetrical bidentate coordination has been observed for the 1-acetylpiperazinyldithiocarbamate moiety in all the complexes. On the basis of UV-vis spectra and magnetic susceptibility measurement a square-planar geometry has been proposed for the Ni(II) and Cu(II) complexes while the other complexes have been found to acquire a distorted-tetrahedral structure. The thermogravimetric and differential scanning calorimetric profile of the ligand indicates a two-step decomposition pattern while the complexes exhibit a three-stage thermogram forming metal sulfide as the eventual end product. The molar conductivity data of 1 mM solution in DMSO of the complexes is in close accord to their non-electrolytic behaviour. The ligand and its 3d-transition metal complexes have also been tested for their antifungicidal activity by agar well diffusion method using Fusarium sp. and Sclerotina sp. The maximum activity has been observed in case of Mn(II) and Fe(II) complexes.

  3. Interface of transition metal oxides at the atomic scale

    NASA Astrophysics Data System (ADS)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  4. Extraction of 3d transition metals from molten cesium-sodium-potassium/acetate eutectic into dodecane using organophosphorous ligands

    SciTech Connect

    Maroni, V.A.; Philbin, C.E.; Yonco, R.M.

    1983-01-01

    Measurements have been made of the transfer of the transition metal cations Cr/sup 3 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/ from molten cesium acetate-sodium acetate-potassium acetate eutectic (50-25-25 mol%, mp approx. 90/sup 0/C) into dodecane solutions containing selected acidic and neutral organophosphorous extracting ligands. The ordering of the transition metals according to their relative extents of extraction into the dodecane phase when the ligand bis(2-ethylhexyl)-phosphinic acid, H(DEPH), is employed (and the conditions of extraction are the same for each cation) is Co/sup 2 +/ > Fe/sup 2 +/ > Cr/sup 3 +/ > Ni/sup 2 +/. Comparisons of results obtained using the acidic ligand H(DEPH) and the neutral ligand tri-n-octylphosphine oxide, TOPO, indicate that the extractible TM complex does not contain acetate as a charge neutralizing ligand, but rather requires complete displacement of inner sphere acetate ions by protonated and/or deprotonated alkylphosphinate groups. The mechanism controlling the transfer kinetics has not been elucidated, but the rates of extraction from the acetate eutectic appear to be somewhat slower than has been observed for the extraction of transition metals from molten alkali metal thiocyanate and nitrate media at comparable temperatures, i.e., 140 ..-->.. 180/sup 0/C. 13 references, 2 figures, 2 tables.

  5. Extraction of 3d transition metals from molten cesium-sodium-potassium/acetate eutectic into dodecane using organophosphorous ligands

    SciTech Connect

    Maroni, V.A.; Philbin, C.E.; Yonco, R.M.

    1983-01-01

    Experimental results are reported for the transfer of the transition metal (TM) cations Cr/sup 3 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/ from molten cesium acetate-sodium acetate-potassium acetate eutectic (50-25-25 mol%, mp approx. 90/sup 0/C) into dodecane solutions containing selected acidic and neutral organophosphorous extracting ligands. The ordering of the transition metals according to their relative extents of extraction into the dodecane phase when the ligand bis(2-ethylhexyl)-phosphinic acid, H(DEPH), is employed (and the conditions of extraction are the same for each cation) is Co/sup 2 +/ > Fe/sup 2 +/ > Cr/sup 3 +/ > Ni/sup 2 +/. Comparisons of results obtained using the acidic ligand H(DEPH) and the neutral ligand tri-n-octylphosphine oxide, TOPO, indicate that the extractible TM complex does not contain acetate as a charge neutralizing ligand, but rather requires complete displacement of inner sphere acetate ions by protonated and/or deprotonated alkylphosphinate groups. The mechanism controlling the transfer kinetics has not been elucidated, but the rates of extraction from the acetate eutectic appear to be somewhat slower than has been observed for the extraction of transition metals from molten alkali metal thiocyanate and nitrate media at comparable temperatures, i.e., 140 ..-->.. 180/sup 0/C. 13 references, 2 figures, 2 tables.

  6. A comparative DFT study of the catalytic activity of the 3d transition metal sulphides surfaces

    SciTech Connect

    Gomez-Balderas, R.; Oviedo-Roa, R; Martinez-Magadan, J M.; Amador, C.; Dixon, David A. )

    2002-10-10

    The catalytic activity of the first transition metal series sulphides for hydrodesulfurization (HDS) reactions exhibits a particular behaviour when analysed as a function of the metal position in the Periodic Table. This work reports a comparative study of the electronic structure of the bulk and of the (0 0 1) metal surface (assumed to be the reactive surface) for the Sc-Zn monosulphides. The systems were modeled using the NiAs prototype crystal structure for the bulk and by applying the supercell model with seven atomic layers for (0 0 1) surfaces. The electronic structure of closed-packed solids code based on the density-functional theory and adopting the muffin-tin approximation to the potential was employed in the calculations of the electronic properties. For the Co and Ni sulphides, the density of states (DOS) variations between the metal atom present in the bulk and the ones exposed at the surface show that at the surface, there exists a higher DOS in the occupied states region just below the Fermi level. This feature might indicate a good performance of these two metal sulphides substrates in the HDS reactions favouring a donation, back-donation mechanism. In contrast, the DOS at the surface of Mn is increased in the unoccupied states region, just above the Fermi level. This suggests the possibility of a strong interaction with charge dontating sulphur adsorbate atoms poisoning the active substrate surface.

  7. Intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds.

    PubMed

    Xiang, Hongping; Tang, Yingying; Zhang, Suyun; He, Zhangzhen

    2016-07-13

    The electronic structure and magnetic properties of the quasi-1D transition-metal borates PbMBO4 (M  =  Ti, V, Cr, Mn, Fe, Co) have been investigated by density functional theory, including electronic correlation. The results evidence PbCrBO4 and PbFeBO4 as antiferromagnetic (AFM) semiconductors (intra-chain AFM and inter-chain FM) and PbMnBO4 as a ferromagnetic (FM) semiconductor (both intra- and inter-chain FM) in accordance with experimental observations. For non-synthesized PbTiBO4, PbVBO4, and PbCoBO4, the ground-state magnetic structures are paramagnetic, FM, and paramagnetic, respectively. In this series of compounds, there are two kinds of superexchange couplings dominating their magnetic properties, i.e. the direction M-M delocalization superexchange and indirect M-O-M correlation superexchange. For PbMBO4 with M (3+) d  (n) , n  ⩽  3 (M  =  V and Cr), the main intra-chain spin coupling is the M-M t 2g-t 2g direct delocalization superexchange, while for PbMBO4 with M (3+) d  (n) , n  >  3 (M  =  Mn and Fe), the main intra-chain spin coupling is the near 90° M-O-M e g-p-e g indirect correlation superexchange. PMID:27213502

  8. 3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides.

    PubMed

    Guo, Yuzheng; Liu, Dameng; Robertson, John

    2015-11-25

    The transition metal dichalcogenides (TMDs) are two-dimensional layered solids with van der Waals bonding between layers. We calculate their Schottky barrier heights (SBHs) using supercell models and density functional theory. It is found that the SBHs without defects are quite strongly pinned, with a pinning factor S of about S = 0.3, a similar value for both top and edge contact geometries. This arises because there is direct bonding between the contact metal atoms and the TMD chalcogen atoms, for both top and edge contact geometries, despite the weak interlayer bonding in the isolated materials. The Schottky barriers largely follow the metal induced gap state (MIGS) model, like those of three-dimensional semiconductors, despite the bonding in the TMDs being largely constrained within the layers. The pinning energies are found to be lower in the gap for edge contact geometries than for top contact geometries, which might be used to obtain p-type contacts on MoS2. PMID:26523332

  9. Intra-chain superexchange couplings in quasi-1D 3d transition-metal magnetic compounds

    NASA Astrophysics Data System (ADS)

    Xiang, Hongping; Tang, Yingying; Zhang, Suyun; He, Zhangzhen

    2016-07-01

    The electronic structure and magnetic properties of the quasi-1D transition-metal borates PbMBO4 (M  =  Ti, V, Cr, Mn, Fe, Co) have been investigated by density functional theory, including electronic correlation. The results evidence PbCrBO4 and PbFeBO4 as antiferromagnetic (AFM) semiconductors (intra-chain AFM and inter-chain FM) and PbMnBO4 as a ferromagnetic (FM) semiconductor (both intra- and inter-chain FM) in accordance with experimental observations. For non-synthesized PbTiBO4, PbVBO4, and PbCoBO4, the ground-state magnetic structures are paramagnetic, FM, and paramagnetic, respectively. In this series of compounds, there are two kinds of superexchange couplings dominating their magnetic properties, i.e. the direction M–M delocalization superexchange and indirect M–O–M correlation superexchange. For PbMBO4 with M 3+ d  n , n  ⩽  3 (M  =  V and Cr), the main intra-chain spin coupling is the M–M t 2g–t 2g direct delocalization superexchange, while for PbMBO4 with M 3+ d  n , n  >  3 (M  =  Mn and Fe), the main intra-chain spin coupling is the near 90° M–O–M e g–p–e g indirect correlation superexchange.

  10. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  11. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  12. Intrinsic Inhomogeneity and Multiscale Functionality in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Bishop, A. R.

    2003-06-01

    We briefly review a perspective of transition metal oxides as correlated electron materials governed by functional multiscale complexity. We emphasize several themes: the prevalence of intrinsic complexity realized in the coexistence or competition among broken-symmetry ground states; the origin of landscapes in coupled spin, charge and lattice (orbital) degrees-of-freedom; the importance of co-existing short- and long-range forces; and the importance of multiscale complexity for key material properties, including hierarchies of functional, connected scales, coupled intrinsic inhomogeneities in spin, charge and lattice, consequent intrinsic multiple timescales, and the importance of multifunctional "electro-elastic" materials. Finally, we suggest that such intrinsic multiscale features are characteristic of wide classes of inorganic, organic, and biological matter.

  13. Transition metal oxide hierarchical nanotubes for energy applications.

    PubMed

    Wei, Wei; Wang, Yongcheng; Wu, Hao; Al-Enizi, Abdullah M; Zhang, Lijuan; Zheng, Gengfeng

    2016-01-15

    We report a general synthetic method for transition metal oxide (TMO) hierarchical nanotube (HNT) structures by a solution-phase cation exchange method from Cu2O nanowire templates. This method leads to the formation of hollow, tubular backbones with secondary, thin nanostructures on the tube surface, which substantially increases the surface reactive sites for electrolyte contacts and electrochemical reactions. As proofs-of-concept, several representative first-row TMO HNTs have been synthesized, including CoOx, NiOx, MnOx, ZnOx and FeOx, with specific surface areas much larger than nanotubes or nanoparticles of corresponding materials. An example of the potential energy storage applications of CoOx HNTs as supercapacitors is also demonstrated. PMID:26629880

  14. Topological and unconventional magnetic states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    In this talk I describe some recent work on unusual correlated phases that may be found in bulk transition metal oxides with strong spin-orbit coupling. I will focus on model Hamiltonian studies that are motivated by the pyrocholore iridates, though the correlated topological phases described may appear in a much broader class of materials. I will describe a variety of fractionalized topological phases protected by time-reversal and crystalline symmetries: The weak topological Mott insulator (WTMI), the TI* phase, and the topological crystalline Mott insulator (TCMI). If time permits, I will also discuss closely related heterostructures of pyrochlore iridates in a bilayer and trilayer film geometry. These quasi-two dimensional systems may exhibit a number of interesting topological and magnetic phases. This work is generously funded by the ARO, DARPA, and the NSF.

  15. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  16. The K x-ray line structures of the 3d-transition metals in warm dense plasma

    NASA Astrophysics Data System (ADS)

    Szymańska, E.; Syrocki, Ł.; Słabkowska, K.; Polasik, M.; Rzadkiewicz, J.

    2016-09-01

    The shapes and positions of the Kα1 and Kα2 x-ray lines for 3d-transition metals can vary substantially as electrons are stripped from the outer-shells. This paper shows the detailed line shapes for nickel and zinc, obtained by calculations with a multiconfiguration Dirac-Fock method that includes Breit interaction and quantum electrodynamics corrections. The line shapes can be useful in interpreting hot, dense plasmas with energetic electrons for which the K x-ray lines are optically thin, as may be produced by pulsed power machines such as the plasma-filled rod pinch diode or the plasma focus, or in short-pulsed high power laser plasmas.

  17. Theoretical study on the alloying behavior of γ-uranium metal: γ-uranium alloy with 3d transition metals

    NASA Astrophysics Data System (ADS)

    Kurihara, Masayoshi; Hirata, Masaru; Sekine, Rika; Onoe, Jun; Nakamatsu, Hirohide

    2004-03-01

    We have investigated the alloying behavior of γ-uranium with 3d transition metals (TMs) using the relativistic discrete-variational Dirac-Fock-Slater (DV-DFS) method. The d-orbital energy (Md) as an alloying parameter well reproduces the alloying behavior of γ-uranium metal with TMs: (1) in the case of a large Md value (Ti, V, Cr), the solubility of these TM elements in γ-uranium becomes large; (2) in the case of a middle Md value (Mn, Fe, Co), the tendency to form a uranium intermetallic compound with these elements becomes stronger; (3) in the case of a small Md value (Cu), the alloying element is insoluble in γ-uranium. The alloying behavior of γ-uranium with TMs is also discussed in terms of other parameters such as electronegativity and metallic radius.

  18. First principles study on spin and orbital magnetism of 3d transition metal monatomic nanowires (Mn, Fe and Co).

    PubMed

    Sargolzaei, Mahdi; Samaneh Ataee, S

    2011-03-30

    We have demonstrated the electronic structure and magnetic properties of 3d transition metal nanowires (Mn, Fe and Co) in the framework of relativistic density functional theory. The equilibrium bond lengths were optimized using the generalized gradient approximation. In a full relativistic regime individual spin and orbital moments induced from spin polarization via spin-orbit coupling were calculated. In order to get an upper estimate for orbital moments, we used an orbital polarization correction to our exchange-correlation functional. We found that the orbital magnetic moments of Fe and Co linear chains are strongly enhanced in the presence of an orbital polarization correction. We have calculated the exchange coupling parameters between two nearest-neighbor magnetic atoms according to a Heisenberg-like model in the presence of the orbital polarization correction. We found that the Co and Fe nanowires behave like a ferromagnetic linear chain whereas a Mn monatomic nanowire remains antiferromagnetic. PMID:21378443

  19. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  20. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  1. Study on the electronic structure and Fermi surface of 3d-transition-metal disilisides CoSi2

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    2012-09-01

    We have investigated the electronic structure, the momentum density distribution ρ( p), and the Fermi surface FS of single crystals of the Pyrite-type 3d-transition-metal disilisides CoSi2. The band structure calculations, the density of states DOS, and the FS, in vicinity of Fermi level, have been carried out using the full-potential linearized augmented plane wave FP-LAPW method within generalized gradient approximation GGA for exchange and correlation potential. The measurements have been performed via the 2D angular correlation of annihilation radiation ACAR experiments. ρ( p) has been reconstructed by using the Fourier transformation technique. The FS has been reconstructed within the first Brillion zone BZ through the Locks, Crisp, and West LCW folding procedures. The analysis confirmed that Si 3 sp states hybrid with both Co 3 d- t 2 g and Co 3 d- e g states around Γ and X points, respectively. The dimensions of the FS of CoSi2 have been compared to the present calculations as well as to the earlier results.

  2. 3d-transition metal induced enhancement of molecular hydrogen adsorption on Mg(0001) surface: An Ab-initio study

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramita; Das, G. P.

    2016-05-01

    In our effort to do first principles design of suitable materials for hydrogen storage, we have explored the interaction characteristics of a hydrogen molecule with pure as well as a 3d-transition metal (TM) atom doped Mg(0001) surface using density functional theory (DFT) based approach. Doping of a 3d-TM atom by creating a vacancy on the top most layer of Mg(0001) surface, enhances the molecular hydrogen adsorption efficiency of this surface by ~ 6 times. The TM atom gains some charge from the defected site of the Mg(0001) surface, becomes anionic and adsorbs the hydrogen molecule via Anti Kubas-type interaction. The interaction energy of this H2 molecule, including van der Waals dispersion correction, turns out to be ~ 0.4 eV, which falls in the right energy window between physisorption and chemisorption. On full coverage of this 3d-TM atom doped Mg(0001) surface with hydrogen molecules, the gravimetric density of hydrogen has been estimated to be ~ 5.6 wt %, thereby satisfying the criteria set by the department of energy (DOE) for efficient hydrogen storage.

  3. Discovery of a 3d-transition-metal-based ferromagnetic Kondo lattice system

    NASA Astrophysics Data System (ADS)

    Us Saleheen, Ahmad; Samanta, Tapas; Lepkowski, Daniel; Shankar, Alok; Prestigiacomo, Joseph; Dubenko, Igor; Quetz, Abdiel; McDougald, Roy, Jr.; McCandless, Gregory; Chan, Julia; Adams, Philip; Young, David; Ali, Naushad; Stadler, Shane

    2015-03-01

    The formation of a Kondo lattice results in a wide variety of exotic phenomena associated with the competition between the Kondo effect and the RKKY interaction, such as heavy fermions, non-Fermi liquid behavior, unconventional superconductivity, and so on. A quantum critical point (QCP) has been frequently observed at the boundaries of competing phases for antiferromagnetic materials. However, the existence of a ferromagnetic (FM) QCP is unclear. Moreover, FM Kondo lattices are rare. Here we report the discovery of a FM Kondo lattice system Mn1-xFexCoGe, which is the first example of a 3d-metal-based system (i.e., not rare-earth-based). Resistivity, magnetic susceptibility, heat capacity and thermopower studies on a single crystal sample indicate that the anisotropic FM kondo lattice has formed along c-axis. The signature of a spin density wave transition was also observed above the Kondo minimum, below which the resistivity follows a log(T) behavior. This work was supported by the U.S. Department of Energy (Grant Nos. DE-FG02-13ER46946 and DE-FG02-06ER46291).

  4. Ferromagnetic interactions between transition-metal impurities in topological and 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Dietl, Tomasz

    The magnitude of ferromagnetic coupling driven by inter-band (Bloembergen-Rowland - BR) and intra-band (Ruderman-Kittel-Kasuya-Yoshida - RKKY) spin polarization is evaluated within kp theory for topological semimetals Hg1-xMnxTe and Hg1-xMnxSe as well as for 3D Dirac semimetal (Cd1-xMnx)3As2. In these systems Mn2+ ions do not introduce any carriers. Since, however, both conduction and valence bands are built from anion p-type wave functions, hybridization of Mn d levels with neighboring anion p states leads to spin-dependent p - d coupling of both electrons and holes to localized Mn spins, resulting in sizable inter-band spin polarization and, thus in large BR interactions. We demonstrate that this ferromagnetic coupling, together with antiferromagnetic superexchange, elucidate a specific dependence of spin-glass freezing temperature on x, determined experimentally for these systems. Furthermore, by employing a multi-orbital tight-binding method, we find that superexchange becomes ferromagnetic when Mn is replaced by Cr or V. Since Cr should act as an isoelectronic impurity in HgTe, this opens a road for realization of ferromagnetic topological insulators based on (Hg,Cr)Te.

  5. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  6. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  7. LETTER TO THE EDITOR: Efficient photocarrier injection in a transition metal oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Muraoka, Y.; Yamauchi, T.; Ueda, Y.; Hiroi, Z.

    2002-12-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO2/TiO2:Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO2:Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO2.

  8. GW calculations on post-transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Kang, Gijae; Nahm, Ho-Hyun; Cho, Seong-Ho; Park, Young Soo; Han, Seungwu

    2014-04-01

    In order to establish the reliable GW scheme that can be consistently applied to post-transition-metal oxides (post-TMOs), we carry out comprehensive GW calculations on electronic structures of ZnO, Ga2O3,In2O3, and SnO2, the four representative post-TMOs. Various levels of self-consistency (G0W0, GW0, and QPGW0) and different starting functionals (GGA, GGA + U, and hybrid functional) are tested and their influence on the resulting electronic structure is closely analyzed. It is found that the GW0 scheme with GGA + U as the initial functional turns out to give the best agreement with experiment, implying that describing the position of metal-d level precisely in the ground state plays a critical role for the accurate dielectric property and quasiparticle band gap. Nevertheless, the computation on ZnO still suffers from the shallow Zn-d level and we propose a modified approach (GW0+Ud) that additionally considers an effective Hubbard U term during GW0 iterations and thereby significantly improves the band gap. It is also shown that a GGA + U-based GW0(+Ud) scheme produces an accurate energy gap of crystalline InGaZnO4, implying that this can serve as a standard scheme that can be applied to general structures of post-TMOs.

  9. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  10. Oxide Wizard: an EELS application to characterize the white lines of transition metal edges.

    PubMed

    Yedra, Lluís; Xuriguera, Elena; Estrader, Marta; López-Ortega, Alberto; Baró, Maria D; Nogués, Josep; Roldan, Manuel; Varela, Maria; Estradé, Sònia; Peiró, Francesca

    2014-06-01

    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present "Oxide Wizard." This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space. PMID:24750576

  11. First-principles study of magnetic interactions in 3d transition metal-doped phase-change materials

    NASA Astrophysics Data System (ADS)

    Fukushima, T.; Katayama-Yoshida, H.; Sato, K.; Fujii, H.; Rabel, E.; Zeller, R.; Dederichs, P. H.; Zhang, W.; Mazzarello, R.

    2014-10-01

    Recently, magnetic phase-change materials have been synthesized experimentally by doping with 3d transition metal impurities. Here, we investigate the electronic structure and the magnetic properties of the prototypical phase-change material Ge2Sb2Te5 (GST) doped with V, Cr, Mn, and Fe by density functional calculations. Both the supercell method and the coherent potential approximation (CPA) are employed to describe this complex substitutionally disordered system. As regards the first approach, we consider a large unit cell containing 1000 sites to model the random distribution of the cations and of the impurities in doped cubic GST. Such a large-scale electronic structure calculation is performed using the program kkrnano, where the full potential screened Korringa-Kohn-Rostoker Green's function method is optimized by a massively parallel linear scaling (order-N) all-electron algorithm. Overall, the electronic structures and magnetic exchange coupling constants calculated by kkrnano agree quite well with the CPA results. We find that ferromagnetic states are favorable in the cases of V and Cr doping, due to the double exchange mechanism, whereas antiferromagnetic superexchange interactions appear to be dominant for Fe- and Mn-doped GST. The ferromagnetic interaction is particularly strong in the case of Cr. As a result, high Curie temperatures close to room temperatures are obtained for large Cr concentrations of 15%.

  12. Electronic and magnetic properties of monolayer SiC sheet doped with 3d-transition metals

    NASA Astrophysics Data System (ADS)

    Bezi Javan, Masoud

    2016-03-01

    We theoretically studied the electronic and magnetic properties of the monolayer SiC sheet doped by 3d transition-metal (TM) atoms. The structural properties, induced strain, electronic and magnetic properties were studied for cases that a carbon or silicon of the SiC sheet replaced with TM atoms. We found that the mount of induced strain to the lattice structure of the SiC sheet with substituting TM atoms is different for Si (TMSi) and C (TMC) sites as the TMSi structures have lower value of the strain. Also the TM atoms can be substituted in the lattice of the SiC sheet with different binding energy values for TMSi and TMC structures as the TMSi structures have higher value of the binding energies. Dependent to the structural properties, the TM doped SiC sheets show magnetic or nonmagnetic properties. We found that some structures such as MnSi, CuSi and CoC configurations have significant total magnetic moment about 3 μB.

  13. First-principle study of the electronic structure and magnetism of lithium-adsorbed 3d transition-metal phthalocyanines

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, Y.; Zhang, Z.; Li, Y.; Zhou, T.; Ren, J.

    2016-02-01

    Based on density functional theory (DFT) calculations, the electronic structures and magnetic properties of 3d transition-metal phthalocyanine (TMPc, TM = Ti, V, Cr, Mn, Fe, Co, Ni and Cu), as well as Li-adsorbed phthalocyanines have been studied. The results show that the pristine TMPcs all have a good D4h symmetry. When there is one Li atom adsorbed on TMPcs directly over (LiTMPc-α) or slantly above (LiTMPc-β) the TM atoms, the geometries and electronic structures will be changed. For LiTMPc-α systems, the central TM atoms will deviate from the molecular plane and the molecules exhibit good C4v symmetry. LiTMPc-β systems are more stable than LiTMPc-α systems but it do not possess D4h and C4v symmetries. The total and local magnetic moments and the charge transfer are also presented. Finally, by using the orbit mixing and splitting theory under D4h and C4v symmetry, we get the ordering of the energy levels of the central TM atoms.

  14. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. PMID:24983922

  15. Extraction of 3d transition metals from molten cesium-sodium-potassium/acetate eutectic into dodecane using organophosphorous ligands

    SciTech Connect

    Maroni, V.A.; Philbin, C.E.; Yonco, R.M.

    1983-04-01

    Measurements have been made of the transfer of the transition metal cations Cr/sup 3 +/, Fe/sup 2 +/, Co/sup 2 +/, Ni/sup 2 +/ from molten cesium acetate-sodium acetate-potassium acetate eutectic (50-25-25 mol%, mp approx. 90/sup 0/C) into dodecane solutions containing selected acidic and neutral organophosphorous extracting ligands. The ordering of the relative rates and extents of extraction when the ligand bis(2-ethylhexyl)phosphinic acid, H(DEPH), is employed (and the conditions of extraction are the same for each cation) is Co/sup 2 +/ > Fe/sup 2 +/ > Cr/sup 3 +/ > Ni/sup 2 +/. Comparisons of results obtained using the acidic ligand H(DEPH) and the neutralligand Tri-n-octylphosphien oxide, TOPO, indicate that the extractible TM complex does not contain acetate as a charge neutralizing ligand, but rather requires complete displacement of inner sphere acetate ions by both protonated and deprotonated alkylphosphinate groups. In the case of Co/sup 2 +/, the extraction reaction involves the transformation of the cation from an octahedral ligand field in the acetate eutectic to a tetrahedral ligand field in the H(DEPH)/dodecane phase. The mechanism(s) controlling the transfer kinetics has not been elucidated, but it is noted that the rates of extraction from the acetate eutectic seem to be much slower than has been observed for extractions of transition metals from molten alkali metal thiocyanate and nitrate media over comparable temperature ranges (140 to 180/sup 0/C). 1 figure, 2 tables.

  16. Hybrid uranium-transition-metal oxide cage clusters.

    PubMed

    Ling, Jie; Hobbs, Franklin; Prendergast, Steven; Adelani, Pius O; Babo, Jean-Marie; Qiu, Jie; Weng, Zhehui; Burns, Peter C

    2014-12-15

    Transition-metal based polyoxometalate clusters have been known for decades, whereas those built from uranyl peroxide polyhedra have more recently emerged as a family of complex clusters. Here we report the synthesis and structures of six nanoscale uranyl peroxide cage clusters that contain either tungstate or molybdate polyhedra as part of the cage, as well as phosphate tetrahedra. These transition-metal-uranium hybrid clusters exhibit unique polyhedral connectivities and topologies that include 6-, 7-, 8-, 10-, and 12-membered rings of uranyl polyhedra and uranyl ions coordinated by bidentate peroxide in both trans and cis configurations. The transition-metal polyhedra appear to stabilize unusual units built of uranyl polyhedra, rather than templating their formation. PMID:25434424

  17. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  18. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  19. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  20. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  1. Effect of annealing treatment on K{beta}-to-K{alpha} x-ray intensity ratios of 3d transition-metal alloys

    SciTech Connect

    Han, I.; Demir, L.

    2010-06-15

    The influence of heat annealing treatment on the K{beta}-to-K{alpha} x-ray intensity ratios of 3d transition metal was carried out by x-ray fluorescence studies of various alloy compositions. K{beta}-to-K{alpha} x-ray intensity ratios of Fe, Ni, Ti, Co, and Cu in Fe{sub x}Ni{sub 1-x}, Ti{sub x}Ni{sub 1-x}, and Co{sub x}Cu{sub 1-x} alloys unannealed and thermally annealed at different temperatures have been measured following excitation by 22.69-keV x rays from a 10-mCi {sup 109}Cd radioactive point source. The experimental data obtained after annealing treatment indicate deviations of K{beta}-to-K{alpha} x-ray intensity ratios for 3d transition metals in different alloy compositions from the corresponding ratios for unannealed samples. The present investigation makes it possible to perform reliable interpretation of experimental K{beta}-to-K{alpha} x-ray intensity ratios for various 3d transition metals in their alloys and can also provide quantitative information about the changes of the K{beta}-to-K{alpha} x-ray intensity ratios of these metals with annealing treatment in considered systems.

  2. Three-particle approximation for transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Lægsgaard, J.; Svane, A.

    1997-02-01

    Quasiparticle spectra are calculated for NiO and CuO on the basis of band structures obtained within the ab initio self-interaction-corrected local-spin density (SIC-LSD) and LSD+U approximations. On-site Coulomb correlations are described by a multiband Hubbard model, which is treated within Igarashi's three-particle approximation. The transition-metal d-state spectral weight is split into a main dnL peak and a dn-1 satellite. We show that mean-field band structures in this way can lead to a good description of the experimental photoemission spectra of these compounds. The validity of the three-particle approach is investigated, and it is concluded that the method is best suited for a system which is well orbitally polarized on the mean-field level.

  3. Band gap tuning in transition metal oxides by site-specific substitution

    SciTech Connect

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  4. DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS

    EPA Science Inventory

    The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...

  5. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  6. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  7. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    ElBatal, F. H.; Abdelghany, A. M.; ElBatal, H. A.

    2014-03-01

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe3+) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi3+) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi3+ ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  8. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  9. Drawing the geometry of 3d transition metal-boron pairs in silicon from electron emission channeling experiments

    NASA Astrophysics Data System (ADS)

    Silva, D. J.; Wahl, U.; Correia, J. G.; Augustyns, V.; Lima, T. A. L.; Costa, A.; Bosne, E.; da Silva, M. R.; Araújo, J. P.; Pereira, L. M. C.

