Science.gov

Sample records for 3d transition-metal oxides

  1. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    NASA Astrophysics Data System (ADS)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  2. Microscopic magnetic nature of K2NiF4-type 3d transition metal oxides

    NASA Astrophysics Data System (ADS)

    Sugiyama, J.; Nozaki, H.; Umegaki, I.; Higemoto, W.; Ansaldo, E. J.; Brewer, J. H.; Sakurai, H.; Kao, T.-H.; Yang, H.-D.; Månsson, M.

    2014-12-01

    In order to elucidate the magnetic nature of K2NiF4-type 3d transition metal oxides, we have measured μ+SR spectra for Sr2VO4, LaSrVO4, and Sr2CrO4 using powder samples. ZF- and wTF-μ+SR measurements propose that Sr2VO4 enters into the static antiferromagnetic (AF) order phase below 8 K. In addition, TF-μ+SR measurements evidence that the transition at 105 K is not magnetic but structural and/or electronic in origin. For LaSrVO4, static long-range order has not been observed down to 20 K, while, as T decreases from 145 K, wTF asymmetry starts to decrease below 60 K, suggesting the appearance and evolution of localized magnetic moments below 60 K. For Sr2CrO4, by contrast, both ZF- and wTF-μ+SR have confirmed the presence of antiferromagnetic order below 117 K, as predicted in the χ(T) curve.

  3. First-principles study of nitric oxide oxidation on Pt(111) versus Pt overlayer on 3d transition metals

    SciTech Connect

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Kasai, Hideaki

    2015-03-15

    Catalytic oxidation of NO to NO{sub 2} is a significant research interest for improving the quality of air through exhaust gas purification systems. In this paper, the authors studied this reaction on pure Pt and Pt overlayer on 3d transition metals using kinetic Monte Carlo simulations coupled with density functional theory based first principles calculations. The authors found that on the Pt(111) surface, NO oxidation proceeds via the Eley–Rideal mechanism, with O{sub 2} dissociative adsorption as the rate-determining step. The oxidation path via the Langmuir–Hinshelwood mechanism is very slow and does not significantly contribute to the overall reaction. However, in the Pt overlayer systems, the oxidation of NO on the surface is more thermodynamically and kinetically favorable compared to pure Pt. These findings are attributed to the weaker binding of O and NO on the Pt overlayer systems and the binding configuration of NO{sub 2} that promotes easier N-O bond formation. These results present insights for designing affordable and efficient catalysts for NO oxidation.

  4. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

    PubMed

    Bhattacharya, Jishnu; Wolverton, C

    2013-05-07

    Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.

  5. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method.

    PubMed

    Xu, Zhongnan; Joshi, Yogesh V; Raman, Sumathy; Kitchin, John R

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  6. Accurate electronic and chemical properties of 3d transition metal oxides using a calculated linear response U and a DFT + U(V) method

    SciTech Connect

    Xu, Zhongnan; Kitchin, John R.; Joshi, Yogesh V.; Raman, Sumathy

    2015-04-14

    We validate the usage of the calculated, linear response Hubbard U for evaluating accurate electronic and chemical properties of bulk 3d transition metal oxides. We find calculated values of U lead to improved band gaps. For the evaluation of accurate reaction energies, we first identify and eliminate contributions to the reaction energies of bulk systems due only to changes in U and construct a thermodynamic cycle that references the total energies of unique U systems to a common point using a DFT + U(V ) method, which we recast from a recently introduced DFT + U(R) method for molecular systems. We then introduce a semi-empirical method based on weighted DFT/DFT + U cohesive energies to calculate bulk oxidation energies of transition metal oxides using density functional theory and linear response calculated U values. We validate this method by calculating 14 reactions energies involving V, Cr, Mn, Fe, and Co oxides. We find up to an 85% reduction of the mean average error (MAE) compared to energies calculated with the Perdew-Burke-Ernzerhof functional. When our method is compared with DFT + U with empirically derived U values and the HSE06 hybrid functional, we find up to 65% and 39% reductions in the MAE, respectively.

  7. Magnetism In 3d Transition Metals at High Pressures

    SciTech Connect

    Iota, V

    2006-02-09

    This research project examined the changes in electronic and magnetic properties of transition metals and oxides under applied pressures, focusing on complex relationship between magnetism and phase stability in these correlated electron systems. As part of this LDRD project, we developed new measurement techniques and adapted synchrotron-based electronic and magnetic measurements for use in the diamond anvil cell. We have performed state-of-the-art X-ray spectroscopy experiments at the dedicated high-pressure beamline HP-CAT (Sector 16 Advanced Photon Source, Argonne National Laboratory), maintained in collaboration with of University of Nevada, Las Vegas and Geophysical Laboratory of The Carnegie Institution of Washington. Using these advanced measurements, we determined the evolution of the magnetic order in the ferromagnetic 3d transition metals (Fe, Co and Ni) under pressure, and found that at high densities, 3d band broadening results in diminished long range magnetic coupling. Our experiments have allowed us to paint a unified picture of the effects of pressure on the evolution of magnetic spin in 3d electron systems. The technical and scientific advances made during this LDRD project have been reported at a number of scientific meetings and conferences, and have been submitted for publication in technical journals. Both the technical advances and the physical understanding of correlated systems derived from this LDRD are being applied to research on the 4f and 5f electron systems under pressure.

  8. Metal-insulator transition in 3d transition-metal oxides with ABO 3 and A 2BO 4 type structures

    NASA Astrophysics Data System (ADS)

    Eisaki, H.; Ido, T.; Magoshi, K.; Mochizuki, M.; Yamatsu, H.; Ito, T.; Uchida, S.

    1991-12-01

    3d transition-metal oxides with perovskite and K 2NiF 4 crystal structures, (La,Sr)VO 3, (La,Sr)FeO 3, (La,Sr)CoO 3, LaNiO 3 and (La,Sr) 2NiO 4 systems are investigated focusing on the effect of carrier doping performed by the A-site ion substitution. Both (La,Sr)VO 3 and (La,Sr)CoO 3 systems show an insulator to metal transition by Sr substitution, however, the magnetic behavior differs drastically. The mid-infrared structure induced by Sr substitution is observed in the optical spectra of (La,Sr) 2NiO 4 system. Relation between the behavior of metal-insulator transition and the variation of the electronic and/or spin structure in these systems is discussed in comparison with the high-T c copper oxides.

  9. Synthesis, structure and magnetic properties of low dimensional spin systems in the 3d transition metal oxides and superconductivity in magnesium borate

    NASA Astrophysics Data System (ADS)

    Rogado, Nyrissa S.

    The major part of this thesis deals with the synthesis and magnetic characterization of low dimensional spin systems in the 3d transition metal oxides. Such systems are of interest due to the simplicity of their structures, allowing theoretical modeling of their electronic and magnetic behavior. Exotic properties are also often encountered. Studies involving layered magnetic materials based on triangle lattices, in particular, have resulted in many observations of unusual low temperature spin dynamics, and have presented new challenges for the theoretical understanding of magnetic systems. The magnetic properties of some compounds exhibiting these triangle-based lattices are described here in detail. BaNi2V2O8 is a spin-1 antiferromagnet on a honeycomb net. Susceptibility chi(T), specific heat C(T), and neutron diffraction measurements on this compound reveal the onset of antiferromagnetic (AFM) long-range ordering (LRO) close to 50 K. Diffuse diffraction peaks that are characteristic of two-dimensional (2D) short-range order are also observed up to 100 K. chi(T) of Ba(Ni1-xMgx)2V 2O8 shows the gradual disappearance of LRO with doping. Ni3V2O8, Co3V2O 8, and beta-Cu3V2O8 have spin-1, spin-3/2, and spin-1/2 magnetic lattices that are a new anisotropic variant of the Kagome net, wherein edge-sharing MO6 octahedra form the rises and rungs of a "Kagome staircase". The anisotropy largely relieves the geometric frustration, but results in rich magnetic behavior. Characterization of the magnetization of polycrystalline samples of Ni 3V2O8 and Co3V2O8 reveals that the compounds are ferrimagnetic in character. C(T) show four distinct magnetic phase transitions below 9 K for Ni3V2O 8 and two below 11 K for Co3V2O8. In the case of beta-Cu3V2O8, chi(T) and C(T) show the onset of short-range ordering at approximately 75 K, and a magnetic phase transition with the characteristics of antiferromagnetism at around 29 K. The second part of this thesis describes the bulk synthesis of

  10. Voltage controlled magnetism in 3d transitional metals

    NASA Astrophysics Data System (ADS)

    Wang, Weigang

    2015-03-01

    Despite having attracted much attention in multiferroic materials and diluted magnetic semiconductors, the impact of an electric field on the magnetic properties remains largely unknown in 3d transitional ferromagnets (FMs) until recent years. A great deal of effort has been focused on the voltage-controlled magnetic anisotropy (VCMA) effect where the modulation of anisotropy field is understood by the change of electron density among different d orbitals of FMs in the presence of an electric field. Here we demonstrate another approach to alter the magnetism by electrically controlling the oxidation state of the 3d FM at the FM/oxide interface. The thin FM film sandwiched between a heavy metal layer and a gate oxide can be reversibly changed from an optimally-oxidized state with a strong perpendicular magnetic anisotropy to a metallic state with an in-plane magnetic anisotropy, or to a fully-oxidized state with nearly zero magnetization, depending on the polarity and time duration of the applied electric fields. This is a voltage controlled magnetism (VCM) effect, where both the saturation magnetization and anisotropy field of the 3d FM layer can be simultaneously controlled by voltage in a non-volatile fashion. We will also discuss the impact of this VCM effect on magnetic tunnel junctions and spin Hall switching experiments. This work, in collaboration with C. Bi, Y.H. Liu, T. Newhouse-Illige, M. Xu, M. Rosales, J.W. Freeland, O. Mryasov, S. Zhang, and S.G.E. te Velthuis, was supported in part by NSF (ECCS-1310338) and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  11. Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems.

    PubMed

    Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo

    2007-01-28

    Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.

  12. Mesoporous Transition Metal Oxides for Supercapacitors

    PubMed Central

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  13. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  14. Prediction of spin-dependent electronic structure in 3d-transition-metal doped antimonene

    NASA Astrophysics Data System (ADS)

    Yang, L. F.; Song, Y.; Mi, W. B.; Wang, X. C.

    2016-07-01

    We investigate the geometric structure and electronic and magnetic properties of 3d-transition-metal atom doped antimonene using spin-polarized first-principles calculations. Strong orbital hybridization exhibits between 3d-transition-metal and Sb atoms, where covalent bonds form in antimonene. A spin-polarized semiconducting state appears in Cr-doped antimonene, while half-metallic states appear by doping Ti, V, and Mn. These findings indicate that once combined with doping states, the bands of antimonene systems offer a variety of features. Specific dopants lead to half-metallic characters with high spin polarization that has potential application in spintronics.

  15. Orbital physics in transition-metal oxides

    PubMed

    Tokura; Nagaosa

    2000-04-21

    An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.

  16. Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene.

    PubMed

    Zhang, Xiao-Long; Liu, Lan-Feng; Liu, Wu-Ming

    2013-10-09

    Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles Wannier interpolation. We also predict the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition metal doped silicene where the energy band inversion occurs. Our findings provide new scheme for the realization of quantum anomalous Hall effect and platform for electrically controllable topological states which are highly desirable for future nanoelectronics and spintronics application.

  17. The Intriguing Properties of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Hoch, Michael J. R.

    2007-05-01

    Since the discovery of high-temperature superconductivity in the cuprates twenty years ago, there has been a resurgence of interest in the transition metal oxides. Work on these systems has been driven both by the fascinating properties that these materials exhibit and by potential applications in technology. A brief general review of the perovskites and their electronic structures is given. This is followed by a discussion of the properties of magnetic oxide systems ABO3 (A=La; B=Mn or Co), specifically focusing on the doped manganites (e.g. La1-x SrxMnO3) and cobaltites (e.g. La1-xSrxCoO3), in which mixed valence states and double exchange are important. Competing electron localizing and delocalizing effects result in rich phase diagrams and interesting transport properties with large magnetoresistance effects. Nanoscale phase separation has been found for a range of x values using a variety of techniques, such as nuclear magnetic resonance and neutron scattering. These discoveries have provided an increased understanding of the role of the interacting magnetic, electronic and lattice structures in these systems.

  18. Tuning the electronic and magnetic properties of borophene by 3d transition-metal atom adsorption

    NASA Astrophysics Data System (ADS)

    Li, J. Y.; Lv, H. Y.; Lu, W. J.; Shao, D. F.; Xiao, R. C.; Sun, Y. P.

    2016-12-01

    The electronic and magnetic properties of borophene functionalized by 3d transition metal (TM) atom adsorption are investigated by using first-principles calculations. The results show that the 3d TM atoms can be adsorbed on borophene with high binding energies ranging between 5.9 and 8.3 eV. Interestingly, the originally nonmagnetic borophene tends to be ferromagnetic when Ti, V, Cr, Mn, and Fe atoms are adsorbed, and the magnetic moments are dominated by the TM atoms. The origin of the ferromagnetism is discussed based on the Stoner criterion. Our results indicate that the magnetic properties of borophene can be effectively tuned through the adsorption of 3d TM atoms, which could have promising applications in spintronics and nanoelectronics.

  19. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  20. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Perdew, John P.

    2006-01-01

    We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground

  1. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    NASA Astrophysics Data System (ADS)

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-07-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness.

  2. Recipe for High Moment Materials with Rare-earth and 3d Transition Metal Composites

    PubMed Central

    Autieri, Carmine; Kumar, P. Anil; Walecki, Dirk; Webers, Samira; Gubbins, Mark A.; Wende, Heiko; Sanyal, Biplab

    2016-01-01

    Materials with high volume magnetization are perpetually needed for the generation of sufficiently large magnetic fields by writer pole of magnetic hard disks, especially for achieving increased areal density in storage media. In search of suitable materials combinations for this purpose, we have employed density functional theory to predict the magnetic coupling between iron and gadolinium layers separated by one to several monolayers of 3d transition metals (Sc-Zn). We demonstrate that it is possible to find ferromagnetic coupling for many of them and in particular for the early transition metals giving rise to high moment. Cr and Mn are the only elements able to produce a significant ferromagnetic coupling for thicker spacer layers. We also present experimental results on two trilayer systems Fe/Sc/Gd and Fe/Mn/Gd. From the experiments, we confirm a ferromagnetic coupling between Fe and Gd across a 3 monolayers Sc spacer or a Mn spacer thicker than 1 monolayer. In addition, we observe a peculiar dependence of Fe/Gd magnetic coupling on the Mn spacer thickness. PMID:27381456

  3. Tunable electronic behavior in 3d transition metal doped 2H-WSe2

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Songlei; Li, Hongping; Zhang, Quan; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Tian, Yi

    2017-03-01

    Structural and electronic properties of 3d transition metal Sc, Ti, Cr and Mn incorporated 2H-WSe2 have been systematically investigated by first-principles calculations based on density functional theory. The calculated formation energies reveal that all the doped systems are thermodynamically more favorable under Se-rich condition than W-rich condition. The geometry structures almost hold that of the pristine 2H-WSe2 albeit with slight lattice distortion. More importantly, the electronic properties have been significantly tuned by the dopants, i.e., metal and semimetal behavior has been found in Sc, Ti and Mn-doped 2H-WSe2, respectively, semiconducting nature with narrowed band gap is expected in Cr-doped case, just as that of the pristine 2H-WSe2. In particular, magnetic character is realized by incorporation of Mn impurity with a total magnetic moment of 0.96 μB. Our results suggest chemical doping is an effective way to precisely tailor the electronic structure of layered transition metal dichalcogenide 2H-WSe2 for target technological applications.

  4. Magnetic engineering in 3d transition metals on phosphorene by strain

    NASA Astrophysics Data System (ADS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-04-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields.

  5. Multiple-scattering approach to the x-ray-absorption spectra of 3d transition metals

    NASA Astrophysics Data System (ADS)

    Kitamura, Michihide; Muramatsu, Shinji; Sugiura, Chikara

    1986-04-01

    The x-ray-absorption near-edge structure (XANES) has been calculated for the 3d transition metals Cr, Fe, Ni, and Cu from a multiple-scattering approach within the muffin-tin-potential approximation, as a first step to studying the XANES for complicated materials. The muffin-tin potential is constructed via the Mattheiss prescription using the atomic data of Herman and Skillman. It is found that the XANES is sensitive to the potential used and that the calculated XANES spectra reproduce the number of peaks and their separations observed experimentally. The final spectra, including the lifetime-broadening effect, show the general features of each material. We emphasize that the multiple-scattering theory which can be applied to the disordered systems as well as the ordered ones may be promising as a tool to analyze the XANES of complicated materials.

  6. Electronic Properties of COPPER-3d Transition-Metal Pairs in Silicon

    NASA Astrophysics Data System (ADS)

    Justo, João F.; Assali, Lucy V. C.

    We report a theoretical investigation of the chemical trends in the electronic properties of the substitutional Cu-interstitial 3d-transition-metal (Cr, Mn, Fe) trigonal pairs in silicon. The calculations were carried out in the framework of the multiple-scattering Xα molecular cluster model. The electronic structures show that the stability of these pairs is mostly the result of a covalent interaction between the molecular orbitals coming not only from the Cu and TM atoms but also from the neighboring Si atoms. These results are in contrast to an ionic model which has been generally invoked to explain the stability of those pairs, but in agreement with some recent experimental findings. The Fermi contact terms for all the stable pairs in different charge states were computed and compared to available experimental data. We speculate on the existence of a different microscopic structure to explain these Cu-related complex pairs.

  7. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    SciTech Connect

    Lu, Yuan; Zuo, Xu; Feng, Min; Shao, Bin

    2014-05-07

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  8. Dirac cones in artificial structures of 3d transitional-metals doped Mg-Al spinels

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Min; Shao, Bin; Zuo, Xu

    2014-05-01

    Motivated by recent theoretical predications for Dirac cone in two-dimensional (2D) triangular lattice [H. Ishizuka, Phys. Rev. Lett. 109, 237207 (2012)], first-principles studies are performed to predict Dirac cones in artificial structures of 3d transitional-metals (TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) doped Mg-Al spinels. In investigated artificial structures, TM dopants substitute specific positions of the B sub-lattice in Mg-Al spinel, and form a quasi-2D triangular lattice in the a-b plane. Calculated results illustrate the existence of the spin-polarized Dirac cones formed in d-wave bands at (around) the K-point in the momentum space. The study provides a promising route for engineering Dirac physics in condensed matters.

  9. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    PubMed Central

    Zhou, P.; Sun, L. Z.

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  10. Electronic, magnetic and topological properties of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi

    Transition metal oxides have been the ideal platform for designing materials with exotic properties due to the complex interplay between spin, charge, and orbital degrees of freedom which can be fine-tuned by varying pressure, temperature, and external magnetic field to give rise to novel phases. Transition metal oxides are also a challenge from the theoretical point of view. The (semi)local density approximation for the exchange correlation functional that is often used in density functional calculations fails to adequately describe the many-body effects of 3d and 4f electrons thereby leading to underestimated band gaps. Several techniques, such as hybrid functionals, dynamical mean field theory, and DFT+U, have been developed over the past few decades to account for the many-body effects of 3d and 4f electrons. The DFT+U method, which will be used extensively throughout this thesis, has proved to be very successful in modeling gap opening, structure optimization and predicting transport properties. Rare earth nickelates have attracted a lot of attention in recent years due to their complex phase diagram that arises from the competition between spin, charge, and orbital degrees of freedom. Of particular interest is the metal-insulator transition that occurs upon cooling for RNiO3 (R=rare earth, except for La) which was found to be accompanied by symmetry lowering, later theorized as the evidence for charge ordering. By using first principles calculations, we found that the charge difference between Ni ions in the "charge-ordered" phase is negligibly small, while various aspects such as core energy levels, spectral weight immediately above and below the Fermi level, and magnetic moments do differ. Using Wannier function analysis, the charge states of Ni ions in the lower symmetry structure are systematically studied and found to correlated to the number of Wannier charge centers at the Ni site. The same approach was applied to study the charge states of Ag I and Ag

  11. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  12. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  13. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.

    PubMed

    Goel, Satyender; Masunov, Artëm E

    2008-12-07

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  14. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    SciTech Connect

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  15. Synthesis of Oxides Containing Transition Metals

    DTIC Science & Technology

    1990-07-09

    prepare a number of vanadium spinels by electrolyzing melts of | ) sodium tetraborate and sodium fluoride in which were dissolved the appropriate... sodium hydroxide melts contained in alumina crucibles. Electrodes of iron, cobalt or nickel were used, depending on the desired composition of the final...product. Crystals of tungsten and molybdenum oxide "bronzes" have been grown by electrolytic reduction of tungstate or molybdate melts. Extensive

  16. Simple transition metal oxides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schuller, Ivan K.; Basaran, Ali C.; de la Venta, Jose; Ramirez, Juan Gabriel; Saerbeck, Thomas; Valmianski, Ilya; Wang, Siming

    2016-10-01

    Hybrid materials allow the engineering of new material properties by creative uses of proximity effects. When two dissimilar materials are in close physical proximity the properties of each one may be radically modified or occasionally a completely new material emerges. In the area of magnetism, controlling the magnetic properties of ferromagnetic thin films without magnetic fields is an on- going challenge with multiple technological implications for low- energy consumption memory and logic devices. Interesting possibilities include ferromagnets in proximity to dissimilar materials such as antiferromagnets or oxides that undergo metal-insulator transitions. The proximity of ferromagnets to antiferromagnets has given rise to the extensively studied Exchange Bias[1]. Our recent investigations in this field have addressed crucial issues regarding the importance of the antiferromagnetic [2-3] and ferromagnetic [4] bulk for the Exchange Bias and the unusual short time dynamics [5]. In a series of recent studies, we have investigated the magnetic properties of different hybrids of ferromagnets (Ni, Co and Fe) and oxides, which undergo metal-insulator and structural phase transitions. Both the static as well as dynamical properties of the ferromagnets are drastically affected. Static properties such as the coercivity, anisotropy and magnetization [6-8] and dynamical properties such as the microwave response are clearly modified by the proximity effect and give raise to interesting perhaps useful properties. Work supported by US-AFOSR and US-DOE

  17. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  18. Atomic-layer alignment tuning for giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films.

    PubMed

    Hotta, K; Nakamura, K; Akiyama, T; Ito, T; Oguchi, T; Freeman, A J

    2013-06-28

    The magnetocrystalline anisotropy (MA) of Fe-based transition-metal thin films, consisting of only magnetic 3d elements, was systematically investigated from full-potential linearized augmented plane-wave calculations. The results predict that giant MA with a perpendicular magnetic easy axis (PMA) can be achieved by tuning the atomic-layer alignments in an Fe-Ni thin film. This giant PMA arises from the spin-orbit coupling interaction between occupied and unoccupied Ni dx2-y2,xy bands crossing the Fermi level. A promising 3d transition-metal thin film for the MgO-based magnetic tunnel junctions with the giant PMA was, thus, demonstrated.

  19. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  20. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  1. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  2. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    SciTech Connect

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentials to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.

  3. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  4. First-principles exploration of ferromagnetic and ferroelectric double-perovskite transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Uratani, Y.; Shishidou, T.; Ishii, F.; Oguchi, T.

    2006-08-01

    Possible ferromagnetic and ferroelectric phases are explored for bismuth transition-metal oxides with double-perovskite structure A2BB‧O6 on the basis of first-principles calculations within the local spin-density approximation (LSDA) and generalized gradient approximation (GGA). It is found that a lattice instability of the cubic to a non-centrosymmetric phase always happens in the all cases of lead and bismuth perovskite oxides with the 3d transition-metal ions at the B site. Placing bismuth ion at the A site in the double-perovskite structure, several sets of the 3d transition-metal ions are selected according to their total valence sum and the Goodenough-Kanamori rule for the superexchange coupling. Ferromagnetic solutions are actually obtained both within LSDA and GGA for Bi2CrFeO6, Bi2MnNiO6 and Bi2CrCuO6. For non-centrosymmetric monoclinic Bi2MnNiO6, the ferromagnetic and ferroelectric phase has the spin magnetic moment of 5μB and the electric polarization of 28 μC/cm2.

  5. Defects and ferromagnetism in transition metal doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Thapa, Sunil

    Transition metal doped zinc oxide has been studied recently due to its potential application in spintronic devices. The magnetic semiconductor, often called Diluted Magnetic Semiconductors (DMS), has the ability to incorporate both charge and spin into a single formalism. Despite a large number of studies on ferromagnetism in ZnO based DMS and the realization of its room temperature ferromagnetism, there is still a debate about the origin of the ferromagnetism. In this work, the synthesis and characterization of transition metal doped zinc oxide have been carried out. The sol-gel method was used to synthesize thin films, and they were subsequently annealed in air. Characterization of doped zinc oxide films was carried out using the UV-visible range spectrometer, scanning electron microscopy, superconducting quantum interference device (SQUID), x-ray diffraction(XRD) and positron annihilation spectroscopy. Hysteresis loops were obtained for copper and manganese doped zinc oxide, but a reversed hysteresis loop was observed for 2% Al 3% Co doped zinc oxide. The reversed hysteresis loop has been explained using a two-layer model.

  6. Low temperature synthesis of transition metal oxides containing surfactant ions

    NASA Astrophysics Data System (ADS)

    Janauer, Gerald Gilbert

    1998-11-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium transition metallates with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTAsb4\\ Hsb2Vsb{10}Osb{28}. 8Hsb2O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P1-, cell parameters a=9.8945(3)A, b=11.5962(1)A, c=21.9238(2)A, alpha=95.153(2)sp°,\\ beta=93.778(1)sp°, and gamma=101.360(1)sp°. Additionally, a novel tungsten, a molybdenum and a dichromate phase will be discussed. Both the tungsten and the dichromate materials were indexed from their powder diffraction patterns yielding monoclinic unit cells. The tungsten material was found to have a=50.56(4)A, b=54.41(4)A, c=13.12(1)A, and beta=99.21sp°. The dichromate compound was determined to have a=26.757(5)A, b=10.458(2)A, c=14.829(3)A and beta=98.01(1)sp°. Interlayer spacings for the lamellar dichromate and molybdenum phases were d001 = 28.7 A, and d001 = 22.9 A. The synthesis, characterization, composition, and structure of these transition metal oxide-surfactant materials will be discussed.