    2016-03-01

    Although the formation of transition metal-boron pairs is currently well established in silicon processing, the geometry of these complexes is still not completely understood. We investigated the lattice location of the transition metals manganese, iron, cobalt and nickel in n- and p+ -type silicon by means of electron emission channeling. For manganese, iron and cobalt, we observed an increase of sites near the ideal tetrahedral interstitial position by changing the doping from n- to p+ -type Si. Such increase was not observed for Ni. We ascribe this increase to the formation of pairs with boron, driven by Coulomb interactions, since the majority of iron, manganese and cobalt is positively charged in p+ -type silicon while Ni is neutral. We propose that breathing mode relaxation around the boron ion within the pair causes the observed displacement from the ideal tetrahedral interstitial site. We discuss the application of the emission channeling technique in this system and, in particular, how it provides insight on the geometry of such pairs.

  10. Magnetic properties of FeCu (3 d transition metals) SiB alloys with fine grain structure

    SciTech Connect

    Sawa, T. ); Takahashi, Y. )

    1990-05-01

    Soft magnetic properties were investigated together with crystallization process and grain size for FeCu (3{ital d} transition metals) SiB alloys with fine grains. They were rapidly quenched from the melt to achieve amorphous states and then annealed above their crystallization temperatures. In the group of 3{ital d} transition metals studied, low magnetic core loss at high frequency was obtained for V-substituted Fe-based alloys, because only a bcc Fe solid solution with diameter of about 20 nm precipitated. On the other hand, Cr- or Mn-substituted alloys could not be attained with good soft magnetic properties because of the existence of Fe-metalloid compounds besides the bcc phase by annealing above their crystallization temperatures. The effect of grain size on the soft magnetic properties is more prominent at lower frequency. Diffraction peaks which are characteristics of an ordered phase (DO{sub 3}) are observed, which is the origin of excellent soft magnetic properties in FeAlSi alloys.

  11. The role of correlations on oxygen orbitals in late transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Lau, Bayo; Dang, Hung T.; Gull, Emanuel; Millis, Andrew J.

    2012-02-01

    We investigate the effect on transition-metal oxide physics of including interactions on the oxygen sites as well as on the transition-metal site using a generalization of the single-site Dynamical Mean Field method. On-site repulsive and Hund's interactions in the full Slater-Kanamori form are treated using a numerically exact continuous-time quantum Monte-Carlo solver. We determine the metal-insulator and magnetic phase diagrams as a function of charge-transfer tendency and interaction strengths. The results are compared directly to models with no oxygen correlations, yielding insights about the role of oxygen-specific correlations.

  12. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  13. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  14. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation.

    PubMed

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  15. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  16. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  17. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  18. Structural, electronic and magnetic properties of 3d transition metals embedded graphene-like carbon nitride sheet: A DFT + U study

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Chi, Runze; Li, Chong; Jia, Yu

    2016-03-01

    Using first-principles calculations, we have investigated the structural, electronic and magnetic properties of 3d transition-metals (TMs) embedded two dimensional graphene-like carbon nitride sheet (TMs@g-CN). Our results show that TMs embed in the cavity of g-CN sheet regularly and keep intact of the planar structure, though there is Jahn-Teller distortion inevitably. Additionally, the nonmagnetic and semiconducting sheet can be significantly modulated to be magnetic and metallic behaviors induced by the resonant impurity states between TMs 3d and g-CN 2p orbitals. Moreover, we also explore the magnetic coupling of TMs@g-CN and find that it varies dramatically with the change of the distance between TMs, i.e., from ferromagnetic (FM) to antiferromagnetic (AFM) transition. Finally, the underlying physical mechanism of the above findings is discussed.

  19. Spin-density functional theories and their +U and +J extensions: A comparative study of transition metals and transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew J.

    2016-01-01

    Previous work on the physical content of exchange-correlation functionals that depend on both charge and spin densities is extended to elemental transition metals and a wider range of perovskite transition metal oxides. A comparison of spectra and magnetic moments calculated using charge-only and spin-dependent exchange-correlation functionals as well as their +U and +J extensions confirms previous conclusions that the spin-dependent part of the exchange-correlation functional provides an effective Hund's interaction acting on the transition metal d orbitals. For the local spin density approximation and spin-dependent generalized gradient approximation in the Perdew-Burke-Ernzerhof parametrization, the effective Hund's exchange implied by the spin dependence of the exchange correlation functional is found to be larger than 1 eV. The results indicate that at least as far as applications to transition metals and their oxides are concerned, +U , +J , and +dynamical-mean-field-theory extensions of density functional theory should be based on charge-only exchange-correlation functionals.

  20. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  1. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides.

    PubMed

    Vojvodic, A; Calle-Vallejo, F; Guo, W; Wang, S; Toftelund, A; Studt, F; Martínez, J I; Shen, J; Man, I C; Rossmeisl, J; Bligaard, T; Noørskov, J K; Abild-Pedersen, F

    2011-06-28

    Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a "cyclic" behavior in the transition state characteristics upon change of the active transition metal of the oxide. PMID:21721645

  2. Charge Carrier Dynamics in Transition Metal Oxides Studied by Femtosecond Transient Extreme Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Chang-Ming

    With the ability to disentangle electronic transitions that occur on different elements and local electronic structures, time-resolved extreme ultraviolet (XUV) spectroscopy has emerged as a powerful tool for studying ultrafast dynamics in condensed phase systems. In this dissertation, a visible-pump/XUV-probe transient absorption apparatus with femtosecond resolution was constructed to investigate the carrier relaxation dynamics in semiconductors after photo-excitation. This includes timescales for carrier thermalization by carrier-carrier and carrier-phonon scattering. The 30 -- 72 eV photon energy coverage (17 -- 40 nm wavelength) generated by a table-top XUV light source is suitable for probing the 3p-to-3d core level absorptions of various transition metal oxides (TMOs) with specificities to elements and oxidation states. In Chapter 1, a brief introduction to charge carrier dynamics in semiconductor-based materials is given. In addition, fundamentals of core-level spectroscopy and the high harmonic generation (HHG) process are also addressed in this introductory chapter. Specifications of the experimental apparatus that was constructed are summarized in Chapter 2, including the design concepts and characterization of performance. Chapter 3 presents the spectral tunability of the XUV pulses generated from a semi-infinite gas cell (SIGC), as well as the data acquisition procedures. Charge carrier relaxation dynamics in Co3O4 following the charge transfer excitation pathway at 400 nm are documented in Chapter 4. In Chapter 5, various visible pump wavelengths are used to excite Co3O4 and the differences in the carrier dynamics versus excitation wavelength are considered. After selectively photoexciting a Si/TiO2 heterojunction, the resulted electron transfer process is observed and reported in Chapter 6. The concluding remarks of the dissertation are made in Chapter 7, while several ongoing time-resolved experiments are addressed in the Appendix sections.

  3. Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Hwa; Urban, Alexander; Ceder, Gerbrand

    2015-09-01

    Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles-based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O2 and LiNi O2 as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA +U ), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3 d and O 2 p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O2 . We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α =0.0 ) and HSE06 (α =0.25 ) calculations. Our results also show that G0W0@GGA +U band gaps of TM oxides (M O ,M =Mn ,Co ,Ni ) and LiCo O2 agree well with experimental references, suggesting that G0W0 calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been

  4. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors

    PubMed Central

    2012-01-01

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 − ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 − xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons. PMID:23092248

  5. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    NASA Astrophysics Data System (ADS)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  6. Quantum confinement in transition metal oxide quantum wells

    SciTech Connect

    Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.

    2015-05-11

    We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.

  7. Development of transition-metal doped copper oxide and zinc oxide dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Ivill, Mathew P.

    The field of spintronics has recently attracted much attention because of its potential to provide new functionalities and enhanced performance in conventional electronic devices. Oxide materials provide a convenient platform to study the spin-based functionality in host semiconducting material. Recent theoretical treatments predict that wide band-gap semiconductors, including ZnO, can exhibit high temperature ferromagnetic ordering when doped with transition metals. This work focused on the possibility of using wide band-gap oxide semiconductors as potential spintronic materials. The structure, magnetic, and electronic transport properties of transition-metal doped ZnO and Cu 2O were investigated. Mn and Co were used as transition metal dopants. Thin films of these materials were fabricated using pulsed laser deposition (PLD). The Mn solubility in Cu2O was found to be small and the precipitation of Mn-oxides was favored at high growth temperatures. Phase pure Mn-doped Cu2O samples were found to be non-magnetic. Samples were p-type with carrier concentrations on the order of 1014-10 16 cm-3. The effects of carrier concentration on the magnetic properties of Mn-doped ZnO were studied using Sn and P as electronic codopants. Sn acts as an n-type dopant providing extra electrons to the ZnO. P acts as a p-type dopant that supplies excess holes to compensate the native electron concentration in ZnO. The electron concentration was decreased using P, but the films remained n-type. An inverse correlation was found between the ferromagnetism and the electron concentration; the ferromagnetic coupling between Mn spins increased with decreasing electron concentration. The nature of ferromagnetism in Co-doped ZnO was also investigated. Ferromagnetism was found in films deposited at 400°C in vacuum, while films deposited in oxygen or at higher temperatures were non-magnetic. Films deposited under vacuum had rather high electron concentrations and were presumably doped with

  8. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott

    2015-03-01

    We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).

  9. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  10. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    PubMed

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments. PMID:26726428

  11. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction.

    PubMed

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-28

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms. PMID:25502117

  12. Five novel transition metal coordination polymers with 2D/3D framework structure based on flexible H{sub 2}tzda and ancillary ligand bpe

    SciTech Connect

    Wang Yuting; Xu Yan; Fan Yaoting; Hou Hongwei

    2009-10-15

    Five new transition metal coordination polymers based on H{sub 2}tzda and co-ligand bpe, {l_brace}[M(tzda)(bpe)].H{sub 2}O{r_brace}{sub n} [M=Zn(1), Cd(2), Mn(3), Co(4)] and [Ni{sub 2}(tzda){sub 2}(bpe){sub 2}(H{sub 2}O)]{sub n} (5) [H{sub 2}tzda=(1,3,4-thiadiazole-2,5-diyldithio)diacetic acid, bpe=1,2-bis(4-pyridyl)ethane], have been hydrothermally synthesized and structurally characterized. Compounds 1-4 feature a 2D-layered architecture generated from [M(tzda)]{sub n} moiety with double-chain structure cross-linking bpe spacers. However, the conformations bpe adopts in 3 and 4 are different from those in 1 and 2 due to the rotation of C-C single bond in bpe. Polymer 5 exhibits an interesting 3D porous framework with 2-fold interpenetration, in which intriguing 1D double helix chains are observed. The photoluminescence properties of 1 and 2 in the solid-state at room temperature are investigated. In addition, variable-temperature magnetic data show weak antiferromagnetic behavior in 3-5. - Graphical abstract: Five new transition metal coordination polymers based on flexible H{sub 2}tzda and bpe have been hydrothermally synthesized and characterized by X-ray diffraction, luminescent emission spectra and low-temperature magnetic measurements, respectively.

  13. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    PubMed Central

    Chen, Hongjun

    2014-01-01

    Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. PMID:24991507

  14. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  15. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  16. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Screening-Dependent Study of Superconductivity in 3d-Transition Metals Binary Alloys Superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2009-03-01

    In the present article, we report the screening-dependent study of the superconducting state parameters (SSPs), viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature TC, isotope effect exponent α, and effective interaction strength N0V of 3d-band transition metals binary alloys superconductors have been made extensively in the present work using a model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The present results of the SSPs obtained from H-screening are found in qualitative agreement with the available experimental data wherever exist.

  17. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  18. Controlling the carrier lifetime of nearly threading-dislocation-free ZnO homoepitaxial films by 3d transition-metal doping

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Kojima, K.; Yamazaki, Y.; Furusawa, K.; Uedono, A.

    2016-01-01

    Carrier lifetime in nearly threading-dislocation-free ZnO homoepitaxial films was controlled by doping 3d transition-metals (TMs), Ni and Mn. The photoluminescence lifetime of the near-band-edge emission (τPL) was decreased linearly by increasing TM concentration, indicating that such TMs are predominant nonradiative recombination centers (NRCs). From this relationship, exciton capture-cross-section ( σex ) of 2.4 × 10-15 cm2 is obtained. Because σex of native-NRCs (Zn-vacancy complexes) is likely larger than this value, the linear dependence of the internal quantum efficiency on τPL observed in our TM-doped ZnO and unintentionally doped ZnO in literatures indicates that the concentrations of native-NRCs in the latter are "lower than" 1016-1017 cm-3.

  19. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr1/3NbS2

    DOE PAGESBeta

    Sirca, N.; Mo, S. -K.; Bondino, F.; Pis, I.; Nappini, S.; Vilmercati, P.; Yi, Jieyu; Gai, Zheng; Snijders, Paul C.; Das, P. K.; et al

    2016-08-18

    The electronic structure of the chiral helimagnet Cr1/3NbS2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS2 layers but also cause significant modifications of the electronic structure of the host NbS2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr1/3NbS2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these results to the attainment of a correctmore » description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.« less

  20. Which orbital and charge ordering in transition metal oxides can resonant X-ray diffraction detect?

    NASA Astrophysics Data System (ADS)

    Di Matteo, Sergio

    2009-11-01

    The present article is a brief critical review about the possibility of detecting charge and/or orbital order in transition-metal oxides by means of resonant x-ray diffraction. Many recent models of transition-metal oxides are based on charge and/or orbitally ordered ground-states and it has been claimed in the past that resonant x-ray diffraction is able to confirm or reject them. However, in spite of the many merits of this technique, such claims are ambiguous, because the interpretative frameworks used to analyze such results in transition-metal oxides, where structural distortions are always associated to the claimed charged/orbitally ordered transition, strongly influence (not to say suggest) the answer. In order to clarify this point, I discuss the two different definitions of orbital and charge orderings which are often used in the literature without a clear distinction. My conclusion is that the answer to the question of the title depends on which definition is adopted.

  1. Bonding Model for Transition Metal and Rare Earth Monoxides and Laser Spectroscopy of Nickel-Oxide

    NASA Astrophysics Data System (ADS)

    Srdanov, Vojislav I.

    We discovered that, for the transition metal and the rare earth monoxide series, the sum of the ionization potential of the metal, the energy of the lowest ( ...np) configuration of the metal ion and the thermochemical dissociation energy of the molecule adds up to a constant number. The correlation is particularly striking for the rare earth monoxides where the standard deviation is less than 1%. Based on this correlation we developed a new bonding scheme common for both the transition metal and rare earth monoxides. We propose that the bonding is invariant within the series and consists of an ionic and a covalent contribution. In our model a covalent contribution to the bonding of the inner-core d and f orbitals is negligible. This is in contrast to the current paradigm regarding the significant role of the d orbitals in the bonding in the first and second row transition metal oxides. Our model also appears to be in conflict with the M^{2+} O^{2-} ligand-field bonding model currently accepted for the rare earth monoxides. Based on the empirical correlation and the proposed bonding mechanism, however, we give a number of predictions regarding yet unmeasured fundamental quantities of some of the oxides such as permanent dipole moments, dissociation energies and equilibrium bond distances. We also present the results of the first high resolution laser spectroscopic study of the NiO molecule. Several bands in the green spectral region were found to originate from the ground state of NiO; their analysis allowed us to determine the following fundamental parameters: Ground state symmetry: ^3Sigma^-; Vibrational frequency: omega_{ rm e} = 8.39.1 cm^{ -1}; Equilibrium distance: r_ {rm e} = 1.627 A. With this work the determination of the ground state parameters for the first row transition metal oxides is now complete.

  2. Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena

    Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study

  3. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2), (CoO),(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  4. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  5. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  6. Effects of 3d and 4d transition metal substitutional impurities on the electronic properties of CrO2

    NASA Astrophysics Data System (ADS)

    Williams, M. E.; Sims, H.; Mazumdar, D.; Butler, W. H.

    2012-12-01

    We present first-principles-based density functional theory calculations of the electronic and magnetic structure of CrO2 with 3d and 4d substitutional impurities. We find that the half-metallicity of CrO2 remains intact for the ground state of all of the calculated substitutions. We also observe two periodic trends as a function of the number of valence electrons: if the substituted atom has six or fewer valence electrons, the number of down spin electrons associated with the impurity ion is zero, resulting in ferromagnetic alignment of the impurity magnetic moment with the magnetization of the CrO2 host. For substituent atoms with eight to ten valence electrons (with the exception of Ni), the number of down-spin electrons contributed by the impurity ion remains fixed at three as the number contributed to the majority increases from one to three resulting in antiferromagnetic alignment between impurity moment and host magnetization. In impurities with seven valence electrons, the zero down-spin and threse down-spin configurations are very close in energy. At 11 valence electrons, the energy is minimized when the substituent ion contributes five down-spin electrons. The moments on the 4d impurities, particularly Nb and Mo, tend to be delocalized compared with those of the 3ds.

  7. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  8. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, A B

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO{sub 2} hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  9. Mechanochemical and thermal formation of 1H-benzotriazole coordination polymers and complexes of 3d-transition metals with intriguing dielectric properties.

    PubMed

    Brede, Franziska A; Mühlbach, Friedrich; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-07-14

    Liquid-assisted grinding (LAG) reactions have been successfully applied to achieve a series of complexes and coordination polymers based on divalent 3d-transition metal chlorides (TM chlorides) and the aromatic ligand 1H-benzotriazole (BtzH). The obtained substances were investigated via single crystal X-ray, powder X-ray determination and simultaneous DTA/TG analysis as model compounds for structural and chemical influences on their dielectric properties. Depending on the synthesis method, different constitutions and structures are observed. Two polymorphous forms of the 1D polymer [MnCl2(BtzH)2] (1 and 2) as well as the complexes [ZnCl2(BtzH)2]·BtzH (3) and [CoCl2(BtzH)2]·BtzH (4) have been obtained as phase-pure bulk substances via the mechanochemical LAG route, and even single crystals are available. For comparison, thermal reactions were also carried out and have led to the formation of the neutral complexes: [CoCl2(BtzH)2] (5) and [CoCl2(BtzH)4]·4BtzH (6), [ZnCl2(BtzH)2] (7) and the anionic complex BtzH2[CoCl3BtzH] (8). In addition, thermal treatment of 3 yields the benzotriazolium salt {(BtzH)2H}Cl (9). The transition metal compounds were additionally analysed regarding their dielectric properties by frequency-dependent as well as temperature-dependent permittivity investigations. It is intriguing that compounds 1 and 3 show remarkably low dielectric constants and loss factors up to 50 °C highlighting them as potential "low-k materials". PMID:27265300

  10. IR studies of NH/sub 3/, pyridine, CO, and NO adsorbed on transition metal oxides

    SciTech Connect

    Kung, M.C.; Kung, H.H.

    1985-01-01

    Chemisorption of small molecules is often used as a probe for the surface properties of transition metal oxides. By probing the interaction of molecules with the surface, information is often obtained on the oxidation state, the coordination symmetry, the degree of coordination unsaturation of the surface cations, the acid-base properties of the surface hydroxyl groups, and the presence and the nature of surface Lewis acid and Broensted acid sites. This information is deduced from experimental measurements of the adsorption isotherms, the heats of adsorption, the thermal desorption spectra, and the vibrational spectra of the adsorbate. Until recently, when high resolution electron energy loss spectroscopy became available, vibrational spectra were obtained with infrared spectroscopy. Laser Raman spectroscopy has seldom been used because of the low Raman scattering cross section of most molecules. Infrared spectroscopy has been used to study practically all kinds of adsorbates, including basic molecules of NH/sub 3/ and pyridine, carbon oxides (CO and CO3''), nitrogen oxides (NO, N/sub 2/O, NO/sub 2/), alkenes, alcohols, and acids. In this review, emphasis is placed on the molecules that yield information on the acid-base and on the coordination properties of the surface sites on transition metal oxides. Thus the discussions are confined primarily to studies involving NH/sub 3/, pyridine, CO, and NO. Emphasis is placed on work published after 1970 because an excellent account of the literature before then has already appeared in the book by Little. 98 references, 3 tables.

  11. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  12. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  13. Scalable salt-templated synthesis of two-dimensional transition metal oxides.

    PubMed

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm(-3) in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  14. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs.

    PubMed

    Yu, Ming-Feng; Li, Wen-Wei; Li, Xiao-Dong; Lin, Xiao-Qing; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Various transition metal oxide and vanadium-containing multi-metallic oxide catalysts were developed for the destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans). A stable PCDD/Fs generating system was installed to support the catalytic destruction tests in this study. Nano-titania supported vanadium catalyst (VOx/TiO2) showed the highest activity, followed by CeOx, MnOx, WOx and finally MoOx. Multi-metallic oxide catalysts, prepared by doping WOx, MoOx, MnOx and CeOx into VOx/TiO2 catalysts, showed different activities on the decomposition of PCDD/Fs. The highest destruction efficiency of 92.5% was observed from the destruction test over VOxCeOx/TiO2 catalyst. However, the addition of WOx and MoOx even played a negative role in multi-metallic VOx/TiO2 catalysts. Characterizations of transition metal oxides and multi-metallic VOx/TiO2 catalysts were also investigated with XRD and TPR. After the catalysts were used, the conversion from high valent metals to low valence states was observed by XPS. PMID:27186687

  15. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    DOE PAGESBeta

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; et al

    2016-04-22

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide.more » Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300Fcm-3 in an Al2(SO4)3 electrolyte). Furthermore, the synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications.« less

  16. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-04-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm-3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications.

  17. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    DOEpatents

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  18. Strain induced electronic structure changes in magnetic transition metal oxides thin films

    SciTech Connect

    van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

    2010-07-08

    We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

  19. Quantum spin Hall effect in a transition metal oxide Na2IrO3

    SciTech Connect

    Shitade, Atsuo

    2010-05-26

    We study theoretically the electronic states in a 5d transition metal oxide Na{sub 2}I{sub r}O{sub 3}, in which both the spin-orbit interaction and the electron correlation play crucial roles. Tight-binding model analysis together with the fisrt-principles band structure calculation predicts that this material is a layered quantum spin Hall system. Due to the electron correlation, an antiferromagnetic order first develops at the edge, and later inside the bulk at low temperatures.

  20. Pinball liquid phase from Hund's coupling in frustrated transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Merino, Jaime; Fratini, Simone

    2015-04-01

    The interplay of nonlocal Coulomb repulsion and Hund's coupling in the d -orbital manifold in frustrated triangular lattices is analyzed by a multiband extended Hubbard model. We find a rich phase diagram with several competing phases, including a robust pinball liquid phase, which is an unconventional metal characterized by threefold charge order, bad metallic behavior, and the emergence of high-spin local moments. Our results naturally explain the anomalous charge-ordered metallic state observed in the triangular layered compound AgNiO2. The potential relevance to other triangular transition-metal oxides is discussed.

  1. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide

    NASA Astrophysics Data System (ADS)

    Kan, Daisuke; Aso, Ryotaro; Sato, Riko; Haruta, Mitsutaka; Kurata, Hiroki; Shimakawa, Yuichi

    2016-04-01

    Strong correlations between electrons, spins and lattices--stemming from strong hybridization between transition metal d and oxygen p orbitals--are responsible for the functional properties of transition metal oxides. Artificial oxide heterostructures with chemically abrupt interfaces provide a platform for engineering bonding geometries that lead to emergent phenomena. Here we demonstrate the control of the oxygen coordination environment of the perovskite, SrRuO3, by heterostructuring it with Ca0.5Sr0.5TiO3 (0-4 monolayers thick) grown on a GdScO3 substrate. We found that a Ru-O-Ti bond angle of the SrRuO3 /Ca0.5Sr0.5TiO3 interface can be engineered by layer-by-layer control of the Ca0.5Sr0.5TiO3 layer thickness, and that the engineered Ru-O-Ti bond angle not only stabilizes a Ru-O-Ru bond angle never seen in bulk SrRuO3, but also tunes the magnetic anisotropy in the entire SrRuO3 layer. The results demonstrate that interface engineering of the oxygen coordination environment allows one to control additional degrees of freedom in functional oxide heterostructures.

  2. Synthesis of transition metal nitride by nitridation of metastable oxide precursor

    SciTech Connect

    Wang, Huamin; Wu, Zijie; Kong, Jing; Wang, Zhiqiang; Zhang, Minghui

    2012-10-15

    Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

  3. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  4. A first-principles investigation of the effect of relaxation on the alloy formation in the aluminum-3 d-transition-metal system

    NASA Astrophysics Data System (ADS)

    Nikitin, N. Yu.

    2012-05-01

    The aim of this investigation is to establish the effect of relaxation on the formation of ordered substitutional solid solutions in Al1 - x M x alloys ( M = 3 d metal; x = 1.6 at %). As the main parameters of the process of formation of the aluminum-based solution, thermodynamic quantities such as the energy of dissolution and the cohesive energy have been chosen; for choosing the most appropriate substitutional element, an analysis of the relaxation energy and deviations of empirical atomic radii of the impurity from the radius of the matrix-forming element has been suggested. It has been shown that there is a correlation between these thermodynamic quantities through the behavior of the density of electronic states and the Fermi energy. A regular relation has also been demonstrated to exist between the relaxation and stability of arising solid solutions, which supports the applicability of the analysis of relaxation energy depending on the atomic radius of the matrix-substituting element. The presence of anomalies in the behavior of magnetic properties of some aluminum alloys with transition metals has been shown and their explanation is given.

  5. Antiferromagnetic half metallicity in codoped chalcopyrite semiconductors Cu(Al 1 - 2 xAxBx)Se2 (A and B are 3d transition-metal atoms)

    NASA Astrophysics Data System (ADS)

    Shahjahan, M.; Oguchi, T.

    2016-06-01

    Electronic structures and magnetic properties of group I-III-VI2 chalcopyrite-type compounds Cu(Al 1 - 2 xAxBx)Se2 are calculated using the Korringa-Kohn-Rostoker Green's function method, where A (Ti, V, Cr, Mn) and B (Fe, Co, Ni) are 3d transition metal atoms, and x is atomic concentration. We found that codoping of Cr-Co and V-Ni pairs at Al site of host CuAlSe2 exhibit antiferromagnetic (AF) half metallicity with low Curie temperature (TC). The AF half metallic property is supported by nullified net magnetic moment and compensated density of states in the minority spin direction. On the other hand, codoping of Cr-Ni, Mn-Co, V-Co, and Ti-Co pairs at Al site of host CuAlSe2 manifest ferrimagnetic half metallicity with a small net magnetization and keeping antiparallel local spin moments. In Mn-Co case TC is close to room temperature. Besides, Cr-Fe, V-Fe, and Ti-Ni codoping cases lead to an instable magnetic ordering and therefore obtain a disordered local moment (spin-glass like) state.

  6. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; Azooz, M. A.; Ouis, M. A.; ElBatal, H. A.

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900 nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  7. DFT+U study of electrical levels and migration barriers of early 3 d and 4 d transition metals in silicon

    NASA Astrophysics Data System (ADS)

    Marinopoulos, A. G.; Santos, P.; Coutinho, J.

    2015-08-01

    Owing to their strong interaction with carriers, early 3 d -row (Ti, V, and Cr) and 4 d -row (Zr, Nb, and Mo) transition metals (TMs) are undesired contaminants in solar- and electronic-grade Si. The increasing stringent control of contamination levels is urging an accurate picture of their electronic structure. In the present work, the electrical levels and migration energies of these TMs are determined by means of standard density-functional theory (DFT) and a rotationally invariant formulation of DFT+U . The latter approach improves on the treatment of electronic correlations at the TM sites and relies on on-site Hubbard Coulomb and Hund's exchange parameters U and J , respectively. These are calculated self-consistently from linear-response theory without fitting to experimental data. The effect of correlation was found more pronounced for Ti and V, with a strong impact on the location of their electrical levels. In most cases, the agreement with the experimental data is satisfactory allowing the identification of the type and character of the levels. For Cr and Mo in particular, the results resolve longstanding controversies concerning the type and position of the levels. The obtained migration barriers display moderate charge-state and correlation dependency. High barriers were found for all metals studied, with the exception of Cr, confirming them as slow diffusers in silicon among the whole TM family.

  8. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study.

    PubMed

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2016-12-01

    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a. PMID:26858159

  9. Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3 d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2016-02-01

    We present first-principles density-functional calculations for the structural, electronic, and magnetic properties of substitutional 3 d transition metal (TM) impurities in two-dimensional black and blue phosphorenes. We find that the magnetic properties of such substitutional impurities can be understood in terms of a simple model based on the Hund's rule. The TM-doped black phosphorenes with Ti, V, Cr, Mn, Fe, and Ni impurities show dilute magnetic semiconductor (DMS) properties while those with Sc and Co impurities show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes with V, Cr, Mn, and Fe impurities show DMS properties, with Ni impurity showing half-metal properties, whereas Sc- and Co-doped systems show nonmagnetic properties. We identify two different regimes depending on the occupation of the hybridized electronic states of TM and phosphorous atoms: (i) bonding states are completely empty or filled for Sc- and Co-doped black and blue phosphorenes, leading to nonmagnetic; (ii) non-bonding d states are partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue phosphorenes, giving rise to large and localized spin moments. These results provide a new route for the potential applications of dilute magnetic semiconductor and half-metal in spintronic devices by employing black and blue phosphorenes. PACS numbers: 73.22.-f, 75.50.Pp, 75.75. + a

  10. First-principles study of site occupancy of 3d, 4d and 5d transition-metal elements in L10TiAl

    SciTech Connect

    Jiang, Chao

    2008-01-01

    Using a statistical-mechanical Wagner-Schottky model parametrized by first-principles density-functional (DFT-GGA) calculations on 32-atom supercells, we predict the lattice site occupancy of 3d (Ti-Cu), 4d (Zr-Ag) and 5d (Hf-Au) transition-metal elements in L10 TiAl intermetallic compound as a function of both alloy composition and temperature. The effects of local atomic relaxations, anisotropic lattice distortions, as well as magnetism on point defect energetics are fully taken into account. Our calculations show that, at all alloy compositions and temperatures, Zr and Hf consistently show a preference for the Ti sublattice, while Co, Ru, Rh, Pd, Ag, Re, Os, Ir, Pt and Au consistently show a preference for the Al sublattice. In contrast, the site preference of V, Cr, Mn, Fe, Ni, Cu, Nb, Mo, Tc, Ta and W strongly depend on both alloy stoichiometry and temperature. Our calculated results compare favorably with the existing theoretical and experimental studies in the literature.