  7. Flexible Transition Metal Oxide Electronics and Imprint Lithography

    NASA Astrophysics Data System (ADS)

    Jackson, Warren B.

    The previous chapters have discussed inorganic low-deposition temperature materials suitable for flexible applications, such as amorphous and nano-crystalline-silicon (Si) and organic conductors. This chapter presents the results of a recently developed inorganic low-temperature materials system, transition metal oxides (TMOs), that appears to be a very promising, new high-performance flexible electronic materials system. An equally, if not more, important part of this chapter, is the presentation of self-aligned imprint lithography (SAIL) a new fabrication method for flexible substrates that solves the layer-to-layer alignment problem.

  8. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  9. Nanostructured transition metal oxides for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    Lithium-ion batteries, supercapacitors and photovoltaic devices have been widely considered as the three major promising alternatives of fossil fuels facing upcoming depletion to power the 21th century. The conventional film configuration of electrochemical electrodes hardly fulfills the high energy and efficiency requirements because heavy electroactive material deposition restricts ion diffusion path, and lowers power density and fault tolerance. In this thesis, I demonstrate that novel nanoarchitectured transition metal oxides (TMOs), e.g. MnO2, V2O 5, and ZnO, and their relevant nanocomposites were designed, fabricated and assembled into devices to deliver superior electrochemical performances such as high energy and power densities, and rate capacity. These improvements could be attributed to the significant enhancement of surface area, shortened ion diffusion distances and facile penetration of electrolyte solution into open structures of networks as well as to the pseudocapacitance domination. The utilization of ForcespinningRTM, a newly developed nanofiber processing technology, for large-scale energy storage and conversion applications is emphasized. This process simplifies the tedious multi-step hybridization synthesis and facilitates the contradiction between the micro-batch production and the ease of large-scale manufacturing. Key Words: Transition metal oxides, energy storage and conversion, ForcespinningRTM, pseudocapacitance domination, high rate capacity

  10. Quantum Monte Carlo Calculations of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    2006-03-01

    Quantum Monte Carlo is a powerful computational tool to study correlated systems, allowing us to explicitly treat many-body interactions with favorable scaling in the number of particles. It has been regarded as a benchmark tool for first and second row condensed matter systems, although its accuracy has not been thoroughly investigated in strongly correlated transition metal oxides. QMC has also historically suffered from the mixed estimator error in operators that do not commute with the Hamiltonian and from stochastic uncertainty, which make small energy differences unattainable. Using the Reptation Monte Carlo algorithm of Moroni and Baroni(along with contributions from others), we have developed a QMC framework that makes these previously unavailable quantities computationally feasible for systems of hundreds of electrons in a controlled and consistent way, and apply this framework to transition metal oxides. We compare these results with traditional mean-field results like the LDA and with experiment where available, focusing in particular on the polarization and lattice constants in a few interesting ferroelectric materials. This work was performed in collaboration with Lubos Mitas and Jeffrey Grossman.

  11. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    PubMed

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of <5 kcal/mol, with ωB97X-D topping the list. For local density functionals, which are more practical for extended systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d

  12. Giant perpendicular magnetocrystalline anisotropy of 3d transition-metal thin films on MgO

    SciTech Connect

    Nakamura, Kohji Ikeura, Yushi; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Magnetocrystalline anisotropy (MCA) of the Fe-based transition-metal thin films was investigated by means of first principles full-potential linearized augmented plane wave method. A giant perpendicular MCA (PMCA), up to 3 meV, was confirmed in a 7-layer Fe-Ni film/MgO(001), where an Fe{sub 2}/Ni/Fe/Ni/Fe{sub 2} atomic-layer alignment with a bcc-like-layer stacking and the Fe/MgO interfaces play key roles for leading to the large PMCA. Importantly, we find that the PMCA overcomes enough over the magnetic dipole-dipole anisotropy that favors the in-plane magnetization even when the film thickness increases.

  13. Synthesis, characterization and antifungal activities of 3d-transition metal complexes of 1-acetylpiperazinyldithioc arbamate, M(acpdtc) 2

    NASA Astrophysics Data System (ADS)

    Mohammad, Ali; Varshney, Charu; Nami, Shahab A. A.

    2009-07-01

    A series of mononuclear 3d-transition metal complexes of the type M(acpdtc) 2 have been synthesized (where acpdtc = 1-acetylpiperazinyldithiocarbamate, M = Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)). The ligand and its complexes have been characterized by micro analysis (CHNS), TG/DSC, FT-IR, UV-vis, 1H NMR, magnetic susceptibility and conductance measurements. On the basis IR spectroscopy a symmetrical bidentate coordination has been observed for the 1-acetylpiperazinyldithiocarbamate moiety in all the complexes. On the basis of UV-vis spectra and magnetic susceptibility measurement a square-planar geometry has been proposed for the Ni(II) and Cu(II) complexes while the other complexes have been found to acquire a distorted-tetrahedral structure. The thermogravimetric and differential scanning calorimetric profile of the ligand indicates a two-step decomposition pattern while the complexes exhibit a three-stage thermogram forming metal sulfide as the eventual end product. The molar conductivity data of 1 mM solution in DMSO of the complexes is in close accord to their non-electrolytic behaviour. The ligand and its 3d-transition metal complexes have also been tested for their antifungicidal activity by agar well diffusion method using Fusarium sp. and Sclerotina sp. The maximum activity has been observed in case of Mn(II) and Fe(II) complexes.

  14. Sonochemical synthesis of mesoporous transition metal and rare earth oxides.

    PubMed

    Wang, Yanqin; Yin, Lunxiang; Gedanken, Arahon

    2002-11-01

    Straight-extended layered mesostructures based on transItion metal (Fe, Cr) and rare earth (Y, Ce, La, Sm, Er) oxides are synthesized by sonication for 3 h. After a longer period of sonication (6 h), hexagonal mesostructures based on Y- and Er-oxides are obtained. The surface areas of the Y-based hexagonal mesophases before and after extraction are 46.5, 256 m2/g, respectively. For Er-based hexagonal mesophases, the surface areas before and after extraction are 157 and 225 m2/g. The pore sizes after extraction are 5.0 and 2.2 nm for Y- and Er-based mesophases, respectively. Hexagonal mesostructures are also obtained for Zr-based material after sonication for 3 h and the hexagonal structure is still maintained after calcinations at 400 degrees C for 4 h, although the surface area is only 35 m2/g.

  15. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics

    DTIC Science & Technology

    2008-10-01

    Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics by Virginia Lea Miller and Steven C. Tidrow...Adelphi, MD 20783-1197 ARL-TR-4621 October 2008 Investigation of Transition Metal Oxides with the Perovskite Structure as Potential...5b. GRANT NUMBER 4. TITLE AND SUBTITLE Investigation of Transition Metal Oxides with the Perovskite Structure as Potential Multiferroics 5c

  16. Tunable electronic and magnetic properties in stanene by 3d transition metal atoms absorption

    NASA Astrophysics Data System (ADS)

    Xing, Dan-Xu; Ren, Ceng-Ceng; Zhang, Shu-Feng; Feng, Yong; Chen, Xin-Lian; Zhang, Chang-Wen; Wang, Pei-Ji

    2017-03-01

    The electronic and magnetic properties of transition metal (TM) atoms (V, Cr, Mn, Fe, Co, Ni) adsorption on stanene are investigated by first-principles calculations. The results indicate that the TM atoms prefer to be relaxed on a H site on stanene except V atom which lies on the valley site. Fe-absorbed stanene is a spin gapless semiconductor with up-spin electron and down-spin hole carriers allowing the coexistence of charge current and the pure spin current. Co-absorbed stanene lies in the half metal phase. The V-, Cr-, Mn-, and Cu-absorbed stanene turn the stanene into metal, while Ni- and Zn-absorbed stanene open a narrow band gap. For V-, Cr-, Mn-, Fe-, and Co-absorbed stanene, the magnetic moment of the TM will survive while the Ni-, Cu-, and Zn-absorbed stanene will be non-magnetic material. These findings may have great potential in the design of new electrically controllable spintronic devices.

  17. Resonant Ultrasound Studies of Complex Transition Metal Oxides

    SciTech Connect

    Dr. Henry Bass; Dr. J. R. Gladden

    2008-08-18

    Department of Energy EPSCoR The University of Mississippi Award: DE-FG02-04ER46121 Resonant Ultrasound Spectroscopy Studies of Complex Transition Metal Oxides The central thrust of this DOE funded research program has been to apply resonant ultrasound spectroscopy (RUS), an elegant and efficient method for determining the elastic stiffness constants of a crystal, to the complex and poorly understood class of materials known as transition metal oxides (TMOs). Perhaps the most interesting and challenging feature of TMOs is their strongly correlated behavior in which spin, lattice, and charge degrees of freedom are strongly coupled. Elastic constants are a measure of the interatomic potentials in a crystal and are thus sensitive probes into the atomic environment. This sensitivity makes RUS an ideal tool to study the coupling of phase transition order parameters to lattice strains. The most significant result of the project has been the construction of a high temperature RUS apparatus capable of making elastic constant measurements at temperatures as high as 1000 degrees Celsius. We have designed and built novel acoustic transducers which can operate as high as 600 degrees Celsius based on lithium niobate piezoelectric elements. For measurement between 600 to 1000 C, a buffer rod system is used in which the samples under test and transducers are separated by a rod with low acoustic attenuation. The high temperature RUS system has been used to study the charge order (CO) transition in transition metal oxides for which we have discovered a new transition occurring about 35 C below the CO transition. While the CO transition exhibits a linear coupling between the strain and order parameter, this new precursor transition shows a different coupling indicating a fundamentally different mechanism. We have also begun a study, in collaboration with the Jet Propulsion Laboratory, to study novel thermoelectric materials at elevated temperatures. These materials include silicon

  18. Metal oxide chemistry in solution: the early transition metal polyoxoanions.

    PubMed

    Day, V W; Klemperer, W G

    1985-05-03

    Many of the early transition elements form large polynuclear metal-oxygen anions containing up to 200 atoms or more. Although these polyoxoanions have been investigated for more than a century, detailed studies of structure and reactivity were not possible until the development of modern x-ray crystallographic and nuclear magnetic resonance spectroscopic techniques. Systematic studies of small polyoxoanions in inert, aprotic solvents have clarified many of the principles governing their structure and reactivity, and also have made possible the preparation of entirely new types of covalent derivatives such as CH(2)Mo(4)O(15)H(3-), C(5)H(5)TiMo(5)O(18)(3-), and (OC)(3)Mn(Nb(2)W(4)O(19))(3-). Since most early transition metal polyoxoanions have structures based on close-packed oxygen arrays containing interstitial metal centers, their chemistry offers a rare opportunity to study chemical transformations in detail on well-defined metal oxide surfaces.

  19. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  20. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-06-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics.

  1. Effects of oxygen vacancy on 3d transition-metal doped anatase TiO2: First principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Yan, Li Jin; Gong, Yin Yan; Niu, Leng Yuan; Liu, Xin Juan

    2016-03-01

    In this work, systematic study of the formation energy, crystalline and electronic structures of 3d transition metal (Sc, V, Cr, Mn, Fe, Co and Ni) doped anatase TiO2 specimens with and without oxygen vacancy has been carried out by the first principles calculations. The impurity states located at the band gaps enhance the visible light absorption, and the oxygen vacancy result in the EF move into the CB for some doped systems, which induce the Ti3+ ions and promote the separation of photogenerated carriers. Doping and oxygen vacancy can change the hybrid strength and MP value of TMsbnd O bonding which has the approximately linearly with the band gap.

  2. Spin splitting and reemergence of charge compensation in monolayer WTe2 by 3d transition-metal adsorption.

    PubMed

    Song, Yan; Wang, Xiaocha; Mi, Wenbo

    2017-03-15

    The semimetallic WTe2 has sparked intense interest owing to the non-saturating magnetoresistance, pressure-driven superconductivity and possession of type-II Weyl fermions. The unexpected and fascinating quantum properties are thought to be closely related to its delicate Fermi surface and a special electron-hole-pocket structure. However, in the single-layer limit, the electron-hole-pocket structure is missing owing to the lack of interlayer interaction. Herewith, we demonstrate that 3d transition-metal adsorption is an effective method to modify the electronic properties of monolayer WTe2 by density functional theory. Spin-splitting and spin-degenerate bands are realized in Ti-, V-, Cr-, Mn-, Fe-, and Co- and Sc-, Ni-, Cu-, and Zn-adsorbed systems, respectively. Especially, the reemergence of the electron-hole pockets appears in the Ni-adsorbed system. The calculated results are robust against inclusion of spin-orbit coupling and Coulomb interaction.

  3. The K x-ray line structures of the 3d-transition metals in warm dense plasma

    NASA Astrophysics Data System (ADS)

    Szymańska, E.; Syrocki, Ł.; Słabkowska, K.; Polasik, M.; Rzadkiewicz, J.

    2016-09-01

    The shapes and positions of the Kα1 and Kα2 x-ray lines for 3d-transition metals can vary substantially as electrons are stripped from the outer-shells. This paper shows the detailed line shapes for nickel and zinc, obtained by calculations with a multiconfiguration Dirac-Fock method that includes Breit interaction and quantum electrodynamics corrections. The line shapes can be useful in interpreting hot, dense plasmas with energetic electrons for which the K x-ray lines are optically thin, as may be produced by pulsed power machines such as the plasma-filled rod pinch diode or the plasma focus, or in short-pulsed high power laser plasmas.

  4. 3d-transition metal induced enhancement of molecular hydrogen adsorption on Mg(0001) surface: An Ab-initio study

    NASA Astrophysics Data System (ADS)

    Banerjee, Paramita; Das, G. P.

    2016-05-01

    In our effort to do first principles design of suitable materials for hydrogen storage, we have explored the interaction characteristics of a hydrogen molecule with pure as well as a 3d-transition metal (TM) atom doped Mg(0001) surface using density functional theory (DFT) based approach. Doping of a 3d-TM atom by creating a vacancy on the top most layer of Mg(0001) surface, enhances the molecular hydrogen adsorption efficiency of this surface by ~ 6 times. The TM atom gains some charge from the defected site of the Mg(0001) surface, becomes anionic and adsorbs the hydrogen molecule via Anti Kubas-type interaction. The interaction energy of this H2 molecule, including van der Waals dispersion correction, turns out to be ~ 0.4 eV, which falls in the right energy window between physisorption and chemisorption. On full coverage of this 3d-TM atom doped Mg(0001) surface with hydrogen molecules, the gravimetric density of hydrogen has been estimated to be ~ 5.6 wt %, thereby satisfying the criteria set by the department of energy (DOE) for efficient hydrogen storage.

  5. Wannier function analysis of charge states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren

    2015-03-01

    The charge (or oxidation) state of a cation has been a crucial concept in analyzing the electronic and magnetic properties of oxides as well as interpreting ``charge ordering'' metal-insulator transitions. In recent years a few methods have been proposed for the objective identification of charge states, beyond the conventional (and occasionally subjective) use of projected densities of states, weighted band structures (fatbands), and Born effective charges. In the past two decades Wannier functions (WFs) and particularly maximally localized WFs (MLWFs), have become an indispensable tool for several different purposes in electronic structure studies. These developments have motivated us to explore the charge state picture from the perspective of MLWFs. We will illustrate with a few transition metal oxide examples such as AgO and YNiO3 that the shape, extent, and location of the charge centers of the MLWFs provide insights into how cation-oxygen hybridization determines chemical bonding, charge distribution, and ``charge ordering.'' DOE DE-FG02-04ER46111.

  6. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  7. Photoemission spectra and density functional theory calculations of 3d transition metal-aqua complexes (Ti-Cu) in aqueous solution.

    PubMed

    Yepes, Diana; Seidel, Robert; Winter, Bernd; Blumberger, Jochen; Jaque, Pablo

    2014-06-19

    Photoelectron spectroscopy measurements and density functional calculations are combined to determine the lowest electron binding energies of first-row transition-metal aqua ions, titanium through copper, with 3d(1) through 3d(9) electronic configurations, in their most common oxidation states. Vertical ionization energies are found to oscillate considerably between 6.76 and 9.65 eV for the dications and between 7.05 and 10.28 eV for the respective trivalent cations. The metal cations are modeled as [M(H2O)n](q+) clusters (q = 2, 3, and 4; n = 6 and 18) surrounded by continuum solvent. The performance of 10 exchange-correlation functionals, two GGAs, three MGGAs, two HGGAs and three HMGGAs, combined with the MDF10(ECP)/6-31+G(d,p) basis set is assessed for 11 M-O bond distances, 10 vertical ionization energies, 6 adiabatic ionization energies, and the associated reorganization free energies. We find that for divalent cations the HGGA and HMGGA functionals in combination with the 18 water model show the best agreement with experimental vertical ionization energies and geometries; for trivalent ions, the MGGA functionals perform best. The corresponding reorganization free energies (λo) of the oxidized ions are significantly underestimated with all DFT functionals and cluster models. This indicates that the structural reorganization of the solvation shell upon ionization is not adequately accounted for by the simple solvation models used, emphasizing the importance of extended sampling of thermally accessible solvation structures for an accurate computation of this quantity. The photoelectron spectroscopy measurements reported herein provide a comprehensive set of transition-metal redox energetic quantities for future electronic structure benchmarks.

  8. Defect energetics and magnetic properties of 3 d-transition-metal-doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Wang, Na; Wang, JianFeng; Si, Chen; Gu, Bing-Lin; Duan, WenHui

    2016-08-01

    The introduction of magnetism in SnTe-class topological crystalline insulators is a challenging subject with great importance in the quantum device applications. Based on the first-principles calculations, we have studied the defect energetics and magnetic properties of 3 d transition-metal (TM)-doped SnTe. We find that the doped TM atoms prefer to stay in the neutral states and have comparatively high formation energies, suggesting that the uniform TMdoping in SnTe with a higher concentration will be difficult unless clustering. In the dilute doping regime, all the magnetic TMatoms are in the high-spin states, indicating that the spin splitting energy of 3 d TM is stronger than the crystal splitting energy of the SnTe ligand. Importantly, Mn-doped SnTe has relatively low defect formation energy, largest local magnetic moment, and no defect levels in the bulk gap, suggesting that Mn is a promising magnetic dopant to realize the magnetic order for the theoretically-proposed large-Chern-number quantum anomalous Hall effect (QAHE) in SnTe.

  9. Intrinsic Bonding Defects in Transition Metal Elemental Oxides

    DTIC Science & Technology

    2006-01-01

    deposition, ALD. Spectroscopic studies have also been performed on nanocrystalline TiO2 , ZrO2, HfO2, and complex mixed oxides such as ZrTiO4, LaAlO3 and...5d-state and defect features are identified. Figure 2(b). SXPS valence band spectrum of TiO2 . 5d-state and defect features... TiO2 . 3d-state features are identified. Figure 4. Ti L3 edge XAS spectrum of TiO2 . Ti 3d J-T term split states are

  10. LETTER TO THE EDITOR: Efficient photocarrier injection in a transition metal oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Muraoka, Y.; Yamauchi, T.; Ueda, Y.; Hiroi, Z.

    2002-12-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO2/TiO2:Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO2:Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO2.

  11. Hybrid functional studies of defects in layered transition metal oxides

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    2014-03-01

    Layered oxides LiMO2 (M is a transition metal) have been studied extensively for Li-ion battery cathodes. It is known that defects have strong impact on the electrochemical performance. A detailed understanding of native point defects in LiMO2 is however still lacking, thus hindering rational design of more complex materials for battery applications. In fact, first-principles defect calculations in LiMO2 are quite challenging because standard density functional theory (DFT) calculations using the generalized gradient approximation (GGA) of the exchange-correlation functional fail to reproduce the correct physics. The GGA+U extension can produce reasonable results, but the transferability of U across the compounds is limited. In this talk, we present our DFT studies of defects in LiMO2 (M=Co, Ni) using the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. The dominant point defects will be identified and compared with experiment; and their impact on the structural stability and the charge (electronic and ionic) and mass transport will be addressed. We will also discuss possible shortcomings of the HSE functional in the study of these electron-correlated materials.

  12. Spin-Orbital Entangled States in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Oleś, Andrzej M.

    The phenomenon of spin-orbital entanglement which occurs in superexchange models for transition metal oxides is introduced and explained. We present its consequences in the RVO_3 Mott insulators, with R=La,Pr,\\cdots ,Yb,Lu, and show that entanglement occurs here in excited states of the spin-orbital d^2 model and determines: (i) the temperature dependence of low-energy optical spectral weight, (ii) the phase diagram of the RVO_3 perovskites, and (iii) the dimerization observed in the magnon excitations in YVO_3. Entangled ground states occur in two other model systems: (i) the bilayer d^9 (Kugel-Khomskii) model, and (ii) the d^1 model on the triangular frustrated lattice. In such cases even the predictions concerning the magnetic exchange constants based on the mean field decoupling of spin and orbital operators are incorrect. On the example of a single hole doped to a Mott insulator with coexisting antiferromagnetic and alternating t_{2g} orbital order we show that transport is hindered by spin-orbital excitations. It is suggested that spin-orbital entanglement in Mott insulators might be controlled by doping, leading to orbital disordered states with possible new opportunities for thermoelectric applications.

  13. Lithium vanadium oxide: A heavy fermion transition metal oxide

    NASA Astrophysics Data System (ADS)

    Kondo, Shinichiro

    LiVsb2Osb4 has the face-centered-cubic normal-spinel structure and is a metal. The preparative method and characterization of high-purity polycrystalline samples are herein reported. The intrinsic susceptibility chi, electronic heat capacity Csbe, nuclear magnetic resonance and thermal expansion measurements revealed that LiVsb2Osb4 shows a crossover from high temperature T localized magnetic moment behavior to low-T heavy Fermi liquid behavior. chi follows the Curie-Weiss law above ˜50 K with a Curie constant corresponding to a V S=1/2 spin and g-factor ˜2. The Weiss temperature indicates antiferromagnetic interactions between V local moments. chi becomes nearly T independent below ˜30K with a shallow broad maximum at T≈16K. Field-cooled and zero-field-cooled magnetization measurements in low applied magnetic fields H=10{-}100 G from 1.8 to 50 K showed no evidence for spin-glass ordering. The small amounts of paramagnetic impurities (S=3/2 to 4) in the samples were characterized using low-T isothermal magnetization Mspobs(H) measurement data. The observed electronic heat capacity coefficient gammaequiv Csbe/T≈0.42 J/mol Ksp2 at 1 K is extraordinarily large for a transition metal compound, the Wilson ratio ≈1.7, and the Korringa ratio ≈0.5. X-ray and neutron diffraction measurements down to 4 K found no distortion from the cubic structure. Neutron diffraction and dilatometry measurements indicate a strong enhancement of the thermal expansion coefficient and Gruneisen parameter below ˜20 K. Muon spin relaxation for a magnetically pure sample showed no evidence of static magnetic ordering above 0.02 K. Superconductivity was not observed above 0.01 K. All these measurements are consistent with a heavy Fermi liquid (HF) interpretation at low T. Theories which apply to some conventional f-electron HF compounds, the Kondo and Coqblin-Schrieffer models, fail to self-consistently explain chi(T) and Csbe(T) of LiVsb2Osb4. Geometric frustration inherent in the V

  14. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process.

  15. Fingerprints of spin-orbital entanglement in transition metal oxides.

    PubMed

    Oleś, Andrzej M

    2012-08-08

    The concept of spin-orbital entanglement on superexchange bonds in transition metal oxides is introduced and explained on several examples. It is shown that spin-orbital entanglement in superexchange models destabilizes the long-range (spin and orbital) order and may lead either to a disordered spin-liquid state or to novel phases at low temperature which arise from strongly frustrated interactions. Such novel ground states cannot be described within the conventionally used mean field theory which separates spin and orbital degrees of freedom. Even in cases where the ground states are disentangled, spin-orbital entanglement occurs in excited states and may become crucial for a correct description of physical properties at finite temperature. As an important example of this behaviour we present spin-orbital entanglement in the RV O(3) perovskites, with R = La,Pr,…,Y b,Lu, where the finite temperature properties of these compounds can be understood only using entangled states: (i) the thermal evolution of the optical spectral weights, (ii) the dependence of the transition temperatures for the onset of orbital and magnetic order on the ionic radius in the phase diagram of the RV O(3) perovskites, and (iii) the dimerization observed in the magnon spectra for the C-type antiferromagnetic phase of Y V O(3). Finally, it is shown that joint spin-orbital excitations in an ordered phase with coexisting antiferromagnetic and alternating orbital order introduce topological constraints for the hole propagation and will thus radically modify the transport properties in doped Mott insulators where hole motion implies simultaneous spin and orbital excitations.

  16. Transition metals

    PubMed Central

    Rodrigo-Moreno, Ana; Poschenrieder, Charlotte; Shabala, Sergey

    2013-01-01

    Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested. PMID:23333964

  17. Transition-Metal Oxides in Warm Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Schmidt, Mirosław R.; Kaminski, Tomasz; Tylenda, Romuald

    2013-06-01

    We report on detections and simulations of electronic bands of transition-metal oxides, i.e. ScO, TiO, VO, CrO, YO, and of AlO, in spectra of two red novae V838 Mon and V4332 Sgr. These objects experienced a stellar merger event in 2002 and 1994, respectively, and have very rich circumstellar environments abundant in dust and molecules. We analyzed optical spectra of V838 Mon which show a presence of outflowing material. In this object, electronic systems of oxides are observed in absorption against a photospheric spectrum which resembles that of a late-type supergiant. We present simulations of the absorption bands which allowed us to derive the excitation temperatures of 300-500 K and constrain column densities, which turned out to be very high. Among many interesting features discovered, we identified forbidden transitions of TiO in the b^1Π-X^3Δ and c^{1}Φ-X^{3}Δ systems, which are seen owing to the high column densities and the relatively low temperatures. In the case of the older red nova V4332 Sgr, the main object is surrounded by a circumstellar disc which is seen almost edge-on and obscures the central star. The molecular spectra are seen in emission in this object, what is very unusual in astrophysical sources observed at optical wavelengths. We show that these emission bands arise owing to the special geometry of the star-disk system and that radiative pumping is responsible for excitation of the molecules. From the shapes of the rotational contours, we derive temperatures of about 120 K in this object. Remarkably, the spectra of V4332 Sgr contain features of CrO, which is the first identified signature of this molecule in an astrophysical object. In addition to the excitation and radiative-transfer analysis of the molecular spectra, we discuss chemical pathways that could lead to the observed variety of metal oxides seen in these enigmatic sources. T. Kaminski, M. Schmidt, R. Tylenda, M. Konacki, and M. Gromadzki ApJSuppl., {182} (33), 2009. T

  18. Magnetic and Orbital Structures in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Khomskii, Daniel

    2002-03-01

    The interplay of different degrees of freedom (charge, spin, orbital, lattice) determine all the rich properties of transition metal oxides. In particular, spin and orbital orderings appear to be especially strongly coupled. At least this is the case in perovskite-like systems with (almost) 180-degree metal-oxygen-metal bonds. The coupled spins and orbitals in this case can be described by the effective Hamiltonian of the type H = A(S*S)+B(T*T)+C(S*S)(T*T), where S and T are the spin and pseudospin of an ion ( describing an orbital occupation). In conventional cases, e.g. in perovskites, the constants A, B, C are of the same order, which determines strong coupling between spins and orbitals. However this electronic mechanism is not the only one leading to orbital ordering. The conventional Jahn-Teller interaction can also contribute to the latter, and it is not always clear which mechanism dominates. In this talk I will consider two questions. The first is the possibility to describe different orbital (and charge) superstructures in oxides, in particular in manganites, using the electron-lattice (elastic) interaction [1]. One can show that due to specific features of these interactions, one can naturally get in this mechanism different superstructures, including stripes. The second question concerns the form which these mechanisms take in systems with more complicated crystal structures - notably in oxides with 90-degree bonds. To these systems belong in particular some systems with geometric frustrations, e.g. some spinels, or LiNiO2, NaNiO2. We show that the exchange interaction in case of orbital degeneracy has for these systems the form much different from the perovskites: spin and orbital degrees of freedom are essentially decoupled, orbital exchange being much stronger even in the absence of electron-lattice interaction. We obtain corresponding exchange Hamiltonian, and consider the orbital and spin structure in systems like LiNiO2 [2], in which, due to a

  19. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  20. Insights into bonding interactions and excitation energies of 3d-4f mixed lanthanide transition metal macrocyclic complexes.

    PubMed

    Rabanal-León, Walter A; Murillo-López, Juliana A; Arratia-Pérez, Ramiro

    2016-12-07

    In this contribution, a computational study of equatorial bound tetranuclear macrocycle (butylene linked) [LnZn(HOM(Bu))](3+) (Ln = La(3+), Ce(3+)) complexes was carried out. Here, the electronic structure, bonding interaction and excitation energies were studied within the relativistic density functional theory framework. From the electronic structure analysis, the frontier molecular orbitals (FMOs) were strongly localized in the d-orbitals of the Zn centers and the f-orbitals of the lanthanide ions. Besides, the inner MOs were found to exhibit a π-character from the organic part of the macrocyclic chain. EDA-NOCV was used as a tool for evaluating the bonding interaction, taking the trinuclear metallomacrocycle (ZnHOM(Bu)) and the lanthanide center as fragments. This analysis showed that the interaction between these fragments was slightly covalent; with this covalency being the result of a charge transfer from the metallomacrocyclic ring to the lanthanide. This phenomenon was observed in the deformation density channels obtained from the EDA-NOCV study; in which π- and σ-charge transfer was observed. Finally, the TD-DFT study of the excitation energies evidenced three sets of bands: the first set with the highest intensity represented the ligand to metal charge transfer bands; the second set could be attributed to the 3d-4f electronic transitions between the metal centers; and the third set represented the f-f bands found for the open-shell cerium complex. This class of complexes accomplishes the "antenna effect" principle, which states that highly absorptive transition-metal (TM) complexes can be used to enhance the luminescence of poorly emissive systems, and are introduced in this study as self-sensitizer bimetallic d-f systems with potential applications in near infra-red (NIR) technologies.

  1. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed.

  2. Performance of density functional theory for 3d transition metal-containing complexes: utilization of the correlation consistent basis sets.

    PubMed

    Tekarli, Sammer M; Drummond, Michael L; Williams, T Gavin; Cundari, Thomas R; Wilson, Angela K

    2009-07-30

    The performance of 44 density functionals used in conjunction with the correlation consistent basis sets (cc-pVnZ where n = T and Q) has been assessed for the gas-phase enthalpies of formation at 298.15 K of 3d transition metal (TM) containing systems. Nineteen molecules were examined: ScS, VO, VO(2), Cr(CO)(6), MnS, MnCl(2), Mn(CO)(5)Cl, FeCl(3), Fe(CO)(5), CoH(CO)(4), NiCl(2), Ni(CO)(4), CuH, CuF, CuCl, ZnH, ZnO, ZnCl, and Zn(CH(3))(2). Of the functionals examined, the functionals that resulted in the smallest mean absolute deviation (MAD, in parentheses, kcal mol(-1)) from experiment were B97-1 (6.9), PBE1KCIS (8.1), TPSS1KCIS (9.6), B97-2 (9.7), and B98 (10.7). All five of these functionals include some degree of Hartree-Fock (HF) exchange. The impact of increasing the basis set from cc-pVTZ to cc-pVQZ was found to be slight for the generalized gradient approximation (GGA) and meta-GGA (MGGA) functionals studied, indicating basis set saturation at the triple-zeta level. By contrast, for most of the generalized gradient exchange (GGE), hybrid GGA (HGGA), and hybrid meta-GGA (HMGGA) functionals considered, improvements in the average MAD of 2-3 kcal mol(-1) were seen upon progressing to a quadruple-zeta level basis set. Overall, it was found that the functionals that include Hartree-Fock exchange performed best overall, but those with greater than 40% HF exchange exhibit significantly poor performance for the prediction of enthalpies of formation for 3d TM complexes. Carbonyl-containing complexes, a mainstay in organometallic TM chemistry, are demonstrated to be exceedingly difficult to describe accurately with all but 2 of the 44 functionals considered. The most accurate functional, for both CO-containing and CO-free compounds, is B97-1/cc-pVQZ, which is shown to be capable of yielding results within 1 kcal mol(-1) of high-level ab initio composite methodologies.

  3. Electronic transitions and multiferroicity in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Zhou, Haidong

    Four systems have been studied for the localized-itinerant electronic transition in transition-metal oxides: (i) In CaV1- xTixO3, substitution of Ti(IV) introduces Anderson-localized states below a mobility edge mu c that increases with x, crossing epsilon F in the range 0.2 < x< 0.4 and also transforms the strong-correlation fluctuations to localized V(IV): t1e0 configurations for x ≥ 0.1. (ii) The properties of LaTiO3+delta reveal that a hole-poor, strongly correlated electronic phase coexists with a hole-rich, itinerant-electron phase. With delta ≥ 0.03, the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With delta ≥ 0.08, isolated hole-poor clusters are embedded in an itinerant-electron matrix. As delta > 0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to super-paramagnetic strong-correlation fluctuations by delta = 0.12. (iii) The data of Y1-xLaxTiO 3 appears to distinguish an itinerant-electron antiferromagnetic phase in the La-rich samples from a localized-electron ferromagnetic phase with a cooperative Jahn-Teller distortion in the Y-rich phase. (iv) The transition at Tt in Mg[Ti2]O4 is a semiconductor-semiconductor transition associated with Ti-Ti dimerization instabilities. The dimerization is caused by lattice instabilities resulting from a double-well Ti-Ti bond potential at a crossover from localized to itinerant electronic behavior. RMn1-xGaxO 3 (R = Ho, Y) and Ho1-xY xMnO3 have been studied for the multiferroicity of RMnO3. Ga doping raises the ferrielectric Curie temperature TC and the Mn-spin reorientation temperature TSR while lowering TN of the Mn spins and the Ho magnetic ordering temperature T 2. The data show an important coupling between the Mn3+-ion and HO3+-ion spins as well as a TSR that is driven by a cooperative MnO5 site rotation and R 3+-ion displacements that modify the c lattice parameter. The data also

  4. Theoretical study of inverted sandwich type complexes of 4d transition metal elements: interesting similarities to and differences from 3d transition metal complexes.

    PubMed

    Kurokawa, Yusaku I; Nakao, Yoshihide; Sakaki, Shigeyoshi

    2012-03-08

    Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.

  5. Origin of enhanced visible-light photocatalytic activity of transition-metal (Fe, Cr and Co)-doped CeO2: effect of 3 d orbital splitting

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Li, Dong-Feng; Huang, Wei-Qing; Xu, Liang; Huang, Gui-Fang; Wen, Shuangchun

    2017-01-01

    Enhanced visible-light photocatalytic activity of transition-metal-doped ceria (CeO2) nanomaterials has experimentally been demonstrated, whereas there are very few reports mentioning the mechanism of this behavior. Here, we use first-principles calculations to explore the origin of enhanced photocatalytic performance of CeO2 doped with transition metal impurities (Fe, Cr and Co). When a transition metal atom substitutes a Ce atom into CeO2, t 2g and e g levels of 3 d orbits appear in the middle of band gap owing to the effect of cubic ligand field, and the former is higher than latter. Interestingly, t 2g subset of FeCe (CoCe and CrCe)-Vo-CeO2 splits into two parts: one merges into the conduction band, the other as well as e g will remain in the gap, because O vacancy defect adjacent to transition metal atom will break the symmetry of cubic ligand field. These e g and t 2g levels in the band gap are beneficial for absorbing visible-light and enhancing quantum efficiency because of forbidden transition, which is one key factor for enhanced visible-light photocatalytic activity. The band gap narrowing also leads to a redshift of optical absorbance and high photoactivity. These findings can rationalize the available experimental results and provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance.

  6. Chirality effect on nearly half-metallic properties in systematic endo-doping of 3d transition metals of narrow carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Malehmir, M.; Khoshnevisan, B.

    2016-10-01

    Spin polarized density functional calculations were employed to study chirality effect on electronic and magnetic properties of 3d transition metals (TMs) endo-doped co-diameter (∼7 Å) narrow (5,5) and (9,0) single walled carbon nanotubes (CNTs). Various magnetizations up to ∼6μB was obtained for different 3dTM-CNT systems (recall that the magnetization of fcc structure cobalt is ∼1.6μB). In addition nearly half-metallic magnetic behavior has been observed for the most of considered systems. These results would be useful for spintronic and nano-magnetic technology.

  7. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  8. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  9. Numerical study of Resonant inelastic x-ray scattering for cuprates and transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Jia, Chunjing; Wang, Yao; Chen, Cheng-Chien; Moritz, Brian; Devereaux, Thomas

    A theoretical understanding of resonant inelastic x-ray scattering (RIXS) measurements on cuprates and other transition-metal oxides remains an important yet challenging topic, especially for its ability to resolve the momentum and photon-polarization dependence of low energy elementary excitations. Here we present our exact diagonalization studies for RIXS spectra at the Cu L-edge for cuprates, with a focus on the dependence of both incoming and outgoing photon polarization and incoming photon energy. A more general method for calculating RIXS on other transition-metal oxides (such as NiO), which includes the multiplet and charge-transfer effects, will also be discussed.

  10. Branching ratio and L2 + L3 intensities of 3d-transition metals in phthalocyanines and the amine complexes

    PubMed

    Koshino; Kurata; Isoda; Kobayashi

    2000-08-01

    L(2,3) inner-shell excitation spectra were obtained by electron energy-loss spectroscopy (EELS) for the divalent first transition series metals in phthalocyanine complexes (MPc) such as titanium oxide phthalocyanine (TiOPc), fluoro-chromium phthalocyanine (CrFPc), manganese phthalocyanine (MnPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), nickel phthalocyanine (NiPc) and copper phthalocyanine (CuPc). It was found that the value of normalized total intensity of I(L2 + L3) was nearly proportional to the formal electron vacancies of each 3d-state, and the values of the branching ratio, I(L3)/I((L2 + L3), represented a high-spin-state rather than low-spin-state for MnPc, FePc and NiPc. EELS was also applied to charge-transfer complexes of FePc with an amine such as pyridine or gamma-picoline. It was concluded that their I(L2 + L3) intensity of Fe showed the decrease in vacancies of 3d-states on the formation of the charge-transfer complex with these amines, which suggests some electron transfer from the amine to Fe in phthalocyanine. The EELS study provides beneficial information for investigating the electronic states of the specific metal sites in organic materials.

  11. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria.

    PubMed

    Navrotsky, Alexandra; Ma, Chengcheng; Lilova, Kristina; Birkner, Nancy

    2010-10-08

    Knowing the thermodynamic stability of transition metal oxide nanoparticles is important for understanding and controlling their role in a variety of industrial and environmental systems. Using calorimetric data on surface energies for cobalt, iron, manganese, and nickel oxide systems, we show that surface energy strongly influences their redox equilibria and phase stability. Spinels (M(3)O(4)) commonly have lower surface energies than metals (M), rocksalt oxides (MO), and trivalent oxides (M(2)O(3)) of the same metal; thus, the contraction of the stability field of the divalent oxide and expansion of the spinel field appear to be general phenomena. Using tabulated thermodynamic data for bulk phases to calculate redox phase equilibria at the nanoscale can lead to errors of several orders of magnitude in oxygen fugacity and of 100 to 200 kelvin in temperature.

  12. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation.

    PubMed

    ElBatal, F H; Abdelghany, A M; ElBatal, H A

    2014-03-25

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe(3+)) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi(3+)) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi(3+) ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  13. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  14. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  15. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  16. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  17. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  18. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  19. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  20. Structure-property relationships: Synthesis and characterization of Perovskite-related transition metal oxides

    NASA Astrophysics Data System (ADS)

    Whaley, Louis

    The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system

  1. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  2. Catalytic Oxidation by Transition Metal Ions in Zeolites.

    DTIC Science & Technology

    1984-09-28

    nmber) Zeolite, Oxidation Catalysis, Molybdenum Zeolite, Cobalt Zeolite, Oxygen Adduct, Cobalt-Oxygen Complexes, Epoxidation _j-J AVIATRACr .1kisa...and substrate ligands. Molybdenum-Y seolites were effective catalysts for the epoxidation of propylene using tert-butyl hydroperoxide as the source...of oxygen. They exhibited high selectivity to the epoxide , and initially were quite active. The activity, *I 0 OF, , , , , ,, , , UNCLASSIFIED -4 1 0 1

  3. Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides

    NASA Astrophysics Data System (ADS)

    Katrib, A.; Logie, V.; Saurel, N.; Wehrer, P.; Hilaire, L.; Maire, G.

    1997-04-01

    XP spectra of some reduced transition metal oxides are presented. Different number of free nd,( n + 1)s valence electrons in each case could be observed by the presence of a certain density of states (DOS) at the Fermi-level in the valence band (VB) energy region of the XP spectrum. Catalytic isomerization reactions of 2-methylpentane yielding 3-methylpentane and n-hexane at 350°C have been observed on these reduced valence surface states. The bifunctionel mechanism in terms of metallic and acidic sites required for such reactions is proposed by considering the metallic properties of the rutile deformed structure through the C-axis in the case of MoO 2 and WO 2, while the oxygen atom(s) in the lattice structure exhibit Brönsted acidic properties. On the other hand, highly reduced or clean surfaces of these transition metals yield hydrogenolysis catalytic reactions for the same reactant with methane as the major product. In all cases, the exposure of the lower valence oxidation states of bulk transition metal oxides to air results in the surface partial oxidation to the stable oxides such as MoO 3, WO 3, V 2O 5 and Nb 2O 5.

  4. Quantum confinement in transition metal oxide quantum wells

    SciTech Connect

    Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.

    2015-05-11

    We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.

  5. The Influence of Oxygen in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Bach, P. L.; Leboran, V.; Rivadulla, F.

    2012-02-01

    The existence of a 2D metallic state at the interface between LaAlO3 and SrTiO3 (LAO/STO) has generated much excitement. Its origin has been attributed to charge redistribution to avoid a dielectric catastrophe; however, oxygen vacancies in TiO2-terminated STO can play a significant role in the electronic properties of the interface. In order to determine the nature and origin of the metallic phase, we have induced vacancies in TiO2-terminated STO single crystal substrates by annealing under controlled vacuum conditions. We report resistivity, Hall effect, and thermopower measurements on these materials and discuss their implications for the nature of the 2D electron gas at the STO surface. We have explored the possibility of gate-tuning these systems in order to fabricate single-oxide based devices. This work was supported by the Ministerio de Ciencia e Innovaci'on (Spain), grant MAT2010-16157, and the European Research Council, grant ERC-2010-StG 259082 2D THERMS.

  6. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott

    2015-03-01

    We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).

  7. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  8. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    PubMed

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments.

  9. Pulsed laser deposition of transition metal oxides for secondary batteries

    SciTech Connect

    Striebel, K.A.; Deng, C.Z.; Cairns, E.J.

    1995-12-31

    Pulsed laser deposition has been used to prepare thin films of several complex metal oxides of significance in secondary batteries from a single stoichiometric target with a substrate temperature of 600 C in the presence of 200 mtorr O{sub 2}. Films of the candidate bifunctional air electrocatalysts, for metal air batteries, La{sub 0.6}Ca{sub 0.4}CoO{sub 3}, La{sub 0.6}Sr{sub 0.4}CoO{sub 3}, La{sub 0.6}Ca{sub 0.4}MnO{sub 3} and La{sub 0.6}Sr{sub 0.4}MnO{sub 3} were prepared on glassy carbon substrates. Glassy carbon was found to either erode during the ablation process (with the cobaltates) or cause film cracking after deposition because of its extremely low coefficient of thermal expansion. The use of stainless steel substrates yielded 0.3 {micro}m-thick dense films of La{sub 0.6}Ca{sub 0.4}CoO{sub 3} and La{sub 0.6}Ca{sub 0.4}MnO{sub 3} which were suitable for electrochemical measurements in concentrated alkaline electrolytes. LiMn{sub 2}O{sub 4} and LiCoO{sub 2} films were prepared at thickness` of 0.3 {micro}m and 1.5 {micro}m. The 0.3 {micro}m-thick films delivered 176 mC/cm{sup 2}-{micro}m and 323 mC/cm{sup 2} for LiMn{sub 2}O{sub 4} and LiCoO{sub 2}, respectively, in 1 M LiClO{sub 4}/PC.

  10. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    PubMed Central

    Chen, Hongjun

    2014-01-01

    Summary To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given. PMID:24991507

  11. Transition-metal-free direct alkylation of aryl tetrazoles via intermolecular oxidative C-N formation.

    PubMed

    Wang, Liang; Zhu, Kaiqiang; Chen, Qun; He, Mingyang

    2014-12-05

    A transition-metal-free synthetic approach for constructing alkylated aryl tetrazoles has been developed using n-Bu4NI as the catalyst and t-BuOOH as the oxidant. It involves the direct C-N bond formation through sp(3) C-H activation. A wide range of benzylic C-H substrates (or alkyl ethers) and aryl tetrazoles undergo this reaction smoothly to deliver the corresponding products in good yields.

  12. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  13. Modeling STM tips by single absorbed atoms on W(100) films: 3d, 4d and 5d transition metal atoms

    NASA Astrophysics Data System (ADS)

    Hofer, Werner; Redinger, Josef; Kresse, Georg; Podloucky, Raimund

    2000-03-01

    In order to provide comprehensive data on the electronic structure of realistic STM-tips we have calculated W(100) films with single 3d, 4d and 5d transition metal apex atoms by first principles molecular dynamics and full potential methods. Molecular dynamics using ultrasoft pseudopotentials (VASP) has been used to determine the relaxation of the surface layers. The electronic structure of the relaxed film has been calculated by a first principles full potential method with two-dimensional boundary conditions (FLEUR), which seems most suitable to reproduce subtle surface effects. The results suggest that the chemical nature of the tip apex determines to a high degree achievable corrugations and that correct results for the current and corrugation values in a perturbation approach can only be obtained by including the full electronic structure of the tip.

  14. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr1/3NbS2

    DOE PAGES

    Sirca, N.; Mo, S. -K.; Bondino, F.; ...

    2016-08-18

    The electronic structure of the chiral helimagnet Cr1/3NbS2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS2 layers but also cause significant modifications of the electronic structure of the host NbS2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr1/3NbS2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these results to the attainment of a correctmore » description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.« less

  15. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr1/3NbS2

    SciTech Connect

    Sirca, N.; Mo, S. -K.; Bondino, F.; Pis, I.; Nappini, S.; Vilmercati, P.; Yi, Jieyu; Gai, Zheng; Snijders, Paul C.; Das, P. K.; Vobornik, I.; Ghimire, N. J.; Koehler, Michael R.; Sopkota, D.; Parker, David S.; Mandrus, D. G.; Mannella, Norman

    2016-08-18

    The electronic structure of the chiral helimagnet Cr1/3NbS2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS2 layers but also cause significant modifications of the electronic structure of the host NbS2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr1/3NbS2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these results to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.

  16. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  17. Kagome-type isostructural 3D-transition metal fluorosulfates with spin 3/2 and 1: synthesis, structure and characterization.

    PubMed

    Marri, Subba R; Kumar, Jitendra; Panyarat, Kitt; Horike, Satoshi; Behera, J N

    2016-11-28

    Two isostructural transition metal fluorosulfates based on Co and Ni metal ions with the molecular composition of [H3O][M(SO4)F] (where M = Co((II)) for 1 and Ni((II)) for 2) were synthesized under solvothermal conditions and structurally characterized by single crystal X-ray analysis. The materials were further characterized by complementary techniques like TGA, FTIR and PXRD. The 3D-crystal lattice consists of a kagome-type entity where sulfate groups replaced one of the metal nodes when compared with true kagome structures. Magnetic studies of the complexes were also performed which showed that the interactions at the metal center are antiferromagnetic in nature. The proton conductivity increases with the increase in humidity and was found to be 7.9 × 10(-6) S cm(-1) for 2 at RH = 98%.

  18. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  19. Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3 d transition metals; a new probe for mineralogical and geochemical research

    NASA Astrophysics Data System (ADS)

    Cressey, G.; Henderson, C. M. B.; van der Laan, G.

    1993-07-01

    2 p ( L 2,3) X-ray absorption spectra are presented for a range of minerals to demonstrate the usefulness of L-edge spectroscopy as a symmetry- and valenceselective probe. 2 p XAS provides a sensitive fingerprint of the electronic states of 3 d transition metals and can be applied to phases containing mixtures of such elements. Calculated spectra for 3 d n → 2 p 5 3 d n+1 transitions provide a basis for the interpretation of the measured spectra. Thus, in principle, multiple valence states of a particular 3 d metal can be precisely characterized from a single L-edge spectrum. Examples of vanadium L-edge spectra are presented for a range of minerals; these complex spectra hold information concerning the presence of vanadium in multiple valence states. The Cu L-edge spectrum of sulvanite (Cu3 VS4) indicates the presence of both Cu+ and Cu2+; the V L-edge spectrum of the same sample shows that both V2+ and V5+ are present. Spectral simulations representing mixtures of Fe d 5 and Fe d 6 states are used to quantify Fe3+/ ∑Fe in a spinel, a glass, and an amphibole, all of which contain Fe as a major component. To illustrate the sensitivity of 2 p XAS in a dilute system, the Fe L-edge spectrum of amethyst ( α-SiO2: Fe) has been recorded; this spectrum shows that ˜68% of the Fe in amethyst is Fe2+, and ˜32% is Fe3+. Although previous studies on amethyst using other spectroscopic methods cite evidence for Fe4+, there is no indication in the L-edge spectrum for Fe4+ in amethyst. Comparison of theoretical and experimental spectra not only allows the valence states of 3 d ions to be recognised, but also provides site-symmetry information and crystal field parameters for each ion site.

  20. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  1. Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators, Ca2Ru1--xM xO4 (M = 3d transition metal ion)

    NASA Astrophysics Data System (ADS)

    Qi, Tongfei

    Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at T N = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-- xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio, DeltaV/V, reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions. KEYWORDS: Transition Metal Oxide, Ruthenate, Negative Thermal Expansion, Single crystal XRD, Invar Effect, Orbital Ordering, Magnetic Ordering, Jahn-Teller Effect.

  2. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    SciTech Connect

    Altman, Eric I.

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  3. Non-volatile memory based on transition metal perovskite oxide resistance switching

    NASA Astrophysics Data System (ADS)

    Nian, Yibo

    Driven by the non-volatile memory market looking for new advanced materials, this dissertation focuses on the study of non-volatile resistive random access memory (RRAM) based on transition metal perovskite oxides. Pr0.7Ca0.3MnO3 (PCMO), one of the representative materials in this family, has demonstrated a large range of resistance change when short electrical pulses with different polarity are applied. Such electrical-pulse-induced resistance (EPIR), with attractive features such as fast response, low power, high-density and non-volatility, makes PCMO and related materials promising candidates for non-volatile RRAM application. The objective of this work is to investigate, optimize and understand the properties of this universal EPIR behavior in transition metal perovskite oxide, represented by PCMO thin film devices. The research work includes fabrication of PCMO thin film devices, characterization of these EPIR devices as non-volatile memories, and investigation of their resistive switching mechanisms. The functionality of this perovskite oxide RRAM, including pulse magnitude/width dependence, power consumption, retention, endurance and radiation-hardness has been investigated. By studying the "shuttle tail" in hysteresis switching loops of oxygen deficient devices, a diffusion model with oxygen ions/vacancies as active agents at the metal/oxide interface is proposed for the non-volatile resistance switching effect in transition metal perovskite oxide thin films. The change of EPIR switching behavior after oxygen/argon ion implantation also shows experiment support for the proposed model. Furthermore, the universality, scalability and comparison with other non-volatile memories are discussed for future application.