  11. Direct Oxidation of Aliphatic C-H Bonds in Amino-Containing Molecules under Transition-Metal-Free Conditions.

    PubMed

    Li, Xin; Che, Xing; Chen, Gui-Hua; Zhang, Jun; Yan, Jia-Lei; Zhang, Yun-Fei; Zhang, Li-Sheng; Hsu, Chao-Ping; Gao, Yi Qin; Shi, Zhang-Jie

    2016-03-18

    By employing a simple, inexpensive, and transition-metal-free oxidation system, secondary C-H bonds in a series of phthaloyl protected primary amines and amino acid derivatives were oxidized to carbonyls with good regioselectivities. This method could also be applied to oxidize tertiary C-H bonds and modify synthetic dipeptides. PMID:26949833

  12. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  13. Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-Metal Oxide Chains

    NASA Astrophysics Data System (ADS)

    Ferstl, Pascal; Hammer, Lutz; Sobel, Christopher; Gubo, Matthias; Heinz, Klaus; Schneider, M. Alexander; Mittendorfer, Florian; Redinger, Josef

    2016-07-01

    We report on the self-organized growth of monatomic transition-metal oxide chains of (3 ×1 ) periodicity and unusual M O2 stoichiometry (M =Ni , Co, Fe, Mn) on Ir(100). We analyze their structural and magnetic properties by means of quantitative LEED, STM, and density functional theory (DFT) calculations. LEED analyses reveal a fascinating common atomic structure in which the transition-metal atoms sit above a missing-row structure of the surface and are coupled to the substrate only via oxygen atoms. This structure is confirmed by DFT calculations with structural parameters deviating by less than 1.7 pm. The DFT calculations predict that the NiO2 chains are nonmagnetic, CoO2 chains are ferromagnetic, while FeO2 and MnO2 are antiferromagnetic. All structures show only weak magnetic interchain coupling. Further, we demonstrate the growth of oxide chains of binary alloys of Co and Ni or Fe on Ir(100), which allows us to produce well-controlled ensembles of ferromagnetic chains of different lengths separated by nonmagnetic or antiferromagnetic segments.

  14. Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-Metal Oxide Chains.

    PubMed

    Ferstl, Pascal; Hammer, Lutz; Sobel, Christopher; Gubo, Matthias; Heinz, Klaus; Schneider, M Alexander; Mittendorfer, Florian; Redinger, Josef

    2016-07-22

    We report on the self-organized growth of monatomic transition-metal oxide chains of (3×1) periodicity and unusual MO_{2} stoichiometry (M=Ni, Co, Fe, Mn) on Ir(100). We analyze their structural and magnetic properties by means of quantitative LEED, STM, and density functional theory (DFT) calculations. LEED analyses reveal a fascinating common atomic structure in which the transition-metal atoms sit above a missing-row structure of the surface and are coupled to the substrate only via oxygen atoms. This structure is confirmed by DFT calculations with structural parameters deviating by less than 1.7 pm. The DFT calculations predict that the NiO_{2} chains are nonmagnetic, CoO_{2} chains are ferromagnetic, while FeO_{2} and MnO_{2} are antiferromagnetic. All structures show only weak magnetic interchain coupling. Further, we demonstrate the growth of oxide chains of binary alloys of Co and Ni or Fe on Ir(100), which allows us to produce well-controlled ensembles of ferromagnetic chains of different lengths separated by nonmagnetic or antiferromagnetic segments. PMID:27494483

  15. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    PubMed

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  16. Synthesis and control of morphology, stoichiometry, and composition of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Brier, Matthew Isaac

    Transition metal oxides (TMOs) are an important class of materials that have found uses in diverse applications, such as heterogeneous catalysts, sensors, and high temperature superconductors, due to their complex surface chemistry and high mobility of lattice oxygen atoms. Point defects such as oxygen and metal atom vacancies significantly perturb the electronic structure of TMOs and profoundly impact their electrical, optical, ferroelectric, photocatalytic, and other functional properties. As a result, significant research is being done to develop synthesis techniques that can produce metal oxides with controllable material properties. In this thesis, the use of hot wire chemical vapor deposition (HWCVD) was studied with the aim of precisely controlling the morphology, stoichiometry, and composition of TMOs. With molybdenum oxide as the model system, the control of morphology and stoichiometry was achieved by modulation of deposition parameters, such as filament power and gas phase composition. The study of HWCVD of MoOx led to the development of phase diagrams for the dependence of morphology and stoichiometry on deposition parameters. The knowledge gained studying the HWCVD of MoOx was then shown to translate to the deposition of other binary metal oxides by using tungsten, nickel, and vanadium metal filaments to synthesize their respective transition metal oxides. Additionally, NiMoO4 was synthesized as a proof-of-concept to show that HWCVD can be used to make ternary oxides. Nitridation of samples in an ammonia atmosphere was conducted to explore the potential for conversion of HWCVD grown TMOs to their respective metal nitrides, which are also reported to have catalytic properties. To examine the quality of TMOs grown by HWCVD, samples were electrochemically tested for their electrochromic properties and photoactivity with respect to splitting of water.

  17. Theoretical investigation of hyperfine fields in fluoromethanes and transition metal oxides

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Gowri

    Ab-initio Hartree-Fock Cluster procedure has been used to study Nuclear Quadrupole Interaction effects in molecular solid systems and Magnetic Hyperfine properties in antiferromagnetic transition metal oxides. Using the molecular orbital wave functions obtained from the Hartree-Fock calculations, the nuclear quadrupole interaction parameters, namely, the asymmetry parameter and quadrupole coupling constants are calculated at the fluorine site in CHsb{4-n}Fsb{n} (n = 1,2,3) and CHClFsb2 molecules. In addition to these molecules, the possibility of complexing of HF* molecule to these host molecules is also investigated. This complex formation is found to give rise to a second frequency at the fluorine site arising from the fluorine atom of the HF* hydrogen bonded to the host molecule. All of these results agree well with those from Time Dependent Perturbed Angular Distribution measurements of quadrupole interactions at the fluorine site in these systems. Theoretical investigations have also been carried out for the transition metal oxides NiO and MnO in antiferromagnetic state. The location of the muon in the two oxides and the associated electronic structure and muon hyperfine properties have been investigated. Eight equilibrium positions for the muon are found around each oxygen ion in the crystal, of which two are found to have substantially stronger stability than the other six. Direct and exchange contributions to the contact and dipolar hyperfine fields from within the cluster and dipolar fields from outside, are evaluated for each of the equilibrium locations of the muon and are shown to lead to three sets of hyperfine fields. The nature of the potential experienced by the muon as it travels between the equilibrium sites is studied to understand its dynamics inside the solid. The rates of hopping between each of the two equivalent most stable sites, where the muon most strongly trapped, and the other six sites are studied. In each case, the combination of

  18. Oxidative damage in human epithelial alveolar cells exposed in vitro to oil fly ash transition metals.

    PubMed

    Di Pietro, Angela; Visalli, Giuseppa; Munaò, Fortunato; Baluce, Barbara; La Maestra, Sebastiano; Primerano, Patrizia; Corigliano, Francesco; De Flora, Silvio

    2009-03-01

    Among particulate matter emissions from combustion processes, oil fly ash (OFA) displays a marked oxidative and inflammogenic reactivity, due to the high content of bioavailable transition metals. In the present study, we evaluated the biological effects of an OFA water solution, composed of the transition metals Fe (57.5%), V (32.4%), and Ni (10.1%), in human epithelial alveolar cells (A549 line). The fluorimetric analysis by 2',7'-dichlorofluorescein showed a significant, dose- and time-dependent induction of intracellular reactive oxygen species (ROS) triggered by OFA metal components at subtoxic doses. The metal chelator deferoxamine and the radical scavenger dimethylsulfoxide attenuated the metal-induced generation of ROS. Confocal microscopy observations strengthened these findings and showed an intense cytoplasmic fluorescence with perinuclear thickenings in A549 cells, in the absence of morphological damage. Metal-induced generation of ROS was significantly correlated with a dose- and time-dependent DNA damage, as assessed by single cell gel electrophoresis (comet assay). Catalase was able to decrease dramatically DNA damage. Fluorimetric analyses by diphenyl-1-pyrenylphosphine showed a parallelism between generation of ROS and formation of lipid peroxides. The results obtained in the experiments evaluating the effects of individual metal solutions did not show any significant difference in DNA damage between Fe(III) and V(IV), but highlighted the higher capability of V(IV) to increase ROS in the cytoplasmic compartment. The different behavior of these two elements, confirmed by the weak Fe-induced lipid peroxidation, may be ascribed to the presence of Fe-binding proteins, such as ferritin, in the cytoplasm. Finally, Ni(II) had negligible effects on ROS production. On the whole, the results obtained in this study show the strong capability of transition metals adsorbed to OFA to cause widespread damage to biological macromolecules, and suggest potential

  19. The Oxidation of Sulfur-Containing Compounds Using Heterogeneous Catalysts of Transition Metal Oxides Deposited on the Polymeric Matrix

    NASA Astrophysics Data System (ADS)

    Dinh Vu, Ngo; Dinh Bui, Nhi; Thi Minh, Thao; Thi Thanh Dam, Huong; Thi Tran, Hang

    2016-05-01

    We investigate the activity of heterogeneous catalysts of transition metal oxides deposited on the polymeric matrix in the oxidation of sulfur-containing compounds. It is shown that MnO2-10/CuO-10 has the highest catalytic activity. The physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, including the specific surface area, elongation at break and breaking strength, specific electrical resistance, and volume resistivity were studied by using an Inspekt mini 3 kN universal tensile machine in accordance with TCVN 4509:2006 at a temperature of 20 ± 2°C. Results show that heterogeneous polymeric catalysts were stable under severe reaction conditions. Scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. Microstructural characterization of the catalysts is performed by using x-ray computed tomography. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment.

  20. Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support.

    PubMed

    Strayer, Megan E; Senftle, Thomas P; Winterstein, Jonathan P; Vargas-Barbosa, Nella M; Sharma, Renu; Rioux, Robert M; Janik, Michael J; Mallouk, Thomas E

    2015-12-30

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle-support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M-O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles' stability. PMID:26651875

  1. Optical absorption of gamma-irradiated lithium-borate glasses doped with different transition metal oxides

    NASA Astrophysics Data System (ADS)

    Marzouk, S. Y.; Elalaily, N. A.; Ezz-Eldin, F. M.; Abd-Allah, W. M.

    2006-06-01

    We have investigated the effect of gamma irradiation on the optical properties of Li 2O-B 2O 3 containing two concentrations (0.2 or 0.5 g) of each one of the following transition metals, V, Mn, Fe or Ni oxide glass samples. We studied the impacts of gamma irradiation in terms of the mechanism by which radiation-induced defects are generated. A resolution of the observed absorption spectra showed several bands which were induced by photo-reduction or photo-oxidation assumed to take place by photo-chemical reaction according to the type of transition metal oxide (TMO). Small deviations of these induced bands characteristic of the glass constituents were observed and explained in terms of the physical properties, in relation to different oxidation states of TMO in the glass matrix. The series Mn 2+, Fe 2+ and Ni 2+ ions shows a trend of increased photo-oxidation with increasing electronegativity or decreasing mass of the ions. The prepared samples were studied in terms of their dosimetric characteristics: calibration curves from 1.0524 to 42.096 kGy and fading at (25 and 50 °C). Thermal bleaching of irradiated glass was found to permit the reduction of the larger part of TMO ions in Li 2O-B 2O 3. Also, the results showed that the degeneration of the induced bands was faster at 50 than at 25 °C. The optical energy gap Eg was found to decrease with the increase of the radiation dose, and it is suggested that the mechanism of optical transition is forbidden by indirect transition.

  2. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7.

    PubMed

    Hayward, M A; Cussen, E J; Claridge, J B; Bieringer, M; Rosseinsky, M J; Kiely, C J; Blundell, S J; Marshall, I M; Pratt, F L

    2002-03-01

    We present the synthesis and structural characterization of a transition metal oxide hydride, LaSrCoO3H0.7, which adopts an unprecedented structure in which oxide chains are bridged by hydride anions to form a two-dimensional extended network. The metal centers are strongly coupled by their bonding with both oxide and hydride ligands to produce magnetic ordering at temperatures up to at least 350 kelvin. The synthetic route is sufficiently general to allow the prediction of a new class of transition metal--containing electronic and magnetic materials. PMID:11884751

  3. Tuning the work function in transition metal oxides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Hansmann, P.

    2016-06-01

    The development of novel functional materials in experimental labs combined with computer-based compound simulation brings the vision of materials design on a microscopic scale continuously closer to reality. For many applications interface and surface phenomena rather than bulk properties are key. One of the most fundamental qualities of a material-vacuum interface is the energy required to transfer an electron across this boundary, i.e., the work function. It is a crucial parameter for numerous applications, including organic electronics, field electron emitters, and thermionic energy converters. Being generally very resistant to degradation at high temperatures, transition metal oxides present a promising materials class for such devices. We have performed a systematic study for perovskite oxides that provides reference values and, equally important, reports on materials trends and the tunability of work functions. Our results identify and classify dependencies of the work function on several parameters including specific surface termination, surface reconstructions, oxygen vacancies, and heterostructuring.

  4. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    SciTech Connect

    Glaser, Mathias; Peisert, Heiko Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Chassé, Thomas; Nagel, Peter; Merz, Michael; Schuppler, Stefan

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  5. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    NASA Astrophysics Data System (ADS)

    Glaser, Mathias; Peisert, Heiko; Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Nagel, Peter; Merz, Michael; Schuppler, Stefan; Chassé, Thomas

    2015-03-01

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  6. Double counting in the density functional plus dynamical mean-field theory of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung

    2015-03-01

    Recently, the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) has become a widely-used beyond-mean-field approach for strongly correlated materials. However, not only is the correlation treated in DMFT but also in DFT to some extent, a problem arises as the correlation is counted twice in the DFT+DMFT framework. The correction for this problem is still not well-understood. To gain more understanding of this ``double counting'' problem, I provide a detailed study of the metal-insulator transition in transition metal oxides in the subspace of oxygen p and transition metal correlated d orbitals using DFT+DMFT. I will show that the fully charge self-consistent DFT+DMFT calculations with the standard ``fully-localized limit'' (FLL) double counting correction fail to predict correctly materials such as LaTiO3, LaVO3, YTiO3 and SrMnO3 as insulators. Investigations in a wide range of the p- d splitting, the d occupancy, the lattice structure and the double counting correction itself will be presented to understand the reason behind this failure. I will also show that if the double counting correction is chosen to reproduce the p- d splitting consistent with experimental data, the DFT+DMFT approach can still give reasonable results in comparison with experiments.

  7. Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides

    NASA Astrophysics Data System (ADS)

    Samiee, L.; Shoghi, F.; Vinu, A.

    2013-01-01

    In the work presented here, an attempt is made to study the effect of functionalization with different transition metal oxides on the mesostructural properties as well as electrochemical behavior of Pt/nanoporous carbon supports. In this respect, the functionalized samples have been synthesized by using CMK-3 and metallocene as transition metal sources. The platinum catalysts (5 wt% Pt) obtained through a conventional wet impregnation method. All the materials have been characterized by XRD (low and high), N2 adsorption-desorption isotherms, high-resolution transmission electron microscopy, high-resolution field emission scanning electron, EDX mapping images and cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. The results showed that the mesostructural order has been destroyed by functionalization of CMK-3 with CoO, whereas it is not that much affected in NiO and CuO functionalized samples. EDX image mapping exhibited the good and uniform dispersion of functionalizing elements (Ni, Cu, Fe and Co), Pt in the carbon supports. Moreover, XRD studies revealed the formation of smaller platinum crystallite sizes in NiO and CuO functionalized samples in relative to other functionalized supports. Electrochemical measurements were performed using CV and RDE method. Kinetic analysis revealed an activity increases in the following order: CMK-3-NiO-Pt > CMK-3-CuO-Pt > CMK-3-CoO-Pt > CMK-3-Fe2O3-Pt which is showing of simultaneous effect of surface area and surface reactivity parameters.

  8. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Yu, Xianbo; Qu, Bin; Zhao, Yang; Li, Chunyan; Chen, Yujin; Sun, Chunwen; Gao, Peng; Zhu, Chunling

    2016-01-26

    A general strategy based on the nanoscale Kirkendall effect has been developed to grow hollow transition metal (Fe, Co or Ni) oxide nanoparticles on graphene sheets. When applied as lithium-ion battery anodes, these hollow transition metal oxide-based composites exhibit excellent electrochemical performance, with high reversible capacities and long-term stabilities at a high current density, superior to most transition metal oxides reported to date. PMID:26502895

  9. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  10. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  11. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    SciTech Connect

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  12. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGESBeta

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  13. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  14. NFE approximation for the e/a determination for 3d-transition metal elements and their intermetallic compounds with Al and Zn

    NASA Astrophysics Data System (ADS)

    Sato, H.; Inukai, M.; Zijlstra, E. S.; Mizutani, U.

    2013-08-01

    First-principles full-potential linearized augmented plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for elements from K to Cu in period 4 of the periodic table to determine the effective electrons per atom ratio (e/a). For the series of 3d-transition metals (TM), the determination of the square of the Fermi diameter ? , from which e/a is derived, has been recognized not to be straightforward because of the presence of a huge anomaly associated with the TM-d states across the Fermi level in the energy dispersion relation for electrons outside the muffin-tin sphere. The nearly free electron (NFE) approximation is newly devised to circumvent this difficulty. The centre of gravity energy ? is calculated from the energy distribution of the square of the Fourier coefficients for the FLAPW state ? . The NFE dispersion relation is constructed for the set of ? and ? in combination with the tetrahedron method. The resulting e/a values are distributed over positive numbers in the vicinity of unity for elements from Ti to Co. Instead, the e/a values for the early elements K, Ca and Sc and the late TM elements Ni and Cu were determined to be close to one, two, three, 0.50 and unity, respectively, using our previously designed local reading method. In addition, the composition dependence of e/a values for intermetallic compounds in X-TM (X = Al and Zn) alloy systems was studied to justify an appropriate choice between the local reading and NFE methods for respective elements.

  15. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  16. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  17. Electrochemical characterization of transition metal oxide aerogels for secondary lithium batteries

    NASA Astrophysics Data System (ADS)

    Dong, Winny

    The ability of transition metals to exist in multiple valence states, along with the fact that many transition metal oxides have a layered structure, has made transition metal oxides prime candidates as electrodes for the emerging technology of secondary lithium batteries. Traditionally, the electrochemical behavior of these materials is considered to be intrinsic to the material. In order to obtain different electrochemical performance needs, different materials need to be selected. The principal objective of this dissertation is to correlate electrochemical behavior with the microstructure of a material, allowing a material to meet different application requirements through the control of its microstructure. In this research, three different studies are used to explore the interrelationship between microstructure and electrochemical behavior. Sol-gel chemistry is used exclusively to prepare the electrochemically active materials as this process enables one to control the resulting microstructure and morphology. The first study looks at the influence of the degree of crystallinity in MoO3 aerogels on lithium capacity. The degree of crystallinity is controlled through heat treatment and observed to affect the lithium capacity. The nanocrystalline MoO3 aerogel exhibited higher lithium capacity (1.5 Li/Mo) compared to both the amorphous (1.1 Li/Mo) and crystalline (1.1 Li/Mo) samples. The second study involves the synthesis of organic/inorganic hybrids, achieved by simultaneously polymerizing the polypyrrole network within the Mo-O-Mo network. The addition of the conducting polymer phase increases both the electrical conductivity (4 x 10-3 S/cm) and the lithium capacity (1.7 Li/Mo) compared to that of MoO3 aerogels. The third study emphasizes the use of the "sticky carbon" electrode to study the effects of high surface area and pore size on the lithium intercalation properties of V2O5 aerogels. A series of V2O 5 aerogels with varying surface areas (10 to 280 m2/g) is

  18. The confinement error corrections for the exchange energy in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Armiento, Rickard; Mattsson, Ann E.

    2011-03-01

    We present some recent advances towards a straightforward scheme to correct for the confinement errors of the exchange energy of the transition metal oxides (TMO). This approach includes two steps: (i) identifying the spatial regions where the confinement errors exist, using local density and kinetic energy density information, and (ii) mapping these spatial regions to harmonic-oscillator (HO) models, and quantifying and correcting the relative confinement errors based on the model system. The scheme has been applied to calculations with several local and semi-local functionals, and a trend of improvement for the equilibrium structure is obtained after applying these confinement error corrections. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  19. X-ray absorption to determine the metal oxidation state of transition metal compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Carabalí-Sandoval, G.; Herrera-Pérez, G.; Chavira, E.; Yang, W.-L.; Denlinger, J.

    2013-07-01

    We present three examples where x-ray absorption at the transition metal L2,3 edges is used to investigate the valence states of various strongly correlated (SC) and technological relevant materials. Comparison with ligand field multiplet calculations is needed to determine the metal oxidation states. The examples are CrF2, the La1-xSrxCoO3 family and YVO3. For CrF2 the results indicate a disproportionation reaction that generates Cr+, Cr2+ and Cr3+ in different proportions that can be quantified directly from the x-ray spectra. Additionally, it is shown that Co2+ is present in the catalytic La1-xSrxCoO3 perovskite family. Finally, surface effects that change the vanadium valence are also found in YVO3 nanocrystals.

  20. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications. PMID:27478888

  1. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  2. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    SciTech Connect

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-01-01

    Topological insulators (TIs) are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of TIs, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional TIs. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO$_3$ bilayers have a topologically non-trivial energy gap of about 0.15~eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in $e_g$ systems are also discussed.

  3. Enhanced Pseudocapacitance in Multicomponent Transition-Metal Oxides by Local Distortion of Oxygen Octahedra.

    PubMed

    Lee, Hyeon Jeong; Lee, Ji Hoon; Chung, Sung-Yoon; Choi, Jang Wook

    2016-03-14

    Anomalously high pseudocapacitance of a metal oxide was observed when Ni, Co, and Mn were mixed in a solid solution. Analysis by X-ray absorption near-edge spectroscopy (XANES) identified a wider redox swing of Ni as the origin of the enlarged pseudocapacitance. Ab initio DFT calculations revealed that aliovalent species resulting from the copresence of multiple transition metals can generate permanent local distortions of [NiO6 ] octahedra. As this type of distortion breaks the degenerate eg level of Ni(2+) , the Jahn-Teller lattice instability necessary for the Ni(2+/3+) redox flip can be effectively diminished during charge-discharge, thus resulting in the significantly increased capacitance. Our findings highlight the importance of understanding structure-property correlation related to local structural distortions in improving the performance of pseudocapacitors. PMID:26890879

  4. On-site screened Coulomb interactions for localized electrons in transition metal oxides and defect systems

    NASA Astrophysics Data System (ADS)

    Shih, Bi-Ching; Zhang, Peihong; Department of Physics Team

    2011-03-01

    Electronic and structural properties of strongly correlated material systems are largely determined by the strength of the on-site Coulomb interaction. Theoretical models devised to capture the physics of strongly correlated materials usually involve screened Coulomb interactions as adjustable parameters. We present first-principles results for the screened on-site Coulomb and exchange energy for transition metal oxides. The dielectric screening is calculated within the random phase approximation and the localized electrons are represented by maximally localized Wannier functions. We further extend our study to calculate on-site Coulomb interactions for localized defect states in semiconductors. We acknowledge the computational support provided by the Center for Computational Research at the University at Buffalo, SUNY. This work is supported by the National Science Foundation under Grant No. DMR-0946404 and by the Department of Energy under Grant No. DE-SC0002623.

  5. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  6. Importance of tetrahedral coordination for high-valent transition-metal oxides: YCrO4 as a model system

    NASA Astrophysics Data System (ADS)

    Tsirlin, A. A.; Rabie, M. G.; Efimenko, A.; Hu, Z.; Saez-Puche, R.; Tjeng, L. H.

    2014-08-01

    We have investigated the electronic structure of the high oxidation state material YCrO4 within the framework of the Zaanen-Sawatzky-Allen phase diagram. While Cr4+-based compounds such as SrCrO3/CaCrO3 and CrO2 can be classified as small-gap or metallic negative-charge-transfer systems, we find using photoelectron spectroscopy that YCrO4 is a robust insulator despite the fact that its Cr ions have an even higher formal valence state of 5+. We reveal using band-structure calculations that the tetrahedral coordination of the Cr5+ ions in YCrO4 plays a decisive role, namely to diminish the bonding of the Cr 3d states with the top of the O 2p valence band. This finding not only explains why the charge-transfer energy remains effectively positive and the material stable, but also opens up a new route to create doped carriers with symmetries different from those of other transition-metal ions.

  7. Magnetoelectric and multiferroic properties in layered 3D transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hwang, Jungmin

    Functional ferroelectric and magnetic materials have played an important role of modern technology in the sensor or storage device industries. Ferroelectricity and ferromagnetism emerge from different origins. However, it is discovered that these two seemingly unrelated phenomena can actually coexist in materials called multiferroics. Since current trends toward device miniaturization have increased interests in combining electronic and magnetic properies into multifunctional materials, multiferroics have attracted great attention. Ferromagnetic ferroelectric multiferroics are especially fascinating not only because they have both ferroic properties, but also because of the magnetoelectric coupling which leads the interaction between the magnetic and electric polarization. Recent theoretical breakthroughs in understanding the coexistence of magnetic and electrical ordering have regenerated a great interests in research of such magnetoelectric multiferroics. The long-sought control of electric polarization by magnetic fields was recently discovered in 'frustrated magnets', for example the perovskites RMnO3, RMn 2O5 (R: rare earth elements), Ni3V 2O8, delafossite CuFeO2, spinel CoCr2O 4, MnWO4, etc. In this dissertation, I have explored several magnetoelectric materials and multiferroics, which show significant magnetoelectric interactions between electric and magnetic orderings. The objects of my projects are focused on understanding the origins of such magnetoelectric couplings and establishing the magnetic/electric phase diagrams and the spin structures. I believe that my works would help to understand the mechanisms of magnetoelectric effects and multiferroics.

  8. A DFT-chemotopological study on the 3D transition metal oxides and dioxygen complexes

    NASA Astrophysics Data System (ADS)

    Trujillo-González, Daniel E.; Ramírez-Romero, María C.; Rodríguez, Juan I.; Uribe, Emilbus A.

    2016-04-01

    Density functional theory unrestricted calculations at the BPW91/6-311+G* level of theory have been used to explore the potential energy surface of MOn complexes (M = Sc-Zn, n = 1-2). Nine physico-chemical properties were selected to characterize each of the MOn complexes to conduct a chemotopological study. Our results show that the similarity relations between the group-VIIIB elements (Fe, Co and Ni) are transferred to their corresponding MOn complexes. A classification of Msbnd O interactions in the MOn complexes based on the QTAIM methodology is introduced.

  9. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  10. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    PubMed

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity. PMID:26745742

  11. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    SciTech Connect

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; Martha, Surendra K.; Nanda, Jagjit

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  12. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    DOE PAGESBeta

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; Martha, Surendra K.; Nanda, Jagjit

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used tomore » investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  13. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    SciTech Connect

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility.

  14. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    PubMed Central

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  15. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    DOE PAGESBeta

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less

  16. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    SciTech Connect

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.

  17. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  18. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides.

    PubMed

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  19. Design of Chern and Mott insulators in buckled 3 d oxide honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Doennig, David; Baidya, Santu; Pickett, Warren E.; Pentcheva, Rossitza

    2016-04-01

    Perovskite (La X O3 )2/(LaAlO3)4(111) superlattices with X spanning the entire 3 d transition-metal series combine the strongly correlated, multiorbital nature of electrons in transition-metal oxides with a honeycomb lattice as a key feature. Based on density functional theory calculations including strong interaction effects, we establish trends in the evolution of electronic states as a function of several control parameters: band filling, interaction strength, spin-orbit coupling (SOC), and lattice instabilities. Competition between local pseudocubic and global trigonal symmetry as well as the additional flexibility provided by the magnetic and spin degrees of freedom of 3 d ions lead to a broad array of distinctive broken-symmetry ground states not accessible for the (001)-growth direction, offering a platform to design two-dimensional electronic functionalities. Constraining the symmetry between the two triangular sublattices causes X =Mn , Co, and Ti to emerge as Chern insulators driven by SOC. For X =Mn we illustrate how interaction strength and lattice distortions can tune these systems between a Dirac semimetal, a Chern and a trivial Mott insulator.

  20. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  1. CASPT2 study of inverse sandwich-type dinuclear 3d transition metal complexes of ethylene and dinitrogen molecules: similarities and differences in geometry, electronic structure, and spin multiplicity.