  4. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Carlier, D.; Ménétrier, M.; Grey, C. P.; Delmas, C.; Ceder, G.

    2003-05-01

    The 6,7Li MAS NMR spectra of lithium ions in paramagnetic host materials are extremely sensitive to number and nature of the paramagnetic cations in the Li local environments and large shifts (Fermi contact shifts) are often observed. The work presented in this paper aims to provide a rational basis for the interpretation of the 6,7Li NMR shifts, as a function of the lithium local environment and electronic configuration of the transition metal ions. We focus on the layered rocksalts often found for LiMO2 compounds and on materials that are isostructural with the K2NiF4 structure. In order to understand the spin-density transfer mechanism from the transition metal ion to the lithium nucleus, which gives rise to the hyperfine shifts observed by NMR, we have performed density functional theory (DFT) calculations in the generalized gradient approximation. For each compound, we calculate the spin densities values on the transition metal, oxygen and lithium ions and map the spin density in the M-O-Li plane. Predictions of the calculations are in good agreement with several experimental results. We show that DFT calculations are a useful tool with which to interpret the observed paramagnetic shifts in layered oxides and to understand the major spin-density transfer processes. This information should help us to predict the magnitudes and signs of the Li hyperfine shifts for different Li local environments and t2g vs eg electrons in other compounds.

  5. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, Alexander Bowman

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO2 hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  6. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  7. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs.

    PubMed

    Yu, Ming-Feng; Li, Wen-Wei; Li, Xiao-Dong; Lin, Xiao-Qing; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Various transition metal oxide and vanadium-containing multi-metallic oxide catalysts were developed for the destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans). A stable PCDD/Fs generating system was installed to support the catalytic destruction tests in this study. Nano-titania supported vanadium catalyst (VOx/TiO2) showed the highest activity, followed by CeOx, MnOx, WOx and finally MoOx. Multi-metallic oxide catalysts, prepared by doping WOx, MoOx, MnOx and CeOx into VOx/TiO2 catalysts, showed different activities on the decomposition of PCDD/Fs. The highest destruction efficiency of 92.5% was observed from the destruction test over VOxCeOx/TiO2 catalyst. However, the addition of WOx and MoOx even played a negative role in multi-metallic VOx/TiO2 catalysts. Characterizations of transition metal oxides and multi-metallic VOx/TiO2 catalysts were also investigated with XRD and TPR. After the catalysts were used, the conversion from high valent metals to low valence states was observed by XPS.

  8. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  9. Dehydrogenation of ethylbenzene with nitrous oxide in the presence of mesoporous silica materials modified with transition metal oxides.

    PubMed

    Kuśtrowski, Piotr; Chmielarz, Lucjan; Dziembaj, Roman; Cool, Pegie; Vansant, Etienne F

    2005-01-20

    The novel mesoporous templated silicas (MCM-48, SBA-15, MCF, and MSU) were used as supports for transition metal (Cu, Cr, or Fe) oxides. The catalysts were synthesized using the incipient wetness impregnation, and characterized by low-temperature N2 sorption, DRIFT, photoacoustic IR spectroscopy, UV-vis diffuse reflectance spectroscopy, and temperature-programmed desorption of ammonia. It was shown that the preparation method used results in different distributions and dimensions of the transition metal oxide clusters on the inert support surface. The prepared catalysts were tested in the reaction of oxidative dehydrogenation of ethylbenzene in the presence of nitrous oxide. The iron-containing catalysts showed the highest catalytic activity. The presence of isolated Fe3+ was found to be the most important factor influencing the ethylbenzene conversion. The undesirable effect of the increase in selectivity toward CO2 was observed for the samples with the highest concentrations of acidic surface sites.

  10. Strain induced electronic structure changes in magnetic transition metal oxides thin films

    SciTech Connect

    van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

    2010-07-08

    We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

  11. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    SciTech Connect

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  12. Quantum spin Hall effect in a transition metal oxide Na2IrO3

    SciTech Connect

    Shitade, Atsuo

    2010-05-26

    We study theoretically the electronic states in a 5d transition metal oxide Na{sub 2}I{sub r}O{sub 3}, in which both the spin-orbit interaction and the electron correlation play crucial roles. Tight-binding model analysis together with the fisrt-principles band structure calculation predicts that this material is a layered quantum spin Hall system. Due to the electron correlation, an antiferromagnetic order first develops at the edge, and later inside the bulk at low temperatures.

  13. Mesoscale Charge-Ordering in Transition Metal Oxides: Formation and Signatures

    SciTech Connect

    Bishop, A.R.; Yu, Z.G.

    1998-06-01

    The authors briefly outline the value of an inhomogeneous (unrestricted) Hartree-Fock plus Random Phase approach for understanding the types and properties of mesoscopic patterns of localized small polarons in transition metal oxides. Using a multiband Peierls-Hubbard model for a hole-doped CuO{sub 2} layer as an illustrative example, they demonstrate the appearance of correlated high-energy (electronic) and low-energy (localized phonon and spin-wave) signatures of various vertical, diagonal, metal-centered, and oxygen-centered mesoscopic stripe patterns of localized holes (small polarons).

  14. Lithium Diffusion in Lithium-Transition-Metal Oxides Detected by μ+SR

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Mukai, Kazuhiko; Nozaki, Hiroshi; Harada, Masashi; Kamazawa, Kazuya; YutakaIkedo; Månsson, Martin; Ofer, Oren; Ansaldo, Eduardo J.; Brewer, Jess H.; Chow, Kim H.; IsaoWatanabe; Miyake, Yasuhiro; Ohzuku, Tsutomu

    Diffusion of Li+ ionsin solidsisa basic principle behindthe operationof Li-ion batteries. Suchdiffusive behavior is represented by the diffusion equation (Fick's law), J = -D × δϕ/δx, where J is the diffusion flux, D is the self diffusion coeffcient, ϕ is the concentration, and x is the position. Although D of Li+ ions(DLi)in solids is usually evaluatedby 7Li-NMR, diffculties arise for materials that contain magnetic ions. This is because the magnetic ions contribute additional spin-lattice relaxation processes thatis considerably larger than the1/T1 expected from only Li diffusion[1-3]. This implies that 7Li-NMRprovidesa rough estimateof DLi for the positive electrode materials of Li-ion batteries, which include transition metal ions in order to compensate charge neutrality during a Li+ intercala-tion/deintercalation reaction. This is an unsatisfactory situation since DLi is one of the primary parameters that govern the charge/discharge rate of a Li-ion battery. We have, therefore, attempted to measure DLi for lithium-transition-metal-oxides with muon-spin relaxation (μ+SR) since 2005 [4-6]. Muons do not feel fluctuating magnetic moments at high T, but instead sense the change in nuclear dipole field due to Li diffusion. Even if magnetic moments still affect the muon-spin depolarization rate, such aneffectis, in principle, distinguishablefromthatof nucleardipole fields.In particular,aweak longitudinal field can be applied that decouples the magnetic and nuclear dipole interactions [7,8]. Here, we wish to summarize our μ+SR study on the lithium-transition-metal-oxides, LixCoO2, LiNiO2, and LiCrO2.

  15. Synthesis of transition metal nitride by nitridation of metastable oxide precursor

    SciTech Connect

    Wang, Huamin; Wu, Zijie; Kong, Jing; Wang, Zhiqiang; Zhang, Minghui

    2012-10-15

    Metastable transition metal oxides were used as precursors to synthesize transition metal nitrides at low temperature. Amorphous MoO{sub 2} was prepared by reduction of (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24} solution with hydrazine. As-synthesized amorphous MoO{sub 2} was transformed into fcc {gamma}-Mo{sub 2}N at 400 Degree-Sign C and then into hexagonal {delta}-MoN by further increasing the temperature to 600 Degree-Sign C under a NH{sub 3} flow. The nitridation temperature employed here is much lower than that employed in nitridation of crystalline materials, and the amorphous materials underwent a unique nitridation process. Besides this, the bimetallic nitride Ni{sub 2}Mo{sub 3}N was also synthesized by nitridating amorphous bimetallic precursor. These results suggested that the nitridation of amorphous precursor possessed potential to be a general method for synthesizing many interstitial metallic compounds, such as nitrides and carbides at low temperature. - graphical abstract: Amorphous oxide was used as new precursor to prepare nitride at low temperature. Pure {gamma}-Mo{sub 2}N and {delta}-MoN were obtained at 400 Degree-Sign C and at 600 Degree-Sign C, respectively. Highlights: Black-Right-Pointing-Pointer We bring out a new method to synthesize transition metal nitrides at low temperature. Black-Right-Pointing-Pointer Both mono- and bimetallic molybdenum nitrides were synthesized at a mild condition. Black-Right-Pointing-Pointer The formation of two different molybdenum nitrides {gamma}-Mo{sub 2}N and {delta}-MoN can be controlled from the same metastable precursor. Black-Right-Pointing-Pointer The nitridation temperature was much lower than that reported from crystalline precursors. Black-Right-Pointing-Pointer The metastable precursor had different reaction process in comparison with crystalline precursor.

  16. Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers.

    PubMed

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2014-03-14

    Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M(2+/3+)O2 triangular layers is reported.

  17. Antiferromagnetic half metallicity in codoped chalcopyrite semiconductors Cu(Al 1 - 2 xAxBx)Se2 (A and B are 3d transition-metal atoms)

    NASA Astrophysics Data System (ADS)

    Shahjahan, M.; Oguchi, T.

    2016-06-01

    Electronic structures and magnetic properties of group I-III-VI2 chalcopyrite-type compounds Cu(Al 1 - 2 xAxBx)Se2 are calculated using the Korringa-Kohn-Rostoker Green's function method, where A (Ti, V, Cr, Mn) and B (Fe, Co, Ni) are 3d transition metal atoms, and x is atomic concentration. We found that codoping of Cr-Co and V-Ni pairs at Al site of host CuAlSe2 exhibit antiferromagnetic (AF) half metallicity with low Curie temperature (TC). The AF half metallic property is supported by nullified net magnetic moment and compensated density of states in the minority spin direction. On the other hand, codoping of Cr-Ni, Mn-Co, V-Co, and Ti-Co pairs at Al site of host CuAlSe2 manifest ferrimagnetic half metallicity with a small net magnetization and keeping antiparallel local spin moments. In Mn-Co case TC is close to room temperature. Besides, Cr-Fe, V-Fe, and Ti-Ni codoping cases lead to an instable magnetic ordering and therefore obtain a disordered local moment (spin-glass like) state.

  18. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  19. Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-Metal Oxide Chains

    NASA Astrophysics Data System (ADS)

    Ferstl, Pascal; Hammer, Lutz; Sobel, Christopher; Gubo, Matthias; Heinz, Klaus; Schneider, M. Alexander; Mittendorfer, Florian; Redinger, Josef

    2016-07-01

    We report on the self-organized growth of monatomic transition-metal oxide chains of (3 ×1 ) periodicity and unusual M O2 stoichiometry (M =Ni , Co, Fe, Mn) on Ir(100). We analyze their structural and magnetic properties by means of quantitative LEED, STM, and density functional theory (DFT) calculations. LEED analyses reveal a fascinating common atomic structure in which the transition-metal atoms sit above a missing-row structure of the surface and are coupled to the substrate only via oxygen atoms. This structure is confirmed by DFT calculations with structural parameters deviating by less than 1.7 pm. The DFT calculations predict that the NiO2 chains are nonmagnetic, CoO2 chains are ferromagnetic, while FeO2 and MnO2 are antiferromagnetic. All structures show only weak magnetic interchain coupling. Further, we demonstrate the growth of oxide chains of binary alloys of Co and Ni or Fe on Ir(100), which allows us to produce well-controlled ensembles of ferromagnetic chains of different lengths separated by nonmagnetic or antiferromagnetic segments.

  20. Variation of Some Physical Properties of Brownmillerite Doped with a Transition Metal Oxide

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Ebrahim, F. M.; Salah, S. H.

    2004-12-01

    Cement clinker is the main component of Portland cement. It is composed of four main phases. One of them is the brownmillerite or the ferrite phase of cement clinker. It is prepared according to the formula (4CaO)(Al2O3)(Fe2O3)1-x (M) x , where M represents transition metal oxides (TMO): TiO2, Cr2O3, Mn2O3 and WO3, where x=1, 2, 3, 4 and 5 mol%. Each mixture was fired at 1300°C for 30 minutes in a platinum crucible. The samples were pulverized for Mössbauer spectroscopy, X-ray diffraction and a.c. conductivity measurements. A shift in the position of the characterized peaks of pure brownmillerite appears in the X-ray diffraction patterns of brownmillerite doped with a transition metal oxide. The a.c. conductivity showed a maximum value for the samples containing 3 mol% TiO2, Cr2O3 and Mn2O3, and 2 mol% WO3. The Mössbauer parameters for the sample containing 5 mol% M showed a gradual increase in the isomer shift values. The number of electrons in d-orbital for the doped transition atoms, as the nearest neighbor atoms increased from 2 to 5 electrons. The hyperfine magnetic field at Fe3+ (Oh) iron nucleus decreases with increasing M content. This may be due to the decrease of the particle size of brownmillerite.

  1. Transition metal-modified zinc oxides for UV and visible light photocatalysis.

    PubMed

    Bloh, J Z; Dillert, R; Bahnemann, D W

    2012-11-01

    In order to use photocatalysis with solar light, finding more active and especially visible light active photocatalysts is a very important challenge. Also, studies of these photocatalysts should employ a standardized test procedure so that their results can be accurately compared and evaluated with one another. A systematic study of transition metal-modified zinc oxide was conducted to determine whether they are suitable as visible light photocatalysts. The photocatalytic activity of ZnO modified with eight different transition metals (Cu, Co, Fe, Mn, Ni, Ru, Ti, Zr) in three different concentrations (0.01, 0.1, and 1 at.%) was investigated under irradiation with UV as well as with visible light. The employed activity test is the gas-phase degradation of acetaldehyde as described by the ISO standard 22197-2. The results suggest that the UV activity can be improved with almost any modification element and that there exists an optimal modification ratio at about 0.1 at.%. Additionally, Mn- and Ru-modified ZnO display visible light activity. Especially the Ru-modified ZnO is highly active and surpasses the visible light activity of all studied titania standards. These findings suggest that modified zinc oxides may be a viable alternative to titanium dioxide-based catalysts for visible light photocatalysis. Eventually, possible underlying mechanisms are proposed and discussed.

  2. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  3. Magnetic collapse and the behavior of transition metal oxides at high pressure

    NASA Astrophysics Data System (ADS)

    Leonov, I.; Pourovskii, L.; Georges, A.; Abrikosov, I. A.

    2016-10-01

    We report a detail theoretical study of the electronic structure and phase stability of transition metal oxides MnO, FeO, CoO, and NiO in their paramagnetic cubic B 1 structure by employing dynamical mean-field theory of correlated electrons combined with ab initio band-structure methods. Our calculations reveal that under pressure these materials exhibit a Mott insulator-metal transition (IMT) which is accompanied by a simultaneous collapse of local magnetic moments and lattice volume, implying a complex interplay between chemical bonding and electronic correlations. Moreover, our results for the transition pressure show a monotonous decrease from ˜145 to 40 GPa, upon moving from MnO to CoO. In contrast to that, in NiO, magnetic collapse is found to occur at a remarkably higher pressure of ˜429 GPa. We provide a unified picture of such a behavior and suggest that it is primarily a localized to itinerant moment behavior transition at the IMT that gives rise to magnetic collapse in transition metal oxides.

  4. Methods to protect and recover work function of air exposed transition metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Wang, Chenggong; Turinske, Alexander J.; Gao, Yongli

    2012-09-01

    Insertion of high work function (WF) transition metal oxide (TMO) layers between the anode and the hole transport layer is established to substantially enhance the performance of organic light emitting diodes (OLED). The high WF of transition metal oxide layer has been demonstrated to be the most crucial for the enhancement. The WF of a TMO layer decreases substantially with air exposure, and noticeably by the ambient even inside a low vacuum system. In the present work we discuss various methods to protect and recover the high WF after a TMO thin film has been exposed to air. We report covering a thin organic layer on top of MoOx to protect the high work function. We found that a thin layer of 1-2 nm organic layer was sufficient to protect the work function of MoOx thin film underneath. We further report methods to recover already decreased TMO WF due to air exposure. We performed oxygen plasma cleaning of air exposed MoOx film and found out that oxygen plasma could substantially recover the WF of as deposited MoOx film. We also performed annealing of air exposed MoOx film inside an ultra high vacuum system and observed a thin layer of oxygenrich adsorbate layer, which desorbed upon annealing that in turn substantially recovered the MoOx WF. We discuss the vacuum annealing and the effect of resulting surface on the interface energy level alignment.

  5. Obtaining X-ray absorption near-edge structure for transition metal oxides via the Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Shirley, Eric; Prendergast, David

    Transition metal oxides are an important class of materials featured with strongly correlated effects. Most interesting and yet to-be-unveiled physics is associated with the metal 3d orbitals, which can be probed by X-ray absorption near-edge spectroscopy. A thorough interpretation of the x-ray spectroscopy is often accompanied with first-principles simulations of structures, electronic properties and the corresponding x-ray spectra. However, the simulation for TMOs is particularly challenging with the localized 3d orbitals. Most previous studies relied on the ground-state calculations without the core-hole as a compromise. Other treated the excited atom as a charged impurity but the calculated spectra turn out to be even more deviated from experiments. Here, we present the first study for the O K-edge for several typical TMOs via solving the Bethe-Salpeter equation (BSE). We have found that electron-core-hole interactions can alter the absorption spectra significantly. Our study helps to disentangle core-hole effects from the intrinsic electron correlations and hence facilitates the development of more advanced many-electron theories.

  6. Synthesis and control of morphology, stoichiometry, and composition of transition metal oxides

    NASA Astrophysics Data System (ADS)

    Brier, Matthew Isaac

    Transition metal oxides (TMOs) are an important class of materials that have found uses in diverse applications, such as heterogeneous catalysts, sensors, and high temperature superconductors, due to their complex surface chemistry and high mobility of lattice oxygen atoms. Point defects such as oxygen and metal atom vacancies significantly perturb the electronic structure of TMOs and profoundly impact their electrical, optical, ferroelectric, photocatalytic, and other functional properties. As a result, significant research is being done to develop synthesis techniques that can produce metal oxides with controllable material properties. In this thesis, the use of hot wire chemical vapor deposition (HWCVD) was studied with the aim of precisely controlling the morphology, stoichiometry, and composition of TMOs. With molybdenum oxide as the model system, the control of morphology and stoichiometry was achieved by modulation of deposition parameters, such as filament power and gas phase composition. The study of HWCVD of MoOx led to the development of phase diagrams for the dependence of morphology and stoichiometry on deposition parameters. The knowledge gained studying the HWCVD of MoOx was then shown to translate to the deposition of other binary metal oxides by using tungsten, nickel, and vanadium metal filaments to synthesize their respective transition metal oxides. Additionally, NiMoO4 was synthesized as a proof-of-concept to show that HWCVD can be used to make ternary oxides. Nitridation of samples in an ammonia atmosphere was conducted to explore the potential for conversion of HWCVD grown TMOs to their respective metal nitrides, which are also reported to have catalytic properties. To examine the quality of TMOs grown by HWCVD, samples were electrochemically tested for their electrochromic properties and photoactivity with respect to splitting of water.

  7. The Oxidation of Sulfur-Containing Compounds Using Heterogeneous Catalysts of Transition Metal Oxides Deposited on the Polymeric Matrix

    NASA Astrophysics Data System (ADS)

    Dinh Vu, Ngo; Dinh Bui, Nhi; Thi Minh, Thao; Thi Thanh Dam, Huong; Thi Tran, Hang

    2016-05-01

    We investigate the activity of heterogeneous catalysts of transition metal oxides deposited on the polymeric matrix in the oxidation of sulfur-containing compounds. It is shown that MnO2-10/CuO-10 has the highest catalytic activity. The physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, including the specific surface area, elongation at break and breaking strength, specific electrical resistance, and volume resistivity were studied by using an Inspekt mini 3 kN universal tensile machine in accordance with TCVN 4509:2006 at a temperature of 20 ± 2°C. Results show that heterogeneous polymeric catalysts were stable under severe reaction conditions. Scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. Microstructural characterization of the catalysts is performed by using x-ray computed tomography. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment.

  8. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Kröger, M.; Hamwi, S.; Gnam, F.; Riedl, T.; Kowalsky, W.; Kahn, A.

    2010-05-01

    The energetics of an archetype charge generation layer (CGL) architecture comprising of 4,4',4″-tris(N-carbazolyl)triphenylamine (TCTA), tungsten oxide (WO3), and bathophenanthroline (BPhen) n-doped with cesium carbonate (Cs2CO3) are determined by ultraviolet and inverse photoemission spectroscopy. We show that the charge generation process occurs at the interface between the hole-transport material (TCTA) and WO3 and not, as commonly assumed, at the interface between WO3 and the n-doped electron-transport material (BPhen:Cs2CO3). However, the n-doped layer is also essential to the realization of an efficient CGL structure. The charge generation mechanism occurs via electron transfer from the TCTA highest occupied molecular orbital level to the transition metal-oxide conduction band.

  9. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Zhu, Wenguang; Nomura, Yusuke; Arita, Ryotaro; Xiao, Di; Nagaosa, Naoto

    2014-05-01

    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  10. Transition-metal-free BF₃-mediated oxidative and non-oxidative cross-coupling of pyridines.

    PubMed

    Chen, Quan; León, Thierry; Knochel, Paul

    2014-08-11

    We report a BF3-mediated direct alkynylation of pyridines at C(2) by using a variety of alkynyllithium reagents (oxidative cross-coupling). Moreover, we have developed a novel transition-metal-free cross-coupling method between alkylmagnesium reagents and 4-substituted pyridines, such as isonicotinonitrile and 4-chloropyridine, by employing BF3⋅OEt2 as a promoter. The combination of these methods enabled us to efficiently prepare a range of di-, tri-, and tetrasubstituted pyridines.

  11. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides

    SciTech Connect

    Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; Croy, Jason R.; Bettge, Martin; Abraham, Daniel P.; Bareno, Javier; Dees, Dennis W.

    2015-03-04

    Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due to the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.

  12. Physical Theory of Voltage Fade in Lithium- and Manganese-Rich Transition Metal Oxides

    DOE PAGES

    Rinaldo, Steven G.; Gallagher, Kevin G.; Long, Brandon R.; ...

    2015-03-04

    Lithium- and manganese-rich (LMR) transition metal oxide cathodes are of interest for lithium-ion battery applications due to their increased energy density and decreased cost. However, the advantages in energy density and cost are offset, in part, due to the phenomena of voltage fade. Specifically, the voltage profiles (voltage as a function of capacity) of LMR cathodes transform from a high energy configuration to a lower energy configuration as they are repeatedly charged (Li removed) and discharged (Li inserted). Here, we propose a physical model of voltage fade that accounts for the emergence of a low voltage Li phase due tomore » the introduction of transition metal ion defects within a parent Li phase. The phenomenological model was re-cast in a general form and experimental LMR charge profiles were de-convoluted to extract the evolutionary behavior of various components of LMR capacitance profiles. Evolution of the voltage fade component was found to follow a universal growth curve with a maximal voltage fade capacity of ≈ 20% of the initial total capacity.« less

  13. Electronic structure at transition metal phthalocyanine-transition metal oxide interfaces: Cobalt phthalocyanine on epitaxial MnO films

    SciTech Connect

    Glaser, Mathias; Peisert, Heiko Adler, Hilmar; Aygül, Umut; Ivanovic, Milutin; Chassé, Thomas; Nagel, Peter; Merz, Michael; Schuppler, Stefan

    2015-03-14

    The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the charge transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.

  14. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  15. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    SciTech Connect

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; Zhang, Jinshui; Zhu, Huiyuan; Chen, Jihua; Chen, Yinfei; Dai, Sheng

    2015-01-01

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  16. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-01-01

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  17. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  18. Synthesis of indazoles and azaindazoles by intramolecular aerobic oxidative C-N coupling under transition-metal-free conditions.

    PubMed

    Hu, Jiantao; Xu, Huacheng; Nie, Pengju; Xie, Xiaobo; Nie, Zongxiu; Rao, Yu

    2014-04-01

    A transition-metal-free oxidative C-N coupling method has been developed for the synthesis of 1H-azaindazoles and 1H-indazoles from easily accessible hydrazones. The procedure uses TEMPO, a basic additive, and dioxygen gas as the terminal oxidant. This reaction demonstrates better reactivity, functional group tolerance, and broader scope than comparable metal catalyzed reactions.

  19. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes.

    PubMed

    Toroker, Maytal Caspary; Kanan, Dalal K; Alidoust, Nima; Isseroff, Leah Y; Liao, Peilin; Carter, Emily A

    2011-10-06

    The positions of electronic band edges are one important metric for determining a material's capability to function in a solar energy conversion device that produces fuels from sunlight. In particular, the position of the valence band maximum (conduction band minimum) must lie lower (higher) in energy than the oxidation (reduction) reaction free energy in order for these reactions to be thermodynamically favorable. We present first principles quantum mechanics calculations of the band edge positions in five transition metal oxides and discuss the feasibility of using these materials in photoelectrochemical cells that produce fuels, including hydrogen, methane, methanol, and formic acid. The band gap center is determined within the framework of DFT+U theory. The valence band maximum (conduction band minimum) is found by subtracting (adding) half of the quasiparticle gap obtained from a non-self-consistent GW calculation. The calculations are validated against experimental data where possible; results for several materials including manganese(ii) oxide, iron(ii) oxide, iron(iii) oxide, copper(i) oxide and nickel(ii) oxide are presented.

  20. Symmetry Violations in Partially Oxidized One-Dimensional (1D) Transition Metal Polymers. Metal-Ligand-Metal (M-L-M) Bridged Systems

    NASA Astrophysics Data System (ADS)

    Böhm, Michael C.

    1984-09-01

    The band structure of the metal-ligand-metal (M-L-M) bridged quasi one-dimensional (1D) cyclopentadienylmanganese polymer, MnCp 1, has been studied in the unoxidized state and in a partly oxidized modification with one electron removed from each second MnCp fragment. The tight-binding approach is based on a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) crystal orbital (CO) model of the INDO-type (intermediate neglect of differential overlap) combined with a statistical averaging procedure which has its origin in the grand canonical ensemble. The latter approximation allows for an efficient investigation of violations of the translation symmetries in the oxidized 1D material. The oxidation process in 1 is both ligand- and metal-centered (Mn 3d-2 states). The mean-field minimum corresponds to a charge density wave (CDW) solution with inequivalent Mn sites within the employed repeat-units. The symmetry adapted solution with electronically identical 3d centers is a maximum in the variational space. The coupling of this electronic instability to geometrical deformations is also analyzed. The ligand amplitudes encountered in the hole-state wave function prevent extremely large charge separations between the 3d centers which are found in ID systems without bridging moieties (e.g. Ni(CN)2-5 chain). The symmetry reduction in oxidized 1 is compared with violations of spatial symmetries in finite transition metal derivatives and simple solids. The stabilization of the valence bond-type (VB) solution is physically rationalized (i.e. left-right correlations between the 3d centers). The computational results derived for 1 are generalized to oxidized transition metal chains with band occupancies that are simple fractions of the number of stacking units and to 1D systems that deviate from this relation. The entropy-influence for temperatures T ≠ 0 is shortly discussed (stabilization of domain or cluster structures).

  1. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  2. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  3. NFE approximation for the e/a determination for 3d-transition metal elements and their intermetallic compounds with Al and Zn

    NASA Astrophysics Data System (ADS)

    Sato, H.; Inukai, M.; Zijlstra, E. S.; Mizutani, U.

    2013-08-01

    First-principles full-potential linearized augmented plane wave (FLAPW) band calculations with subsequent FLAPW-Fourier analyses have been performed for elements from K to Cu in period 4 of the periodic table to determine the effective electrons per atom ratio (e/a). For the series of 3d-transition metals (TM), the determination of the square of the Fermi diameter ? , from which e/a is derived, has been recognized not to be straightforward because of the presence of a huge anomaly associated with the TM-d states across the Fermi level in the energy dispersion relation for electrons outside the muffin-tin sphere. The nearly free electron (NFE) approximation is newly devised to circumvent this difficulty. The centre of gravity energy ? is calculated from the energy distribution of the square of the Fourier coefficients for the FLAPW state ? . The NFE dispersion relation is constructed for the set of ? and ? in combination with the tetrahedron method. The resulting e/a values are distributed over positive numbers in the vicinity of unity for elements from Ti to Co. Instead, the e/a values for the early elements K, Ca and Sc and the late TM elements Ni and Cu were determined to be close to one, two, three, 0.50 and unity, respectively, using our previously designed local reading method. In addition, the composition dependence of e/a values for intermetallic compounds in X-TM (X = Al and Zn) alloy systems was studied to justify an appropriate choice between the local reading and NFE methods for respective elements.

  4. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  5. Spectroscopic signatures of molecular orbitals in transition metal oxides with a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Pchelkina, Z. V.; Streltsov, S. V.; Mazin, I. I.

    2016-11-01

    A tendency to form benzenelike molecular orbitals has recently been shown to be a common feature of the 4 d and 5 d transition metal oxides with a honeycomb lattice. This tendency competes with other interactions such as the spin-orbit coupling and Hubbard correlations and can be partially or completely suppressed. In the calculations, SrRu2O6 presents the cleanest case of well-formed molecular orbitals so far; however, direct experimental evidence for or against this proposition has been missing. In this paper, we show that combined photoemission and optical studies can be used to identify molecular orbitals in SrRu2O6 . Symmetry-driven election selection rules suppress optical transitions between certain molecular orbitals, while photoemission and inverse photoemission measurements are insensitive to them. Comparing the photoemission and optical conductivity spectra, one should be able to observe clear signatures of molecular orbitals.

  6. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures.

    PubMed

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-12-20

    Topological insulators are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here we predict, based on tight-binding modelling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO(3) bilayers have a topologically non-trivial energy gap of about 0.15 eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in e(g) systems are also discussed.

  7. Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors

    SciTech Connect

    Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David; Marinella, Matthew; Mickel, Patrick; Tierney, Brian D.

    2016-11-01

    Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. In order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.

  8. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    SciTech Connect

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-01-01

    Topological insulators (TIs) are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of TIs, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional TIs. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO$_3$ bilayers have a topologically non-trivial energy gap of about 0.15~eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in $e_g$ systems are also discussed.

  9. Systematic thermodynamics of Magneli-phase and other transition metal oxides.

    PubMed

    Glasser, Leslie

    2009-11-02

    Both the molar enthalpies of formation and the absolute entropies of eight transition metal oxides are found to correlate very strongly with their formula unit volumes at room temperature. The metals are Ti, V, Cr, Nb, Mo, Ce, Pr, and Tb. In particular, the thermodynamic values of additive entities (such as TiO(2) in Ti(n)O(2n-1)) in Magneli phases (that is, recombination phases based on rebuilding after shear) are very close to those of the entity as a pure compound. Thus, reliable values of these thermodynamic properties can readily be predicted for unmeasured or even unsynthesized examples, and literature values can be checked. These assertions are checked against published results for which incomplete data is available. The contributions of the disordered regions which form between the added entities is tentatively estimated.

  10. Mixed transition-metal oxides: design, synthesis, and energy-related applications.

    PubMed

    Yuan, Changzhou; Wu, Hao Bin; Xie, Yi; Lou, Xiong Wen David

    2014-02-03

    A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

  11. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications.

  12. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0 x 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  13. Transition metal oxides for organic electronics: energetics, device physics and applications.

    PubMed

    Meyer, Jens; Hamwi, Sami; Kröger, Michael; Kowalsky, Wolfgang; Riedl, Thomas; Kahn, Antoine

    2012-10-23

    During the last few years, transition metal oxides (TMO) such as molybdenum tri-oxide (MoO(3) ), vanadium pent-oxide (V(2) O(5) ) or tungsten tri-oxide (WO(3) ) have been extensively studied because of their exceptional electronic properties for charge injection and extraction in organic electronic devices. These unique properties have led to the performance enhancement of several types of devices and to a variety of novel applications. TMOs have been used to realize efficient and long-term stable p-type doping of wide band gap organic materials, charge-generation junctions for stacked organic light emitting diodes (OLED), sputtering buffer layers for semi-transparent devices, and organic photovoltaic (OPV) cells with improved charge extraction, enhanced power conversion efficiency and substantially improved long term stability. Energetics in general play a key role in advancing device structure and performance in organic electronics; however, the literature provides a very inconsistent picture of the electronic structure of TMOs and the resulting interpretation of their role as functional constituents in organic electronics. With this review we intend to clarify some of the existing misconceptions. An overview of TMO-based device architectures ranging from transparent OLEDs to tandem OPV cells is also given. Various TMO film deposition methods are reviewed, addressing vacuum evaporation and recent approaches for solution-based processing. The specific properties of the resulting materials and their role as functional layers in organic devices are discussed.

  14. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    PubMed

    Raveau, Bernard

    2016-11-25

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized.

  15. Simulation of no oxidation catalysis over oxygen-covered transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Getman, Rachel B.

    Lean burn (excess O2) automobile engines are more energy efficient than their stoichiometric or rich (O2 starved) burn counterparts, but technologies do not exist to effectively remediate harmful NO x (x = 1,2) compounds from lean exhaust. Current removal strategies rely in part on the catalytic oxidation of NO to NO 2 NO+1/2O2 \\rarrr NO2 Pt is the most active metal, but there is a strong drive to use less expensive materials. Understanding how Pt functions is a key step in catalyst design. Prior experiments and theory indicate the catalysis is promoted at high O coverage (thetaO = NO/ NPt), but too much O is inhibitive: Pt is prone to oxidative deactivation. The rate is promoted by high O2 pressures and inhibited by product NO2. The latter is true even after correcting for approach to equilibrium, suggesting NO2 hinders the reaction kinetics. In this work, we attempt to understand these phenomena with molecular simulation. We use density functional theory, first principles thermodynamics, and mean field microkinetic modeling to elucidate the catalysis under actual reaction conditions. We find the reaction occurs at 0.25--0.50 monolayer O. At these thetaO, the kinetics of O2 dissociation (O2 + 2* → 2O*) are strongly inhibited due to repulsive interactions on the surface, but the O--NO bond formation (NO* + O* ⇌ NO2 + 2*) kinetics are facile. In contrast to prior reports, we show O2 dissociation is rate limiting, and O--NO bond formation is equilibrated. The rate is strongly dependent on pO2 , and the O coverage is governed by pNO2 /pNO, leading to the observed rate inhibition by NO2. These observations are in excellent agreement with experiment. We apply our models to other transition metals and transition metal alloys to facilitate new catalyst design. Analysis indicates such materials should exhibit nearly identical behavior to Pt, offering no improvements in rate or propensity to oxidize. Screening the catalytic properties of Au nanoparticles and the O

  16. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    DOE PAGES

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; ...

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used tomore » investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.« less

  17. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes

    SciTech Connect

    Ruther, Rose E.; Callender, Andrew F.; Zhou, Hui; Martha, Surendra K.; Nanda, Jagjit

    2014-11-15

    Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this paper, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. Finally, the results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  18. CeO2 nanorods-supported transition metal catalysts for CO oxidation.

    PubMed

    Mock, Samantha A; Sharp, Shannon E; Stoner, Thomas R; Radetic, Michael J; Zell, Elizabeth T; Wang, Ruigang

    2016-03-15

    A catalytically active oxide support in combination with metal catalysts is required in order to achieve better low temperature activity and selectivity. Here, we report that CeO2 nanorods with a superior surface oxygen release/storage capability were used as an active support of transition metal (TM) catalysts (Mn, Fe, Co, Ni, Cu) for CO oxidation reaction. The as-prepared CeO2 nanorods supported 10 wt% TM catalysts were highly active for CO oxidation at low temperature, except for the Fe sample. It is found that the 10%Cu-CeO2 catalyst performed best, and it provided a lower light-off temperature with T50 (50% conversion) at 75 °C and T100 (100% conversion) of CO to CO2 at 194 °C. The atomic level surface structure of CeO2 nanorods was investigated in order to understand the improved low temperature catalytic activity. The richness of surface roughness and various defects (voids, lattice distortion, bending, steps, twinning) on CeO2 nanorods could facilitate oxygen release and storage. According to XRD and Raman analysis, copper species migrate into the bulk CeO2 nanorods to a greater degree. Since CO adsorbed over the surface of the catalyst/support is detrimental to its catalytic activity, the surface defects on the CeO2 nanorods and CeO2-TM interactions were critical to the enhanced activity.

  19. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    DOE PAGES

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; ...

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and amore » thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.« less

  20. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    PubMed Central

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-01-01

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects. PMID:26510508

  1. Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides

    SciTech Connect

    Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin; Duncan, Hugues; Hage, Fredrik; Chen, Guoying

    2015-10-29

    Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. Finally and more specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects.

  2. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  3. Non--Cubic Symmetry of the Electronic Response in AFM Late Transition--Metal Oxides.

    NASA Astrophysics Data System (ADS)

    Posternak, M.; Baldereschi, A.; Massidda, S.; Resta, R.

    1998-03-01

    The late transition--metal monoxides (MnO, FeO, CoO, NiO) have the rocksalt structure in their paramagnetic phase, while below the Neel temperature a weak structural distortion accompanies an AFM ordering of type II. Therefore, it is generally assumed that most nonmagnetic (i.e. spin--integrated) crystalline properties are essentially cubic: we give here convincing evidence of the contrary. We focus on the half--filled d shell oxide MnO as the most suitable case study, on which we perform accurate ab--initio, all--electron calculations, within different one--particle schemes. In order to study the symmetry lowering due to AFM ordering, we assume an ideal cubic geometry throughout. The calculated TO frequencies and Born effective charge tensor do not have cubic symmetry. The standard LSD severely exaggerates the deviations from cubic symmetry, confirming its unreliability for calculating properties of insulating AFM oxides, while a model self--energy correction scheme(S. Massidda et al.), Phys. Rev. B 55, 13494 (1997). reduces considerably the anisotropy. We also explain the origin and the magnitude of this effect in terms of the mixed charge--transfer/Mott--Hubbard character of MnO.

  4. 3D highly oriented nanoparticulate and microparticulate array ofmetal oxide materials

    SciTech Connect

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-09-15

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility.

  5. A 3D Nanostructure Based on Transition-Metal Phosphide Decorated Heteroatom-Doped Mesoporous Nanospheres Interconnected with Graphene: Synthesis and Applications.

    PubMed

    Qiu, Shuilai; Xing, Weiyi; Mu, Xiaowei; Feng, Xiaming; Ma, Chao; Yuen, Richard K K; Hu, Yuan

    2016-11-30

    A novel three-dimensional nanostructure based on cobalt phosphide nanoparticles (Co2P NPs) and heteroatom-doped mesoporous carbon spheres interconnected with graphene (3D PZM@Co2P@RGO) was facilely synthesized for the first time, and it was used for enhancing the flame retardancy and toxicity suppression of epoxy resins (EP) via a synergistic effect. Herein, the cross-linked polyphosphazene hollow spheres (PZM) were used as templates for the fabrication of 3D architecture. The 3D architecture based on Co2P-decorated heteroatom-doped carbon sphere and reduced graphene oxide was prepared via a carbonization procedure followed by a hydrothermal self-assembly strategy. The as-prepared material exhibits excellent catalytic activity with regard to the combustion process. Notably, inclusion of incorporating PZM@Co2P@RGO resulted in a dramatic reduction of the fire hazards of EP, such as a 47.9% maximum decrease in peak heat release rate and a 29.2% maximum decrease in total heat release, lower toxic CO yield, and formation of high-graphitized protective char layer. In addition, the mechanism for flame retardancy and toxicity suppression was proposed. It is reasonable to know that the improved flame-retardant performance for EP nanocomposites is attributed to tripartite cooperative effect from respective components (Co2P NPs and RGO) plus the heteroatom-doped carbon spheres.

  6. Control method for transition metal oxides as a hole-injection layer for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Wejiang; Zhang, Jie

    2013-12-01

    The mechanism of transition metal oxide, molybdenum oxide (MoOx), used as interlayers in organic light-emitting devices (OLEDs) are investigated. The electronic structures and interfacial chemical reactions are investigated with ultraviolet and x-ray photoelectron spectroscopy. The influence of evaporation temperatures on the electronic structures of MoOx films and the electrical properties of organic light emitting diodes are investigated.

  7. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    SciTech Connect

    Kellar, S.A. |

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  8. Design of Chern and Mott insulators in buckled 3 d oxide honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Doennig, David; Baidya, Santu; Pickett, Warren E.; Pentcheva, Rossitza

    2016-04-01

    Perovskite (La X O3 )2/(LaAlO3)4(111) superlattices with X spanning the entire 3 d transition-metal series combine the strongly correlated, multiorbital nature of electrons in transition-metal oxides with a honeycomb lattice as a key feature. Based on density functional theory calculations including strong interaction effects, we establish trends in the evolution of electronic states as a function of several control parameters: band filling, interaction strength, spin-orbit coupling (SOC), and lattice instabilities. Competition between local pseudocubic and global trigonal symmetry as well as the additional flexibility provided by the magnetic and spin degrees of freedom of 3 d ions lead to a broad array of distinctive broken-symmetry ground states not accessible for the (001)-growth direction, offering a platform to design two-dimensional electronic functionalities. Constraining the symmetry between the two triangular sublattices causes X =Mn , Co, and Ti to emerge as Chern insulators driven by SOC. For X =Mn we illustrate how interaction strength and lattice distortions can tune these systems between a Dirac semimetal, a Chern and a trivial Mott insulator.

  9. Density functional theory study of CO2 capture with transition metal oxides and hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Duan, Yuhua; Johnson, Karl

    2012-02-01

    We have used density functional theory (DFT) employing several different exchange-correlation functionals (PW91, PBE, PBEsol, TPSS, and revTPSS) coupled with lattice dynamics calculations to compute the thermodynamics of CO2 absorption/desorption reactions for selected transition metal oxides, (TMO), and hydroxides, TM(OH)2, where TM = Mn, Ni, Zn, and Cd. The van't Hoff plots, which describe the reaction equilibrium as a function of the partial pressures of CO2 and H2O as well as temperature, were computed from DFT total energies, complemented by the free energy contribution of solids and gases from lattice dynamics and statistical mechanics, respectively. We find that the PBEsol functional calculations are generally in better agreement with experimental phase equilibrium data compared with the other functionals we tested. In contrast, the formation enthalpies of the compounds are better computed with the TPSS and revTPSS functionals. The PBEsol functional gives better equilibrium properties due to a partial cancellation of errors in the enthalpies of formation. We have identified all CO2 capture reactions that lie on the Gibbs free energy convex hull as a function of temperature and the partial pressures of CO2 and H2O for all TMO and TM(OH)2 systems studied here.

  10. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  11. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    SciTech Connect

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-14

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  12. Tuning interfacial exchange interactions via electronic reconstruction in transition-metal oxide heterostructures

    SciTech Connect

    Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.; Mehta, Apurva; Byers, J. Paige; Browning, Nigel D.; Arenholz, Elke; Takamura, Yayoi

    2016-10-10

    The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer develops which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.

  13. The growth and analysis of transition metal oxide superlattices using advanced magnetometry techniques

    NASA Astrophysics Data System (ADS)

    Danaher, David J.

    Magnetic superlattices are the subject of increasing interest in the condensed matter community due to the consequences that arise from their reduced dimensionality. Such aspects make these superlattices useful in various electronic applications. High quality films of transition metal oxides SrRuO3 and SrMnO3, were grown by pulsed laser deposition (PLD) method in order to gain a further understanding of the parameters that determine the magnetic properties of such films. X-ray reflectivity was used to verify film thickness and quality, while the magnetic properties of the film and of the individual layers were probed using a superconducting quantum interference device (SQUID) and x-ray magnetic circular dichroism (XMCD). Some of the effects observed were expected, including enhanced coercivity, but others were more unexpected, such as anti-ferromagnetic coupling between thin layers of SrMnO3 and SrRuO3. This coupling was conspicuously absent in samples with thicker SrMnO3 layers. These results serve to further illuminate the basic properties of ferromagnetic/anti-ferromagnetic multilayers and have brought us closer to being able to individually manipulate the magnetic properties of such systems.

  14. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  15. Magnetic Excitations in Transition-metal Oxides Studied by Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Braden, M.

    2008-03-01

    Inelastic neutron scattering using a triple axis spectrometer is a very efficient tool to analyze magnetic excitations. We will discuss several recent experiments on transition-metal oxides where orbital degrees of freedom play an important role. Different kinds of experimental techniques including longitudinal and spherical polarization analysis were used in order to determine not only magnon frequencies but also polarization vectors. In layered ruthenates bands of different orbital character contribute to the magnetic excitations which are of both, ferromagnetic and antiferromagnetic, character. The orbital dependent magnetic excitations seem to play different roles in the superconducting pairing as well as in the metamagnetism . In manganates the analysis of the magnon dispersion in the charge and orbital ordered phase yields direct insight into the microscopic coupling of orbital and magnetic degrees of freedom and helps understanding, how the switching between metallic and insulating phases in manganates may occur. In multiferroic TbMnO3 the combination of our polarized neutron scattering results with the infrared measurements identifies a soft collective excitation of hybridized magnon-phonon character.

  16. Orientation of diamagnetic layered transition metal oxide particles in 1-tesla magnetic fields.

    PubMed

    Sklute, Elizabeth C; Eguchi, Miharu; Henderson, Camden N; Angelone, Mark S; Yennawar, Hemant P; Mallouk, Thomas E

    2011-02-16

    The magnetic field-driven orientation of microcrystals of six diamagnetic layered transition metal oxides (HLaNb(2)O(7), HCa(2)Nb(3)O(10)·0.5H(2)O, KNaCa(2)Nb(4)O(13), KTiTaO(5), KTiNbO(5), and H(2.2)K(1.8)Nb(6)O(17)·nH(2)O) suspended in epoxy resins was studied by X-ray diffraction using permanent magnets producing a 0.8 T field. Although the degree of orientation, quantified as the Hermans order parameter, was strongly affected by the particle size distribution, in all cases microcrystals with ∼1-2 μm lateral dimensions were found to orient with the magnetic field vector in the layer plane. Control of the orientation of ionically conducting layered oxides is of interest for practical applications in batteries and fuel cells. The consistent direction of orientation of the lamellar oxides studied can be rationalized in the framework of a quantitative bond anisotropy model developed by Uyeda (Phys. Chem. Miner.1993, 20, 77-80). The asymmetry of metal-oxygen bonding at the faces of the octahedral layers results in long and short M-O bonds perpendicular to the plane of the sheets. This distortion of the M-O octahedra, which is a structural feature of almost all layered materials that contain octahedral bonding frameworks, gives rise to the diamagnetic anisotropy and results in an easy axis or plane of magnetization in the plane of the sheets.

  17. On 3d bonding in the transition metal trimers - The electronic structure of equilateral triangle Ca3, Sc3, Sc3(+), and Ti3(+)

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Bauschlicher, C. W., Jr.

    1985-01-01

    It is pointed out that transition metals and transition metal (TM) compounds are currently of considerable interest because of their relevance to catalysis and to materials science problems such as hydrogen embrittlement and crack propagation in metals. The present paper is concerned with complete active space Self-Consistent Field (SCF) externally contracted configuration interaction (CASSCF/CCI) calculations for the low-lying states of Sc3 and Sc3(+). A comparison is conducted regarding the bonding in the Ca3, Sc3, and Cu3 molecules. This comparison makes it possible to predict general trends for the TM trimers. Attention is given to the qualitative features of the bonding in the TM trimers, the basis sets and other technical details of the calculations, the calculated results for Sc3 and Sc3(+), and conclusions from this work.

  18. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect

    Das, Supriyo

    2010-01-01

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and an- tiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides VnO2n-1 where 2 ≤ n ≤ 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions.[1–6] The only exception is V7O13 which remains metallic down to 4 K.[7] The ternary vanadium oxide LiV2O4 has the normal spinel structure, is metallic, does not un- dergo magnetic ordering and exhibits heavy fermion behavior below 10 K.[8] CaV2O4 has an orthorhombic structure[9, 10] with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase.[11, 12] These provide great motivation for further investigation of some known vanadium compounds as well as to ex- plore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x- ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV2O4, YV4O8, and YbV4O8. The recent discovery of superconductivity in RFeAsO1-xFx (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe2As2 (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high Tc has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high Tc superconductors in 1986. To discover more supercon- ductors

  19. Water adsorption and hydrolysis on molecular transition metal oxides and oxyhydroxides.

    PubMed

    Johnson, J R; Panas, I

    2000-07-24

    Addition of water to molecular transition metal oxides (TiO2(g) and CrO3(g)) and oxyhydroxides (ScO(OH)(g), VO2(OH)(g), and MnO3(OH)(g)) was studied by means of quantum chemistry. In the investigated reactions, each reaction step comprised the breaking of one M=O bond and the formation of two OH groups. Exothermicity was observed when the product had tetrahedral or lower oxygen coordination. The reactions were found to involve stable water complexes as intermediates. The stabilities of such complexes were accentuated in the addition reaction Sc(OH)3(g) + H2O(g), in which the formation of a tetrahedral complex was found exothermic. For VO(OH)3(g), CrO2(OH)2(g), and MnO3(OH)(g), water addition to the remaining M=O bonds was found endothermic, whereas the formation of water complexes, using hydrogen bonds and preserving the oxyhydroxide kernel, was preferred. Thus, the sequence of such kernels for water clustering in the investigated reactions was found to be Sc(OH)3.H2O(g), Ti(OH)4(g), VO(OH)3(g), CrO2(OH)2(g), and MnO3(OH)(g). These stability considerations are important, as CrO2(OH)2(g) is believed to be the product of water-induced degradation of the protective chromium oxide scale on stainless steel at elevated temperatures.

  20. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  1. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  2. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films

    NASA Astrophysics Data System (ADS)

    Tiwari, Amit K.; Goss, J. P.; Briddon, P. R.; Horsfall, A. B.; Wright, N. G.; Jones, R.; Rayson, M. J.

    2014-11-01

    The energetics and electronic properties of oxides of selected transition metals (Cu, Ni, Ti and Zn) adsorbed onto a diamond (001) surface are examined using density functional simulations. We find that the stoichiometric oxides of Ti and Zn exhibit large negative electronic affinities of around 3 eV, whereas the oxides Cu and Ni have a relatively small impact on the affinity. Although reactions of most metal oxides with the diamond surface are exothermic in nature, we propose that titanium, which exhibit large binding energies per metal atom in addition to a large negative electron affinity, is of particular interest for the surface coating of diamond-based electron emitters.

  3. Transition metal oxides - CrO, MoO, NiO, PdO, AgO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Nelin, C. J.; Bagus, P. S.

    1985-01-01

    The transition-metal oxides are quite ionic; Mulliken population analyses for several oxides give a negative charge of about 0.7 electrons for oxygen. When the transition-metal d shell is only partially filled, the orbitals are involved in covalent bonds with O; both two-electron bonding (2)-antibonding (0) and one-electron bonding (2)-antibonding (1) bonds are formed. These covalent bonds occur in addition to the ionic bonding. There is d-sigma-O2 p sigma repulsion, and this repulsion is reduced when the d-sigma electron is promoted into an orbital which has dominantly 4sp-sigma character and is polarized away from O.

  4. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    SciTech Connect

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng; Truhlar, Donald G.