    PubMed

    Nakagaki, Masayuki; Sakaki, Shigeyoshi

    2015-07-01

    The spin multiplicities and coordination structures of inverse sandwich-type complexes (ISTCs) of ethylene and dinitrogen molecules with 3d transition metal elements (Sc to Ni), (μ-C2H4)[M(AIP)]2 and (μ-N2)[M(AIP)]2 (AIPH = (Z)-1-amino-3-iminoprop-1-ene; M = Sc to Ni) were investigated by the CASPT2 method. In both ethylene and dinitrogen ISTCs of the early 3d transition metals (Sc to Cr), sandwiched ethylene and dinitrogen ligands coordinate with two metal atoms in an η(2)-side-on form and their ground states have an open-shell singlet spin multiplicity. The η(1)-end-on coordination structure of dinitrogen ISTCs is considerably less stable than the η(2)-side-on form in these metals. For the late 3d transition metals (Mn to Ni), ethylene and dinitrogen ISTCs exhibit interesting similarities and differences in spin multiplicity and structure as follows: in ethylene ISTCs of Mn to Ni, the ground state has an open-shell singlet spin multiplicity like those of the ISTCs of early transition metals. However, the ethylene ligand is considerably distorted, in which the ethylene carbon atoms have a tetrahedral-like structure similar to sp(3) carbon and each of them coordinates with one metal in a μ-η(1):η(1) structure. These geometrical features are completely different from those of ISTCs of the early transition metals. In dinitrogen ISTCs of Mn to Ni, on the other hand, the ground state has a high spin multiplicity from nonet (Mn) to triplet (Ni). The η(2)-side-on coordination structure of the dinitrogen ligand is as stable as the η(1)-end-on form in the Mn complex but the η(1)-end-on structure is more stable than the η(2)-side-on form in the Fe to Ni complexes. All these interesting similarities and differences between ethylene and dinitrogen ISTCs and between the early and late transition metal elements arise from the occupation of several important molecular orbitals. PMID:26041561

  2. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    SciTech Connect

    Kellar, S.A. |

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  3. Magnetic and electrical properties of transition-metal-doped oxide thin films

    NASA Astrophysics Data System (ADS)

    Lam, Ching Yee

    In this research programme, the electrical and magnetic properties of PLD and room temperature grown TM-doped TiO2 and TM-doped Cu xO thin films have been investigated. We used Co and Fe as the TM dopants for the TiO2 based films. Mn was however used to dope the Cu xO materials systems. Among the various electrical properties, resistive switching of transition-metal oxide thin films and electrical rectifying property of an all-oxide p-n diode have been studied. The resistive switching of anatase phase TM-doped TiO 2 has been determined using two top-down configurations of Ag/TM-doped TiO2/Pt and In/TM-doped TiO2/TiN. Despite the fact that same transition-metal oxide was used, the switching characteristics of these two configurations were significantly different. For example, both the unipolar and bipolar switching were observed in pure TiO2 films. Heterostructures of Ag/TiO2/Pt have also been deposited on flexible PET substrates at room temperature by PLD. These oxide films on flexible substrate not only show resistive switching, but produce an average switching ratio as high as over 6 orders of magnitude. The resistive switching in In/CuxO/Pt and In/Mn-doped CuxO/Pt films have also been demonstrated in the present study. Our results indicate clearly that the switching stability of the In/CuxO/Pt systems is improved by the Mn-doping. Our ultimate goal is to produce a ferromagnetic all-oxide p-n junction diode. We obtained room-temperature ferromagnetism in the epitaxially grown anatase n-type Co-doped TiO2 and possible p-type Fe-doped TiO 2 thin films. At the same time, the 3.7 at.% Mn-doped Cu2O epitaxial films have been prepared. They are p-type conducting and have been properly utilized to form good rectifying all-oxide heterojunction with the n-type Nb-SrTiO3 substrates. The p-type Mn-doped Cu2O films that we have made so far, although exhibit ferromagnetism at low temperatures <50K, do not reveal any room temperature ferromagnetic characteristics. It is

  4. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    NASA Astrophysics Data System (ADS)

    Deng, Yan-Hong; Chen, Xiang-Yu; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing

    2014-06-01

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq3/MoO3 and MoO3 composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO3 layer. Moreover, Mg:Alq3/MoO3 composed device displays a photovoltaic effect and the Voc shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  5. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  6. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  7. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    SciTech Connect

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-14

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  8. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  9. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    SciTech Connect

    Deng, Yan-Hong; Chen, Xiang-Yu E-mail: xychen@suda.edu.cn; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing E-mail: xychen@suda.edu.cn

    2014-06-02

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq{sub 3}/MoO{sub 3} and MoO{sub 3} composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO{sub 3} layer. Moreover, Mg:Alq{sub 3}/MoO{sub 3} composed device displays a photovoltaic effect and the V{sub oc} shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  10. SIC-LSD study of transition metal valencies in oxide materials

    NASA Astrophysics Data System (ADS)

    Petit, Leon; Schulthess, Thomas; Svane, Axel; Janotti, Anderson; Szotek, Zdzislawa; Temmerman, Walter

    2005-03-01

    The electronic and magnetic properties of transition metal (TM) oxide materials are largely determined by the degree of localization of the TM d-electrons. With the self-interaction corrected (SIC) local spin density (LSD) approximation, we are able to differentiate between various localization/delocalization scenarios based on total energy considerations, and thus to determine the ground state valency onfiguration from the global energy minimum. Using the SIC-LSD, we studied the valencies of TM (Co, Mn) impurities in ZnO. We find the position of the TM(0/+) donor level to be such that the TM^2+ configuration is energetically most favourable both in n-type ZnO, and in ZnO without additional codopants, whilst in p-type ZnO one additional d-electron prefers to delocalize with the resulting TM^3+ groundstate configuration. We furthermore investigated the possibility of ferromagnetic order in the corresponding groundstate scenarios. Work supported in part by the Defense Advanced Research Agency and by the Division of Materials Science and Engineering, US Department of Energy. The Oak Ridge National Laboratory is managed by UT-Battelle LLC for the Department of Energy under Contract No. DE-AC05-00OR22725.

  11. Probing the Reactivity and Radical Nature of Oxidized Transition Metal-Thiolate Complexes by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Mei; Campbell, J. Larry; Chauhan, Rajat; Grapperhaus, Craig A.; Chen, Hao

    2013-04-01

    Transition metal thiolate complexes such as [PPN]+[RuL3]- (PPN = bis(triphenylphosphoranylidene) ammonium and L = diphenylphosphinobenzenethiolate) are known to undergo addition reactions with unsaturated hydrocarbons via the formation of new C-S bonds in solution upon oxidation. The reaction mechanism is proposed to involve metal-stabilized thiyl radical intermediates, a new type of distonic ions such as [RuL3]+ ion in the case of [PPN]+[RuL3]-. This study presents the reactivity and structure investigation of [RuL3]+ by mass spectrometry (MS) in conjunction with ion/molecule reactions. The addition reactions of [RuL3]+ with alkenes or methyl ketones in the gas phase are indeed observed, in agreement with the proposed mechanism. Such reactivity is also maintained by several fragment ions of [RuL3]+, indicating the preserved thiyl diradical core structure is responsible for the addition reaction. The thiyl radical nature of [RuL3]+ was further verified by the ion/molecule reaction of [RuL3]+ with dimethyl disulfide, in which the characteristic CH3S• transfer occurs, both at atmospheric pressure and also at low pressure (~mTorr). These results provide, for the first time, clear mass spectrometric evidence of the radical nature of [RuL3]+ (i.e., the distonic ion structure of [RuL3]+), arising from the oxidation of non-innocent thiolate ligands of the complex [PPN]+[RuL3]-. Similar thiolate complexes, including ReL3 and NiL2, were also examined. Although reactions of oxidized ReL3 or NiL2 with CH3SSCH3 take place at atmospheric pressure, the corresponding reaction did not occur in vacuum. Consistent with these data, the addition of ethylene was not observed either, indicating lower reactivities of [ReL3]+ and [NiL2]+ in comparison to [RuL3]+.

  12. Design of Mott and topological phases on buckled 3d-oxide honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Pentcheva, Rossitza

    The honeycomb lattice, as realized e.g. in graphene, has rendered a robust platform for innovative science and potential applications. A much richer generalization of this lattice arises in (111)-oriented bilayers of perovskites, adding the complexity of the strongly correlated, multiorbital nature of electrons in transition metal oxides. Based on first principles calculations with an on-site Coulomb repulsion, here we provide trends in the evolution of ground states versus band filling in (111)-oriented (La XO3)2 /(LaAlO3)4 superlattices, with X spanning the entire 3d transition metal series. The competition between local quasi-cubic and global triangular symmetry triggers unanticipated broken symmetry phases, with mechanisms ranging from Jahn-Teller distortion, to charge-, spin-, and orbital-ordering. LaMnO3 and LaCoO3 bilayers, where spin-orbit coupling opens a sizable gap in the Dirac-point Fermi surface, emerge as much desired oxide-based Chern insulators, the latter displaying a gap capable of supporting room-temperature applications Further realizations of the honeycomb lattice and geometry patterns beyond the perovskite structure will be addressed. Research supported by the DFG, SFB/TR80.

  13. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect

    Das, Supriyo

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  14. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  15. Bonding Constraints,Elasticity and Electronic Heterogeneity in Transition Metal Oxides*

    NASA Astrophysics Data System (ADS)

    Bishop, Alan

    2004-03-01

    We describe a multiscale "systems" scenario for doped transition metal oxides and related "strongly correlated" electronic materials, in which local polarizable "hotspots" (pairing centers, polarons, charge-transfer centers, etc.) induce elastic strains, which self-consistently drive self-assembly and coherent responses - macroscopically but heterogeneously. The elastic fields are a result of the highly-directional, local bonding "compatibility" constraints, and provide structural templates which couple strongly to electronic wave-functions because of (oxygen) polarizabilities and (metal-oxygen) charge-transfers. This leads to intrinsic "landscapes" of heterogeneous ground and metastable states (and associated multiscale dynamics), which are globally sensitive to local perturbations. Heterogeneity at atomic scales (e.g. filamentary/clump charge/spin localization and perovskite unit cell distortions) are intimately coupled, in multiscale systems, to mesoscale structural textures (twinning, tweed, etc). We describe selected signatures of heterogeneous textures in spin, charge and lattice degrees-of-freedom. We emphasize the importance of soft filamentary phases as the typical consequences of coexisiting anistropic short- and long-range fields and suggest generalizations to other hard, soft and biological matter. We speculate on the role of strain fields in controlling pseudogroups, correlated percolation, soft mesoscopic dynamics, filamentary dielectric breakdown and proximity effects, and effective pairing symmetry. 1)Intrinsic multiscale structure and dynamics in complex electronic oxides, eds. A. Bishop, S. Shenoy, S. Sridhar (World Scientific 2003); 2) A. Bishop et al, Euro. Phys. Lett. 63, 289 (2003); 3) J-X Zhu et al, Phys. Rev. Lett. 91, 057004; 4) J. C. Phillips et al, Rep. Prog. Phys. 66, 2111 (2003). *This work was performed in collaboration with K. Ahn, T. Lookman, A. Saxena, S. Shenoy, J-X Zhu, and work at Los Alamos was supported by the USDOE Office of

  16. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  17. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    SciTech Connect

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng; Truhlar, Donald G.

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn–Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal–ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core–valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used

  18. Transition metal oxides - CrO, MoO, NiO, PdO, AgO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Nelin, C. J.; Bagus, P. S.

    1985-01-01

    The transition-metal oxides are quite ionic; Mulliken population analyses for several oxides give a negative charge of about 0.7 electrons for oxygen. When the transition-metal d shell is only partially filled, the orbitals are involved in covalent bonds with O; both two-electron bonding (2)-antibonding (0) and one-electron bonding (2)-antibonding (1) bonds are formed. These covalent bonds occur in addition to the ionic bonding. There is d-sigma-O2 p sigma repulsion, and this repulsion is reduced when the d-sigma electron is promoted into an orbital which has dominantly 4sp-sigma character and is polarized away from O.

  19. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  20. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles

    PubMed Central

    Lin, Sijie; Zhao, Yan; Xia, Tian; Meng, Huan; Zhaoxia, Ji; Liu, Rong; George, Saji; Xiong, Sijing; Wang, Xiang; Zhang, Haiyuan; Pokhrel, Suman; Mädler, Lutz; Damoiseaux, Robert; Lin, Shuo; Nel, Andre E.

    2014-01-01

    Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO and Co3O4) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependant hatching interference in the embryos, with the exception of Co3O4 which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn2+. This hypothesis is based on the presence of metal–sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA sensitive. In conclusion, we demonstrate that high content imaging of embryo development, morphological abnormalities and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo. PMID:21851096

  1. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts.

    PubMed

    Morales-Guio, Carlos G; Liardet, Laurent; Hu, Xile

    2016-07-20

    The electrolysis of water to produce hydrogen and oxygen is a simple and attractive approach to store renewable energies in the form of chemical fuels. The oxygen evolution reaction (OER) is a complex four-electron process that constitutes the most energy-inefficient step in water electrolysis. Here we describe a novel electrochemical method for the deposition of a family of thin-film transition metal (oxy)hydroxides as OER catalysts. The thin films have nanodomains of crystallinity with lattice spacing similar to those of double-layered hydroxides. The loadings of these thin-film catalysts were accurately determined with a resolution of below 1 μg cm(-2) using an electrochemical quartz microcrystal balance. The loading-activity relations for various catalysts were established using voltammetry and impedance spectroscopy. The thin-film catalysts have up to four types of loading-activity dependence due to film nucleation and growth as well as the resistance of the films. A zone of intrinsic activity has been identified for all of the catalysts where the mass-averaged activity remains constant while the loading is increased. According to their intrinsic activities, the metal oxides can be classified into three categories: NiOx, MnOx, and FeOx belong to category I, which is the least active; CoOx and CoNiOx belong to category II, which has medium activity; and FeNiOx, CoFeOx, and CoFeNiOx belong to category III, which is the most active. The high turnover frequencies of CoFeOx and CoFeNiOx at low overpotentials and the simple deposition method allow the fabrication of high-performance anode electrodes coated with these catalysts. In 1 M KOH and with the most active electrode, overpotentials as low as 240 and 270 mV are required to reach 10 and 100 mA cm(-2), respectively. PMID:27344954

  2. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell

    NASA Astrophysics Data System (ADS)

    Hu, Huiqing; Lin, Qizhao; Muhammad, Afzal; Zhu, Bin

    2015-07-01

    This study analyzed the effect of various semiconductors of transition metal oxides in modified lithiated NiO on the electrochemical performance of a single layer fuel cell (SLFC). A typical ionic conductor Ce0.8Sm0.2O2-δ (SDC) and three types of semiconductors Li0.3Ni0.6Cu0.07Sr0.03O2-δ (LNCuS), Li0.3Ni0.6Mn0.07Sr0.03O2-δ (LNMnS) and Li0.3Ni0.6Co0.07Sr0.03O2-δ (LNCoS), were the fundamental components of the SLFCs. The components were characterized by using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy-dispersive X-ray spectrometer (EDS). The stability of the synthesized materials was evaluated using thermal gravity analysis (TGA). The ohmic resistances at 500 °C were 0.36, 0.48 and 0.58 Ω cm2 for 6SDC-4LNMnS, 6SDC-4LNCoS and 6SDC-4LNCuS, respectively. Among the three SLFCs, the single cell with 6SDC-4LNMnS achieves the highest power density (422 mW cm-2) but the lowest temperature stability, while the single cell with 6SDC-4LNCuS achieved the lowest power density (331 mW cm-2) but the highest temperature stability during the operation temperature.

  3. Mechanistic investigation of oxidative Mannich reaction with tert-butyl hydroperoxide. The role of transition metal salt.

    PubMed

    Ratnikov, Maxim O; Doyle, Michael P

    2013-01-30

    A general mechanism is proposed for transition metal-catalyzed oxidative Mannich reactions of N,N-dialkylanilines with tert-butyl hydroperoxide (TBHP) as the oxidant. The mechanism consists of a rate-determining single electron transfer (SET) that is uniform from 4-methoxy- to 4-cyano-N,N-dimethylanilines. The tert-butylperoxy radical is the major oxidant in the rate-determining SET step that is followed by competing backward SET and irreversible heterolytic cleavage of the carbon-hydrogen bond at the α-position to nitrogen. A second SET completes the conversion of N,N-dimethylaniline to an iminium ion that is subsequently trapped by the nucleophilic solvent or the oxidant prior to formation of the Mannich adduct. The general role of Rh(2)(cap)(4), RuCl(2)(PPh(3))(3), CuBr, FeCl(3), and Co(OAc)(2) in N,N-dialkylaniline oxidations by T-HYDRO is to initiate the conversion of TBHP to tert-butylperoxy radicals. A second pathway, involving O(2) as the oxidant, exists for copper, iron, and cobalt salts. Results from linear free-energy relationship (LFER) analyses, kinetic and product isotope effects (KIE and PIE), and radical trap experiments of N,N-dimethylaniline oxidation by T-HYDRO in the presence of transition metal catalysts are discussed. Kinetic studies of the oxidative Mannich reaction in methanol and toluene are also reported. PMID:23298175

  4. Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO{sub 2} with the modified Becke-Johnson exchange-correlation functional

    SciTech Connect

    Boujnah, M.; Zaari, H.; El Kenz, A.; Labrim, H.; Benyoussef, A.; Mounkachi, O.

    2014-03-28

    The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}. However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.

  5. Comparison of Transition Metal-Mediated Oxidation Reactions of Guanine in Nucleoside and Single-Stranded Oligodeoxynucleotide Contexts

    PubMed Central

    Ghude, Pranjali; Schallenberger, Mark A.; Fleming, Aaron M.; Muller, James G.; Burrows, Cynthia J.

    2011-01-01

    As the most readily oxidized of DNA’s four natural bases, guanine is a prime target for attack by reactive oxygen species (ROS) and transition metal-mediated oxidants. The oxidation products of a modified guanosine nucleoside and of a single-stranded oligodeoxynucleotide, 5′-d(TTTTTTTGTTTTTTT)-3′ have been studied using oxidants that include CoII, NiII, and IrIV compounds as well as photochemically generated oxidants such as sulphate radical, electron-transfer agents (riboflavin) and singlet oxygen. The oxidized lesions formed include spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), imidazolone (Iz), oxazolone (Z) and 5-carboxamido-5-formamido-2-iminohydantion (2-Ih) nucleosides with a high degree of dependence on the exact oxidation system employed. Interestingly, a nickel(II) macrocyclic complex in conjunction with KHSO5 leads to the recently reported 2-Ih heterocycle as the major product in both the nucleoside and oligonucleotide contexts. PMID:21516189

  6. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  7. First-principles study on the magnetism and electronic structure in 3d transition metal (X=Sc, V, Cr, Mn, Fe, Ni, Cu) doped CoO

    NASA Astrophysics Data System (ADS)

    Liu, R. X.; Wang, X. C.; Chen, G. F.; Yang, B. H.

    2016-03-01

    We have studied the electronic structure and magnetism of the single transitional metal element X=Sc, V, Cr, Mn, Fe, Ni, Cu-doped CoO systems by first-principles calculations. At X=Sc, Cr, Cu, the binding energy of the doped systems is lower than pure CoO, suggesting that these systems are energetically stable. In the Sc, V, Cr, Mn, Fe, Ni, Cu-doped 2×2×2 CoO supercells, the total magnetic moments are 3.03, 5.64, 6.80, 7.70, 6.93, 2.30 and 1.96 μB, respectively. At X=Cr and Fe, the doped CoO systems are half-metallic with a high spin polarization. The large magnetic moment and high spin polarization in the Cr and Fe-doped CoO are important for the design of the spintronic devices.

  8. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  9. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    PubMed

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites. PMID:26443263

  10. Coupling between crystal structure and magnetism in transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable

  11. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides

    PubMed Central

    Vejerano, Eric; Dellinger, Barry

    2014-01-01

    Previous studies indicated that Environmentally Persistent Free Radicals (EPFRs) are formed in the post-flame, cool zone of combustion. They result from the chemisorption of gas-phase products of incomplete combustion (particularly hydroxyl- and chlorine-substituted aromatics) on Cu(II)O, Fe(III)2O3, and Ni(II)O domains of particulate matter (fly ash or soot particles). This study reports our detailed laboratory investigation on the lifetime of EPFRs on Zn(II)O/silica surface. Similarly, as in the case of other transition metals, chemisorption of the adsorbate on the Zn(II)O surface and subsequent transfer of electron from the adsorbate to the metal forms a surface-bound EPFR and a reduced metal ion center. The EPFRs are stabilized by their interaction with the metal oxide domain surface. The half-lives of EPFRs formed on Zn(II)O domains were the longest observed among the transition metal oxides studied and ranged from 3 to 73 days. These half-lives were an order of magnitude longer than those formed on nickel and iron oxides, and were 2 orders of magnitude longer compared to the EPFRs on copper oxide which have half-lives only on the order of hours. The longest-lived radicals on Zn(II)O correspond to the persistency in ambient air particles of almost a year. The half-life of EPFRs was found to correlate with the standard reduction potential of the associated metal. PMID:22990982

  12. General Self-Template Synthesis of Transition-Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances.

    PubMed

    Wang, Huan; Zhuo, Sifei; Liang, Yu; Han, Xiling; Zhang, Bin

    2016-07-25

    The development of a general strategy for synthesizing hierarchical porous transition-metal oxide and chalcogenide mesoporous nanotubes, is still highly challenging. Herein we present a facile self-template strategy to synthesize Co3 O4 mesoporous nanotubes with outstanding performances in both the electrocatalytic oxygen-evolution reaction (OER) and Li-ion battery via the thermal-oxidation-induced transformation of cheap and easily-prepared Co-Asp(cobalt-aspartic acid) nanowires. The initially formed thin layers on the precursor surfaces, oxygen-induced outward diffusion of interior precursors, the gas release of organic oxidation, and subsequent Kirkendall effect are important for the appearance of the mesoporous nanotubes. This self-template strategy of low-cost precursors is found to be a versatile method to prepare other functional mesoporous nanotubes of transition-metal oxides and chalcogenides, such as NiO, NiCo2 O4 , Mn5 O8 , CoS2 and CoSe2 . PMID:27239778

  13. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Anastasio, C.

    2012-10-01

    The rate of consumption of dithiothreitol (DTT) is increasingly used to measure the oxidative potential of particulate matter (PM), which has been linked to the adverse health effects of PM. While several quinones are known to be very reactive in the DTT assay, it is unclear what other chemical species might contribute to the loss of DTT in PM extracts. To address this question, we quantify the rate of DTT loss from individual redox-active species that are common in ambient particulate matter. While most past research has indicated that the DTT assay is not sensitive to metals, our results show that seven out of the ten transition metals tested do oxidize DTT, as do three out of the five quinones tested. While metals are less efficient at oxidizing DTT compared to the most reactive quinones, concentrations of soluble transition metals in fine particulate matter are generally much higher than those of quinones. The net result is that metals appear to dominate the DTT response for typical ambient PM2.5 samples. Based on particulate concentrations of quinones and soluble metals from the literature, and our measured DTT responses for these species, we estimate that for typical PM2.5 samples approximately 80% of DTT loss is from transition metals (especially copper and manganese), while quinones account for approximately 20%. We find a similar result for DTT loss measured in a small set of PM2.5 samples from the San Joaquin Valley of California. Because of the important contribution from metals, we also tested how the DTT assay is affected by EDTA, a chelator that is sometimes used in the assay. EDTA significantly suppresses the response from both metals and quinones; we therefore recommend that EDTA should not be included in the DTT assay.

  14. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Anastasio, C.

    2012-05-01

    The rate of consumption of dithiothreitol (DTT) is increasingly used to measure the oxidative potential of particulate matter (PM), which has been linked to the adverse health effects of PM. While several quinones are known to be very reactive in the DTT assay, it is unclear what other chemical species might contribute to the loss of DTT in PM extracts. To address this question, we quantify the rate of DTT loss from individual redox-active species that are common in ambient particulate matter. While most past research has indicated that the DTT assay is not sensitive to metals, our results show that seven out of the ten transition metals tested do oxidize DTT, as do three out of the five quinones tested. While metals are less efficient at oxidizing DTT compared to the most reactive quinones, concentrations of soluble transition metals in fine particulate matter are generally much higher than those of quinones. The net result is that metals appear to dominate the DTT response for typical ambient PM2.5 samples. Based on particulate concentrations of quinones and soluble metals from the literature, and our measured DTT responses for these species, we estimate that for typical fine particle samples approximately 80% of DTT loss is from transition metals (especially copper and manganese), while quinones account for approximately 20%. We find a similar result for DTT loss measured in a small set of PM2.5 samples from the San Joaquin Valley of California. Because of the important contribution from metals, we also tested how the DTT assay is affected by EDTA, a chelator that is sometimes used in the assay. EDTA significantly suppresses the response from both metals and quinones; we therefore recommend that EDTA should not be included in the DTT assay.

  15. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals

    PubMed Central

    Charrier, J. G.; Anastasio, C.

    2013-01-01

    The rate of consumption of dithiothreitol (DTT) is increasingly used to measure the oxidative potential of particulate matter (PM), which has been linked to the adverse health effects of PM. While several quinones are known to be very reactive in the DTT assay, it is unclear what other chemical species might contribute to the loss of DTT in PM extracts. To address this question, we quantify the rate of DTT loss from individual redox-active species that are common in ambient particulate matter. While most past research has indicated that the DTT assay is not sensitive to metals, our results show that seven out of the ten transition metals tested do oxidize DTT, as do three out of the five quinones tested. While metals are less efficient at oxidizing DTT compared to the most reactive quinones, concentrations of soluble transition metals in fine particulate matter are generally much higher than those of quinones. The net result is that metals appear to dominate the DTT response for typical ambient PM2.5 samples. Based on particulate concentrations of quinones and soluble metals from the literature, and our measured DTT responses for these species, we estimate that for typical PM2.5 samples approximately 80 % of DTT loss is from transition metals (especially copper and manganese), while quinones account for approximately 20 %. We find a similar result for DTT loss measured in a small set of PM2.5 samples from the San Joaquin Valley of California. Because of the important contribution from metals, we also tested how the DTT assay is affected by EDTA, a chelator that is sometimes used in the assay. EDTA significantly suppresses the response from both metals and quinones; we therefore recommend that EDTA should not be included in the DTT assay. PMID:23393494

  16. Synthesis and characterization of transition metal-mullite catalysts for nitric oxide (NO) oxidation

    NASA Astrophysics Data System (ADS)

    Thampy, Sampreetha

    AMn2O5 (A = Pr, Sm, Gd, Y, Bi), and (Y, Bi)FeMnO5 mullite prepared by coprecipitation-calcination method are investigated as catalysts for NO oxidation. The effect of precursor stoichiometry, calcination temperature, and coprecipitation pH on phase, specific surface area (SSA) and NO chemisorption are studied. The precursor stoichiometry controlled the oxide phase (mullite vs. perovskite) obtained. In comparison, when the calcination temperature is increased from 750 ºC to 1000 ºC, a tradeoff is observed, where purity of mullite phase increased from 73 % to 100 % but SSA decreased from 30 m2/g to 5 m2/g. Formation of crystalline SmMn2O5 is found to be weakly dependent on pH whereas SSA monotonically increased from 13 m2/g at pH 8.1 to 27 m2/g at pH 13. A strong correlation between NO uptake volume and SSA is found. The highest SSA value (27 m2/g) being associated to a sample showing the highest NO uptake (104 micromol/g). These results suggest that the SSA is the key contributor to higher catalytic performance of TM-mullites.

  17. Low loadings of platinum on transition metal carbides for hydrogen oxidation and evolution reactions in alkaline electrolytes.

    PubMed

    Wang, Lu; Mahoney, Elizabeth G; Zhao, Shen; Yang, Bolun; Chen, Jingguang G

    2016-03-01

    Low-loadings of Pt supported over six transition metal carbide (Pt/TMC) powder catalysts were synthesized and evaluated for hydrogen oxidation and evolution reactions in an alkaline electrolyte. The roughness factor of each Pt/TMC catalyst was different, indicating that the carbide supports affect the dispersion of Pt. Furthermore, when normalized by the corresponding roughness factors, all Pt/TMC catalysts were found to have similar intrinsic activities that were comparable to the state-of-the-art commercial Pt/C electrocatalysts. PMID:26862592

  18. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.

    2014-09-01

    The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.

  19. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-01

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection. PMID:26422643

  20. Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Longo, R. C.; Carrete, J.; Gallego, L. J.

    2011-06-01

    We performed extensive density-functional calculations of the structural, electronic, and magnetic properties of systems comprising one or two adatoms of Fe, Co, Ni, Ru, Rh, Pd, or Pt adsorbed on a hydrogen-passivated zigzag graphene nanoribbon (GNR). In all cases, the most stable structure featured the adatom(s) at positions near one of the edges of the GNR. However, whereas in the most stable structures of the single-adatom systems Ni/GNR, Ru/GNR, Rh/GNR, and Pd/GNR the adatom was located above a bay of the zigzag edge, Fe/GNR and Co/GNR were found to be most stable when the adatoms were at a first-row hole site, while the two configurations were nearly equienergetic for Pt/GNR. Similarly, whereas the most stable structures of the two-adatom systems Ni2/GNR, Ru2/GNR, Rh2/GNR, and Pd2/GNR had the adatoms above two neighboring edge bays, Co2/GNR and Pt2/GNR were most stable with the adatoms stacked in a double-decker configuration above a single edge bay, and Fe2/GNR with the adatoms stacked at a single first-row hole site. Adatom adsorption involved strong hybridization between the metal d states and the GNR states, and adsorption at sites near a GNR edge generally reduced the average magnetic moment of carbon atoms at that edge to near zero, though in some cases—notably two Co2/GNR configurations—it led to the GNR edges having non-negligible magnetic moments of the same sign even though at the start of the optimization the metal atoms were nonmagnetic and the GNR edges had opposite signs (the preferred configuration of the pristine GNR). The electronic character of GNRs with adsorbed transition metal atoms or dimers depended on the species and concentration of the adsorbate and on the adsorption site(s), different stable or near-stable systems exhibiting semiconducting, zero-gap semiconducting, metallic, or half-metallic behavior.

  1. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  2. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu)-substitution in single-crystalline FePt thin films

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Nakata, Hitoshi; Moriya, Tomohiro; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2016-05-01

    In L10 (fct)-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu) thin films grown epitaxially on MgO(001) substrates at a substrate temperature of 350 °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m) of FePt-X films as a function of the effective number of valence electrons (neff) in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku) exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( Ku comp ) of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the Ku comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  3. Self-interaction correction in multiple scattering theory: application to transition metal oxides

    SciTech Connect

    Daene, Markus W; Lueders, Martin; Ernst, Arthur; Diemo, Koedderitzsch; Temmerman, Walter M; Szotek, Zdzislawa; Wolfam, Hergert

    2009-01-01

    We apply to transition metal monoxides the self-interaction corrected (SIC) local spin density (LSD) approximation, implemented locally in the multiple scattering theory within the Korringa-Kohn-Rostoker (KKR) band structure method. The calculated electronic structure and in particular magnetic moments and energy gaps are discussed in reference to the earlier SIC results obtained within the LMTO-ASA band structure method, involving transformations between Bloch and Wannier representations to solve the eigenvalue problem and calculate the SIC charge and potential. Since the KKR can be easily extended to treat disordered alloys, by invoking the coherent potential approximation (CPA), in this paper we compare the CPA approach and supercell calculations to study the electronic structure of NiO with cation vacancies.