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn–Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal–ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core–valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used

  5. On the character of the optical transitions in closed-shell transition metal oxides doped with Bi(3).

    PubMed

    Amer, M; Boutinaud, P

    2017-01-18

    A criterion is introduced to achieve the assignment of the optical features observed in the excitation spectra of Bi(3+) ions incorporated in closed-shell transition metal oxides. The model is based on the calculation of the energy associated with the lowest (1)S0 → (3)P1 intra-ionic transition of Bi(3+) (A-like transition), the metal-to-metal charge transfer (D-like transition) and the Stokes shift of the corresponding emission.

  6. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  7. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as Oxygen Evolution Catalysts.

    PubMed

    Morales-Guio, Carlos G; Liardet, Laurent; Hu, Xile

    2016-07-20

    The electrolysis of water to produce hydrogen and oxygen is a simple and attractive approach to store renewable energies in the form of chemical fuels. The oxygen evolution reaction (OER) is a complex four-electron process that constitutes the most energy-inefficient step in water electrolysis. Here we describe a novel electrochemical method for the deposition of a family of thin-film transition metal (oxy)hydroxides as OER catalysts. The thin films have nanodomains of crystallinity with lattice spacing similar to those of double-layered hydroxides. The loadings of these thin-film catalysts were accurately determined with a resolution of below 1 μg cm(-2) using an electrochemical quartz microcrystal balance. The loading-activity relations for various catalysts were established using voltammetry and impedance spectroscopy. The thin-film catalysts have up to four types of loading-activity dependence due to film nucleation and growth as well as the resistance of the films. A zone of intrinsic activity has been identified for all of the catalysts where the mass-averaged activity remains constant while the loading is increased. According to their intrinsic activities, the metal oxides can be classified into three categories: NiOx, MnOx, and FeOx belong to category I, which is the least active; CoOx and CoNiOx belong to category II, which has medium activity; and FeNiOx, CoFeOx, and CoFeNiOx belong to category III, which is the most active. The high turnover frequencies of CoFeOx and CoFeNiOx at low overpotentials and the simple deposition method allow the fabrication of high-performance anode electrodes coated with these catalysts. In 1 M KOH and with the most active electrode, overpotentials as low as 240 and 270 mV are required to reach 10 and 100 mA cm(-2), respectively.

  8. Trends in reactivity of electrodeposited 3d transition metals on gold revealed by operando soft x-ray absorption spectroscopy during water splitting

    NASA Astrophysics Data System (ADS)

    Velasco-Vélez, J. J.; Jones, Travis E.; Pfeifer, Verena; Dong, Chung-Li; Chen, Yu-Xun; Chen, Chieh-Ming; Chen, Hsin-Yu; Lu, Ying-Rui; Chen, Jin-Ming; Schlögl, R.; Knop-Gericke, A.; Chuang, C.-H.

    2017-01-01

    We activated gold electrodes for their use as electrocatalyst for water splitting by electrodepositing Cu, Ni and Co. A combination of operando x-ray absorption spectroscopy and potentiometric control under aqueous conditions revealed the trends in reactivity yielded by these electrodes, which are directly associated with the cross- and overpotentials as well as the occupancy of the 3d orbitals. It was found that under anodic polarization the materials electrodeposited on gold suffer from a lack of stability, while under cathodic polarization they exhibit stable behavior. The observed activity is strongly related to the lack of stability shown by these composites under anodic polarization revealing a dynamic process ruled by corrosion. By operando x-ray absorption, we established that the overall enhancement of the activity for the oxygen evolution reaction is directly attributable to the cross-potential and corrosion process of the electrodeposited materials. It is associated with the high potential deposition, which is the origin of the incipient oxidation-corrosion resistance of the lattice. We conclude that the observed trends in the total current are directly associated with the loss of oxygen in the metal-oxide lattice and the subsequent dissolution of metallic ions in the electrolyte under anodic polarization.

  9. Understanding ferromagnetism and optical absorption in 3d transition metal-doped cubic ZrO{sub 2} with the modified Becke-Johnson exchange-correlation functional

    SciTech Connect

    Boujnah, M.; Zaari, H.; El Kenz, A.; Labrim, H.; Benyoussef, A.; Mounkachi, O.

    2014-03-28

    The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}. However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.

  10. Comparison of Transition Metal-Mediated Oxidation Reactions of Guanine in Nucleoside and Single-Stranded Oligodeoxynucleotide Contexts.

    PubMed

    Ghude, Pranjali; Schallenberger, Mark A; Fleming, Aaron M; Muller, James G; Burrows, Cynthia J

    2011-04-15

    As the most readily oxidized of DNA's four natural bases, guanine is a prime target for attack by reactive oxygen species (ROS) and transition metal-mediated oxidants. The oxidation products of a modified guanosine nucleoside and of a single-stranded oligodeoxynucleotide, 5'-d(TTTTTTTGTTTTTTT)-3' have been studied using oxidants that include Co(II), Ni(II), and Ir(IV) compounds as well as photochemically generated oxidants such as sulphate radical, electron-transfer agents (riboflavin) and singlet oxygen. The oxidized lesions formed include spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), imidazolone (Iz), oxazolone (Z) and 5-carboxamido-5-formamido-2-iminohydantion (2-Ih) nucleosides with a high degree of dependence on the exact oxidation system employed. Interestingly, a nickel(II) macrocyclic complex in conjunction with KHSO(5) leads to the recently reported 2-Ih heterocycle as the major product in both the nucleoside and oligonucleotide contexts.

  11. Synthesis and characterization of three-dimensional transition metal ions doped zinc oxide based dilute magnetic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Samanta, Kousik

    Dilute magnetic semiconductors (DMS), especially 3d-transition metal (TM) doped ZnO based DMS materials are the most promising candidates for optoelectronics and spintronics applications; e.g. in spin light emitting diode (SLED), spin transistors, and spin field effect transistors (SFET), etc. In the present dissertation, thin films of Zn1-xTMxO (TM = Co2+, Cu2+, and Mn2+) were grown on (0001) oriented Al2O3 substrates by pulsed laser deposition (PLD) technique. The films were highly c-axis oriented, nearly single crystalline, and defects free for a limited concentration of the dilution of transition metal ions. In particular, we have obtained single crystalline phases of Zn1-xTMxO thin films for up to 10, 3, and 5 stoichiometric percentages of Co2+, Cu2+, and Mn2+ respectively. Raman micro-probe system was used to understand the structural and lattice dynamical properties at different physical conditions. The confinement of optical phonons in the disorder lattice was explained by alloy potential fluctuation (APF) using a spatial correlation (SC) model. The detailed analysis of the optical phonon behavior in disorder lattice confirmed the substitution of the transition metal ions in Zn 2+ site of the ZnO host lattice. The secondary phases of ZnCo 2O4, CuO, and ZnMn2O4 were detected in higher Co, Cu, and Mn doped ZnO thin films respectively; where as, XRD did not detect these secondary phases in the same samples. Room temperature ferromagnetism was observed in Co2+ and Cu2+ ions doped ZnO thin films with maximum saturation magnetization (Ms) of 1.0 and 0.76 muB respectively. The origin of the observed ferromagnetism in Zn1-xCoxO thin films was tested by the controlled introduction of shallow donors (Al) in Zn0.9-x Co0.1O:Alx (x = 0.005 and 0.01) thin films. The saturation magnetization for the 10% Co-doped ZnO (1.0 muB /Co) at 300K reduced (˜0.25 muB/Co) due to Al doping. The observed ferromagnetism and the reduction due to Al doping can be explained by the Bound

  12. Solventless oxidative coupling of amines to imines by using transition-metal-free metal-organic frameworks.

    PubMed

    Qiu, Xuan; Len, Christophe; Luque, Rafael; Li, Yingwei

    2014-06-01

    A highly efficient, simple, and versatile transition-metal-free metal-organic framework catalytic system is proposed for the oxidative coupling of amines to imines. The catalytic protocol features high activities and selectivities to target products; compatibility with a variety of substrates, including aliphatic amines and secondary amines; and the possibility to efficiently and selectively promote amine cross-coupling reactions. A high stability and recyclability of the catalyst is also observed under the investigated conditions. Insights into the reaction mechanism indicate the formation of a superoxide species able to efficiently promote oxidative couplings.

  13. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    PubMed

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  14. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  15. Lifetime of combustion-generated environmentally persistent free radicals on Zn(II)O and other transition metal oxides.

    PubMed

    Vejerano, Eric; Lomnicki, Slawo; Dellinger, Barry

    2012-10-26

    Previous studies indicated that Environmentally Persistent Free Radicals (EPFRs) are formed in the post-flame, cool zone of combustion. They result from the chemisorption of gas-phase products of incomplete combustion (particularly hydroxyl- and chlorine-substituted aromatics) on Cu(II)O, Fe(III)(2)O(3), and Ni(II)O domains of particulate matter (fly ash or soot particles). This study reports our detailed laboratory investigation on the lifetime of EPFRs on Zn(II)O/silica surface. Similarly, as in the case of other transition metals, chemisorption of the adsorbate on the Zn(II)O surface and subsequent transfer of electron from the adsorbate to the metal forms a surface-bound EPFR and a reduced metal ion center. The EPFRs are stabilized by their interaction with the metal oxide domain surface. The half-lives of EPFRs formed on Zn(II)O domains were the longest observed among the transition metal oxides studied and ranged from 3 to 73 days. These half-lives were an order of magnitude longer than those formed on nickel and iron oxides, and were 2 orders of magnitude longer compared to the EPFRs on copper oxide which have half-lives only on the order of hours. The longest-lived radicals on Zn(II)O correspond to the persistency in ambient air particles of almost a year. The half-life of EPFRs was found to correlate with the standard reduction potential of the associated metal.

  16. Coupling between crystal structure and magnetism in transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable

  17. Interaction at the silicon/transition metal oxide heterojunction interface and its effect on the photovoltaic performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Zhou, Yangyang; Gong, Li; Zhao, Chuanxi; Chen, Keqiu; Xie, Fangyan; Zhang, Weihong; Chen, Jian; Liu, Pengyi; Xie, Weiguang

    2015-11-07

    The interfacial reaction and energy level alignment at the Si/transition metal oxide (TMO, including MoO3-x, V2O5-x, WO3-x) heterojunction are systematically investigated. We confirm that the interfacial reaction appears during the thermal deposition of TMO, with the reaction extent increasing from MoO3-x, to V2O5-x, and to WO3-x. The reaction causes the surface oxidation of silicon for faster electron/hole recombination, and the reduction of TMO for effective hole collection. The photovoltaic performance of the Si/TMO heterojunction devices is affected by the interface reaction. MoO3-x are the best hole selecting materials that induce least surface oxidation but strongest reduction. Compared with H-passivation, methyl group passivation is an effective way to reduce the interface reaction and improve the interfacial energy level alignment for better electron and hole collection.

  18. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.

    PubMed

    Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A

    2016-10-26

    Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNixMnyCo1-x-yO2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni(2+) (active) and Co(3+) (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive (7)Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the

  19. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  20. Predicting the band gap of ternary oxides containing 3d10 and 3d0 metals

    NASA Astrophysics Data System (ADS)

    McLeod, J. A.; Moewes, A.; Zatsepin, D. A.; Kurmaev, E. Z.; Wypych, A.; Bobowska, I.; Opasinska, A.; Cholakh, S. O.

    2012-11-01

    We present soft x-ray spectroscopy measurements and electronic structure calculations of ZnTiO3, a ternary oxide that is related to wurtzite ZnO and rutile TiO2. The electronic structure of ZnTiO3 was calculated using a variety of exchange-correlation functionals, and we compare the predicted band gaps of this material obtained from each functional with estimates from our experimental data and optical gaps quoted from the literature. We find that the main hybridizations in the electronic structure of ZnTiO3 can be predicted from the electronic structures of the two binary oxides. We further find that ZnTiO3 has weaker O 2p-Zn 3d repulsion than in ZnO, resulting in a relatively lower valence band maximum and consequently a larger band gap. Although we find a significant core hole shift in the measured O K XAS of ZnTiO3, we provide a simple empirical scheme for estimating the band gap that may prove to be applicable for any d10-d0 ternary oxide, and could be useful in finding a ternary oxide with a band gap tailored to a specific energy.

  1. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.

    PubMed

    McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2017-02-10

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.

  2. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    PubMed Central

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  3. The maximum overlap method: A general and efficient scheme for reducing basis sets. Application to the generation of approximate AO's for the 3 d transition metal atoms and ions

    NASA Astrophysics Data System (ADS)

    Francisco, E.; Seijo, L.; Pueyo, L.

    1986-07-01

    The method of maximum overlap, often applied to the problem of basis set reduction, is formulated in terms of weighted least squares with orthogonality restrictions. An analytical solution for the linear parameters of the reduced set is given. In this form, the method is a general and efficient scheme for reducing basis sets. As an application, orthogonal radial wavefunctions of the STO type have been obtained for the 3 d transition metal atoms and ions by simulation of the high-quality sets of Clementi and Roetti. The performance of the reduction has been evaluated by examining several one- and two-electron interactions. Results of these tests reveal that the new functions are highly accurate simulations of the reference AO's. They appear to be appropriate for molecular and solid state calculations.

  4. Self-interaction correction in multiple scattering theory: application to transition metal oxides

    SciTech Connect

    Daene, Markus W; Lueders, Martin; Ernst, Arthur; Diemo, Koedderitzsch; Temmerman, Walter M; Szotek, Zdzislawa; Wolfam, Hergert

    2009-01-01

    We apply to transition metal monoxides the self-interaction corrected (SIC) local spin density (LSD) approximation, implemented locally in the multiple scattering theory within the Korringa-Kohn-Rostoker (KKR) band structure method. The calculated electronic structure and in particular magnetic moments and energy gaps are discussed in reference to the earlier SIC results obtained within the LMTO-ASA band structure method, involving transformations between Bloch and Wannier representations to solve the eigenvalue problem and calculate the SIC charge and potential. Since the KKR can be easily extended to treat disordered alloys, by invoking the coherent potential approximation (CPA), in this paper we compare the CPA approach and supercell calculations to study the electronic structure of NiO with cation vacancies.

  5. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  6. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu)-substitution in single-crystalline FePt thin films

    NASA Astrophysics Data System (ADS)

    Ono, Takuya; Nakata, Hitoshi; Moriya, Tomohiro; Kikuchi, Nobuaki; Okamoto, Satoshi; Kitakami, Osamu; Shimatsu, Takehito

    2016-05-01

    In L10 (fct)-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu) thin films grown epitaxially on MgO(001) substrates at a substrate temperature of 350 °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m) of FePt-X films as a function of the effective number of valence electrons (neff) in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku) exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( Ku comp ) of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the Ku comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  7. Fabrication of functional transition metal oxide and hydroxide used as catalysts and battery materials

    NASA Astrophysics Data System (ADS)

    Xu, Linping

    and Cu was also studied. In the fourth part of this research, 3D flower-like alpha-nickel hydroxide with enhanced electrochemical activity was fabricated using a microwave-assisted hydrothermal method. The focus of this study is the synthesis of alpha-nickel hydroxide and its application for O2 reduction. The synthetic work focused on the preparation of flower-like alpha-nickel hydroxide using the microwave-assisted hydrothermal method. The alpha-nickel hydroxide shows superior electrochemical properties compared to those of the beta-form. However, it is difficult to make the alpha-form, since the structure of alpha-nickel hydroxide is unstable, and it prefers to transfer to the beta-form under basic conditions. In this study, flower-like alpha-nickel hydroxide was prepared using urea as the precipitating agent. The factors, which affected the formation of flower-like morphologies, have been investigated. The electrochemical activity of as-synthesized alpha-nickel hydroxide for oxygen reduction in an alkaline media was studied.

  8. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    SciTech Connect

    Datta, Soumendu Baral, Sayan; Mookerjee, Abhijit; Kaphle, Gopi Chandra

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  9. Doped Mott Insulators in (111) Bilayers of Perovskite Transition-Metal Oxides with a Strong Spin-Orbit Coupling

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The electronic properties of Mott insulators realized in (111) bilayers of perovskite transition-metal oxides are studied. The low-energy effective Hamiltonians for such Mott insulators are derived in the presence of a strong spin-orbit coupling. These models are characterized by the antiferromagnetic Heisenberg interaction and the anisotropic interaction whose form depends on the $d$ orbital occupancy. From exact diagonalization analyses on finite clusters, the ground state phase diagrams are derived, including a Kitaev spin liquid phase in a narrow parameter regime for $t_{2g}$ systems. Slave-boson mean-field analyses indicate the possibility of novel superconducting states induced by carrier doping into the Mott-insulating parent systems, suggesting the present model systems as unique playgrounds for studying correlation-induced novel phenomena. Possible experimental realizations are also discussed.

  10. Investigation of the Spatially Resolved Electronic Structure of Single Layer WS2 on Transition Metal Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Katoch, Jyoti; Ulstrup, Søren; Koch, Roland; Schwarz, Daniel; Singh, Simranjeet; McCreary, Kathy; Keun Yoo, Hyang; Xu, Jinsong; Jonker, Berry; Kawakami, Roland; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris

    The family of semiconducting single layer (SL) transition metal dichalcogenides (TMDs) have lately been intensely studied, owing to the strong coupling between spin and valley degrees of freedom as well as the presence of strongly bound excitons. The choice of supporting substrate is known to strongly influence these properties. We set out to investigate the electronic properties of CVD grown SL WS2 transferred onto the dielectric oxide materials SrTiO3 and TiO2. By using a combination of photoemission electron microscopy (PEEM) and angle-resolved photoemission (ARPES) with micrometer focus we obtain simultaneous spatial, momentum and energy-resolved information about SL WS2 on a polar (SrTiO3) and a nonpolar (TiO2) surface for the first time.

  11. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries.

    PubMed

    Liu, Wen; Oh, Pilgun; Liu, Xien; Lee, Min-Joon; Cho, Woongrae; Chae, Sujong; Kim, Youngsik; Cho, Jaephil

    2015-04-07

    High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.

  12. Actinide-Transition Metal heteronuclear Ions and Their Oxides: {IrUO}+ as an Analogue to Uranyl

    SciTech Connect

    Gibson, John K

    2006-01-01

    Recent theoretical calculations have shown that Ir should behave as a chemical analogue to N, with the result that IrUO{sup +}, like known NUO{sup +}, is predicted to be a stable species isoelectronic with UO{sub 2}{sup 2+}, the uranyl dication. The target heterometallic analogue to uranyl has now been prepared by direct laser desorption/ionization of a U/Ir alloy, and by oxidation of UIr{sup +} with N{sub 2}O and C{sub 2}H{sub 4}O. Properties of UIr{sup +}, UPt{sup +}, and UAu{sup +} bimetallic ions have been studied. They demonstrate direct actinide-transition metal bonding, and support the concept of autogenic isolobality.

  13. Final-state effect on x-ray photoelectron spectrum of nominally d1 and n -doped d0 transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Hadamek, Tobias; Demkov, Alexander A.

    2015-07-01

    We investigate the x-ray photoelectron spectroscopy (XPS) of nominally d1 and n -doped d0 transition-metal oxides including NbO2,SrVO3, and LaTiO3 (nominally d1), as well as n -doped SrTiO3 (nominally d0). In the case of single phase d1 oxides, we find that the XPS spectra (specifically photoelectrons from Nb 3 d , V 2 p , Ti 2 p core levels) all display at least two, and sometimes three distinct components, which can be consistently identified as d0,d1, and d2 oxidation states (with decreasing order in binding energy). Electron doping increases the d2 component but decreases the d0 component, whereas hole doping reverses this trend; a single d1 peak is never observed, and the d0 peak is always present even in phase-pure samples. In the case of n -doped SrTiO3, the d1 component appears as a weak shoulder with respect to the main d0 peak. We argue that these multiple peaks should be understood as being due to the final-state effect and are intrinsic to the materials. Their presence does not necessarily imply the existence of spatially localized ions of different oxidation states nor of separate phases. A simple model is provided to illustrate this interpretation, and several experiments are discussed accordingly. The key parameter to determine the relative importance between the initial-state and final-state effects is also pointed out.

  14. Synthesis and characterization of new ternary transition metal sulfide anodes for H 2S-powered solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Luo, J. L.; Sanger, A. R.; Chuang, K. T.

    A number of ternary transition metal sulfides with general composition AB 2S 4 (where A and B are different transition metal atoms) have been prepared and investigated as potential anode catalysts for use in H 2S-powered solid oxide fuel cells (SOFCs). For the initial screening, polarization resistance of the materials was measured in a two electrode symmetrical cell at 700-850 °C. Vanadium-based materials showed the lowest polarization resistance, and so were chosen for subsequent full cell tests using the configuration [H 2S, AV 2S 4/YSZ/Pt, air] (where A = Ni, Cr, Mo). MoV 2S 4 anode had superior activity and performance in the full cell setup, consistent with results from symmetrical cell tests. Polarization curves showed MoV 2S 4 had the lowest potential drop, with up to a 200 mA cm -2 current density at 800 °C. The highest power density of ca. 275 mW cm -2 at 800 °C was obtained with a pure H 2S stream. Polarization resistance of materials was a strong function of current density, and showed a sharp change of slope attributable to a change in the rate-limiting step of the anode reaction mechanism. MoV 2S 4 was chemically stable during prolonged (10 days) exposure to H 2S at 850 °C, and fuel cell performance was stable during continuous 3-day operation at 370 mA cm -2 current density.

  15. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    PubMed

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  16. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.

    PubMed

    Xu, Yi-Jun; Fu, Xianzhi

    2009-09-01

    The viability of functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by traditional [3 + 2] cycloaddition of transition metal oxides has been predicted using effective cluster models in the framework of density functional theory. The cycloaddition of transition metal oxides (OsO(4), RuO(4), and MnO(4)(-)) onto the X (100) (X = C, Si, and Ge) surface is much more facile than that of other molecular analogues including ethylene, fullerene, and single-walled carbon nanotubes because of the high reactivity of surface dimers of X (100). Our computational results demonstrate the plausibility that the well-known [3 + 2] cycloaddition of transition metal oxides to alkenes in organic chemistry can be employed as a new type of surface reaction to functionalize the semiconductor X (100) surface, which offers the new possibility for self-assembly or chemical functionalization of X (100) at low temperature. More importantly, the chemical functionalization of X (100) by cycloaddition of transition metal oxides provides the molecular basis for preparation of semiconductor-supported catalysts but also strongly advances the concept of using organic reactions to modify the solid surface, particularly to modify the semiconductor C (100), Si (100), and Ge (100) surfaces for target applications in numerous fields such as microelectronics and heterogeneous photocatalysis.

  17. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  18. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  19. [Deactivation by SO2 of transition metal oxides modified low-temperature SCR catalyst for NOx reduction with NH3].

    PubMed

    Shen, Bo-xiong; Liu, Ting; Yang, Ting-ting; Xiong, Li-xian; Wang, Jing

    2009-08-15

    MnOx-CeOx/ACF catalyst was prepared by impregnation method, which exhibited high activity for low-temperature selective catalytic reduction of NOx over the temperature range 110-230 degrees C. Experiments results indicated that the catalyst yielded 80% NO conversion at 150 degrees C and 90% at 230 degrees C. The Oxides of Fe,Cu and V were added to the catalysts based on MnOx-CeOx/ACF. The additions of these transition metal oxides had a negative effect on the activity of the catalysts. Compared with MnOx-CeOx/ACF and Cu and V modified catalysts, NO conversion for Fe-MnOx-CeOx/ACF catalyst leveled off at nearly 75% in the first 6 h in the presence of SO2. Two mechanisms of catalyst deactivation by SO2 were discovered by the methods of X-ray photoelectron spectrum (XPS) and Fourier transform infrared spectra (FTIR), indicating that the catalysts were covered by ammonium sulfates and the metal oxides, acting as active components, were also sulfated by SO2 to form metal sulfates.

  20. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    SciTech Connect

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius E-mail: hchahm@kist.re.kr; Ham, Hyung Chul E-mail: hchahm@kist.re.kr

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  1. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  2. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  3. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges.

    PubMed

    Kärkäs, Markus D; Åkermark, Björn

    2016-10-07

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  4. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  5. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.

    PubMed

    Chaudhuri, Phalguni; Wieghardt, Karl; Weyhermüller, Thomas; Paine, Tapan K; Mukherjee, Soumen; Mukherjee, Chandan

    2005-10-01

    The contributions of the authors to the research program 'Radicals in Enzymatic Catalysis' over the last ca. 5 years are summarized. Significant efforts were directed towards the design and testing of phenol-containing ligands for synthesizing radical-containing transition metal complexes as potential candidates for catalysis of organic substrates like alcohols, amines, aminophenols and catechols. Functional models for different copper oxidases, such as galactose oxidase, amine oxidases, phenoxazinone synthase and catechol oxidase, are reported. The copper complexes synthesized can mimic the function of the metalloenzymes galactose oxidase and amine oxidases by catalyzing the aerial oxidation of alcohols and amines. Even methanol could be oxidized, albeit with a low conversion, by a biradical-copper(II) compound. The presence of a primary kinetic isotope effect, similar to that for galactose oxidase, provides compelling evidence that H-atom abstraction from the alpha-C-atom of the substrates is the rate-limiting step. Although catechol oxidase and phenoxazinone synthase contain copper, manganese(IV) complexes containing radicals have been found to be useful to study synthetic systems and to understand the naturally occurring processes. An 'on-off' mechanism of the radicals without redox participation from the metal centers seems to be operative in the catalysis involving such metal-radical complexes.

  6. Synthesis and Characterization of Nanostructure Transition Metal Oxides Extracted from Industrial Waste (EOFD) by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Girisun, T. C. Sabari; Babeela, C.; Vidhya, V.

    2011-10-01

    Electric oil furnace dust (EOFD) is a solid waste generated in the collection of particulate material during steelmaking process in electric and oil furnaces. Over 7 million metric tons dust produced per annum in worldwide creates deep impacts like soil, ground water and ecology pollutions. This article reports the simple one step process for the extraction of nanostructured metal oxides from the industrial waste (EOFD) for the realization of low cost solar applications. By hydrothermal technique valuable metals were obtained in the form of metal oxides. Initially the presence of metals was identified by ICP analysis. XRD analysis confirms the formation of nano structured titanium oxide (TiO) along with traces of iron oxide (Fe2O3). The surface morphology and the particle size were analyzed by SEM analysis. Thus the metal oxides derived could be helpful to reduce the burden on the environment, increase the development of the source nano material and reduce the cost of raw materials for solar cell applications.

  7. P-type conductive amorphous oxides of transition metals from solution processing

    NASA Astrophysics Data System (ADS)

    Li, Jinwang; Kaneda, Toshihiko; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-07-01

    We report a series of solution-processed p-type conductive amorphous Ln-M-O (a-Ln-M-O, where M = Ru, Ir, and Ln is a lanthanide element except Ce) having low resistivities (10-3 to 10-2 Ω cm). These oxides are thermally stable to a high degree, being amorphous up to 800 °C, and processable below 400 °C. Their film surfaces are smooth on the atomic scale, and the process allows patterning simply by direct imprinting without distortion of the pattern after annealing. These properties have high potential for use in printed electronics. The electron configurations of these oxides are apparently different from existing p-type oxides.

  8. Synthesis and characterization of transition metal oxide nanotubes for photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Rangaraju, Raghu Raj

    Two different configurations of photo anodes based on anodic iron oxide were investigated for photo electrochemical water oxidation. Self ordered and vertically oriented array of iron oxide nanotubes was obtained by anodization of pure iron substrate in ethylene glycol based electrolyte containing 0.1 M NH4F + 3 vol% water (EGWF solution) at 50 V for 15 minutes. Annealing of the oxide nanotubes in hydrogen environment at 500 °C for 1 h resulted in predominantly hematite phase. The second type of photo anode was obtained by a two-step anodization procedure. This process resulted in a two- layered oxide structure, a top layer of nano-dendrite morphology and a bottom layer of nanoporous morphology. This electrode configuration combined the better photo catalytic properties of the nano-dendritic iron oxide and better electron transportation behavior of vertically oriented nano-channels. Annealing of these double anodized samples in acetylene environment at 550 °C for 10 minutes resulted in a mixture of maghemite and hematite phases. Photo current densities of 0.74 mA/cm2 at 0.2 VAg/AgCl and 1.8 mA/cm 2 at 0.5 VAg/AgCl were obtained under AM 1.5 illumination in 1 M KOH solution. The double anodized samples showed high photo conductivity and more negative flat band potential (-0.8 VAg/AgCl), which are the properties required for promising photo anode materials. Apart from the above work, mild steel which is 10 times less the cost of Ti is also being tested for its photoelectrochemical properties. TiO2 nanotubes synthesized and annealed in different conditions are compared for their quantum efficiency is also carried out in this work. Quantum efficiency measurements gives more reliable and photocurrent data towards photoelectrochemical applications.

  9. Theoretical study of electronic transport properties in pillar-embedded multiferroic transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Zhu, Jian-Xin

    2015-03-01

    Multiferroics show great potential in novel application to nanotechnologies based on well-established experimental techniques. Recently, vertically aligned nanocomposite (VAN) multiferroic thin films have demonstrated a significant amount of research interest owing to their promising results to give more delicate device, such as a larger interfacial area and intrinsic heteroepitaxy in this 3D structure. In order to understand the basic influence of the nano-pillar structure to the bulk multiferroics, we apply scaling theory to study the quasiparticle localization/delocalization effects of this novel nanostructure. Within an effective tight-binding model, we apply the transfer matrix method to calculate the wave function behavior throughout its transverse direction. We will show that how the critical behavior varies with various disordered nano-pillar patterns. We will also give a qualitative connection of our results to the transport experiments. Work at the LANL was performed under the auspices of the U.S. DOE Contract No. DEAC52- 06NA25396 through the LANL-LDRD program.

  10. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  11. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  12. Experimental bandstructure of the 5 d transition metal oxide IrO2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  13. New Quasi Low-Dimensional 4d and 5d Transition Metal Oxides with Correlated Electronic Properties - Synthesis and Characterizations

    DTIC Science & Technology

    2016-02-17

    Mn2MnReO6: synthesis and magnetic structure determination of a new transition- metal -only double perovskite canted antiferromagnet, Chemical...Greenblatt, Angewandt. Chem., revised resubmitted, 2-8-2016. 19. Mn2MnReO6: synthesis and magnetic structure determination of a new transition- metal ...typically combine to form non-polar structures , and the number of known polar, especially magnetoelectric materials, is still extremely few.[2] Therefore

  14. Unusual magnetic phases in the strong interaction limit of two-dimensional topological band insulators in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Langari, Abdollah; Fiete, Gregory A.

    2013-03-01

    The expected phenomenology of non-interacting topological band insulators (TBI) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topological states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose non-interacting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound, (Li,Na)2IrO3. By a combination of analytical methods and exact diagonalization studies on finite size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neél state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-J2-J3 model which has recently been studied in a similar context. We gratefully acknowledge financial support from ARO Grant No. W911NF-09-1-0527 and NSF Grant No. DMR-0955778

  15. Unusual magnetic phases in the strong interaction limit of two-dimensional topological band insulators in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kargarian, Mehdi; Langari, Abdollah; Fiete, Gregory A.

    2012-11-01

    The expected phenomenology of noninteracting topological band insulators (TBIs) is now largely theoretically understood. However, the fate of TBIs in the presence of interactions remains an active area of research with novel, interaction-driven topological states possible, as well as new exotic magnetic states. In this work we study the magnetic phases of an exchange Hamiltonian arising in the strong interaction limit of a Hubbard model on the honeycomb lattice whose noninteracting limit is a two-dimensional TBI recently proposed for the layered heavy transition metal oxide compound (Li,Na)2IrO3. By a combination of analytical methods and exact diagonalization studies on finite-size clusters, we map out the magnetic phase diagram of the model. We find that strong spin-orbit coupling can lead to a phase transition from an antiferromagnetic Neél state to a spiral or stripy ordered state. We also discuss the conditions under which a quantum spin liquid may appear in our model, and we compare our results with the different but related Kitaev-Heisenberg-J2-J3 model which has recently been studied in a similar context.

  16. A systematic study of (25)Mg NMR in paramagnetic transition metal oxides: applications to Mg-ion battery materials.

    PubMed

    Lee, Jeongjae; Seymour, Ieuan D; Pell, Andrew J; Dutton, Siân E; Grey, Clare P

    2016-12-21

    Rechargeable battery systems based on Mg-ion chemistries are generating significant interest as potential alternatives to Li-ion batteries. Despite the wealth of local structural information that could potentially be gained from Nuclear Magnetic Resonance (NMR) experiments of Mg-ion battery materials, systematic (25)Mg solid-state NMR studies have been scarce due to the low natural abundance, low gyromagnetic ratio, and significant quadrupole moment of (25)Mg (I = 5/2). This work reports a combined experimental (25)Mg NMR and first principles density functional theory (DFT) study of paramagnetic Mg transition metal oxide systems Mg6MnO8 and MgCr2O4 that serve as model systems for Mg-ion battery cathode materials. Magnetic parameters, hyperfine shifts and quadrupolar parameters were calculated ab initio using hybrid DFT and compared to the experimental values obtained from NMR and magnetic measurements. We show that the rotor assisted population transfer (RAPT) pulse sequence can be used to enhance the signal-to-noise ratio in paramagnetic (25)Mg spectra without distortions in the spinning sideband manifold. In addition, the value of the predicted quadrupolar coupling constant of Mg6MnO8 was confirmed using the RAPT pulse sequence. We further apply the same methodology to study the NMR spectra of spinel compounds MgV2O4 and MgMn2O4, candidate cathode materials for Mg-ion batteries.

  17. Electronic and Magnetic Properties of Transition-Metal Oxide Nanocomposites: A Tight-Binding Modeling at Mesoscale

    NASA Astrophysics Data System (ADS)

    Tai, Yuan-Yen; Zhu, Jian-Xin

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. In this talk, I will present an overview on our recent efforts in theoretical understanding of the electronic and magnetic properties TMO nanocomposites. In particular, I will introduce our recently developed tight-binding modeling of these properties arising from the interplay of competing interactions at the interfaces of planar and pillar nanocomposites. Our theoretical tool package will provide a unique capability to address the emergent phenomena in TMO nanocomposites and their mesoscale response to such effects like strain and microstructures at the interfaces, and ultimately help establish design principles of new multifunctionality with TMOs. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL LDRD Program.

  18. The Influence of Doping with Transition Metal Ions on the Structure and Magnetic Properties of Zinc Oxide Thin Films

    PubMed Central

    2014-01-01

    Zn1−xNixO (x = 0.03 ÷ 0.10) and Zn1−xFexO (x = 0.03 ÷ 0.15) thin films were synthesized by sol-gel method. The structure and the surface morphology of zinc oxide thin films doped with transition metal (TM) ions have been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magnetic studies were done using vibrating sample magnetometer (VSM) at room temperature. Experimental results revealed that the substitution of Ni ions in ZnO wurtzite lattice for the contents x = 0.03 ÷ 0.10 (Ni2+) leads to weak ferromagnetism of thin films. For Zn1−xFexO with x = 0.03 ÷ 0.05, the Fe3+ ions are magnetic coupling by superexchange interaction via oxygen ions in wurtzite structure. For x = 0.10 ÷ 0.15 (Fe3+) one can observe the increasing of secondary phase of ZnFe2O4 spinel. The Zn0.9Fe0.1O film shows a superparamagnetic behavior due to small crystallite sizes and the net spin magnetic moments arisen from the interaction between the iron ions through an oxygen ion in the spinel structure. PMID:24683324

  19. Detecting the Photoexcited Carrier Distribution Across GaAs/Transition Metal Oxide Interfaces by Coherent Longitudinal Acoustic Phonons.

    PubMed

    Pollock, Kevin L; Doan, Hoang Q; Rustagi, Avinash; Stanton, Christopher J; Cuk, Tanja

    2017-03-02

    A prominent architecture for solar energy conversion layers diverse materials, such as traditional semiconductors (Si, III-V) and transition metal oxides (TMOs), into a monolithic device. The efficiency with which photoexcited carriers cross each layer is critical to device performance and dependent on the electronic properties of a heterojunction. Here, by time-resolved changes in the reflectivity after excitation of an n-GaAs/p-GaAs/TMO (Co3O4, IrO2) device, we detect a photoexcited carrier distribution specific to the p-GaAs/TMO interface through its coupling to phonons in both materials. The photoexcited carriers generate two coherent longitudinal acoustic phonons (CLAPs) traveling in opposite directions, one into the TMO and the other into the p-GaAs. This is the first time a CLAP is reported to originate at a semiconductor/TMO heterojunction. Therefore, these experiments seed future modeling of the built-in electric fields, the internal Fermi level, and the photoexcited carrier density of semiconductor/TMO interfaces within multilayered heterostructures.

  20. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  1. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur.

    PubMed

    Chen, Chun-Liang; Wang, Ching-Huei; Weng, Hung-Shan

    2004-08-01

    This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction.

  2. Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films

    NASA Astrophysics Data System (ADS)

    Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria

    2013-03-01

    Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.

  3. Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation

    PubMed Central

    Chen, Yanhui; Zhou, Junfeng; Maguire, Pierce; O’Connell, Robert; Schmitt, Wolfgang; Li, Yonghe; Yan, Zhengguang; Zhang, Yuefei; Zhang, Hongzhou

    2016-01-01

    Cobalt hydrate and doped binary Co0.9M0.1OOH (M = Ni, Mn, Fe) nanorings of 100–300 nm were fabricated in solution through a facile ambient oxidation method. A transformation from Co0.9Ni0.1(OH)2 nanodiscs to hollow Co0.9Ni0.1OOH nanorings was observed with prolonged reaction time. Core-shell nanodiscs have elemental segregation with a Co(OH)2 core and Ni(OH)2 shell. Co0.9Ni0.1OOH nanorings displayed a higher electrochemical capacitance than Mn and Fe doped nanorings materials or materials with disc-like geometries. PMID:26853105

  4. Single crystal growth from separated educts and its application to lithium transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Freund, F.; Williams, S. C.; Johnson, R. D.; Coldea, R.; Gegenwart, P.; Jesche, A.

    2016-10-01

    Thorough mixing of the starting materials is the first step of a crystal growth procedure. This holds true for almost any standard technique, whereas the intentional separation of educts is considered to be restricted to a very limited number of cases. Here we show that single crystals of α-Li2IrO3 can be grown from separated educts in an open crucible in air. Elemental lithium and iridium are oxidized and transported over a distance of typically one centimeter. In contrast to classical vapor transport, the process is essentially isothermal and a temperature gradient of minor importance. Single crystals grow from an exposed condensation point placed in between the educts. The method has also been applied to the growth of Li2RuO3, Li2PtO3 and β-Li2IrO3. A successful use of this simple and low cost technique for various other materials is anticipated.

  5. Single crystal growth from separated educts and its application to lithium transition-metal oxides

    PubMed Central

    Freund, F.; Williams, S. C.; Johnson, R. D.; Coldea, R.; Gegenwart, P.; Jesche, A.

    2016-01-01

    Thorough mixing of the starting materials is the first step of a crystal growth procedure. This holds true for almost any standard technique, whereas the intentional separation of educts is considered to be restricted to a very limited number of cases. Here we show that single crystals of α-Li2IrO3 can be grown from separated educts in an open crucible in air. Elemental lithium and iridium are oxidized and transported over a distance of typically one centimeter. In contrast to classical vapor transport, the process is essentially isothermal and a temperature gradient of minor importance. Single crystals grow from an exposed condensation point placed in between the educts. The method has also been applied to the growth of Li2RuO3, Li2PtO3 and β-Li2IrO3. A successful use of this simple and low cost technique for various other materials is anticipated. PMID:27748402

  6. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    NASA Astrophysics Data System (ADS)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  7. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  8. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO3, WO3, CrO3, and V2O5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  9. Hydrolysis on transition metal oxide clusters and the stabilities of M-O-M bridges.

    PubMed

    Johnson, J R; Panas, I

    2000-07-24

    Water addition to molecular single, double and triple M-O-M bridges (M = Sc, Ti, V, Cr, and Mn) were considered, and the stabilities toward stepwise hydrolysis of the oxygen bridges were studied by means of quantum chemistry. The M-O bond distances for the studied systems were compared to experiment for demonstration of the applicability of the B3LYP functional to the investigated systems. While substantial exothermicities were found for the hydrolysis of double and triple M-O-M bridges, addition of water to a single bridge was generally found to be slightly endothermic. The lack of enthalpy drive for the (OH)yOxM-O-MOx(OH)y + H2O-->2MOx-1(OH)y+2 reaction was taken to suggest that entropy increase and the formation of mononuclear water complexe, would be decisive factors for the dissociation. A mechanism was proposed for the observed erosion of the protective chromium oxide scale on high-temperature alloys at elevated temperatures and high humidities, based on the formation of CrO2(OH)2(g).

  10. Approach to multifunctional device platform with epitaxial graphene on transition metal oxide

    PubMed Central

    Park, Jeongho; Back, Tyson; Mitchel, William C.; Kim, Steve S.; Elhamri, Said; Boeckl, John; Fairchild, Steven B.; Naik, Rajesh; Voevodin, Andrey A.

    2015-01-01

    Heterostructures consisting of two-dimensional materials have shown new physical phenomena, novel electronic and optical properties, and new device concepts not observed in bulk material systems or purely three dimensional heterostructures. These new effects originated mostly from the van der Waals interaction between the different layers. Here we report that a new optical and electronic device platform can be provided by heterostructures of 2D graphene with a metal oxide (TiO2). Our novel direct synthesis of graphene/TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface using a molecular beam epitaxy approach and O2 intercalation method, which is compatible with wafer scale growth of heterostructures. As-grown heterostructures exhibit inherent photosensitivity in the visible light spectrum with high photo responsivity. The photo sensitivity is 25 times higher than that of reported graphene photo detectors. The improved responsivity is attributed to optical transitions between O 2p orbitals in the valence band of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric layers, respectively. PMID:26395160

  11. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  12. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  13. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  14. Transition-metal-free oxidative carboazidation of acrylamides via cascade C-N and C-C bond-forming reactions.

    PubMed

    Qiu, Jun; Zhang, Ronghua

    2014-07-07

    A novel transition-metal-free oxidative carboazidation of acrylamides using inexpensive NaN3 and K2S2O8 was achieved, which not only provided an efficient method to prepare various N3-substituted oxindoles, but also represented a novel strategy for C-N and C-C bond formation via a free-radical cascade process. This transformation exhibits excellent functional group tolerance, affording the desired oxindoles in good to excellent yields.

  15. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    NASA Astrophysics Data System (ADS)

    Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.

    2016-02-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.

  16. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory.

    PubMed

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F; Dixon, David A

    2016-08-09

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n (M = Ti, Zr, Hf, n = 1-4) and (MO3)n (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.

  17. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  18. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory

    SciTech Connect

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F.; Dixon, David A.

    2016-08-09

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.

  19. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  20. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  1. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  2. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  3. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes.

    PubMed

    Naguib, Michael; Mashtalir, Olha; Lukatskaya, Maria R; Dyatkin, Boris; Zhang, Chuanfang; Presser, Volker; Gogotsi, Yury; Barsoum, Michel W

    2014-07-18

    Herein we show that heating 2D Ti3C2 in air results in TiO2 nanocrystals enmeshed in thin sheets of disordered graphitic carbon structures that can handle extremely high cycling rates when tested as anodes in lithium ion batteries. Oxidation of 2D Ti3C2 in either CO2 or pressurized water also resulted in TiO2-C hybrid structures. Similarly, other hybrids can be produced, as we show here for Nb2O5/C from 2D Nb2C.

  4. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    SciTech Connect

    Tao, Franklin

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  5. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.

    PubMed

    Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M; Al-Bogami, Abdullah S; El-Hady, Deia Abd; Amine, Khalil

    2014-10-08

    Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.1-0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g(-1) (cycled at 1.5-4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.

  6. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    NASA Astrophysics Data System (ADS)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi

    2017-01-01

    The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO2). This system demonstrated a higher catalytic property than Au/CeO2 and Pd/CeO2 under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH3ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO2 or ZrO2) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO2 photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  7. Synthesis-Microstructure-Performance Relationship of Layered Transition Metal Oxides as Cathode for Rechargeable Sodium Batteries Prepared by High-Temperature Calcination

    SciTech Connect

    Xie, Man; Luo, Rui; Lu, Jun; Chen, Renjie; Wu, Feng; Wang, Xiaoming; Zhan, Chun; Wu, Huiming; Albishri, Hassan M.; Al-Bogami, Abdullah S.; El-Hady, Deia Abd; Amine, Khalil

    2014-09-05

    Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1–y)1–xO2 (x = 0.1–0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1–y)1–xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g–1 (cycled at 1.5–4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.

  8. Ascorbate does not act as a pro-oxidant towards lipids and proteins in human plasma exposed to redox-active transition metal ions and hydrogen peroxide.

    PubMed

    Suh, Jung; Zhu, Ben-Zhan; Frei, Balz

    2003-05-15

    The combination of ascorbate, transition metal ions, and hydrogen peroxide (H(2)O(2)) is an efficient hydroxyl radical generating system called "the Udenfriend system." Although the pro-oxidant role of ascorbate in this system has been well characterized in vitro, it is uncertain whether ascorbate also acts as a pro-oxidant under physiological conditions. To address this question, human plasma, used as a representative biological fluid, was either depleted of endogenous ascorbate with ascorbate oxidase, left untreated, or supplemented with 25 microM-1 mM ascorbate. Subsequently, the plasma samples were incubated at 37 degrees C with 50 microM-1 mM iron (from ferrous ammonium sulfate), 60 or 100 microM copper (from cupric sulfate), and/or 200 microM or 1 mM H(2)O(2). Although endogenous and added ascorbate was depleted rapidly in the presence of transition metal ions and H(2)O(2), no cholesterol ester hydroperoxides or malondialdehyde were formed, i.e., ascorbate protected against, rather than promoted, lipid peroxidation. Conversely, depletion of endogenous ascorbate was sufficient to cause lipid peroxidation, the rate and extent of which were enhanced by the addition of metal ions but not H(2)O(2). Ascorbate also did not enhance protein oxidation in plasma exposed to metal ions and H(2)O(2), as assessed by protein carbonyl formation and depletion of reduced thiols. Interestingly, neither the rate nor the extent of endogenous alpha-tocopherol oxidation in plasma was affected by any of the treatments. Our data show that even in the presence of redox-active iron or copper and H(2)O(2), ascorbate acts as an antioxidant that prevents lipid peroxidation and does not promote protein oxidation in human plasma in vitro.

  9. Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica.

    PubMed

    Wang, Yangang; Wang, Yanqin; Liu, Xiaohui; Guo, Yun; Guo, Yanglong; Lu, Guanzhong; Schüth, Ferdi

    2008-11-01

    Mesoporous metal oxides and mixed oxides, such as NiO, CeO2, Cr2O3, Fe203, Mn2O3, NiFe2O4 and Ce(x)Zr(1-x)O2 (x=0.8 and 0.6) have been synthesized by nanocasting from mesoporous cubic (la3d) vinyl-functionalized silica (vinylsilica). Their structural properties were characterized by XRD, TEM, N2-sorption and Raman spectra. Thus-prepared mesoporous materials possess a high BET surface area (110-190 m2g(-1)), high pore volume (0.25-0.40 cm3g(-1)) and relatively ordered structures. The catalytic properties of Cr2O3 were tested in the oxidation of toluene. The mesoporous Cr2O3 exhibits unusually high catalytic activity in the complete oxidation of toluene as compared with commercial Cr2O3.

  10. Ligand-Assisted Co-Assembly Approach toward Mesoporous Hybrid Catalysts of Transition-Metal Oxides and Noble Metals: Photochemical Water Splitting.

    PubMed

    Liu, Ben; Kuo, Chung-Hao; Chen, Jiejie; Luo, Zhu; Thanneeru, Srinivas; Li, Weikun; Song, Wenqiao; Biswas, Sourav; Suib, Steven L; He, Jie

    2015-07-27

    A bottom-up synthetic approach was developed for the preparation of mesoporous transition-metal-oxide/noble-metal hybrid catalysts through ligand-assisted co-assembly of amphiphilic block-copolymer micelles and polymer-tethered noble-metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble-metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble-metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble-metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.

  11. General facile approach to transition-metal oxides with highly uniform mesoporosity and their application as adsorbents for heavy-metal-ion sequestration.

    PubMed

    Seisenbaeva, Gulaim A; Daniel, Geoffrey; Kessler, Vadim G; Nedelec, Jean-Marie

    2014-08-18

    Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution.

  12. Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals

    SciTech Connect

    Nekrasov, I. A. Pavlov, N. S.; Sadovskii, M. V.

    2013-04-15

    We discuss the recently proposed LDA' + DMFT approach providing a consistent parameter-free treatment of the so-called double counting problem arising within the LDA + DMFT hybrid computational method for realistic strongly correlated materials. In this approach, the local exchange-correlation portion of the electron-electron interaction is excluded from self-consistent LDA calculations for strongly correlated electronic shells, e.g., d-states of transition metal compounds. Then, the corresponding double-counting term in the LDA' + DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit, FLL) form of the Hubbard model interaction term. We present the results of extensive LDA' + DMFT calculations of densities of states, spectral densities, and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in the paramagnetic phase: charge transfer insulators (MnO, CoO, and NiO) and strongly correlated metals (SrVO{sub 3} and Sr{sub 2}RuO{sub 4}). It is shown that for NiO and CoO systems, the LDA' + DMFT approach qualitatively improves the conventional LDA + DMFT results with the FLL type of double counting, where CoO and NiO were obtained to be metals. Our calculations also include transition-metal 4s-states located near the Fermi level, missed in previous LDA + DMFT studies of these monoxides. General agreement with optical and the X-ray experiments is obtained. For strongly correlated metals, the LDA' + DMFT results agree well with the earlier LDA + DMFT calculations and existing experiments. However, in general, LDA' + DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen-state positions compared to the conventional LDA + DMFT method.

  13. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R.; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-11-01

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (‑SO3‑) that can effectively attract Ni2+, Co2+, Zn2+ ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g‑1 after 100 cycles at a current density of 400 mAg‑1. For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg‑1 at current densities of 10 Ag‑1 after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.

  14. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors

    PubMed Central

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R.; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-01-01

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (−SO3−) that can effectively attract Ni2+, Co2+, Zn2+ ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g−1 after 100 cycles at a current density of 400 mAg−1. For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg−1 at current densities of 10 Ag−1 after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices. PMID:27886231

  15. A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors.

    PubMed

    Zhou, Han; Zhang, Lusi; Zhang, Dongyang; Chen, Shuangqiang; Coxon, Paul R; He, Xiong; Coto, Mike; Kim, Hyun-Kyung; Xi, Kai; Ding, Shujiang

    2016-11-25

    We report a simple synthetic approach to coaxially grow transition metal oxide (TMO) nanostructures on carbon nanotubes (CNT) with ready control of phase and morphology. A thin (~4 nm) sulfonated-polystyrene (SPS) pre-coating is essential for the deposition of transition metal based materials. This layer has abundant sulfonic groups (-SO3(-)) that can effectively attract Ni(2+), Co(2+), Zn(2+) ions through electrostatic interaction and induce them via hydrolysis, dehydration and recrystallization to form coaxial (NiO, Co3O4, NiCoO2 and ZnCo2O4) shells and a nanosheet-like morphology around CNT. These structures possess a large active surface and enhanced structural robustness when used as electrode materials for lithium-ion batteries (LIBs) and electrochemical capacitors (ECs). As electrodes for LIBs, the ZnCo2O4@CNT material shows extremely stable cycling performance with a discharge capacity of 1068 mAh g(-1) after 100 cycles at a current density of 400 mAg(-1). For EC applications, the NiCoO2@CNT exhibits a high capacitance of 1360 Fg(-1) at current densities of 10 Ag(-1) after 3000 cycles and an overall capacitance loss of only 1.4%. These results demonstrate the potential of such hybrid materials meeting the crucial requirements of cycling stability and high rate capability for energy conversion and storage devices.