  4. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and arsenides

    NASA Astrophysics Data System (ADS)

    Das, Supriyo

    Several transition metal oxides and arsenides have been synthesized and their magnetic, thermal, structural, and transport properties have been studied in this thesis. Magnetically pure spinel compound LiV2O4 is a rare d-electron heavy fermion. The presence of small concentrations of magnetic defects, which are produced by the crystal defects in the spinel structure, strongly affect the physical properties of LiV2O 4. The phase relations in the Li2O-V2O3-V 2O5 ternary system at 700°C for compositions in equilibrium with LiV2O4 are reported. This study clarified the synthesis conditions under which low and high magnetic defect concentrations can be obtained within the spinel structure of LiV2O4. We confirmed that the LiV2O4 phase can be obtained containing low (0.006 mol%) to high (0.83 mol%) magnetic defect concentrations ndefect and with consistently high magnetic defect spin S values between 3 and 6.5. The high ndefect values were obtained in the LiV 2O4 phase in equilibrium with V2O3, Li3VO4, or LiVO2 and the low values in the LiV2O4 phase in equilibrium with V3O 5. A model is suggested to explain this correlation. We grew single crystals of LiV2O4 using Li3VO4 as a self-flux. The magnetic susceptibility of some as-grown crystals show a Curie-like upturn at low temperatures, showing the presence of magnetic defects within the spinel structure. The magnetic defects could be removed in some of the crystals by annealing them at 700°C. A very high specific heat coefficient gamma = 450 mJ/(mol K2) was obtained at a temperature of 1.8 K for a crystal containing a magnetic defect concentration ndefect = 0.5 mol%. A crystal with ndefect = 0.01 mol% showed a residual resistivity ratio of 50. To search for superstructure peaks or other evidence of spatial correlations in the arrangement of the crystal defects with in the crystal structure which give rise to magnetic defects, we carried out high-energy x-ray diffraction studies on LiV2O4 single crystals. Entire

  5. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  6. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    SciTech Connect

    Datta, Soumendu Baral, Sayan; Mookerjee, Abhijit; Kaphle, Gopi Chandra

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  7. First-principles calculations of the electronic structure and magnetic properties of 3d transition-metal impurities in bcc and amorphous iron

    NASA Astrophysics Data System (ADS)

    Kontsevoi, O. Yu.; Gubanov, V. A.

    1995-06-01

    We present the results of the first-principles calculations of electronic structure, magnetic moments, and effective-exchange-interaction parameters for 3d impurities in ferromagnetic bcc and amorphous iron as obtained by the self-consistent tight-binding linear-muffin-tin-orbital recursion method. Impurities in bcc Fe have been modeled both in the single-site approximation and taking into account up to four shells of the nearest-to-the-impurity neighbors. The results for crystalline iron agree well with the previous more precise Korringa-Kohn-Rostoker Green's function calculations [Phys. Rev. B 40, 8203 (1989)], and confirm the sufficient accuracy of the method developed. The perturbations of electronic states for Fe atoms in different coordinational shells around impurity are considered. Peculiarities of impurity electronic states in amorphous Fe and their influence on magnetic behavior of the system are discussed. The role of impurities in possible stabilization of ferromagnetic ordering in amorphous Fe is investigated in terms of effective-exchange-interaction parameters calculated for the nearest-to-impurity host atoms.

  8. Mechanochemical Synthesis of 3d Transition-Metal-1,2,4-Triazole Complexes as Precursors for Microwave-Assisted and Thermal Conversion to Coordination Polymers with a High Influence on the Dielectric Properties.

    PubMed

    Brede, Franziska A; Heine, Johanna; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-02-01

    The complexes [MCl2 (TzH)4 ] (M=Mn (1), Fe (2); TzH=1,2,4-1H-triazole) and [ZnCl2 (TzH)2 ] (3) have been obtained by mechanochemical reactions of the corresponding divalent metal chloride and 1,2,4-1H-triazole. They were successfully used as precursors for the formation of coordination polymers either by a microwave-assisted reaction or by thermal conversion. For manganese, the conversion directly yielded 1∞ [MnCl2 TzH] (4), whereas for the iron-containing precursor, 1∞ [FeCl2 TzH] (6), was formed via the intermediate coordination polymer 1∞ [FeCl(TzH)2 ]Cl (5). For cobalt, the isotypic polymer 1∞ [CoCl(TzH)2 ]Cl (7) was obtained, but exclusively by a microwave-induced reaction directly from CoCl2 . The crystal structures were resolved from single crystals and powders. The dielectric properties were determined and revealed large differences in permittivity between the precursor complexes and the rigid chain-like coordination polymers. Whereas the monomeric complexes exhibit very different dielectric behaviour, depending on the transition metal, from "low-k" to "high-k" with the permittivity ranging from 4.3 to >100 for frequencies of up to 1000 Hz, the coordination polymers and complexes with strong intermolecular interactions are all close to "low-k" materials with very low dielectric constants up to 50 °C. Therefore, the conversion procedures can be used to deliberately influence the dielectric properties from complex to polymer and for different 3d transition-metal ions. PMID:26797710

  9. Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO(3).

    PubMed

    Dang, Hung T; Mravlje, Jernej; Georges, Antoine; Millis, Andrew J

    2015-09-01

    Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO(3), a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies (∼100  meV) are discussed. PMID:26382698

  10. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

    PubMed

    Liu, Wen; Oh, Pilgun; Liu, Xien; Lee, Min-Joon; Cho, Woongrae; Chae, Sujong; Kim, Youngsik; Cho, Jaephil

    2015-04-01

    High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed. PMID:25801735

  11. Doped Mott Insulators in (111) Bilayers of Perovskite Transition-Metal Oxides with a Strong Spin-Orbit Coupling

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The electronic properties of Mott insulators realized in (111) bilayers of perovskite transition-metal oxides are studied. The low-energy effective Hamiltonians for such Mott insulators are derived in the presence of a strong spin-orbit coupling. These models are characterized by the antiferromagnetic Heisenberg interaction and the anisotropic interaction whose form depends on the $d$ orbital occupancy. From exact diagonalization analyses on finite clusters, the ground state phase diagrams are derived, including a Kitaev spin liquid phase in a narrow parameter regime for $t_{2g}$ systems. Slave-boson mean-field analyses indicate the possibility of novel superconducting states induced by carrier doping into the Mott-insulating parent systems, suggesting the present model systems as unique playgrounds for studying correlation-induced novel phenomena. Possible experimental realizations are also discussed.

  12. Investigation of the Spatially Resolved Electronic Structure of Single Layer WS2 on Transition Metal Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Katoch, Jyoti; Ulstrup, Søren; Koch, Roland; Schwarz, Daniel; Singh, Simranjeet; McCreary, Kathy; Keun Yoo, Hyang; Xu, Jinsong; Jonker, Berry; Kawakami, Roland; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris

    The family of semiconducting single layer (SL) transition metal dichalcogenides (TMDs) have lately been intensely studied, owing to the strong coupling between spin and valley degrees of freedom as well as the presence of strongly bound excitons. The choice of supporting substrate is known to strongly influence these properties. We set out to investigate the electronic properties of CVD grown SL WS2 transferred onto the dielectric oxide materials SrTiO3 and TiO2. By using a combination of photoemission electron microscopy (PEEM) and angle-resolved photoemission (ARPES) with micrometer focus we obtain simultaneous spatial, momentum and energy-resolved information about SL WS2 on a polar (SrTiO3) and a nonpolar (TiO2) surface for the first time.

  13. Covalent bonding and hybridization effects in the corundum-type transition-metal oxides V2O3 and Ti2O3

    NASA Astrophysics Data System (ADS)

    Eyert, V.; Schwingenschlögl, U.; Eckern, U.

    2005-06-01

    The electronic structure of the corundum-type transition-metal oxides V2O3 and Ti2O3 is studied by means of the augmented spherical wave method, based on density-functional theory and the local density approximation. Comparing the results for the vanadate and the titanate allows us to understand the peculiar shape of the metal 3d a1g density of states, which is present in both compounds. The a1g states are subject to pronounced bonding-antibonding splitting due to metal-metal overlap along the c-axis of the corundum structure. However, the corresponding partial density of states is strongly asymmetric with considerably more weight on the high-energy branch. We argue that this asymmetry is due to an unexpected broadening of the bonding a1g states, which is caused by hybridization with the egπ bands. In contrast, the antibonding a1g states display no such hybridization and form a sharp peak. Our results shed new light on the role of the a1g orbitals for the metal-insulator transitions of V2O3. In particular, due to a1g-egπ hybridization, an interpretation in terms of molecular orbital singlet states on the metal-metal pairs along the c-axis is not an adequate description.

  14. Reversible oxidation and rereduction of entire thin films of transition-metal phthalocyanines

    SciTech Connect

    Green, J.M.; Faulkner, L.R.

    1983-05-18

    Thin films (1000 to 2000A thick) of iron(II) (Fe), cobalt(II) (Co), nickel(II) (Ni), copper(II) (Cu), and zinc(II) (Zr) phthalocyanines (Pc) on gold or indium oxide electrodes undergo stoichiometric oxidation and rereduction. Except for FePc and CoPc, the process is essentially reversible. Chronocoulometry showed that ZnPc films oxidized to the extent of 1.21 electrons per ZnPc molecule; CoPc required 1.92 electrons per molecule. Charge compensation is attained upon oxidation by uptake of anions from the electrolyte and by expulsion of anions upon reduction. Auger electron spectrometry allowed detection of the ions and characterization of their distributions. In partially oxidized films, the anions appear to be homogeneously distributed. Oxidation seems to proceed at all grains with equal probability, with anions entering and departing along grain boundaries. Smaller anions allow full oxidation at rapid rates; larger ones inhibit the oxidation with respect to rate. Optical spectroscopy showed evidence for reorganizaton of the crystalline lattices. The rereduced form is not the same as the original material, but it can be restored to the original form by annealing at 125/sup 0/C. In cyclic oxidations and rereductions, there is a gradual loss of charge-consuming ability, apparently related to electrical isolation of small domains, perhaps grains. The oxidations and rereductions are electrochromic, and the various color changes are described. 10 figures, 1 table.

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  16. n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells

    SciTech Connect

    Gao, Jianbo; Perkins, Craig L.; Luther, Joseph M.; Hanna, Mark C.; Chen, Hsiang-Yu; Semonin, Octavi E.; Nozik, Arthur J.; Ellingson, Randy J.; Beard, Matthew C.

    2011-08-10

    The n-type transition metal oxides (TMO) consisting of molybdenum oxide (MoO{sub x}) and vanadium oxide (V₂O{sub x}) are used as an efficient hole extraction layer (HEL) in heterojunction ZnO/PbS quantum dot solar cells (QDSC). A 4.4% NREL-certified device based on the MoO{sub x} HEL is reported with Al as the back contact material, representing a more than 65% efficiency improvement compared with the case of Au contacting the PbS quantum dot (QD) layer directly. We find the acting mechanism of the hole extraction layer to be a dipole formed at the MoO{sub x} and PbS interface enhancing band bending to allow efficient hole extraction from the valence band of the PbS layer by MoO{sub x}. The carrier transport to the metal anode is likely enhanced through shallow gap states in the MoO{sub x} layer.

  17. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  18. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-01

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  19. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit. PMID:25612725

  20. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    SciTech Connect

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius E-mail: hchahm@kist.re.kr; Ham, Hyung Chul E-mail: hchahm@kist.re.kr

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  1. Natural media with negative index of refraction: Perspectives of complex transition metal oxides (Review Article)

    NASA Astrophysics Data System (ADS)

    Fertman, E. L.; Beznosov, A. B.

    2011-07-01

    The capabilities of perovskite-like compounds with the effect of colossal magnetoresistance (CMR) and some other complex oxides to have a negative index of refraction (NIR) are considered. Physical properties of these compounds are also analyzed from the standpoint of designing tunable metamaterials on their base. Of particular interest are temperature and magnetic field driven first-order transformations in oxides with perovskite structure and in spinels. These transformations give rise to nanophase separated states, using which the properties of negative refraction can be affected. The magnetic-field controlled metamaterials with CMR oxides as a boundary NIR media for a photonic crystal are discussed.

  2. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  3. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  4. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  5. Synthesis and Characterization of Nanostructure Transition Metal Oxides Extracted from Industrial Waste (EOFD) by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Girisun, T. C. Sabari; Babeela, C.; Vidhya, V.

    2011-10-01

    Electric oil furnace dust (EOFD) is a solid waste generated in the collection of particulate material during steelmaking process in electric and oil furnaces. Over 7 million metric tons dust produced per annum in worldwide creates deep impacts like soil, ground water and ecology pollutions. This article reports the simple one step process for the extraction of nanostructured metal oxides from the industrial waste (EOFD) for the realization of low cost solar applications. By hydrothermal technique valuable metals were obtained in the form of metal oxides. Initially the presence of metals was identified by ICP analysis. XRD analysis confirms the formation of nano structured titanium oxide (TiO) along with traces of iron oxide (Fe2O3). The surface morphology and the particle size were analyzed by SEM analysis. Thus the metal oxides derived could be helpful to reduce the burden on the environment, increase the development of the source nano material and reduce the cost of raw materials for solar cell applications.

  6. Synthesis and characterization of transition metal oxide nanotubes for photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Rangaraju, Raghu Raj

    Two different configurations of photo anodes based on anodic iron oxide were investigated for photo electrochemical water oxidation. Self ordered and vertically oriented array of iron oxide nanotubes was obtained by anodization of pure iron substrate in ethylene glycol based electrolyte containing 0.1 M NH4F + 3 vol% water (EGWF solution) at 50 V for 15 minutes. Annealing of the oxide nanotubes in hydrogen environment at 500 °C for 1 h resulted in predominantly hematite phase. The second type of photo anode was obtained by a two-step anodization procedure. This process resulted in a two- layered oxide structure, a top layer of nano-dendrite morphology and a bottom layer of nanoporous morphology. This electrode configuration combined the better photo catalytic properties of the nano-dendritic iron oxide and better electron transportation behavior of vertically oriented nano-channels. Annealing of these double anodized samples in acetylene environment at 550 °C for 10 minutes resulted in a mixture of maghemite and hematite phases. Photo current densities of 0.74 mA/cm2 at 0.2 VAg/AgCl and 1.8 mA/cm 2 at 0.5 VAg/AgCl were obtained under AM 1.5 illumination in 1 M KOH solution. The double anodized samples showed high photo conductivity and more negative flat band potential (-0.8 VAg/AgCl), which are the properties required for promising photo anode materials. Apart from the above work, mild steel which is 10 times less the cost of Ti is also being tested for its photoelectrochemical properties. TiO2 nanotubes synthesized and annealed in different conditions are compared for their quantum efficiency is also carried out in this work. Quantum efficiency measurements gives more reliable and photocurrent data towards photoelectrochemical applications.

  7. NIS-catalyzed oxidative cyclization of alcohols with amidines: a simple and efficient transition-metal free method for the synthesis of 1,3,5-triazines.

    PubMed

    Tiwari, Abhishek R; T, Akash; Bhanage, Bhalchandra M

    2015-12-01

    An efficient method for the synthesis of 1,3,5-triazines by NIS-catalyzed oxidative cyclization of alcohols with amidines has been developed. The reaction works smoothly under transition-metal free and phosphine-free conditions to afford a wide range of 1,3,5-triazine derivatives in moderate to good yields. The synthetic methodology was achieved via in situ oxidation of alcohols to aldehydes. PMID:26477749

  8. Syntheses of [1,2,4]triazolo[1,5-a]benzazoles enabled by the transition-metal-free oxidative N-N bond formation.

    PubMed

    Shang, Erchang; Zhang, Junzhi; Bai, Jinyi; Wang, Zhan; Li, Xiang; Zhu, Bing; Lei, Xiaoguang

    2016-05-19

    A transition-metal-free oxidative N-N bond formation strategy was developed to generate various structurally interesting [1,2,4]triazolo[1,5-a]benzazoles efficiently. The mechanism of the key oxidative N-N bond formation was investigated by using an intramolecular competition reaction. Notably, the first single crystal structure was also obtained to confirm the structure of 2-aryl[1,2,4]triazolo[1,5-a]benzimidazole. PMID:27161847

  9. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  10. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  11. Synthesis and characterization of magnetic solids featuring 3d-4f heterometallic oxides comprised of spin chains and 3d-6p noncentrosymmetric oxides templated by acentric salt units

    NASA Astrophysics Data System (ADS)

    West, Jennings Palmer

    The studies and syntheses presented in this dissertation were primarily aimed at exploring new magnetic solids comprised of special framework oxides with novel magnetic properties. Low-dimensional magnetic behavior has been of great interest, especially pertaining to molecular solids having single magnetic domains where slow relaxation and quantum properties of magnetization are evident. In attempts to mimic molecular magnets and achieve reduced dimensionality of, in this case 3d-4f magnetic sublattices, diamagnetic oxyanions, XOmn-, and A-site cations (A = alkali and alkaline-earth metals) were used as nonmagnetic spacers in hopes of disrupting or confining magnetic interactions in certain dimensions. The general system type explored throughout these studies was of the form: A-R-M-X-O, where A = alkali and alkaline-earth metals, R = Bi3+ or lanthanide metals (4f), M = first row transition metals (3d), and X = P, As, or Ge. The scope of this research consisted of, first, finding new low-dimensional magnetic systems of the A-R-M-X-O type through exploratory molten-salt synthetic approaches, and upon characterizing these new systems, attempts were made to chemically modify these materials in order to understand and gain insight into how the structures of these materials dictate properties through structure and property correlations. Due to the refractory nature and low solubility of the covalent metal oxides, namely the lanthanide and transition metal oxides, excess amounts of eutectic halide flux mixtures (alkali and alkaline-earth halides) were employed to assist the reaction and promote crystal growth. One can think of these halide fluxes as a high-temperature solvent, in the molten state, that helps speed up the otherwise slow diffusion processes typically associated with traditional solid state synthetic approaches via unconventional dissolution (decomposition) and reprecipitation processes. Also advantageous in using alkali and alkaline-earth metal halides as

  12. The Influence of Doping with Transition Metal Ions on the Structure and Magnetic Properties of Zinc Oxide Thin Films

    PubMed Central

    2014-01-01

    Zn1−xNixO (x = 0.03 ÷ 0.10) and Zn1−xFexO (x = 0.03 ÷ 0.15) thin films were synthesized by sol-gel method. The structure and the surface morphology of zinc oxide thin films doped with transition metal (TM) ions have been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magnetic studies were done using vibrating sample magnetometer (VSM) at room temperature. Experimental results revealed that the substitution of Ni ions in ZnO wurtzite lattice for the contents x = 0.03 ÷ 0.10 (Ni2+) leads to weak ferromagnetism of thin films. For Zn1−xFexO with x = 0.03 ÷ 0.05, the Fe3+ ions are magnetic coupling by superexchange interaction via oxygen ions in wurtzite structure. For x = 0.10 ÷ 0.15 (Fe3+) one can observe the increasing of secondary phase of ZnFe2O4 spinel. The Zn0.9Fe0.1O film shows a superparamagnetic behavior due to small crystallite sizes and the net spin magnetic moments arisen from the interaction between the iron ions through an oxygen ion in the spinel structure. PMID:24683324

  13. Tunable Ultraviolet Photoresponse in Solution-Processed p-n Junction Photodiodes Based on Transition-Metal Oxides.

    PubMed

    Xie, Ting; Liu, Guannan; Wen, Baomei; Ha, Jong Y; Nguyen, Nhan V; Motayed, Abhishek; Debnath, Ratan

    2015-05-13

    Solution-processed p-n heterojunction photodiodes have been fabricated based on transition-metal oxides in which NiO and ternary Zn(1-x)Mg(x)O (x = 0-0.1) have been employed as p-type and n-type semiconductors, respectively. Composition-related structural, electrical, and optical properties are also investigated for all the films. It has been observed that the bandgap of Zn(1-x)Mg(x)O films can be tuned between 3.24 and 3.49 eV by increasing Mg content. The fabricated highly visible-blind p-n junction photodiodes show an excellent rectification ratio along with good photoresponse and quantum efficiency under ultraviolet (UV) illumination. With an applied reverse bias of 1 V and depending on the value of x, the maximum responsivity of the devices varies between 0.22 and 0.4 A/W and the detectivity varies between 0.17 × 10(12) and 2.2 × 10(12) cm (Hz)(1/2)/W. The photodetectors show an excellent UV-to-visible rejection ratio. Compositional nonuniformity has been observed locally in the alloyed films with x = 0.1, which is manifested in photoresponse and X-ray analysis data. This paper demonstrates simple solution-processed, low cost, band tunable photodiodes with excellent figures of merit operated under low bias. PMID:25898025

  14. On the origins of the deficiencies of density functional theory exchange-correlation functionals for transition metal oxides

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Armiento, Rickard; Hao, Feng

    2011-03-01

    The transition metal oxides (TMO) are a class of compounds that are difficult to treat in density functional theory (DFT) with simple local and semi-local functionals. Especially for CuO, they failed to give the correct equilibrium monoclinic structure. The major source of the deficiency is attributed to the imperfect cancellation of the electronic self-interaction (SI) in the approximated exchange energy. Previous studies show that a large part of the SI error is connected to the confinement error that can be modeled by harmonic-oscillator (HO) systems. We discuss recent advances towards a simple methodology to quantify the confinement errors in real TMO systems. Our results show that these confinement errors may account for the deficiencies of DFT functionals in obtaining the correct equilibrium structure of the TMO. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  15. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  16. Unusual magnetic phases in the strong interaction limit of two-dimensional topological band insulators in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Langari, Abdollah; Fiete, Gregory A.

    2012-11-01

    The expected phenomenology of noninteracting topological band insulators (TBIs) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topological states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose noninteracting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound (Li,Na)2IrO3. By a combination of analytical methods and exact diagonalization studies on finite-size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neél state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-J2-J3 model which has recently been studied in a similar context.

  17. Unusual magnetic phases in the strong interaction limit of two-dimensional topological band insulators in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Langari, Abdollah; Fiete, Gregory A.

    2013-03-01

    The expected phenomenology of non-interacting topological band insulators (TBI) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topological states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose non-interacting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound, (Li,Na)2IrO3. By a combination of analytical methods and exact diagonalization studies on finite size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neél state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-J2-J3 model which has recently been studied in a similar context. We gratefully acknowledge financial support from ARO Grant No. W911NF-09-1-0527 and NSF Grant No. DMR-0955778

  18. Electronic and Magnetic Properties of Transition-Metal Oxide Nanocomposites: A Tight-Binding Modeling at Mesoscale

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Zhu, Jian-Xin

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. In this talk, I will present an overview on our recent efforts in theoretical understanding of the electronic and magnetic properties TMO nanocomposites. In particular, I will introduce our recently developed tight-binding modeling of these properties arising from the interplay of competing interactions at the interfaces of planar and pillar nanocomposites. Our theoretical tool package will provide a unique capability to address the emergent phenomena in TMO nanocomposites and their mesoscale response to such effects like strain and microstructures at the interfaces, and ultimately help establish design principles of new multifunctionality with TMOs. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL LDRD Program.

  19. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction. PMID:15212907

  20. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-01

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI3-xClx) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air. PMID:26947400

  1. Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation

    PubMed Central

    Chen, Yanhui; Zhou, Junfeng; Maguire, Pierce; O’Connell, Robert; Schmitt, Wolfgang; Li, Yonghe; Yan, Zhengguang; Zhang, Yuefei; Zhang, Hongzhou

    2016-01-01

    Cobalt hydrate and doped binary Co0.9M0.1OOH (M = Ni, Mn, Fe) nanorings of 100–300 nm were fabricated in solution through a facile ambient oxidation method. A transformation from Co0.9Ni0.1(OH)2 nanodiscs to hollow Co0.9Ni0.1OOH nanorings was observed with prolonged reaction time. Core-shell nanodiscs have elemental segregation with a Co(OH)2 core and Ni(OH)2 shell. Co0.9Ni0.1OOH nanorings displayed a higher electrochemical capacitance than Mn and Fe doped nanorings materials or materials with disc-like geometries. PMID:26853105

  2. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    NASA Astrophysics Data System (ADS)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  3. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    NASA Astrophysics Data System (ADS)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  4. First-Principles GGA+U Study of Intermediate-Band Characters from Zn1-xMxO (M = 3d Transition-Metal) Alloys Suitable for High Efficiency Solar Cell

    NASA Astrophysics Data System (ADS)

    Wu, Kong-Ping; Lu, Kai-Lin; Jiang, Jian-Hui; Gu, Shu-Lin; Tang, Kun; Ye, Jian-Dong; Zhu, Shun-Ming; Zhang, Rong; Zheng, You-Dou

    2015-06-01

    The electronic structure characters are calculated for the Zn1-xMxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency solar cell. Especially, among of these alloys, the electronic structure character and optical performance of Zn1-xCrxO alloys clearly show an intermediate band filled partially and isolated from the VB and the CB in energy band structure of ZnO host, and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33% in Zn1-xCrxO alloys, at the same time, the ratio 0.52 of EgFC to EgVF in Zn1-xCrxO, (x = 4.16%) alloy is closest to the optimal ratio of 0.57. Besides, compared to the ZnO, the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range. Supported by the State Key Program for Basic Research of China under Grant No. 2006CB921803, Project of High Technology Research & Development of China (Project No. 2007AA03Z404), National Natural Science Foundation of China under Grant Nos. 61274058, 60990312, and 61025020, Natural Science Foundation of Anhui Province under Grant No. 1208085QF116

  5. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  6. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction.

    PubMed

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-01-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst. PMID:24993836

  7. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-07-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst.

  8. Designed Synthesis of Transition Metal/Oxide Hierarchical Peapods Array with the Superior Lithium Storage Performance

    PubMed Central

    Zhang, Huijuan; Bai, Yuanjuan; Zhang, Yan; Li, Xiao; Feng, Yangyang; Liu, Qing; Wu, Kai; Wang, Yu

    2013-01-01

    In this report, a novel hierarchical peapoded array with Co3O4 nanoparticles encapsulated in graphitized carbon fiber is introduced for the first time. The unique peapoded structure is suitable for the excellent anode in LIBs and demonstrates enhanced rate capability, cyclability and prolonged lifespan, e.g. the specific capacity can reach up to 1150 mAh/g. All the enhanced electrochemical performance is reasonably derived from the peapod-like and aligned conformation. Furthermore, due to the specialty of the structure and the versatility of Co3O4, the composite will find more applications in specific catalysis, biomedicine, electronics, optoelectronic engineering and gas sensing. The fabrication strategy developed here is also a rational and universal approach towards peapod-like architecture and has significantly widened the specific functional material domain we created before. In our design, more peapod-like aligned samples with various nanoparticles, e.g. oxides, phosphides, even nitrides, encapsulated in graphitized carbon fibers, have been lifted on the research agenda and the results will be presented soon. PMID:24056414

  9. Approach to multifunctional device platform with epitaxial graphene on transition metal oxide

    PubMed Central

    Park, Jeongho; Back, Tyson; Mitchel, William C.; Kim, Steve S.; Elhamri, Said; Boeckl, John; Fairchild, Steven B.; Naik, Rajesh; Voevodin, Andrey A.

    2015-01-01

    Heterostructures consisting of two-dimensional materials have shown new physical phenomena, novel electronic and optical properties, and new device concepts not observed in bulk material systems or purely three dimensional heterostructures. These new effects originated mostly from the van der Waals interaction between the different layers. Here we report that a new optical and electronic device platform can be provided by heterostructures of 2D graphene with a metal oxide (TiO2). Our novel direct synthesis of graphene/TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface using a molecular beam epitaxy approach and O2 intercalation method, which is compatible with wafer scale growth of heterostructures. As-grown heterostructures exhibit inherent photosensitivity in the visible light spectrum with high photo responsivity. The photo sensitivity is 25 times higher than that of reported graphene photo detectors. The improved responsivity is attributed to optical transitions between O 2p orbitals in the valence band of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric layers, respectively. PMID:26395160

  10. High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung Joong; Stevenson, Jeffrey W.; Marina, Olga A.

    2011-10-01

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at.% Co, 4 at.% Ni, and 1 at.% Cu substitution on B-site of 20 at.% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 °C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 °C is 57 S cm-1 in air and 11 S cm-1 in fuel (pO2 = 5 × 10-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  11. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  12. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  13. Predicting metal-to-metal charge transfer in closed-shell transition metal oxides doped with Bi 3+ or Pb 2+

    NASA Astrophysics Data System (ADS)

    Boutinaud, Philippe; Cavalli, Enrico

    2011-02-01

    An empirical model is proposed to predict the energy position of the metal-to-metal charge transfer (MMCT) bands in closed shell d 0 transition metal complex oxides doped with Bi 3+ or Pb 2+ ions. The model is constructed on the basis of optical data compiled from the literature and from the investigation of the luminescence properties of a series of compounds (titanates, vanadates, niobates, tantalates, molybdates, and zirconates) prepared and characterized in this work.

  14. Activation of Methane and Carbon Dioxide Mediated by Transition-Metal Doped Magnesium Oxide Clusters [MMgO](+/0/-) (M=Sc-Zn).

    PubMed

    Li, Jilai; González-Navarrete, Patricio; Schlangen, Maria; Schwarz, Helmut

    2015-05-18

    Mission: impossible? DFT calculations show that the trends in the thermochemistry are very different for the activation of CO2 and CH4 mediated by transition-metal doped magnesium oxide clusters [MMgO](+/0/-) (M=Sc-Zn). Thus, seeking a "simple" reagent to simultaneously mediate activation and coupling of CH4 and CO2 with high efficiency seems extremely daunting, if not impossible. PMID:25867011

  15. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    NASA Astrophysics Data System (ADS)

    Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.

    2016-02-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.

  16. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory.

    PubMed

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F; Dixon, David A

    2016-08-01

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n (M = Ti, Zr, Hf, n = 1-4) and (MO3)n (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer. PMID:27384926

  17. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  18. Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-k gate dielectric applications

    NASA Astrophysics Data System (ADS)

    Niu, D.; Ashcraft, R. W.; Kelly, M. J.; Chambers, J. J.; Klein, T. M.; Parsons, G. N.

    2002-05-01

    This article describes the kinetics of reactions that result in substrate consumption during formation of ultrathin transition metal oxides on silicon. Yttrium silicate films (˜40 Å) with an equivalent silicon dioxide thickness of ˜11 Å are demonstrated by physical vapor deposition (PVD) routes. Interface reactions that occur during deposition and during postdeposition treatment are observed and compared for PVD and chemical vapor deposition (CVD) yttrium oxides and CVD aluminum-oxide systems. Silicon diffusion, metal-silicon bond formation, and reactions involving hydroxides are proposed as critical processes in interface layer formation. For PVD of yttrium silicate, oxidation is thermally activated with an effective barrier of 0.3 eV, consistent with the oxidation of silicide being the rate-limited step. For CVD aluminum oxide, interface oxidation is consistent with a process limited by silicon diffusion into the deposited oxide layer.

  19. Transition-metal-free C-H oxidative activation: persulfate-promoted selective benzylic mono- and difluorination.

    PubMed

    Ma, Jing-jing; Yi, Wen-bin; Lu, Guo-ping; Cai, Chun

    2015-03-14

    An operationally simple and selective method for the direct conversion of benzylic C-H to C-F to obtain mono- and difluoromethylated arenes using Selectfluor™ as a fluorine source is developed. Persulfate can be used to selectively activate benzylic hydrogen atoms toward C-F bond formation without the aid of transition metal catalysts. PMID:25645405

  20. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  1. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  2. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  3. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  4. Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors.

    PubMed

    Sun, Gengzhi; Liu, Juqing; Zhang, Xiao; Wang, Xuewan; Li, Hai; Yu, Yang; Huang, Wei; Zhang, Hua; Chen, Peng

    2014-11-10

    Two-dimensional materials have attracted increasing research interest owing to their unique electronic, physical, optical, and mechanical properties. We thus developed a general strategy for the fabrication of ultralong hybrid microfibers from a mixture of reduced graphene oxide and transition-metal dichalcogenides (TMDs), including MoS2 , TiS2 , TaS2 , and NbSe2 . Furthermore, we prepared fiber-based solid-state supercapacitors as a proof-of-concept application. The performance of thus-prepared supercapacitors was greatly improved by the introduction of the TMDs. PMID:25130600

  5. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  6. Oxidative Cleavage of the β-O-4 Linkage of Lignin by Transition Metals: Catalytic Properties and the Performance of Density Functionals.

    PubMed

    Wang, Jiaqi; Liu, Lily; Wilson, Angela K

    2016-02-11

    The catalytic degradation of lignin is of considerable interest because the depolymerization of lignin to small molecules is the initial step for the conversion of lignin to biofuels and other useful chemicals. Because of the complex structure of lignin, methoxyethane was used in this study as a representative model of the most common linkage within lignin, the β-O-4 linkage. The completely renormalized coupled cluster with singles, doubles, and perturbative triples [CR-CCSD(T)] method was used to calculate the energetics of the C-O bond cleavage in methoxyethane by late 3d, 4d, and 5d transition metal atoms and to evaluate the performance of a set of density functionals (BLYP, B97D, TPSS, M06L, B3LYP, PBE0, M06, TPSSh, and B2PLYP) in predicting the reaction energetics. PMID:26735613

  7. Synthesis-Microstructure-Performance Relationship of Layered Transition Metal Oxides as Cathode for Rechargeable Sodium Batteries Prepared by High-Temperature Calcination

    SciTech Connect

    Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M.; Al-Bogami, Abdullah S.; El-Hady, Deia Abd; Amine, Khalil

    2014-09-05

    Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1–y)1–xO2 (x = 0.1–0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1–y)1–xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g–1 (cycled at 1.5–4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.

  8. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving.

    PubMed

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na(+) and Cl(-) ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na(+) and Cl(-) ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl(-)). Nano-sieving incorporated with larger frameworks has been used in filtering Na(+) and Cl(-) ions in functional devices. PMID:26892277

  9. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  10. Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals

    NASA Astrophysics Data System (ADS)

    Nekrasov, I. A.; Pavlov, N. S.; Sadovskii, M. V.

    2013-04-01

    We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4 s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

  11. Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals

    SciTech Connect

    Nekrasov, I. A. Pavlov, N. S.; Sadovskii, M. V.

    2013-04-15

    We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

  12. General facile approach to transition-metal oxides with highly uniform mesoporosity and their application as adsorbents for heavy-metal-ion sequestration.

    PubMed

    Seisenbaeva, Gulaim A; Daniel, Geoffrey; Kessler, Vadim G; Nedelec, Jean-Marie

    2014-08-18

    Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution. PMID:25042144

  13. Ligand-Assisted Co-Assembly Approach toward Mesoporous Hybrid Catalysts of Transition-Metal Oxides and Noble Metals: Photochemical Water Splitting.

    PubMed

    Liu, Ben; Kuo, Chung-Hao; Chen, Jiejie; Luo, Zhu; Thanneeru, Srinivas; Li, Weikun; Song, Wenqiao; Biswas, Sourav; Suib, Steven L; He, Jie

    2015-07-27

    A bottom-up synthetic approach was developed for the preparation of mesoporous transition-metal-oxide/noble-metal hybrid catalysts through ligand-assisted co-assembly of amphiphilic block-copolymer micelles and polymer-tethered noble-metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble-metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble-metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble-metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems. PMID:26073465

  14. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions

    PubMed Central

    Lu, Baiyi; Hu, Yinzhou; Huang, Weisu; Wang, Mengmeng; Jiang, Yuan; Lou, Tiantian

    2016-01-01

    This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu2+, Fe2+, Mn2+, Zn2+, Na+, and Mg2+) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe2+ and Cu2+ were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe2+ > Cu2+ > Mn2+ > Zn2+ > Mg2+ ≈ Na+. 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe2+ and Cu2+, as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs. PMID:27328709

  15. The oxidation state and microstructural environment of transition metals (V, Co, and Ni) in magnetite: an XAFS study

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoliang; He, Zisen; Tan, Wei; Liu, Peng; Zhu, Jianxi; Zhang, Jing; He, Hongping

    2015-05-01

    Transition metal-substituted magnetite minerals have attracted increasing attention for their wide application in industry and environmental protection. In this study, the valence and atomic environment of some substituting metals in magnetites (Fe3- x M x O4, M = V, Co, and Ni) were investigated using X-ray absorption fine structure spectroscopy. The results deduced from X-ray absorption near-edge structure spectroscopy indicated that the valences of V, Co, and Ni in Fe3- x M x O4 were +3, +2, and +2, respectively. The valences did not change as the substitution extent increased. Extended X-ray absorption fine structure spectroscopy suggested that the substituting cations occupied octahedral sites in the magnetite structure. The M-O and M-M/Fe distances were consistent with the Feoct-O and Feoct-Fe distances, respectively, in the magnetite (Fe3O4) structure. The occupancy of the substituting cations was assessed by crystal-field theory. We also considered the relationship between the chemical environment of substituting cations and their effects on the physicochemical properties of magnetite, including thermal stability, surface properties, and catalytic reactivity.

  16. Ab initio G W plus cumulant calculation for isolated band systems: Application to organic conductor (TMTSF) 2PF6 and transition-metal oxide SrVO3

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuma; Nohara, Yoshiro; Yosimoto, Yoshihide; Nomura, Yusuke

    2016-02-01

    We present ab initio G W plus cumulant-expansion calculations for an organic compound (TMTSF) 2PF6 and a transition-metal oxide SrVO3. These materials exhibit characteristic low-energy band structures around the Fermi level, which bring about interesting low-energy properties; the low-energy bands near the Fermi level are isolated from the other bands, and, in the isolated bands, unusually low-energy plasmon excitations occur. To study the effect of this low-energy-plasmon fluctuation on the electronic structure, we calculate spectral functions and photoemission spectra using the ab initio cumulant expansion of the Green's function based on the G W self-energy. We found that the low-energy plasmon fluctuation leads to an appreciable renormalization of the low-energy bands and a transfer of the spectral weight into the incoherent part, thus resulting in an agreement with experimental photoemission data.

  17. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-01

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices. PMID:26833897

  18. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  19. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  20. Electronic structure and bonding of the 3d transition metal borides, MB, M =Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    2008-01-01

    The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.

  1. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  2. Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode.

    PubMed

    Moir, Jonathon; Soheilnia, Navid; O'Brien, Paul; Jelle, Abdinoor; Grozea, Claudia M; Faulkner, Daniel; Helander, Michael G; Ozin, Geoffrey A

    2013-05-28

    We present herein an example of nanocrystalline antimony-doped tin oxide (nc-ATO) disordered macroporous "inverse opal" 3D electrodes as efficient charge-collecting support structures for the electrolysis of water using a hematite surface catalyst. The 3D macroporous structures were created via templating of polystyrene spheres, followed by infiltration of the desired precursor solution and annealing at high temperature. Using cyclic voltammetry and electrochemical impedance spectroscopy, it was determined that the use of this 3D transparent conducting oxide with a hematite surface catalyst allowed for a 7-fold increase in active surface area for water splitting with respect to its 2D planar counterpart. This ratio of surface areas was evaluated based on the presence of oxidized trap states on the hematite surface, as determined from the equivalent circuit analysis of the Nyquist plots. Furthermore, the presence of nc-ATO 2D and 3D "underlayer" structures with hematite deposited on top resulted in decreased charge transfer resistances and an increase in the number of available active surface sites at the semiconductor-liquid junction when compared to hematite films lacking any nc-ATO substructures. Finally, absorption, transmission, and reflectance spectra of all of the tested films were measured, suggesting the feasibility of using 3D disordered structures in photoelectrochemical reactions, due to the high absorption of photons by the surface catalyst material and trapping of light within the structure. PMID:23581965

  3. Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Gu, Shuqing; Ding, Yaping; Jiang, Feng; Zhang, Zhen

    2013-12-01

    A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10 μM for PCT with high sensitivities of 54 295.82 μA mM-1 cm2 for AC and 21 344.66 μA mM-1 cm2 for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 μM for AC and 0.06 to 10

  4. Transition-Metal-Free Regioselective Alkylation of Pyridine N-Oxides Using 1,1-Diborylalkanes as Alkylating Reagents.

    PubMed

    Jo, Woohyun; Kim, Junghoon; Choi, Seoyoung; Cho, Seung Hwan

    2016-08-01

    Reported herein is an unprecedented base-promoted deborylative alkylation of pyridine N-oxides using 1,1-diborylalkanes as alkyl sources. The reaction proceeds efficiently for a wide range of pyridine N-oxides and 1,1-diborylalkanes with excellent regioselectivity. The utility of the developed method is demonstrated by the sequential C-H arylation and methylation of pyridine N-oxides. The reaction also can be applied for the direct introduction of a methyl group to 9-O-methylquinine N-oxide, thus it can serve as a powerful method for late-stage functionalization. PMID:27351367

  5. Beyond Metal-Hydrides: Non-Transition-Metal and Metal-Free Ligand-Centered Electrocatalytic Hydrogen Evolution and Hydrogen Oxidation.

    PubMed

    Haddad, Andrew Z; Garabato, Brady D; Kozlowski, Pawel M; Buchanan, Robert M; Grapperhaus, Craig A

    2016-06-29

    A new pathway for homogeneous electrocatalytic H2 evolution and H2 oxidation has been developed using a redox active thiosemicarbazone and its zinc complex as seminal metal-free and transition-metal-free examples. Diacetyl-bis(N-4-methyl-3-thiosemicarbazone) and zinc diacetyl-bis(N-4-methyl-3-thiosemicarbazide) display the highest reported TOFs of any homogeneous ligand-centered H2 evolution catalyst, 1320 and 1170 s(-1), respectively, while the zinc complex also displays one of the highest reported TOF values for H2 oxidation, 72 s(-1), of any homogeneous catalyst. Catalysis proceeds via ligand-centered proton-transfer and electron-transfer events while avoiding traditional metal-hydride intermediates. The unique mechanism is consistent with electrochemical results and is further supported by density functional theory. The results identify a new direction for the design of electrocatalysts for H2 evolution and H2 oxidation that are not reliant on metal-hydride intermediates. PMID:27326672

  6. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices

    PubMed Central

    Dubal, Deepak P.; Holze, Rudolf; Gomez-Romero, Pedro

    2014-01-01

    Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried out. The synergetic combination of rGO and Ni(OH)2 or Co(OH)2) provides dual charge-storing mechanisms whereas 3D framework of sponge allows excellent accessibility of electrolyte to hybrid electrodes. Moreover, to further increase the energy density, hybrid devices have been fabricated with SP@rGO@Ni or SP@rGO@Co and SP@rGO as positive and negative electrodes, respectively. These hybrid devices operate with extended operating voltage windows and achieve remarkable electrochemical supercapacitive properties which make them truly promising energy storage devices for commercial production. PMID:25483007

  7. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  8. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

    SciTech Connect

    Michael John Vasbinder

    2006-12-12

    Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reaction mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO{sup 2+} and Rh(NH{sub 3}){sub 4}(H{sub 2}O)OO{sup 2+} oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH{sub 3}){sub 4}(H{sub 2}O)OO{sup 2+} as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the

  9. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOEpatents

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  10. Smoothing of ultrathin silver films by transition metal seeding

    NASA Astrophysics Data System (ADS)

    Anders, André; Byon, Eungsun; Kim, Dong-Ho; Fukuda, Kentaro; Lim, Sunnie H. N.

    2006-11-01

    The nucleation and coalescence of silver islands on coated glass was investigated by in situ measurements of the sheet resistance. Sub-monolayer amounts of niobium and other transition metals were deposited prior to the deposition of silver. It was found that in some cases, the transition metals lead to coalescence of silver at nominally thinner films with smoother topology. The smoothing or roughening effects by the presence of the transition metal can be explained by kinetically limited transition metal islands growth and oxidation, followed by defect-dominated nucleation of silver.

  11. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  12. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  13. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  14. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  15. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection.

    PubMed

    Dong, Xiao-Chen; Xu, Hang; Wang, Xue-Wan; Huang, Yin-Xi; Chan-Park, Mary B; Zhang, Hua; Wang, Lian-Hui; Huang, Wei; Chen, Peng

    2012-04-24

    Using a simple hydrothermal procedure, cobalt oxide (Co(3)O(4)) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co(3)O(4) composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The 3D graphene/Co(3)O(4) composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of ∼1100 F g(-1) at a current density of 10 A g(-1) with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM(-1) cm(-2) and a remarkable lower detection limit of <25 nM (S/N = 8.5). PMID:22435881

  16. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGESBeta

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  17. Strong metal-support interaction between mononuclear and polynuclear transition metal complexes and oxide supports which dramatically affects catalytic activity

    SciTech Connect

    Hucul, D.A.; Brenner, A.

    1981-03-05

    The interaction of carbonyl complexes with catalyst supports, primarily ..gamma..-alumina, has been studied by temperature-programmed decomposition. In all cases, including cluster complexes and complexes of noble metals, after heating to 600/sup 0/C in flowing He the catalysts are significantly oxidized due to a redox reaction between surface hydroxyl groups and the initially zero-valent metal. Contrary reports are probably incorrect and likely reflect the insensitivity of the experimental techniques used. For all but the most thermally unstable complexes, the oxidation occurs during the latter stages of decarbonylation indicating that there is no significant accumulation of bare zero-valent metal. Hence, decomposition does not in general provide a direct route to supported metals and, contrary to some claims, molecular cluster complexes cannot necessarily be used as precursors to supported metal clusters. Further, knowledge of this redox reaction is critical for understanding patterns of activity and for the development of improved catalysts.

  18. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability

    NASA Astrophysics Data System (ADS)

    Xiqian, Yu; Enyuan, Hu; Seongmin, Bak; Yong-Ning, Zhou; Xiao-Qing, Yang

    2016-01-01

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. We also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue; it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems. Project supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (Grant No. DE-SC0012704).

  19. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    SciTech Connect

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

  20. Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Ban, Chunmei; Chernova, Natasha A.; Wu, Zhuangchun; Upreti, Shailesh; Dillon, Anne; Whittingham, M. Stanley

    2014-12-01

    This work attempts to understand the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2 (0.33 ≤ y ≤ 0.5). The rate capability of LiNiyMnyCo1-2yO2 increase with increasing Co in the compounds and with increasing amount of carbon additives in the electrodes. The lithium diffusion coefficients and electronic conductivities of LixNiyMnyCo1-2yO2 are investigated and compared. The 333 compound has higher diffusivity and electronic conductivity and thus better rate performance than 550. Chemical diffusion coefficients for both delithiation and lithiation of LixNiyMnyCo1-2yO2 investigated by GITT and PITT experiments are calculated to be around 10-10 cm2 s-1, lower than that of LixCoO2. The electronic conductivity of LixNiyMnyCo1-2yO2 is inferior compared to LixCoO2 at same temperature and delithiation stage. However, the LixNiyMnyCo1-2yO2 are able to deliver 55%-80% of theoretical capacity at 5 C with good electronic wiring in the composite electrode that make them very promising candidates for electric propulsion in terms of rate capability.

  1. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.

    PubMed

    Huang, Xiaodan; Sun, Bing; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self-assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well-controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet-immersion method, transition-metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three-dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium-ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra-high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4-graphene composites can deliver a reversible specific capacity of 1427.5 mAh g(-1) at a high current density of 1000 mA g(-1) as anode materials in lithium-ion batteries. Furthermore, nanoporous Co3O4-graphene composites achieved a high supercapacitance of 424.2 F g(-1) . This work demonstrated that the as-developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications. PMID:24129981

  2. GW approximation study of late transition metal oxides: Spectral function clusters around Fermi energy as the mechanism behind smearing in momentum density

    NASA Astrophysics Data System (ADS)

    Khidzir, S. M.; Ibrahim, K. N.; Wan Abdullah, W. A. T.

    2016-05-01

    Momentum density studies are the key tool in Fermiology in which electronic structure calculations have proven to be the integral underlying methodology. Agreements between experimental techniques such as Compton scattering experiments and conventional density functional calculations for late transition metal oxides (TMOs) prove elusive. In this work, we report improved momentum densities of late TMOs using the GW approximation (GWA) which appears to smear the momentum density creating occupancy above the Fermi break. The smearing is found to be largest for NiO and we will show that it is due to more spectra surrounding the NiO Fermi energy compared to the spectra around the Fermi energies of FeO and CoO. This highlights the importance of the positioning of the Fermi energy and the role played by the self-energy term to broaden the spectra and we elaborate on this point by comparing the GWA momentum densities to their LDA counterparts and conclude that the larger difference at the intermediate level shows that the self-energy has its largest effect in this region. We finally analyzed the quasiparticle renormalization factor and conclude that an increase of electrons in the d-orbital from FeO to NiO plays a vital role in changing the magnitude of electron correlation via the self-energy.

  3. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  4. Resistive switching mechanism in delafossite-transition metal oxide (CuInO2-CuO) bilayer structure

    NASA Astrophysics Data System (ADS)

    Varandani, Deepak; Singh, Bharti; Mehta, Bodh R.; Singh, Mandeep; Singh, Vidya Nand; Gupta, Dasees

    2010-05-01

    This study reports reversible and unipolar resistive switching in oxide bilayer structure due to the conversion of rectifying CuInO2-CuO semiconductor heterojunction to metal-semiconductor CuInO2-Cu Ohmic contact. High resolution transmission electron microscopy and conducting atomic force microscopy studies establish that switching occurs due to formation of conducting Cu filaments in CuO layer with CuInO2 layer remaining unaffected. The bilayer structure, with CuO layer acting as the switching element and CuInO2 layer as the resistance controlling element, exhibits improved switching parameters in comparison to single CuO layer.

  5. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.

    PubMed

    Yao, Koffi P C; Lu, Yi-Chun; Amanchukwu, Chibueze V; Kwabi, David G; Risch, Marcel; Zhou, Jigang; Grimaud, Alexis; Hammond, Paula T; Bardé, Fanny; Shao-Horn, Yang

    2014-02-14

    Reducing the energy loss associated with Li2O2 electrochemical oxidation is paramount to the development of efficient rechargeable lithium-oxygen (Li-O2) batteries for practical use. The influence of a series of perovskites with different eg filling on the kinetics of Li2O2 oxidation was examined using Li2O2-prefilled electrodes. While LaCrO3 is inactive for oxygen evolution upon water oxidation in alkaline solution, it was found to provide the highest specific current towards Li2O2 oxidation among all the perovskites examined. Further exploration of Cr-based catalysts showed that Cr nanoparticles (Cr NP) with an average particle size of 40 nm, having oxidized surfaces, had comparable surface area activities to LaCrO3 but much greater mass activities. Unlike Pt/C and Ru/C that promote electrolyte oxidation in addition to Li2O2 oxidation, no evidence of enhanced electrolyte oxidation was found for Cr NP relative to Vulcan carbon. X-ray absorption spectroscopy at the O K and Cr L edge revealed a redox process of Cr(3+) ↔ Cr(6+) on the surface of Cr NP upon Li2O2 oxidation, which might be responsible for the enhanced oxidation kinetics of Li2O2 and the reduced charging voltages of Li-O2 batteries. PMID:24352578

  6. Characterization of single transition metal oxide nanorods by combining atomic force microscopy and polarized micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Najjar, Samar; Talaga, David; Coffinier, Yannick; Szunerits, Sabine; Boukherroub, Rabah; Servant, Laurent; Couzi, Michel; Bonhommeau, Sébastien

    2011-09-01

    Accurate chemical and structural characterization of free-standing zinc oxide (ZnO) and hematite (α-Fe2O3) nanorods has been carried out using an AFM/Raman correlative technique under polarized light. ZnO nanorods are found to be wurtzite-type single crystalline objects homogeneous in composition and grown along their principal axis of symmetry. Hematite specimens are rhombohedral corundum-type single crystals grown along a direction orthogonal to their principal axis of symmetry and exhibiting structural disorder. Certain hematite nanorods turn out to be very sensitive to laser heating. These studies reveal the high potential of the coupled AFM/Raman technique to examine the properties of these promising nanomaterials.

  7. Structural variability in transition metal oxide clusters: gas phase vibrational spectroscopy of V3O(6-8)+.

    PubMed

    Asmis, Knut R; Wende, Torsten; Brümmer, Mathias; Gause, Oliver; Santambrogio, Gabriele; Stanca-Kaposta, E Cristina; Döbler, Jens; Niedziela, Andrzej; Sauer, Joachim

    2012-07-14

    We present gas phase vibrational spectra of the trinuclear vanadium oxide cations V(3)O(6)(+)·He(1-4), V(3)O(7)(+)·Ar(0,1), and V(3)O(8)(+)·Ar(0,2) between 350 and 1200 cm(-1). Cluster structures are assigned based on a comparison of the experimental and simulated IR spectra. The latter are derived from B3LYP/TZVP calculations on energetically low-lying isomers identified in a rigorous search of the respective configurational space, using higher level calculations when necessary. V(3)O(7)(+) has a cage-like structure of C(3v) symmetry. Removal or addition of an O-atom results in a substantial increase in the number of energetically low-lying structural isomers. V(3)O(8)(+) also exhibits the cage motif, but with an O(2) unit replacing one of the vanadyl oxygen atoms. A chain isomer is found to be most stable for V(3)O(6)(+). The binding of the rare gas atoms to V(3)O(6-8)(+) clusters is found to be strong, up to 55 kJ/mol for Ar, and markedly isomer-dependent, resulting in two interesting effects. First, for V(3)O(7)(+)·Ar and V(3)O(8)(+)·Ar an energetic reordering of the isomers compared to the bare ion is observed, making the ring motif the most stable one. Second, different isomers bind different number of rare gas atoms. We demonstrate how both effects can be exploited to isolate and assign the contributions from multiple isomers to the vibrational spectrum. The present results exemplify the structural variability of vanadium oxide clusters, in particular, the sensitivity of their structure on small perturbations in their environment. PMID:22499393

  8. Transition metal-mediated donor-acceptor coordination of low-oxidation state Group 14 element halides.

    PubMed

    Swarnakar, Anindya K; Ferguson, Michael J; McDonald, Robert; Rivard, Eric

    2016-03-30

    The reactivity of tungsten carbonyl adducts of Group 14 element (Ge, Sn and Pb) dihalides towards the metal-based donors (η(5)-C5H5)Rh(PMe2Ph)2 and Pt(PCy3)2 was examined. When (η(5)-C5H5)Rh(PMe2Ph)2 was treated with the Lewis acid supported Ge(ii) complex, THF·GeCl2·W(CO)5, cyclopentadienyl ring activation occurred, whereas the analogous Lewis acidic units SnCl2·W(CO)5 and PbCl2 form direct adducts with the Rh complex to yield Rh-Sn and Rh-Pb dative bonds. Attempts to prepare metal coordinated element(ii) hydrides by adding hydride sources to the above mentioned rhodium-E(ii) halide complexes were unsuccessful; in each case insoluble products were formed along with regeneration of free (η(5)-C5H5)Rh(PMe2Ph)2. In a parallel study, ECl2·W(CO)5 (E = Ge or Sn) groups were shown to participate in E-Cl oxidation addition chemistry with (Cy3P)2Pt to give the formal Pt(ii) complexes ClPt(PCy3)2ECl·W(CO)5. PMID:26373599

  9. Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M 3 O 8 and M 3 O 8 - (M = Cr, W), from Photoelectron Spectroscopy and Quantum Chemical Calculations

    SciTech Connect

    Li, Shenggang; Zhai, Hua-Jin; Wang, Lai-Sheng; Dixon, David A.

    2009-09-28

    We report a comparative study of reduced transition metal oxide clusters, M₃O₈⁻ (M = Cr, W) anions and their neutrals, via anion photoelectron spectroscopy (PES) and density functional theory (DFT) and molecular orbital theory (CCSD(T)) calculations. Well-resolved PES spectra are obtained for M₃O₈⁻ (M = Cr, W) at 193 and 157 nm photon energies. Different PES spectra are observed for M = Cr versus M = W. ExtensiveDFT and CCSD(T) calculations are performed to locate the ground and low-lying excited states for the neutrals and anions. The ground states of Cr₃O₈ and Cr₃O₈⁻ are predicted to be the ³B₂ and ⁴B₂ states of a C₂v structure, respectively, revealing ferromagnetic spin coupling for Cr 3d electrons. In contrast, the ground states of W₃O₈ and W₃O₈⁻ are predicted to be the ¹A' state (Cs symmetry) and the ²A₁ state (C₂v symmetry), respectively, showing metal-metal d-d bonding in the anion. The current cluster geometries are in qualitative agreement with prior DFT studies at the PBE level for M = Cr and the B3LYP level for M = W. The BP86 and PW91 functionals significantly outperform the B3LYP functional for the Cr species, in terms of relative energies, electron detachment energies, and electronic excitation energies, whereas the B3LYP functional is better for the W species. Accurate heats of formation for the ground states of M₃O₈ are calculated from the clustering energies and the heats of formation of MO₂ and MO₃. The energetics have been used to predict redox reaction thermochemistry.

  10. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    NASA Astrophysics Data System (ADS)

    Carraher, Jack McCaslin

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding 'greener' sources of commodity chemicals and fuels. High-valent Chromium from Hydroperoxido-Chromium(III). The decomposition of pentaaquahydroperoxido chromium(III) ion (hereafter Cr aqOOH2+) in acidic aqueous solutions is kinetically complex and generates mixtures of products (Craq3+, HCrO 4-, H2O2, and O2). The yield of high-valent chromium products (known carcinogens) increased from a few percent at pH 1 to 70 % at pH 5.5 (near biological pH). Yields of H 2O2 increased with acid concentration. The reproducibility of the kinetic data was poor, but became simplified in the presence of H2O2 or 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) dianion (ABTS2-). Both are capable of scavenging strongly oxidizing intermediates). The observed rate constants (pH 1, [O2] ≤ 0.03 mM) in the presence of these scavengers are independent of [scavenger] and within the error are the same (k,ABTS2- = (4.9 +/- 0.2) x 10-4 s-1 and kH2O2 = (5.3 +/- 0.7) x 10-4 s-1); indicating involvement of the scavengers in post-rate determining steps. In the presence of either scavenger, decomposition of CrOOH2+ obeyed a two-term rate law, k obs / s-1 = (6.7 +/- 0.7) x 10-4 + (7.6 +/- 1.1) x 10-4 [H+]. Effect of [H+] on the kinetics and the product distribution, cleaner kinetics in the presence of scavengers, and independence of kobs on [scavenger] suggest a dual-pathway mechanism for the decay of Craq OOH2+. The H+-catalyzed path

  11. Coordination modes and bonding of sulfur oxides on transition metal surfaces: combined ab initio and BOC-MP results

    NASA Astrophysics Data System (ADS)

    Seller, Harrell; Shustorovich, Evgeny

    1996-02-01

    Binding energies for sulfur oxides, SO x, x = 1-3, have been determined for several coordination modes on silver, gold and palladium surfaces employing ab initio quantum chemical methods and the bond order conservation Morse potential (BOC-MP) method. SO 2 coordination was studied in the most detail. In general the agreement between the BOC-MP and ab initio binding energies is good for the (111) surfaces of silver and palladium with both methods predicting that, in the zero coverage limit, di-coordination via S,O and O,O will be more favorable energetically than mono-coordination via S. In the case of chemisorption on the Pd (110) surface the two methods agree well for the cases in which there are formulas for the BOC-MP binding energies. In going from the (111) surfaces to the (110) surfaces of silver and palladium the ab initio calculations predict that the preferred chemisorption site shifts from the bridge site to the hollow site. On the silver surfaces the net charge transferred to the adsorbate as judged from the Mulliken populations correlates roughly with the binding energy. No significant charge transfer was found on the palladium surfaces. Our SO 2 chemisorption calculations indicate that the work functions of the metal surfaces examined should increase upon mono-S adsorption, increase to a lesser extent upon di S,O adsorption and may even decrease upon di O,O adsorption. Ab initio calculations provide evidence of the existence of SO 2 surface dimers. The binding energy predicted by the BOC-MP model for SO 3 in the bridging site agrees well with the ab initio result for SO 3 di-coordinated in the long bridge of the Ag(110) surface. The methods yield similar predictions for the case of SO on silver. Our modeling provides a coherent picture consistent with many aspects of the experimental literature. We present some model predictions, particularly the di O,O coordination mode for SO 2, that require verification experimentally.

  12. Anelastic and thermal properties of ethylene/acrylic acid copolymers partially ionized with transition metals

    SciTech Connect

    Hoffman, D.M.; Matthews, F.M.; Riley, M.O.; Walkup, C.M.

    1988-01-01

    Ionomers of five 3d series transition metals (Mn, Fe, Co, Ni, and Cu), two Lanthanide series transition metals (Ce, Sm) and the IV and V series metals (Pb, Bi) were prepared by reaction with 25% solids dispersion of poly (ethylene-co-acrylic acid), EAA, in aqueous ammonia. The unreacted copolymer showed two mechanical relaxations, the glass transition at about 5C and a low temperature secondary relaxation at about -140C with 230 +- 10 kJ/mol and 50+-8 kJ/mol apparent activation energies, respectively. Typically three weight percent of the metal nitrate or acetate was reacted with the copolymer dispersion. After precipitation, drying and molding, the ionomers showed three mechanical relaxations. The low temperature ..gamma..-relaxation was quite strong and shifted about 5C higher compared to the EAA copolymer. The ..beta..-relaxation was extremely weak occurring at -62+-5C in the loss tangent at 1.0 Hz. The ..cap alpha..-relaxation or glass transition for 3% transition metal ionomers occurred at about 26+-3C for +3 oxidation states and Cu/sup +2/, but significantly higher for other +2 oxidation states (48 +- 2C for Co, Ni and 35C for Mn) based on G'' maxima at 1.0 Hz and the apparent activation energy was 220+-30kJ/mol. The two group IV and V metal ionomers were much higher loadings and had a much broader and stronger (..beta..') relaxation occurring at -6 +- 4C with 130+-10 kJ/mol activation energies. The lead ionomers were clear but the bismuth ionomer showed macroscopic phase separation. The 3d transition metal ionomers were clear and nicely colored characteristic of their ionization state except for iron which was somewhat cloudy. The Lanthanide ionomers were clear (Ce) or pale yellow (Sm) and also reasonably transparent. (16 refs., 12 figs., 5 tabs.)

  13. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.

    PubMed

    Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao

    2005-01-01

    The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch. PMID:16313008

  14. Selenophene transition metal complexes

    SciTech Connect

    White, C.J.

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the {eta}{sup 5}- and the {eta}{sup 1}(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The {sup 77}Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of {eta}{sup 1}(S)-bound thiophenes, {eta}{sup 1}(S)-benzothiophene and {eta}{sup 1}(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the {eta}{sup 1}(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh{sub 3})Re(2-benzothioenylcarbene)]O{sub 3}SCF{sub 3} was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the {eta}{sup 1}(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  15. Ligand field splittings in core level transitions for transition metal (TM) oxides: Tanabe-Sugano diagrams and (TM) dangling bonds in vacated O-atom defects

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry

    2013-04-01

    Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding

  16. Interplay between 3d-3d and 3d-4f interactions at the origin of the magnetic ordering in the Ba2LnFeO5 oxides

    NASA Astrophysics Data System (ADS)

    Kundu, Asish K.; Hardy, Vincent; Caignaert, Vincent; Raveau, Bernard

    2015-12-01

    A new family of oxides in which 3d-3d and 3d-4f interactions are of comparable strength has been synthesized and characterized both from structural and physical viewpoints. These compounds of formulation Ba2LnFeO5 (Ln  =  Sm, Eu, Gd, Dy, Ho, Er, Yb) are isotypic to the perovskite derivative Ba2YFeO5. They exhibit an original structure consisting of isolated FeO4 tetrahedra linked via LnO6 (or YO6) octahedra. Magnetic and calorimetric measurements show that all these compounds exhibit a unique, antiferromagnetic transition involving both the 3d and 4f ions. The antiferromagnetic properties of the Ln  =  Y phase (non-magnetic Y3+) and of the Ln  =  Eu (non-magnetic ground state multiplet of Eu3+) are ascribed to super-super exchange Fe-O-O-Fe interactions, leading to the lowest T N (5.5 K for Y and 4.6 K for Eu). The introduction of a magnetic lanthanide, i.e. Ln  =  Sm, Gd, Dy, Ho, Er, Yb, in the octahedral sites, leads to larger T N values (up to 9.8 K for Ln  =  Yb). It is found that several mechanisms must be taken into account to explain the complex evolution of the magnetic properties along the Ba2LnFeO5 series. In particular, the super-exchange Ln-O-Fe, as well as the on-site Ln3+ magnetocrystalline anisotropy, are suggested to play crucial roles. This Ba2LnFeO5 series offers a rare opportunity to investigate experimentally a situation where the 3d-3d and 3d-4f interactions co-operate on an equal footing to trigger a unique long-range magnetic ordering in insulating oxides.

  17. New pathways for organic synthesis. Practical applications of transition metals

    SciTech Connect

    Colquhoun, H.M.; Holton, J.; Thompson, D.J.; Twigg, M.V.

    1984-01-01

    This book contains a considerable number of transition-metal-based procedures that have genuine applications in synthesis, and which are arranged according to the nature of the organic product or synthetic transformation being carried out. The objective is to provide those engaged in the preparation of pharmaceuticals, natural products, herbicides, dyestuffs, and other organic chemicals with a practical guide to the application of transition metals in organic synthesis. Topics considered include the formation of carbon-carbon bonds, the formation of carbocyclic compounds, the formation of heterocyclic compounds, the isomerization of alkenes, the direct introduction and removal of carbonyl groups, reduction, oxidation, and preparing and handling transition metal catalysts.

  18. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. PMID:26351175

  19. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

    PubMed Central

    Gethin, David T.; Syverud, Kristin; Hill, Katja E.; Thomas, David W.

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials. PMID:26090461

  20. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.

    PubMed

    Rees, Adam; Powell, Lydia C; Chinga-Carrasco, Gary; Gethin, David T; Syverud, Kristin; Hill, Katja E; Thomas, David W

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials. PMID:26090461

  1. A hybrid metalloarsenate 3D framework-1D interrupted metal oxide.

    PubMed

    Hughes, Robert W; Gerrard, Lee A; Price, Daniel J; Weller, Mark T

    2003-06-30

    Complex metal arsenates of the stoichiometry M(1)(-)(x)()M'(6)(OH)(3)(AsO(4)H(2)(x)()(/3))(3)(HAsO(4)), M = M' = Co, Ni, have been synthesized under hydrothermal conditions. The two compounds display a very similar structural topology to that of the mineral dumortierite, an uncommon complex oxyborosilicate of aluminum. The hybrid structures consist of well separated, vacancy interrupted chains of face sharing MO(6) octahedra, with short M.M distances near 2.5 A, embedded in a metalloarsenate 3D framework having the topology of the aluminosilicate cancrinite. The framework also contains a quadruply bridging hydroxide ion. Magnetic susceptibility measurements reveal a strong antiferromagnetic interaction and magnetic transition to low temperature spin canted phases below 51 K (Co) and 42 K (Ni). The material may be considered as a zeotype framework structure templated by an interrupted one-dimensional metal oxide. PMID:12817976

  2. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation.

    PubMed

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C

    2015-07-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells. PMID:26058677

  3. Synthesis of 3D structured graphene as a high performance catalyst support for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Li, Yecheng; Zhang, Lei; Hu, Zhuofeng; Yu, Jimmy C.

    2015-06-01

    A simple process for preparing 3D structured graphene (3D-G) by a solution combustion method is reported. The product was deposited with platinum and used for methanol electro-oxidation. The catalyst shows a considerable enhancement in both the activity and stability towards methanol electro-oxidation reaction. Characterization reveals that the Pt/3D-G catalyst has a more negative onset potential as well as a higher electrochemically active specific surface area than a commercial Pt/C catalyst. Moreover, the catalyst exhibits higher tolerance to corrosion than carbon black. This work provides an efficient way for preparing 3D-G as a promising support for the oxidation of small organic molecules in fuel cells.

  4. Stabilization of 3d Transition Metal Hydrido Complexes in SrH2Mg2[Co(I)H5], BaH2Mg5[Co(-I)H4]2, and RbH2Mg5[Co(-I)H4 Ni(0)H4] via Easily Polarizable Hydride Ligands.

    PubMed

    Fahlquist, Henrik; Moser, David; Noréus, Dag; Refson, Keith; Parker, Stewart F

    2016-04-01

    A combined study using neutron diffraction, inelastic neutron scattering, and first-principles calculations describe cobalt with a very low formal oxidation state of (-I) in a slightly distorted tetrahedral Co(-I)H4-complex in BaH2Mg5[Co(-I)H4]2 and in the structurally related RbH2Mg5[Co(-I)H4 Ni(0)H4]. This indicates that the electron "back donating" effect via the polarizable hydride ions to the counterions in the solid state hydrides, can be compared to more conventional "back bonding" able to reduce the oxidation state down to -I. The hydrides were synthesized by hot sintering of transition metal powders with corresponding binary alkali- and alkaline earth hydrides. In the similarly synthesized SrH2Mg2[Co(I)H5], cobalt is formally + I-valent, showing a high sensitivity to differences in the counterion framework, which can also influence electrical properties. PMID:26991310

  5. Transport of iron oxide nanoparticles in saturated porous media: a large-scale 3D study

    NASA Astrophysics Data System (ADS)

    Velimirovic, Milica; Schmid, Doris; Micić, Vesna; Miyajima, Kumiko; Klaas, Norbert; Braun, Jürgen; Bosch, Julian; Meckenstock, Rainer; von der Kammer, Frank; Hofmann, Thilo

    2016-04-01

    Iron oxide nanoparticles (FeOxNp) have a high potential as electron acceptor for in situ microbial oxidation of a wide range of recalcitrant groundwater contaminants (Bosch et al., 2010). Tosco et al. (2012) reported on high colloidal stability of FeOxNp dispersed in water, their low deposition behavior, and consequently improved transport in column experiments compared to extensively studied zerovalent iron nanoparticles. However, determination of FeOxNp transport behavior at the field-relevant conditions has not been done before. The present work is aimed to evaluate different complementary methods for detection, quantification and transport characterization of FeOxNp in a large-scale three-dimensional (3D) model aquifer. Prior to that, batch-scale experiments were performed in order to elucidate the potential of the selected methods for direct and indirect characterization and detection of FeOxNp. Direct methods included measurements of particle size distribution, particle concentration, Fetot content and turbidity of the FeOxNp suspension. Indirect methods included measurements of particle zeta potential, as well as TOC content and pH of the FeOxNp suspension. The results of the batch experiments indicated that the most suitable approach for detecting and quantifying FeOxNp was measuring Fetot content and suspension turbidity, as well as particle size determined using dynamic light scattering principle. These complementary methods were further applied in a large-scale 3D study containing medium and coarse sand in order to 1) assess the transport of FeOxNp in saturated porous medium during injection (VFeOx = 6 m3, cparticle = 20 g/L, Qinj = 0.7 m3/h), and 2) illustrate their spatial distribution after injection. The outcomes of the large-scale 3D study confirmed that FeOxNp transport can be successfully investigated applying complementary methods. Monitoring data including Fetot content, turbidity and particle size showed the transport of particles towards the

  6. Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems

    SciTech Connect

    Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

    2011-07-11

    We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

  7. Aging of Transition Metal Dichalcogenide Monolayers.

    PubMed

    Gao, Jian; Li, Baichang; Tan, Jiawei; Chow, Phil; Lu, Toh-Ming; Koratkar, Nikhil

    2016-02-23

    Two-dimensional sheets of transition metal dichalcogenides are an emerging class of atomically thin semiconductors that are considered to be "air-stable", similar to graphene. Here we report that, contrary to current understanding, chemical vapor deposited transition metal dichalcogenide monolayers exhibit poor long-term stability in air. After room-temperature exposure to the environment for several months, monolayers of molybdenum disulfide and tungsten disulfide undergo dramatic aging effects including extensive cracking, changes in morphology, and severe quenching of the direct gap photoluminescence. X-ray photoelectron and Auger electron spectroscopy reveal that this effect is related to gradual oxidation along the grain boundaries and the adsorption of organic contaminants. These results highlight important challenges associated with the utilization of transition metal dichalcogenide monolayers in electronic and optoelectronic devices. We also demonstrate a potential solution to this problem, featuring encapsulation of the monolayer sheet by a 10-20 nm thick optically transparent polymer (parylene C). This strategy is shown to successfully prevent the degradation of the monolayer material under accelerated aging (i.e., high-temperature, oxygen-rich) conditions. PMID:26808328

  8. Transition Metal Free Intermolecular Direct Oxidative C-N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant.

    PubMed

    Guo, Wei; Li, Chunsheng; Liao, Jianhua; Ji, Fanghua; Liu, Dongqing; Wu, Wanqing; Jiang, Huanfeng

    2016-07-01

    Various polysubstituted pyrimidines are smoothly formed via a base-promoted intermolecular oxidation C-N bond formation of allylic C(sp(3))-H and vinylic C(sp(2))-H of allyllic compounds with amidines using O2 as the sole oxidant. This protocol features protecting group free nitrogen sources, good functional group tolerance, high atom economy, and environmental advantages. PMID:27275869

  9. Permanganate oxidation of DNAPL in a large 3-D flow tank

    NASA Astrophysics Data System (ADS)

    Lee, E.; Seol, Y.; Fang, Y. C.; Schwartz, F. W.

    2002-05-01

    Potassium permanganate (KMnO4), as a metal-oxo reagent, can attack a double carbon-carbon bond and therefore oxidize common chlorinated ethylenes, such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This feature of metal-oxo reagents facilitates the use of permanganate to remediation of chlorinated solvents in soil and groundwater. In this study, we evaluated the efficiency of TCE removal by permanganate oxidation in large three-dimensional flooding schemes. We constructed a large 3-D flow tank (L x W x D = 180 cm x 60 cm x 90 cm) where TCE source zone was installed in a saturated porous sandy medium. The tank was flushed at a flow rate of 51 L/day with permanganate solution (1,250 mg/L) for 63 days. Using chemical, electrical, and optical monitoring techniques we estimated temporal and areal variations in TCE, permanganate, MnO2 precipitates, conductivity, and chloride concentrations. TCE emplaced as DNAPL in a upstream source zone gradually moved downstream forming a TCE plume of about 120 cm long, 30 cm wide, and 55 cm deep. This TCE plume diminished considerably over time due to the in situ oxidation of the DNAPL. However, TCE was not completely destroyed and TCE concentration remained high (63 to 228 mg/L) in the shrunken TCE plume downstream after 63 days of permanganate flushing. Mass balance calculation indicated about 28% of TCE still remained in the system. This was attributed to the precipitation of low-permeability reaction by-product, i.e., MnO2, which caused flushing to become less efficient with time. Findings of this study are useful for developing a practical technique for enhancing the efficacy of the oxidative treatment of TCE using permanganate in the field conditions.

  10. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture. PMID:24643977

  11. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  12. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  13. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  14. Energy bands in some transition metals

    NASA Astrophysics Data System (ADS)

    Laurent, D. G.

    1981-08-01

    Self consistent linear combination of Gaussian orbitals energy band calculations were performed for the two paramagnetic 3d transition metals, chromium and vanadium. The energy bands densities of states and Fermi surfaces were obtained using the two most popular local exchange correlation potentials (Kohn-Sham-Gaspar and von Barth-Hedin) for chromium and the Kohn-Sham-Gaspar potential alone for vanadium. A comparison was made with the available experimental data. New interpretations for some of the neutron scattering data are made in the chromium case. Results are also presented for the Compton profiles and optical conductivities. These correlate well with the experiments if appropriate angular averages (for the Compton profile) and lifetime effcts (for the optical conductivity) are included. The electron energy loss spectrum, computed over the range 0-6.5 eV agreed well with experiment.

  15. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  16. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries. PMID:23354412

  17. Reactivity of hydrated monovalent first row transition metal ions M(+)(H2O)n, M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide.

    PubMed

    van der Linde, Christian; Hemmann, Sonja; Höckendorf, Robert F; Balaj, O Petru; Beyer, Martin K

    2013-02-14

    The reactions of hydrated monovalent transition metal ions M(+)(H(2)O)(n), M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Clusters containing monovalent chromium, cobalt, nickel, or zinc were reactive toward O(2), while only hydrated cobalt was reactive toward N(2)O. A strongly size dependent reactivity was observed. Chromium and cobalt react very slowly with carbon dioxide. Nanocalorimetric analysis, (18)O(2) exchange, and collision induced dissociation (CID) experiments were done to learn more about the structure of the O(2) products. The thermochemistry for cobalt, nickel, and zinc is comparable to the formation of O(2)(-) from hydrated electrons. These results suggest that cobalt, nickel, and zinc are forming M(2+)/O(2)(-) ion pairs in the cluster, while chromium rather forms a covalently bound dioxygen complex in large clusters, followed by an exothermic dioxide formation in clusters with n ≤ 5. The results show that hydrated singly charged transition metal ions exhibit highly specific reactivities toward O(2), N(2)O, and CO(2). PMID:22506540

  18. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

    NASA Astrophysics Data System (ADS)

    Sitler, Steven; Hill, Cody; Raja, Krishnan S.; Charit, Indrajit

    2016-04-01

    Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

  19. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

    NASA Astrophysics Data System (ADS)

    Sitler, Steven; Hill, Cody; Raja, Krishnan S.; Charit, Indrajit

    2016-06-01

    Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

  20. Design, analysis, and characterization of stress-engineered 3D microstructures comprised of PECVD silicon oxide and nitride

    NASA Astrophysics Data System (ADS)

    Pi, Chia-Hsing; Turner, Kevin T.

    2016-06-01

    Microelectromechanical systems (MEMS) are typically 2D or quasi-3D structures fabricated using surface and bulk micromachining processes. In this work, an approach for 3D structure fabrication based on stress engineering is demonstrated. Specifically, sub-mm 3D spherical cage-like structures are realized through the deformation of bilayers of residually-stressed silicon oxide and silicon nitride with micrometer-scale thicknesses. Analytical and finite models to predict the shape of stress-engineered structures based on geometry and residual stress are described and used for structure design. A systematic experimental study was performed to quantify residual stresses in silicon nitride films made by plasma-enhanced chemical vapor deposition (PECVD). The measurements show that the residual stress of PECVD silicon nitride can be tuned over a wide range of tensile stresses through the control of deposition parameters, such as flow rate and power. Stress engineered 3D cage-like structures comprised of PECVD silicon nitride and oxide films were fabricated. 3D structures with a range of curvatures were demonstrated. The measured geometry of the fabricated structures are in good agreement with predictions from analytical and finite element models.

  1. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen. PMID:27483171

  2. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Bing; Wang, Lidong; Wang, Yang; Yuan, Yinan; Miao, Qinghua; Yang, Ziyue; Fei, Weidong

    2016-03-01

    In this study, a new, effective strategy is reported for the fabrication of composites using manganese oxide (MnO2) grown in situ on three-dimensional (3D) graphene by the reverse microemulsion (water-in-oil) method. A uniform coating of nanoscale MnO2 layers can be observed on the internal surface of 3D graphene, which could benefit rapid ionic and electronic transport. The electrochemical performance of the MnO2/3D graphene composites is optimized by the control of the composite structure and mass loading of MnO2. The MnO2/3D graphene composite thus prepared exhibits a significantly high specific capacitance of 659.7 F g-1 at 0.3 A g-1 and an excellent retention life of 106% after 1000 cycles. The facile synthesis and excellent electrochemical performance of the MnO2/3D graphene composites indicate that the developed method demonstrates potential applications for the fabrication of novel electrode materials for use in energy storage devices.

  3. [Non-empirical interatomic potentials for transition metals

    SciTech Connect

    Not Available

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  4. [Non-empirical interatomic potentials for transition metals]. Progress report

    SciTech Connect

    Not Available

    1993-05-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  5. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  6. Theoretical study of electron correlation effects in transition metal dimers

    NASA Astrophysics Data System (ADS)

    Das, Guru P.; Jaffe, Richard L.

    1984-08-01

    Introduction of partially localized orbitals (PLOs) is shown to reduce the number of configurations needed to describe the bonding in transition metal clusters. Using this formalism, estimates are made of the molecular electron correlation energy that arises from including such terms as 3d3d', 3p → 3p' and 4s 2 → 4p 2 in the wavefunction. When this estimate of the additional correlation is added to the CAS SCF results of Walch, Bauschlicher, Roos and Nelin improved interaction potentials are obtained for the dimers V 2 and Cr 2.

  7. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. PMID:23137676

  8. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  9. Catabolism of hyaluronan: involvement of transition metals

    PubMed Central

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essential for the control of various metabolic and signaling pathways. They are also the key elements in catabolism of hyaluronan in the joint. In this overview, the role of these metals in physiological and pathophysiological catabolism of hyaluronan is described. The participation of these metals in the initiation and propagation of the radical degradation hyaluronan is critically reviewed. PMID:21217859

  10. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes.

    PubMed

    Mural, Prasanna Kumar S; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-14

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification. PMID:27020773

  11. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  12. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples. PMID:26433071

  13. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  14. Fabrication of 3D copper oxide structure by holographic lithography for photoelectrochemical electrodes.

    PubMed

    Jin, Woo-Min; Kang, Ji-Hwan; Moon, Jun Hyuk

    2010-11-01

    We fabricated three-dimensional copper oxide structure by holographic lithography and electroless deposition. A five-beam interference pattern defined a woodpile structure of SU-8. The surface modification of SU-8 structure was achieved by multilayer coating of polyelectrolyte, which is critical for activating the surface for the reduction of copper. Copper was deposited onto the surface of the structure by electroless deposition, and subsequent calcinations removed the SU-8 structure and simultaneously oxidized the copper into copper oxide. The porous copper oxide structure was used as a photoelectrochemical electrode. Because of the highly porous structure, our structure showed higher photocurrent efficiency. PMID:21062017

  15. Synthesis of transition metal carbonitrides

    DOEpatents

    Munir, Zuhair A. R.; Eslamloo-Grami, Maryam

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  16. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors.

    PubMed

    Yun, Yong Ju; Hong, Won G; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-06-21

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. PMID:24839129

  17. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  18. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  19. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  20. 3D hierarchical walnut-like CuO nanostructures: Preparation, characterization and their efficient catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Weitang; Zhang, Yujuan; Duan, Tao; Zhu, Wenkun; Yi, Zao; Cui, Xudong

    2016-07-01

    In this work, 3D hierarchical walnut-shaped, 2D nanosheet and 3D microspheres single phase CuO nanostructures are functioning as catalysts and supporting materials, differing from the conventional ways. The novel nanostructures were synthesized via hydrothermal method under a stainless steel autoclave. The as-prepared materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and H2 temperature-programmed reduction (H2-TPR). The walnut-shaped structures with high O/Cu atomic ratio (1.22) exhibit high oxygen adsorption capacity and greatly enhanced catalytic activity. These results will be enrich the techniques for tuning the morphologies of metal oxide micro/nanostructures and open a new field in catalytic applications.

  1. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  2. Hyperfine structure studies of transition metals

    SciTech Connect

    Young, L.; Kurtz, C.; Hasegawa, S.

    1995-08-01

    This past year our studies of hyperfine structure (hfs) in metastable states of transition metals concentrated on the analysis of hfs in the four-valence electron system, Nb II. Earlier, we measured hfs intervals using the laser-rf double resonance and laser-induced fluorescence methods in a fast-ion beam of Nb{sup +}. The resulting experimental magnetic dipole and electric quadrupole interaction constants are compared to those calculated by a relativistic configuration interaction approach. These are the first hfs data on this refractory element. Theoretically, it is found that the most important contributions to the energy are the pair excitations, valence single excitations and core polarization from the shallow core. However, the inner core polarization is found to be crucial for hfs, albeit unimportant for energy. For the J=2 level at 12805 cm{sup -1}, 4d{sup 4} {sup 3}F. the theoretical relativistic configuration A-value is in agreement with the experimental result to an accuracy of 4%. Other calculated A-values are expected to be of the same accuracy. A paper describing these results was accepted for publication. Experimental studies of the four-valence electron system V{sup +} in the (4s+3d){sup 4} manifold are complete. The theoretical difficulties for the 3d manifold, noted earlier for the three-valence electron Ti{sup +}, as compared to the 4d manifold appear to be repeated in the case of the four-valence electron systems (Nb{sup +} and V{sup +}). Relativistic configuration interaction calculations are underway, after which a paper will be published.

  3. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Hong, Won G.; Choi, Nak-Jin; Park, Hyung Ju; Moon, Seung Eon; Kim, Byung Hoon; Song, Ki-Bong; Jun, Yongseok; Lee, Hyung-Kun

    2014-05-01

    An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas.An ultra-sensitive gas sensor based on a reduced graphene oxide nanofiber mat was successfully fabricated using a combination of an electrospinning method and graphene oxide wrapping through an electrostatic self-assembly, followed by a low-temperature chemical reduction. The sensor showed excellent sensitivity to NO2 gas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00332b

  4. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  5. Self-assembly and crystallization behavior of mesoporous, crystalline HfO2 thin films: a model system for the generation of mesostructured transition-metal oxides.

    PubMed

    Brezesinski, Torsten; Smarsly, Bernd; Iimura, Ken-ichi; Grosso, David; Boissière, Cédric; Amenitsch, Heinz; Antonietti, Markus; Sanchez, Clément

    2005-08-01

    Mesoporous thin films of crystalline hafnium oxide were fabricated by evaporation-induced self-assembly in combination with sol-gel processing, followed by a suitable post heat-treatment procedure to initiate the crystallization. A novel type of block-copolymer template was used as structure-directing agent, which generated a distorted cubic arrangement of spherical mesopores, the size of which could be quantified by suitable techniques, such as ellipsometry-porosimetry, small-angle X-ray scattering, and atomic force microscopy. Detailed insights into the nature of the crystallization process of mesostructured hafnium oxide were obtained by temperature-dependent, in situ X-ray scattering experiments. These investigations revealed that crystallization takes place, within the confinement of the mesostructure, as a solid-solid transition from a dehydrated, amorphous form of hafnium oxide. The study suggests that one main benefit of the novel template results from the ability of the polymer to stabilize the mesostructure of amorphous hafnium oxide up to 400-450 degrees C. PMID:17193544

  6. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  7. Platinum nanoparticles decorated robust binary transition metal nitride-carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhan, Guohe; Fu, Zhenggao; Sun, Dalei; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2016-09-01

    Titanium cobalt nitride (TiCoN)-CNTs hybrid support is prepared by a facile and efficient method, including a one-pot solvothermal process followed by a nitriding process, and this hybrid support is further decorated with Pt nanoparticles to catalyze the oxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Notably, Pt/CNTs@TiCoN catalyst exhibits a much higher mass activity and durability than that of the conventional Pt/C (JM) for methanol oxidation. The experimental data indicates that the CNTs@TiCoN hybrid support combines the merits of the CNTs's high conductivity and the superb corrosion resistance of external TiCoN coating.

  8. Sulfidation of rock-salt-type transition metal oxide nanoparticles as an example of a solid state reaction in colloidal nanoparticles.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang

    2011-01-28

    The sulfidation of colloidal rock-salt-type MO (M = Fe, Mn and Co) nanocrystals was performed in organic solvents using dissolved elemental sulfur at moderate temperatures. The vacancy defects in these rock-salt-type structures clearly promote complete oxide-sulfide conversion. The conversion products were hollow metal sulfide (pyrrhotite (Fe(1-x)S), Co(1-x)S and α-MnS) nanoparticles. These conversions by sulfidation proceed rapidly, making difficult the isolation of intermediates. The sulfidation intermediates, when the supply of sulfur was insufficient, had interesting structures, in which the metal oxide cores were surrounded by metal sulfide shells or had surfaces that were decorated with metal sulfide islands. Based on the above results, a mechanism of surface nucleation, shell formation, and void formation by diffusion processes is proposed. PMID:21140007

  9. Piperazine pivoted transition metal dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2008-03-01

    A quadridentate ligand disodium bis(2,2'-dithiopiperazinato-2,2'-diamino diethylamine) Na 2L 2 and its self assembled transition metal complexes of the type, M 2(L 2) 2 {M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)} have been reported. The piperazine pivoted homodinuclear complexes have been characterized by a range of spectral, thermal, microanalytical and conductometric techniques. On the basis of IR and 1HNMR data a symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the cases. The TGA profile of the ligand exhibits two stage thermolytic pattern although the complexes decompose in three steps, respectively. Metal sulfide is found to be the end product. The formation of homodinuclear complexes has been ascertained on the basis of FAB mass spectral data and a probable fragmentation pattern has been proposed. On the basis of UV-visible spectroscopic results and room temperature magnetic moment data a tetrahedral geometry has been proposed for all the complexes except for the Ni(II) and Cu(II) which are found to be square-planar.

  10. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  11. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  12. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    PubMed

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction. PMID:26241193

  13. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    SciTech Connect

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.

  14. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE PAGESBeta

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore » revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  15. Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K.

    2014-02-01

    We study the transport properties of monolayer MX2 (M = Mo, W; X = S, Se, Te) n- and p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using full-band ballistic non-equilibrium Green's function simulations with an atomistic tight-binding Hamiltonian with hopping potentials obtained from density functional theory. We discuss the subthreshold slope, drain-induced barrier lowering (DIBL), as well as gate-induced drain leakage (GIDL) for different monolayer MX2 MOSFETs. We also report the possibility of negative differential resistance behavior in the output characteristics of nanoscale monolayer MX2 MOSFETs.

  16. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    PubMed

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines. PMID:25712163

  17. Effect of longer-range lattice anisotropy on the electronic structure and magnetism of spin-orbit-coupled 5 d transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay; Katukuri, Vamshi; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Berndt; van den Brink, Jeroen; Hozoi, Liviu

    Our detailed quantum chemistry calculations provide magnetic g factors and exchange interactions for the quasi two-dimensional iridates Sr2IrO and Ba2IrO4. While canonical ligand-field considerations predict g| |-factors < 2 for the positive tetragonal distortions present in Sr2IrO4, we find g| | > 2 . This implies that the d levels in Sr2IrO4 are inverted with respect to the ordering deduced from the local ligand distortions, whereas we find them in Ba2IrO4 to be instead normally ordered. Electron spin resonance measurements confirm the level inversion in Sr2IrO4. This d-level switching is driven by the specific ionic charge distribution within adjacent IrO2 and SrO layers. Since polar discontinuities and the associated complications do not arise for such layers, our results highlight the tetravalent d-metal 214 oxides as ideal platforms to explore d-level reconstruction and engineering in the context of oxide heterostructures. Present address: Electronic structure theory, MPI-FKF, Stuttgart.

  18. Localized high spin states in transition-metal dimers: X-ray absorption spectroscopy study

    SciTech Connect

    Lau, J. T.; Hirsch, K.; Langenberg, A.; Probst, J.; Richter, R.; Rittmann, J.; Vogel, M.; Zamudio-Bayer, V.; Moeller, T.; Issendorff, B. von

    2009-06-15

    X-ray absorption spectroscopy provides direct evidence for localized valence electrons in Cr{sub 2}{sup +}, Mn{sub 2}{sup +}, and CrMn{sup +} dimer cations. Bonding in these transition-metal molecules is predominantly mediated by 4s electrons. This behavior is markedly different from other 3d transition-metal dimers with open 3d subshells and can be ascribed to the highly stable 3d{sup 5}({sup 6}S) configuration of the 3d subshell in chromium and manganese atoms and ions. In Cr{sub 2}{sup +}, Mn{sub 2}{sup +}, and CrMn{sup +}, 3d electron localization indicates local high spin states.

  19. Ab Initio determination of Cu 3d orbital energies in layered copper oxides

    PubMed Central

    Hozoi, Liviu; Siurakshina, Liudmila; Fulde, Peter; van den Brink, Jeroen

    2011-01-01

    It has long been argued that the minimal model to describe the low-energy physics of the high Tc superconducting cuprates must include copper states of other symmetries besides the canonical one, in particular the orbital. Experimental and theoretical estimates of the energy splitting of these states vary widely. With a novel ab initio quantum chemical computational scheme we determine these energies for a range of copper-oxides and -oxychlorides, determine trends with the apical Cu–ligand distances and find excellent agreement with recent Resonant Inelastic X-ray Scattering measurements, available for La2CuO4, Sr2CuO2Cl2, and CaCuO2. PMID:22355584

  20. Non-Enzymatic Glucose Sensor Based on 3D Graphene Oxide Hydrogel Crosslinked by Various Diamines.

    PubMed

    Hoa, Le Thuy; Hur, Seung Hyun

    2015-11-01

    The non-enzymatic glucose sensor was fabricated by well-controlled and chemically crosslinked graphene oxide hydrogels (GOHs). By using various diamines such as ethylenediamine (EDA), p-phenylene diamine (pPDA) and o-phenylene diamine (oPDA) that have different amine to amine distance, we can control the structures of GOHs such as surface area and pore volume. The pPDA-GOH fabricated by pPDA exhibited the largest surface area and pore volume due to its longest amine to amine distance, which resulted in highest sensitivity in glucose and other monosaccharide sensing such as fructose (C6H12O6), galactose (C6H12O6) and sucrose (C12H22O11). It also showed fast and wide range glucose sensing ability in the amperometric test, and an excellent selectivity toward other interference species such as an Ascorbic acid. PMID:26726578

  1. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  2. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    Photovoltaics provide a direct means of converting photons into useful, electric power; however traditional silicon-based technologies are too expensive for global commercialization. Dye-sensitized mesoporous semiconducting thin films, when utilized in regenerative photoelectrochemical cells, are one category of next generation photovoltaics that could eventually circumvent this issue. In fact, their architecture also affords a clear platform for implementation of a direct, solar fuel-forming system. The mechanisms involved in the myriad of molecular processes that occur in these molecular--solid-state hybrid materials are poorly understood. Thus, the overriding goal of this dissertation was to evaluate sensitized mesoporous, nanocrystalline metal-oxide thin films critically so as to elucidate mechanistic phenomena. Using transient and steady-state absorption and emission spectroscopies as well as (photo)electrochemistry, various previously unobserved processes have been identified. Chapter 2 demonstrates for the first time that the electric fields emanating from these charged thin films affect surface-anchored molecular sensitizers via a Stark effect. In most cases, further, but incomplete, ionic screening of the charged nanoparticles from the sensitizers, as non-Faradaic electrolyte redistribution, was spectroscopically inferred after rapid semiconductor charging. Chapter 3 highlights the reactivity of Co(I) coordination-compound catalysts anchored to anatase TiO2 thin-film electrodes. Visible-light excitation resulted in prompt excited-state electron injection into TiO2 while introduction of benzylbromide into the fluid solution surrounding the thin film led to a 2e--transfer, oxidative-addition reaction to Co1 forming a stable Co--benzyl product. Subsequent visible-light excitation initiated a photocatalytic cycle for C--C bond formation. Unique to the nanocrystalline thin films employed here, Chapter 4 demonstrates that traditional time-resolved polarization

  3. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    SciTech Connect

    Kinoshita, K.; Kishida, S.; Yoda, T.

    2011-09-15

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V{sub accel}) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni{sub 1+{delta}}O ({delta} < 0) and insulating (stoichiometric) or n-type Ni{sub 1+{delta}}O ({delta}{>=} 0).

  4. Oxidative addition of the Cα-Cβ bond in β-O-4 linkage of lignin to transition metals using a relativistic pseudopotential-based ccCA-ONIOM method.

    PubMed

    Oyedepo, Gbenga A; Wilson, Angela K

    2011-12-01

    A multi-level multi-layer QM/QM method, the relativistic pseudopotential correlation-consistent composite approach within an ONIOM framework (rp-ccCA-ONIOM), was applied to study the oxidative addition of the C(α)-C(β) bond in an archetypal arylglycerol β-aryl ether (β-O-4 linkage) substructure of lignin to Ni, Cu, Pd and Pt transition metal atoms. The chemically active high-level layer is treated using the relativistic pseudopotential correlation-consistent composite approach (rp-ccCA), an efficient methodology designed to reproduce an accuracy that would be obtained using the more computationally demanding CCSD(T)/aug-cc-pCV∞Z-PP, albeit at a significantly reduced computational cost, while the low-level layer is computed using B3LYP/cc-pVTZ. The thermodynamic and kinetic feasibilities of the model reactions are reported in terms of enthalpies of reactions at 298 K (ΔH°(298)) and activation energies (ΔH-act). The results obtained from the rp-ccCA:B3LYP hybrid method are compared to the corresponding values using CCSD(T) and several density functionals including B3LYP, M06, M06 L, B2PLYP, mPWPLYP and B2GP-PLYP. The energetics of the oxidative addition of CC bond in ethane to Ni, Cu, Pd and Pt atoms are also reported to demonstrate that the rp-ccCA method effectively reproduces the accuracy of the CCSD(T)/aug-cc-pCV∞Z method. Our results show that in the catalytic activation of the C(α)-C(β) bond of β-O-4, the use of platinum metal catalysts will lead to the most thermodynamically favored reaction with the lowest activation barrier. PMID:22144374

  5. 3-D perpendicular assembly of single walled carbon nanotubes for complimentary metal oxide semiconductor interconnects.

    PubMed

    Kim, Tae-Hoon; Yilmaz, Cihan; Somu, Sivasubramanian; Busnaina, Ahmed

    2014-05-01

    Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future Very Large Scale Integration (VLSI) interconnects. However, direct incorporation of CNTs into Complimentary Metal Oxide Semiconductor (CMOS) architecture by conventional chemical vapor deposition (CVD) growth method is problematic since it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias and perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance is found to be 270 komega s. PMID:24734611

  6. 3D CFD Model of a Tubular Porous-Metal Supported Solid Oxide Electrolysis Cell

    SciTech Connect

    G.L. Hawkes; B.D. Hawkes; M.S. Sohal; P.T. Torgerson; T. Armstrong; M.C. Williams

    2007-10-01

    Currently there is strong interest in the large-scale production of hydrogen as an energy carrier for the non-electrical market [1, 2, and 3]. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, with no consumption of fossil fuels, no production of greenhouse gases, and no other forms of air pollution. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion efficiency of 45 to 55%. A research program is under way at the INL to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. The future SOEC market includes the 1200MW GEN4 reactor which has projected 40-50% efficiency, 400 tones H2 production per day (at 5kg H2/car/300 mile day this corresponds to 80,000 cars/day). DOE is planning for 26GW of nuclear hydrogen production by 2025.

  7. Synthesis of ferromagnetic nanoparticles, formic acid oxidation catalyst nanocomposites, and late-transition metal-boride intermetallics by unique synthetic methods and single-source precursors

    NASA Astrophysics Data System (ADS)

    Wellons, Matthew S.

    The design, synthesis, and characterization of magnetic alloy nanoparticles, supported formic acid oxidation catalysts, and superhard intermetallic composites are presented. Ferromagnetic equatomic alloy nanoparticles of FePt, FePd, and CoPt were synthesized utilizing single-source heteronuclear organometallic precursors supported on an inert water-soluble matrix. Direct conversion of the precursor-support composite to supported ferromagnetic nanoparticles occurs under elevated temperatures and reducing conditions with metal-ion reduction and minimal nanoparticle coalescence. Nanoparticles were easily extracted from the support by addition of water and characterized in structure and magnetic properties. Palladium and platinum based nanoparticles were synthesized with microwave-based and chemical metal-ion reduction strategies, respectively, and tested for catalytic performance in a direct formic acid fuel cell (DFAFC). A study of palladium carbide nanocomposites with various carbonaceous supports was conducted and demonstrated strong activity comparable to commercially available palladium black, but poor catalytic longevity. Platinum-lead alloy nanocomposites synthesized with chemical reduction and supported on Vulcan carbon demonstrated strong activity, excellent catalytic longevity, and were subsequently incorporated into a prototype DFAFC. A new method for the synthesis of superhard ceramics on polymer substrates called Confined Plasma Chemical Deposition (CPCD) was developed. The CPCD method utilizes a tuned Free Electron Laser to selectively decompose the single-source precursor, Re(CO)4(B3H8), in a plasma-like state resulting in the superhard intermetallic ReB2 deposited on polymer substrates. Extension of this method to the synthesis of other hard of superhard ceramics; WB4, RuB2, and B4C was demonstrated. These three areas of research show new synthetic methods and novel materials of technological importance, resulting in a substantial advance in their

  8. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  9. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores

    PubMed Central

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man

    2016-01-01

    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2–35 nm and specific surface area in the ranges of 180–250 m2 g−1. The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides. PMID:26893025

  10. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  11. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man

    2016-02-01

    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2-35 nm and specific surface area in the ranges of 180-250 m2 g-1. The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides.

  12. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores.

    PubMed

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man

    2016-01-01

    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2-35 nm and specific surface area in the ranges of 180-250 m(2) g(-1). The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides. PMID:26893025

  13. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. João; Silva, Teresa M.; Montemor, M. Fátima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  14. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  15. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance.

    PubMed

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-14

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could

  16. Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis.

    PubMed

    Han, Lei; Yang, Da-Peng; Liu, Aihua

    2015-01-15

    A novel three-dimensional (3D) hierarchical porous cobalt oxide (Co3O4) architecture was first synthesized through a simple, cost-effective and environmentally friendly leaf-templated strategy. The Co3O4 nanoparticles (30-100 nm) with irregular shapes were interconnected with each other to form a 3D multilayer porous network structure, which provided high specific surface area and numerous electrocatalytic active sites. Subsequently, Co3O4 was successfully utilized as direct electrochemical sensing interface for non-enzymatic detection of H2O2 and glucose. By using chronoamperometry, the current response of the sensor at +0.31 V was linear with H2O2 concentration within 0.4-200 μM with a low limit of detection (LOD) of 0.24 μM (S/N=3) and a high sensitivity of 389.7 μA mM(-1) cm(-2). Two linear ranges of 1-300 μM (with LOD of 0.1 μM and sensitivity of 471.5 μA mM(-1) cm(-2)) and 4-12.5 mM were found at +0.59 V for glucose. In addition, the as-prepared sensor showed excellent stability and anti-interference performance for possible interferents such as ascorbic acid, uric acid, dopamine, acetaminophen and especially 0.15 M chloride ions. Similarly, other various metal oxide nanostructures may be also prepared using this similar strategy for possible applications in catalysis, electrochemical sensors, and fuel cells. PMID:25078713

  17. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-01

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. PMID:26494184

  18. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.

    PubMed

    Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio

    2011-06-24

    Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements. PMID:21572196

  19. Growth of 3-D flower/grass-like metal oxide nanoarchitectures based on catalyst-assisted oxidation method

    PubMed Central

    2014-01-01

    Cu2O grass-like and ZnO flower-like nanoarchitectures were fabricated directly on Cu powders and Zn powders using a novel thermal oxidation stress-induced (TOS) method based on catalyst assistance at a low temperature of 150°C under moderate humid atmosphere. The experiments of Al powder were also carried out based on TOS method. Overlapping migration (OLM) of Cu and Zn atoms and toothpaste squeezing migration (TSM) of Al atoms caused by different atom densities in metal oxide materials were studied. PACS 81. Materials science; 81.07.-b Nanoscale materials and structures: fabrication and characterization; 81.16.Hc Catalytic methods PMID:24624935

  20. Growth of 3-D flower/grass-like metal oxide nanoarchitectures based on catalyst-assisted oxidation method

    NASA Astrophysics Data System (ADS)

    Hu, Lijiao; Ju, Yang; Hosoi, Atsushi

    2014-03-01

    Cu2O grass-like and ZnO flower-like nanoarchitectures were fabricated directly on Cu powders and Zn powders using a novel thermal oxidation stress-induced (TOS) method based on catalyst assistance at a low temperature of 150°C under moderate humid atmosphere. The experiments of Al powder were also carried out based on TOS method. Overlapping migration (OLM) of Cu and Zn atoms and toothpaste squeezing migration (TSM) of Al atoms caused by different atom densities in metal oxide materials were studied.

  1. MOS and MOSFET with transition metal oxides

    SciTech Connect

    Fu, S.; Egami, T.

    1996-12-31

    MOS and MOSFET structures were constructed with a TiO{sub 2} single crystal as a substrate. It was demonstrated that the n-type carriers injected by the applied gate field have a much higher mobility than the chemically doped carriers, by nearly two orders of magnitude. This result suggests that the intrinsic carrier mobility in TiO{sub 2} may be substantially higher than usually assumed. Other MOSFET effects including the non-linear optical effects are discussed.

  2. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  3. Electronic structure and magnetism of transition metal doped Zn12O12 clusters: Role of defects

    NASA Astrophysics Data System (ADS)

    Ganguli, Nirmal; Dasgupta, Indra; Sanyal, Biplab

    2010-12-01

    We present a comprehensive study of the energetics and magnetic properties of ZnO clusters doped with 3d transition metals (TMs) using ab initio density functional calculations in the framework of generalized gradient approximation+Hubbard U (GGA+U) method. Our results within GGA+U for all 3d dopants except Ti indicate that antiferromagnetic interaction dominates in a neutral, defect-free cluster. Formation energies are calculated to identify the stable defects in the ZnO cluster. We have analyzed in details the role of these defects to stabilize ferromagnetism when the cluster is doped with Mn, Fe, and Co. Our calculations reveal that in the presence of charged defects the TM atoms residing at the surface of the cluster may have an unusual oxidation state, that plays an important role to render the cluster ferromagnetic. Defect induced magnetism in ZnO clusters without any TM dopants is also analyzed. These results on ZnO clusters may have significant contributions in the nanoengineering of defects to achieve desired ferromagnetic properties for spintronic applications.

  4. Transition metal catalysis in confined spaces.

    PubMed

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container. PMID:25340992

  5. Method of boronizing transition-metal surfaces

    SciTech Connect

    Koyama, K.; Shimotake, H.

    1981-08-28

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB/sub 2/, or CrB/sub 2/. A transition metal to be coated is immersed in the melt at a temperature of no more than 700/sup 0/C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  6. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  7. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  8. Density functional theory calculations for the oxygen dissociation on nitrogen and transition metal doped graphenes

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Xiao, Wei; Cho, Maenghyo; Cho, Kyeongjae

    2013-10-01

    Oxygen adsorption and dissociation on a pristine graphene, nitrogen doped graphene (N-graphene), and transition metal doped graphene (M-graphene) are studied with density functional theory calculations coupled with nudged elastic band (NEB) method. Four 3d transition metals (Fe, Co, Ni, and Cu) are selected as the doping atoms. The O binding energies on the Co-graphene and Ni-graphene have intermediate strength. The O2 dissociation barriers for these two types of doped graphenes are also lower than that on the pristine graphene and N-graphene. The Co and Ni doped graphenes are predicted to be promising ORR catalysts.

  9. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  10. Generic trend of work functions in transition-metal carbides and nitrides

    SciTech Connect

    Yoshitake, Michiko

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  11. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  12. Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment.

    PubMed

    Choi, Jungsu; Chan, Sophia; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zinc Oxide Nano Wires (ZNWs) has been considered as a promising material for purification and disinfection of water and remediation of hazardous waste owing to its high activity and lower cost. In this study, three-dimensional (3D) structured palladium (Pd)/ZNWs were synthesized on the fabricated electrospun nanofibers and explored for enhancement of organic matter (OM) removal efficiency in water by suppressing electron-hole recombination during photocatalytic activity and increased surface area. The densely populated ZNWs were fabricated on the electrospun nanofiber by electroless plating (EP) and hydrothermal synthesis. In order to improve photocatalytic efficiency, a thin layer of Pd was coated prior to ZNWs growth to induce suppression of electron hole recombination produced during catalyst activity. The creation of a highly porous network of nanofibers decorated with ZNWs resulted in an increase of specific removal rate (SRR) of OM from 0.0249 to 0.0377 mg CODCr removed/mg ZNWs-hr when ZNW were grown on a Pd layer. It is believed that the demonstration of OM removal in the water through Pd/ZNWs membrane and enhanced photocatalytic activity under UV irradiation from layered structure can broaden potential applicability of Pd/ZNWs membranes for various photo catalytic water treatment. PMID:27286471

  13. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  14. Protein-Transition Metal Ion Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten showed increases of 2-3 times in modulus with addition of divalent transition metal ions Cu2+ and Zn2+. Increasing concentrations of ions resulted in increased stiffnes...

  15. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  16. Transition-metal ion impurities in KTaO3

    NASA Astrophysics Data System (ADS)

    Leung, Kevin

    2002-01-01

    A systematic study of transition-metal impurity centers in pervoskites is undertaken by considering isolated Co2+, Fe3+, and Cu2+ point defects in KTaO3. Within the generalized gradient approximation (GGA), the defect center magnetic moments agree with experiments, except for A-site Fe3+ complexes which exhibit 3μB and 5μB structures competitive in energies. It is argued that the anomaly is an artifact of GGA, which underestimates Fe3+ 3d electron correlations. Large (~1 Å) off-center displacements of K-substituting impurities obtain due to metal-oxygen covalent bonding. These A-site dipoles exhibit relaxation dynamics barriers which agree well with experiments. The Fe3+-OI 2- complex is considered in some detail; it exhibits Fe-O bonds considerably shorter than shell-model predictions.

  17. Exchange coupling in transition metal monoxides: Electronic structure calculations

    SciTech Connect

    Fischer, Guntram; Daene, Markus W; Ernst, Arthur; Bruno, Patrick; Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter M; Wolfam, Hergert

    2009-01-01

    An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neel temperatures TN and spin-wave dispersions are calculated. The Neel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of TN is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data.

  18. Monolithic 3D CMOS Using Layered Semiconductors.

    PubMed

    Sachid, Angada B; Tosun, Mahmut; Desai, Sujay B; Hsu, Ching-Yi; Lien, Der-Hsien; Madhvapathy, Surabhi R; Chen, Yu-Ze; Hettick, Mark; Kang, Jeong Seuk; Zeng, Yuping; He, Jr-Hau; Chang, Edward Yi; Chueh, Yu-Lun; Javey, Ali; Hu, Chenming

    2016-04-01

    Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications. PMID:26833783

  19. A new 3-D open-framework cadmium borovanadate with plane-shaped channels and high catalytic activity for the oxidation of cyclohexanol.

    PubMed

    Feng, Yuquan; Qiu, Dongfang; Fan, Huitao; Li, Min; Huang, Qunzeng; Shi, Hengzhen

    2015-05-21

    A new 3-D open-framework cadmium borovanadate with 6-connected topology was hydrothermally obtained and structurally characterized. It not only features new cadmium(II) borovanadate which possesses an open-framework structure with unique plane-shaped channels, but also exhibits interesting absorption properties and high catalytic activities for the oxidation of cyclohexanol. PMID:25882921

  20. 13CH3D kinetic isotope effects for methane oxidation by OH - predicting the "clumped" isotopic signature of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Joelsson, L. M. T.; Wang, D. T.; Johnson, M. S.; Ono, S.

    2015-12-01

    Methane is a significant long-lived greenhouse gas, but the tropospheric methane budget is not entirely constrained. "Clumped" isotopologues of methane, including 13CH3D, can provide additional constraints on the atmospheric methane cycle. Interpretation of these novel isotope tracers requires an understanding of the "clumped" isotopic signature of various methane sources, as well as the kinetic isotope effects of the methane sink reactions. We performed a series of photochemical experiments to measure the isotopic fractionation during the CH4+OH reaction. Experiments were carried out in a 100 L quartz photochemical reactor. Photolysis of ozone (O3) in the presence of water (H2O) was used to produce OH radicals. Experiments were performed in a helium bath gas. Fourier transform infrared spectroscopy (FTIR) was used to monitor reaction progress. At various intervals during the reaction, methane was sampled from the cell and analyzed for isotope ratios by tunable infrared laser direct absorption spectroscopy (TILDAS). By simultaneously measuring four different isotopologues of methane (12CH4,12CH3D, 13CH4, 13CH3D), we were able to constrain the kinetic isotope effects for 12CH3D, 13CH4, and the doubly-substitued isotopologue 13CH3D. These results are combined with published clumped isotope data from different methane sources to model the Δ13CH3D (i.e. deviation from "stochastic" distribution of isotopes) of tropospheric methane and its sensitivity to different sources. The Δ13CH3D value of tropospheric methane does not strongly depend upon isotope fractionation during the OH sink reaction. Rather, the Δ13CH3D value of tropospheric methane reflects a mixing of different source signatures. Due to nonlinearity in mixing of Δ13CH3D, the Δ13CH3D value of tropospheric methane will be larger than the weighted average of the Δ13CH3D value of the sources. A first order interpretation of variations in the Δ13CH3D value of tropospheric methane is that it reflects changes

  1. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  2. Chemical vapour deposition: Transition metal carbides go 2D

    NASA Astrophysics Data System (ADS)

    Gogotsi, Yury

    2015-11-01

    The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.

  3. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  4. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    PubMed

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts. PMID:25406101

  5. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  6. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  7. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles.

    PubMed

    Chia, Sing Ling; Tay, Chor Yong; Setyawati, Magdiel I; Leong, David T

    2015-02-11

    Our current mechanistic understanding on the effects of engineered nanoparticles (NPs) on cellular physiology is derived mainly from 2D cell culture studies. However, conventional monolayer cell culture may not accurately model the mass transfer gradient that is expected in 3D tissue physiology and thus may lead to artifactual experimental conclusions. Herein, using a micropatterned agarose hydrogel platform, the effects of ZnO NPs (25 nm) on 3D colon cell spheroids of well-defined sizes are examined. The findings show that cell dimensionality plays a critical role in governing the spatiotemporal cellular outcomes like inflammatory response and cytotoxicity in response to ZnO NPs treatment. More importantly, ZnO NPs can induce different modes of cell death in 2D and 3D cell culture systems. Interestingly, the outer few layers of cells in 3D model could only protect the inner core of cells for a limited time and periodically slough off from the spheroids surface. These findings suggest that toxicological conclusions made from 2D cell models might overestimate the toxicity of ZnO NPs. This 3D cell spheroid model can serve as a reproducible platform to better reflect the actual cell response to NPs and to study a more realistic mechanism of nanoparticle-induced toxicity. PMID:25331163

  8. Roles of transition metals interchanging with lithium in electrode materials.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Tokuda, Kazuya; Sakaida, Masashi; Ichitsubo, Tetsu; Oishi, Masatsugu; Mizuki, Jun'ichiro; Matsubara, Eiichiro

    2015-06-01

    Roles of antisite transition metals interchanging with Li atoms in electrode materials of Li transition-metal complex oxides were clarified using a newly developed direct labeling method, termed powder diffraction anomalous fine structure (P-DAFS) near the Ni K-edge. We site-selectively investigated the valence states and local structures of Ni in Li0.89Ni1.11O2, where Ni atoms occupy mainly the NiO2 host-layer sites and partially the interlayer Li sites in-between the host layers, during electrochemical Li insertion/extraction in a lithium-ion battery (LIB). The site-selective X-ray near edge structure evaluated via the P-DAFS method revealed that the interlayer Ni atoms exhibited much lower electrochemical activity as compared to those at the host-layer site. Furthermore, the present analyses of site-selective extended X-ray absorption fine structure performed using the P-DAFS method indicates local structural changes around the residual Ni atoms at the interlayer space during the initial charge; it tends to gather to form rock-salt NiO-like domains around the interlayer Ni. The presence of the NiO-like domains in the interlayer space locally diminishes the interlayer distance and would yield strain energy because of the lattice mismatch, which retards the subsequent Li insertion both thermodynamically and kinetically. Such restrictions on the Li insertion inevitably make the NiO-like domains electrochemically inactive, resulting in an appreciable irreversible capacity after the initial charge but an achievement of robust linkage of neighboring NiO2 layers that tend to be dissociated without the Li occupation. The P-DAFS characterization of antisite transition metals interchanging with Li atoms complements the understanding of the detailed charge-compensation and degradation mechanisms in the electrode materials. PMID:25959625

  9. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    PubMed

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  10. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    PubMed Central

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Jung Shim, Hyun; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  11. Potential barrier effects in high-order harmonic generation by transition-metal ions

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2010-08-01

    The experimental finding of significant enhancement or suppression of particular harmonics generated by the ionic component of laser-produced plasmas of transition-metal atoms is explained theoretically in terms of the standard three-step scenario for strong-field harmonic generation, taking into account the potential barrier effects that lead to a strong 3p→3d electric dipole transition that dominates the photoionization cross sections of the outer subshells of those ions.

  12. Potential barrier effects in high-order harmonic generation by transition-metal ions

    SciTech Connect

    Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2010-08-15

    The experimental finding of significant enhancement or suppression of particular harmonics generated by the ionic component of laser-produced plasmas of transition-metal atoms is explained theoretically in terms of the standard three-step scenario for strong-field harmonic generation, taking into account the potential barrier effects that lead to a strong 3p{yields}3d electric dipole transition that dominates the photoionization cross sections of the outer subshells of those ions.

  13. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  14. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  15. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  16. Synthesis of 3D graphite oxide-exfoliated carbon nanotube carbon composite and its application as catalyst support for fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Hailin; Kakade, Bhalchandra A.; Tamaki, Takanori; Yamaguchi, Takeo

    2014-08-01

    The restacking of graphene or reduced graphite oxide (r-GO) is commonly regarded as a severe obstacle for potential applications. We propose the application of exfoliated carbon nanotube (e-CNT) as an effective carbon spacer for fabricating a sandwich-like three-dimensional (3D) carbon composite with GO. The 3D carbon combination of GO + e-CNT is successfully prepared via homogenously mixing of GO and e-CNT in an aqueous dispersion in which carbon spacers are homogenously intercalated with graphene layers. With the addition of a carbon spacer, the BET surface area of 3D carbon (51.6 m2 g-1) is enhanced by a factor of three compared with r-GO (17.2 m2 g-1) after thermal reduction. In addition, the 3D GO + e-CNT supported PtPd catalyst (PtPd-GO + e-CNT) shows homogenous distribution of PtPd nanoparticles of 3.9 ± 0.6 nm in size, with an enlarged electrochemical active surface area (ECSA) value of 164 m2 g-1 and a mass activity of 690 mA mg-1 toward the methanol oxidation reaction (MOR), which is the typical anode reaction for direct methanol fuel cells (DMFC).

  17. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-01

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(l-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system. PMID:26844684

  18. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. PMID:23708372

  19. Synthesis of crystalline and amorphous, particle-agglomerated 3-D nanostructures of Al and Si oxides by femtosecond laser and the prediction of these particle sizes

    PubMed Central

    2012-01-01

    We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103

  20. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents.

    PubMed

    Pan, Yuanhu; Li, Panpan; Xie, Shuyu; Tao, Yanfei; Chen, Dongmei; Dai, Menghong; Hao, Haihong; Huang, Lingli; Wang, Yulian; Wang, Liye; Liu, Zhenli; Yuan, Zonghui

    2016-08-15

    A series of quinoxaline 1,4-di-N-oxide derivatives variously substituted at C-2 position were synthesized and evaluated for in vitro antimycobacterial activity. Seventeen compounds exhibited potential activity (MIC ⩽6.25μg/mL) against Mycobacterium tuberculosis (H37Rv), in particular the compounds 3d and 3j having an MIC value of 0.39μg/mL. None of the compounds exhibited cytotoxicity when using an MTT assay in VERO cells. To further investigate the structure-activity relationship, CoMFA (q(2)=0.507, r(2)=0.923) and CoMSIA (q(2)=0.665, r(2)=0.977) models were performed on the basis of antimycobacterial activity data. The 3D-QSAR study of these compounds can provide useful information for further rational design of novel quinoxaline 1,4-di-N-oxides for treatment of tuberculosis. PMID:27426298