  16. Covalent bonds against magnetism in transition metal compounds.

    PubMed

    Streltsov, Sergey V; Khomskii, Daniel I

    2016-09-20

    Magnetism in transition metal compounds is usually considered starting from a description of isolated ions, as exact as possible, and treating their (exchange) interaction at a later stage. We show that this standard approach may break down in many cases, especially in 4d and 5d compounds. We argue that there is an important intersite effect-an orbital-selective formation of covalent metal-metal bonds that leads to an "exclusion" of corresponding electrons from the magnetic subsystem, and thus strongly affects magnetic properties of the system. This effect is especially prominent for noninteger electron number, when it results in suppression of the famous double exchange, the main mechanism of ferromagnetism in transition metal compounds. We study this mechanism analytically and numerically and show that it explains magnetic properties of not only several 4d-5d materials, including Nb2O2F3 and Ba5AlIr2O11, but can also be operative in 3d transition metal oxides, e.g., in CrO2 under pressure. We also discuss the role of spin-orbit coupling on the competition between covalency and magnetism. Our results demonstrate that strong intersite coupling may invalidate the standard single-site starting point for considering magnetism, and can lead to a qualitatively new behavior.

  17. Covalent bonds against magnetism in transition metal compounds

    PubMed Central

    Streltsov, Sergey V.; Khomskii, Daniel I.

    2016-01-01

    Magnetism in transition metal compounds is usually considered starting from a description of isolated ions, as exact as possible, and treating their (exchange) interaction at a later stage. We show that this standard approach may break down in many cases, especially in 4d and 5d compounds. We argue that there is an important intersite effect—an orbital-selective formation of covalent metal–metal bonds that leads to an “exclusion” of corresponding electrons from the magnetic subsystem, and thus strongly affects magnetic properties of the system. This effect is especially prominent for noninteger electron number, when it results in suppression of the famous double exchange, the main mechanism of ferromagnetism in transition metal compounds. We study this mechanism analytically and numerically and show that it explains magnetic properties of not only several 4d–5d materials, including Nb2O2F3 and Ba5AlIr2O11, but can also be operative in 3d transition metal oxides, e.g., in CrO2 under pressure. We also discuss the role of spin–orbit coupling on the competition between covalency and magnetism. Our results demonstrate that strong intersite coupling may invalidate the standard single-site starting point for considering magnetism, and can lead to a qualitatively new behavior. PMID:27601669

  18. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Lu, Baiyi; Hu, Yinzhou; Huang, Weisu; Wang, Mengmeng; Jiang, Yuan; Lou, Tiantian

    2016-06-01

    This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu2+, Fe2+, Mn2+, Zn2+, Na+, and Mg2+) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe2+ and Cu2+ were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe2+ > Cu2+ > Mn2+ > Zn2+ > Mg2+ ≈ Na+. 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe2+ and Cu2+, as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs.

  19. Effect of Transition Metal Ions on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions

    PubMed Central

    Lu, Baiyi; Hu, Yinzhou; Huang, Weisu; Wang, Mengmeng; Jiang, Yuan; Lou, Tiantian

    2016-01-01

    This study investigated the effect of metal ions on the oxidation of sterols and their kinetics in oil-in-water emulsions. Sterol substrates were added with different metal ions (Cu2+, Fe2+, Mn2+, Zn2+, Na+, and Mg2+) of five concentrations and investigated after 2 h of heating at 90 °C. The substrates added with Fe2+ and Cu2+ were heated continuously to evaluate the kinetics of four sterols and their corresponding sterol oxidation products (SOPs). Sterol oxidation increased as the metal ion concentration increased and the heating time was prolonged. The capability of the metal ions oxidizing sterols ranked as followed: Fe2+ > Cu2+ > Mn2+ > Zn2+ > Mg2+ ≈ Na+. 7-Ketosterol, 7β/7α-Hydroxysterol, 5β,6β/5α,6α-Epoxysterol, and Triols were the main oxides on the B ring, whereas 6β-Hydroxysterol was not or only slightly influenced. The acceleration of sterol degradation induced by Fe2+ and Cu2+, as well as the formation of oxidation products, followed first-order formation/elimination kinetics. The acceleration effect may be partly ascribed to the increase in elimination rate constant and formation rate constant. Transition metal ions can significantly induce sterol oxidation, which reduces food nutritional quality and triggers the formation of undesirable compounds, such as SOPs. PMID:27328709

  20. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-02-01

    The small size of Na+ and Cl‑ ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl‑ ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl‑). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl‑ ions in functional devices.

  1. 3D Oxidized Graphene Frameworks for Efficient Nano Sieving

    PubMed Central

    Pawar, Pranav Bhagwan; Saxena, Sumit; Badhe, Dhanashree Kamlesh; Chaudhary, Raghvendra Pratap; Shukla, Shobha

    2016-01-01

    The small size of Na+ and Cl− ions provides a bottleneck in desalination and is a challenge in providing alternatives for continuously depleting fresh water resources. Graphene by virtue of its structural properties has the potential to address this issue. Studies have indicated that use of monolayer graphene can be used to filter micro volumes of saline solution. Unfortunately it is extremely difficult, resource intensive and almost impractical with current technology to fabricate operational devices using mono-layered graphene. Nevertheless, graphene based devices still hold the key to solve this problem due to its nano-sieving ability. Here we report synthesis of oxidized graphene frameworks and demonstrate a functional device to desalinate and purify seawater from contaminants including Na+ and Cl− ions, dyes and other microbial pollutants. Micro-channels in these frameworks help in immobilizing larger suspended solids including bacteria, while nano-sieving through graphene enables the removal of dissolved ions (e.g. Cl−). Nano-sieving incorporated with larger frameworks has been used in filtering Na+ and Cl− ions in functional devices. PMID:26892277

  2. Modification of MWCNT@TiO2 core-shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane

    NASA Astrophysics Data System (ADS)

    Gui, Meei Mei; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2014-11-01

    Titanium dioxide (TiO2) doped with visible-light-responsive metal oxides has been widely reported for improving the visible light absorption performance of TiO2 and its photocatalytic activity. The metal oxides could function as 'charge-carrier traps' that transport electrons from TiO2 through the heterojunction of the TiO2-metal oxides. In this work, the common transition metal oxides, i.e. FeOx, CuOx, NiO, CoOx and ZnO, were doped onto MWCNT@TiO2 core-shell nanocomposites. The effects of the metal oxide dopants on the photoactivity of the core-shell nanocomposites on CO2 reduction were studied. Characterization with diffuse-reflectance UV-vis showed significant improvement on visible light absorption after doping MWCNT@TiO2 with CuOx, FeOx and CoOx with the adsorption band-edge position red-shifted into the wavelength range of 480-630 nm. CuO-MWCNT@TiO2 appeared to be the most active one among all the studied photocatalysts, achieving a total methane formation of 0.93 μmol/g-catalyst.

  3. 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications

    NASA Astrophysics Data System (ADS)

    van den Ham, E. J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P. H. L.; Van Bael, M. K.; Hardy, A.

    2017-04-01

    Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10-3 Ω•cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.

  4. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  5. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  6. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.

    PubMed

    Fu, Kun; Wang, Yibo; Yan, Chaoyi; Yao, Yonggang; Chen, Yanan; Dai, Jiaqi; Lacey, Steven; Wang, Yanbin; Wan, Jiayu; Li, Tian; Wang, Zhengyang; Xu, Yue; Hu, Liangbing

    2016-04-06

    All-component 3D-printed lithium-ion batteries are fabricated by printing graphene-oxide-based composite inks and solid-state gel polymer electrolyte. An entirely 3D-printed full cell features a high electrode mass loading of 18 mg cm(-2) , which is normalized to the overall area of the battery. This all-component printing can be extended to the fabrication of multidimensional/multiscale complex-structures of more energy-storage devices.

  7. Beyond Metal-Hydrides: Non-Transition-Metal and Metal-Free Ligand-Centered Electrocatalytic Hydrogen Evolution and Hydrogen Oxidation.

    PubMed

    Haddad, Andrew Z; Garabato, Brady D; Kozlowski, Pawel M; Buchanan, Robert M; Grapperhaus, Craig A

    2016-06-29

    A new pathway for homogeneous electrocatalytic H2 evolution and H2 oxidation has been developed using a redox active thiosemicarbazone and its zinc complex as seminal metal-free and transition-metal-free examples. Diacetyl-bis(N-4-methyl-3-thiosemicarbazone) and zinc diacetyl-bis(N-4-methyl-3-thiosemicarbazide) display the highest reported TOFs of any homogeneous ligand-centered H2 evolution catalyst, 1320 and 1170 s(-1), respectively, while the zinc complex also displays one of the highest reported TOF values for H2 oxidation, 72 s(-1), of any homogeneous catalyst. Catalysis proceeds via ligand-centered proton-transfer and electron-transfer events while avoiding traditional metal-hydride intermediates. The unique mechanism is consistent with electrochemical results and is further supported by density functional theory. The results identify a new direction for the design of electrocatalysts for H2 evolution and H2 oxidation that are not reliant on metal-hydride intermediates.

  8. Transition-Metal-Free Regioselective Alkylation of Pyridine N-Oxides Using 1,1-Diborylalkanes as Alkylating Reagents.

    PubMed

    Jo, Woohyun; Kim, Junghoon; Choi, Seoyoung; Cho, Seung Hwan

    2016-08-08

    Reported herein is an unprecedented base-promoted deborylative alkylation of pyridine N-oxides using 1,1-diborylalkanes as alkyl sources. The reaction proceeds efficiently for a wide range of pyridine N-oxides and 1,1-diborylalkanes with excellent regioselectivity. The utility of the developed method is demonstrated by the sequential C-H arylation and methylation of pyridine N-oxides. The reaction also can be applied for the direct introduction of a methyl group to 9-O-methylquinine N-oxide, thus it can serve as a powerful method for late-stage functionalization.

  9. Strong and anisotropic superexchange in the single-molecule magnet (SMM) [MnIII(6)OsIII]3+: promoting SMM behavior through 3d-5d transition metal substitution.

    PubMed

    Hoeke, Veronika; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2014-01-06

    The reaction of the in situ generated trinuclear triplesalen complex [(talent-Bu2)MnIII3(solv)n]3+ with (Ph4P)3[OsIII(CN)6] and NaClO4·H2O affords [MnIII6OsIII](ClO4)3 (= [{(talent-Bu2)MnIII3}2{OsIII(CN)6}](ClO4)3) in the presence of the oxidizing agent [(tacn)2NiIII](ClO4)3 (tacn =1,4,7-triazacyclononane), while the reaction of [(talent-Bu2)MnIII3(solv)n]3+ with K4[OsII(CN)6] and NaClO4·H2O yields [MnIII6OsII](ClO4)2 under an argon atmosphere. The molecular structure of [MnIII6OsIII]3+ as determined by single-crystal X-ray diffraction is closely related to the already published [MnIII6Mc]3+ complexes (Mc = CrIII, FeIII, CoIII, MnIII). The half-wave potential of the OsIII/OsII couple is E1/2 = 0.07 V vs Fc+/Fc. The FT-IR and electronic absorption spectra of [MnIII6OsII]2+ and [MnIII6OsIII]3+ exhibit distinct features of dicationic and tricationic [MnIII6Mc]n+ complexes, respectively. The dc magnetic data (μeff vs T, M vs B, and VTVH) of [MnIII6OsII]2+ are successfully simulated by a full-matrix diagonalization of a spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, indicating antiferromagnetic MnIII–MnIII interactions within the trinuclear triplesalen subunits (JMn–Mn(1) = −(0.53 ± 0.01) cm–1, Ĥex = −2∑i3d analogue [MnIII6FeIII]3+ due to the

  10. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices

    PubMed Central

    Dubal, Deepak P.; Holze, Rudolf; Gomez-Romero, Pedro

    2014-01-01

    Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried out. The synergetic combination of rGO and Ni(OH)2 or Co(OH)2) provides dual charge-storing mechanisms whereas 3D framework of sponge allows excellent accessibility of electrolyte to hybrid electrodes. Moreover, to further increase the energy density, hybrid devices have been fabricated with SP@rGO@Ni or SP@rGO@Co and SP@rGO as positive and negative electrodes, respectively. These hybrid devices operate with extended operating voltage windows and achieve remarkable electrochemical supercapacitive properties which make them truly promising energy storage devices for commercial production. PMID:25483007

  11. Development of hybrid materials based on sponge supported reduced graphene oxide and transition metal hydroxides for hybrid energy storage devices.

    PubMed

    Dubal, Deepak P; Holze, Rudolf; Gomez-Romero, Pedro

    2014-12-08

    Earnest efforts have been taken to design hybrid energy storage devices using hybrid electrodes based on capacitive (rGO) and pseudocapacitive (Ni(OH)2 and Co(OH)2) materials deposited on the skeleton of 3D macroporous (indicate sponge material) sponge support. Conducting framework was formed by coating rGO on macroporous sponge on which subsequent deposition of Ni(OH)2 and Co(OH)2 was carried out. The synergetic combination of rGO and Ni(OH)2 or Co(OH)2) provides dual charge-storing mechanisms whereas 3D framework of sponge allows excellent accessibility of electrolyte to hybrid electrodes. Moreover, to further increase the energy density, hybrid devices have been fabricated with SP@rGO@Ni or SP@rGO@Co and SP@rGO as positive and negative electrodes, respectively. These hybrid devices operate with extended operating voltage windows and achieve remarkable electrochemical supercapacitive properties which make them truly promising energy storage devices for commercial production.

  12. Contributions of superoxide, hydrogen peroxide, and transition metal ions to auto-oxidation of the favism-inducing pyrimidine aglycone, divicine, and its reactions with haemoglobin.

    PubMed

    Winterbourn, C C; Benatti, U; De Flora, A

    1986-06-15

    The influence of O2-, H2O2 and metal ions on the auto-oxidation of divicine, a pyrimidine aglycone, was studied. In air at pH 7.4, the hydroquinonic form oxidized within a few minutes. Superoxide dismutase (SOD) markedly decreased the initial rate, giving a lag phase followed by rapid oxidation. Although catalase or diethylenetriamine-penta-acetic acid (DTPA) alone had little effect, each in the presence of SOD further slowed the initial rate and increased the lag. H2O2 decreased the lag time, as did Cu2+, Fe2+ or haemoglobin. GSH substantially increased the lag phase, but it eventually reacted with the divicine to form a 305 nm-absorbing adduct. These results indicate that an O2(-)-dependent mechanism of divicine auto-oxidation normally predominates. Auto-oxidation can also occur by a mechanism involving H2O2 and transition metal ions or haemoglobin, and if both these reactions are prevented by SOD and DTPA or catalase, a third mechanism, requiring build-up of an autocatalytic intermediate, becomes operative. Oxyhaemoglobin did not react directly with divicine, but reacted with the H2O2 produced by divicine auto-oxidation to give mainly an oxidized derivative presumed to be ferrylhaemoglobin. Divicine was shown to reduce ferylhaemoglobin to methaemoglobin, and this reaction was probably responsible for the acceleratory effect of haemoglobin on divicine oxidation. These results indicate that O2 rather than oxyhaemoglobin is likely to initiate divicine oxidation in the erythrocyte. Haemolytic crises, which are thought to result from this oxidation, occur only sporadically in glucose-6-phosphate dehydrogenase deficient individuals following ingestion of fava beans. A characteristic of the crises is acute depletion of erythrocyte GSH, and the vulnerability of these cells could relate to the ability of GSH, in combination with SOD, to protect against the autocatalytic mechanism of divicine auto-oxidation. Our demonstration of a variety of auto-oxidation pathways also

  13. Photoluminescence of monolayer transition metal dichalcogenides integrated with VO2

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; DeLello, Kursti; Zhang, Hai-Tian; Zhang, Kehao; Lin, Zhong; Terrones, Mauricio; Engel-Herbert, Roman; Robinson, Joshua A.

    2016-12-01

    Integrating a phase transition material with two-dimensional semiconductors can provide a route towards tunable opto-electronic metamaterials. Here, we integrate monolayer transition metal dichalcogenides with vanadium dioxide (VO2) thin films grown via molecular beam epitaxy to form a 2D/3D heterostructure. Vanadium dioxide undergoes an insulator-to-metal transition at 60-70 °C, which changes the band alignment between MoS2 and VO2 from a semiconductor-insulator junction to a semiconductor-metal junction. By switching VO2 between insulating and metallic phases, the modulation of photoluminescence emission in the 2D semiconductors was observed. This study demonstrates the feasibility to combine TMDs and functional oxides to create unconventional hybrid optoelectronic properties derived from 2D semiconductors that are linked to functional properties of oxides through proximity coupling.

  14. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  15. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  16. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  17. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  18. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    SciTech Connect

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    1996-12-01

    A method is described for cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO{sub 2}, HfO{sub 2}, TiO{sub 2} and SnO{sub 2}, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn and Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO{sub 4}, WO{sub 3}, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  19. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides

    DOEpatents

    Venkatesh, Koppampatti R.; Hu, Jianli; Tierney, John W.; Wender, Irving

    2001-01-01

    A method of cracking a feedstock by contacting the feedstock with a metal-promoted anion-modified metal oxide catalyst in the presence of hydrogen gas. The metal oxide of the catalyst is one or more of ZrO.sub.2, HfO.sub.2, TiO.sub.2 and SnO.sub.2, and the feedstock is principally chains of at least 20 carbon atoms. The metal-promoted anion-modified metal oxide catalyst contains one or more of Pt, Ni, Pd, Rh, Ir, Ru, (Mn & Fe) or mixtures of them present between about 0.2% to about 15% by weight of the catalyst. The metal-promoted anion-modified metal oxide catalyst contains one or more of SO.sub.4, WO.sub.3, or mixtures of them present between about 0.5% to about 20% by weight of the catalyst.

  20. Ni And Co Segregations On Selective Surface Facets And Rational Design Of Layered Lithium Transition-metal Oxide Cathodes

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Zheng, Jiaxin; Wang, Zhiguo; Teng, Gaofeng; Kuppan, Saravanan; Xiao, Jie; Chen, Guoying; Pan, Feng; Zhang, Jiguang; Wang, Chong M.

    2016-05-05

    The chemical processes occurring on the surface of cathode materials during battery cycling play a crucial role in determining battery’s performance. However, our understanding on such surface chemistry is far from clear due to the complexity of redox chemistry during battery charge/discharge. In this work, through intensive aberration corrected STEM investigation on eight layered oxide cathode materials, we report two important findings on the pristine oxides. First, Ni and Co show strong plane selectivity when building up their respective surface segregation layers (SSL). Specifically, Ni-SSL is exclusively developed on (200)m facet in Li-Mn-rich oxides (monoclinic C2/m symmetry) and (012)h facet in Mn-Ni equally rich oxides (hexagonal R-3m symmetry), while Co-SSL has a strong preference to (20-2)m plane with minimal Co-SSL also developed on some other planes in LMR cathodes. Structurally, Ni-SSLs tend to form spinel-like lattice while Co-SSLs are in a rock-salt-like structure. Secondly, by increasing Ni concentration in these layered oxides, Ni and Co SSLs can be suppressed and even eliminated. Our findings indicate that Ni and Co SSLs are tunable through controlling particle morphology and oxide composition, which opens up a new way for future rational design and synthesis of cathode materials.

  1. Transition metal complexes coupled to vacancies in oxides: origin of different properties of Cr3+ in MgO bounded to a <100> or <110> Mg2+ vacancy.

    PubMed

    Aramburu, J A; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-11-27

    Despite the importance of vacancies over the properties of insulating oxides its influence on neighboring transition metal ions is far from being understood. This work is devoted to find the origin of various up to now unexplained properties of chromium bounded either to a <100> or a <110> Mg(2+) vacancy in MgO. In these model systems particular attention is paid to understand, by means of ab initio calculations, why the cubic field splitting parameter, 10Dq, is surprisingly 1600 cm(-1) higher for a <100> than for a <110> vacancy, a fact behind the suppression of the sharp (2)E → (4)A2 luminescence in the latter case. Our calculations, which reproduce the main experimental facts, prove that the average Cr(3+)-O(2-) distance is the same within 0.8% for both systems, and thus, the low 10Dq value for a <110> vacancy is shown to be due mainly to the electrostatic potential from the missing Mg(2+) ion, which increases the energy of antibonding t(2g) (∼xy, xz, yz) levels. By contrast, for a <100> Mg(2+) vacancy that potential provides a supplementary increase of the e(g) (∼x(2) - y(2), 3z(2 )- r(2)) level energy and thus of 10Dq. The existence of the (2)E → (4)A2 luminescence for Cr(3+)-doped MgO under perfect cubic symmetry or with a <100> vacancy is shown to be greatly helped by the internal electric field created by the rest of the lattice ions on the CrO6(9-) unit, whose importance is usually ignored. The present results underline the role of ab initio calculations for unveiling the subtle effects induced by a close vacancy on the properties of transition metal ions in oxides. At the same time they stress the failure of the empirical superposition model for deriving the equilibrium geometry of C4v and C2v centers in MgO:Cr(3+).

  2. Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

    SciTech Connect

    Vasbinder, Michael John

    2006-01-01

    Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reaction mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO2+ and Rh(NH3)4(H2O)OO2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH3)4(H2O)OO2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then

  3. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Welander, Paula V.; Ono, Shuhei

    2016-11-01

    Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4, 13CH4, 12CH3D, and 13CH3D (a doubly-substituted, or ;clumped; isotopologue of methane) to characterize the clumped isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane became enriched in 13C and D relative to starting methane, with D/H fractionation a factor of 9.14 (Dε/13ε) larger than that of 13C/12C. As oxidation progressed, the Δ13CH3D value (a measure of the excess in abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual methane decreased. The isotopologue fractionation factor for 13CH3D/12CH4 was found to closely approximate the product of the measured fractionation factors for 13CH4/12CH4 and 12CH3D/12CH4 (i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane oxidation pathway. Based on the experimental data, a mathematical model was developed to predict isotopologue signatures expected for methane in the environment that has been partially-oxidized by aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to distinguish between aerobic methane oxidation and alternative methane-cycling processes.

  4. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field.

  5. Laterally configured resistive switching device based on transition-metal nano-gap electrode on Gd oxide

    SciTech Connect

    Kawakita, Masatoshi; Okabe, Kyota; Kimura, Takashi

    2016-01-11

    We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x} device implies the importance of the spin on the resistive switching.

  6. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  7. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    SciTech Connect

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; Zhou, Yong -Ning; Yang, Xiao -Qing

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of the cathodes is one of the most critical factors in thermal runaway and related safety problems.

  8. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  9. A new simple method for point contact Andreev reflection (PCAR) using a self-aligned atomic filament in transition-metal oxides.

    PubMed

    Hwang, Inrok; Lee, Keundong; Jin, Hyunwoo; Choi, Sunhwa; Jung, Eunok; Park, Bae Ho; Lee, Suyoun

    2015-05-14

    Point contact Andreev reflection (PCAR) has become a standard method for measuring the spin polarization (P) of spintronic materials due to its unique simplicity and the firm physical ground, but it is still challenging to achieve a clean point contact between a superconductor (SC) and a metal (N) for implementing PCAR. In this work, we suggest a much simpler method for PCAR measurement, where a point contact between SC and N is provided by a metallic filament in a transition-metal oxide generated by electrical bias. This method has been successfully demonstrated using a structure composed of Nb/NiO/Pt, where P of the Ni filament was estimated to be about 40%, consistent with the known value of the bulk Ni. In addition, we investigated the dependence of the conductance spectrum on the measurement temperature and the magnetic field. We found that the superconductivity is not fully suppressed until 9 T far above the critical field of Nb, which is associated with the nm-sized constriction of our SC/N junction, much smaller than the coherence length of the SC.

  10. Towards understanding the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Ban, Chunmei; Chernova, Natasha A.; Wu, Zhuangchun; Upreti, Shailesh; Dillon, Anne; Whittingham, M. Stanley

    2014-12-01

    This work attempts to understand the rate capability of layered transition metal oxides LiNiyMnyCo1-2yO2 (0.33 ≤ y ≤ 0.5). The rate capability of LiNiyMnyCo1-2yO2 increase with increasing Co in the compounds and with increasing amount of carbon additives in the electrodes. The lithium diffusion coefficients and electronic conductivities of LixNiyMnyCo1-2yO2 are investigated and compared. The 333 compound has higher diffusivity and electronic conductivity and thus better rate performance than 550. Chemical diffusion coefficients for both delithiation and lithiation of LixNiyMnyCo1-2yO2 investigated by GITT and PITT experiments are calculated to be around 10-10 cm2 s-1, lower than that of LixCoO2. The electronic conductivity of LixNiyMnyCo1-2yO2 is inferior compared to LixCoO2 at same temperature and delithiation stage. However, the LixNiyMnyCo1-2yO2 are able to deliver 55%-80% of theoretical capacity at 5 C with good electronic wiring in the composite electrode that make them very promising candidates for electric propulsion in terms of rate capability.

  11. Electrochemical Fabrication of Monolithic Electrodes with Core/Shell Sandwiched Transition Metal Oxide/Oxyhydroxide for High-Performance Energy Storage.

    PubMed

    Chang, Shaozhong; Pu, Jun; Wang, Jian; Du, Hongxiu; Zhou, Qingwen; Liu, Ziqiang; Zhu, Chao; Li, Jiachen; Zhang, Huigang

    2016-10-05

    Transition metal oxides/oxyhydroxides (TMOs) are promising high-capacity materials for electrochemical energy storage. However, the low rate and poor cyclability hinder practical applications. In this work, we developed a general electrochemical route to fabricate monolithic core/shell sandwiched structures, which are able to significantly improve the electrochemical properties of TMO electrodes by electrically wiring the insulating active materials and alleviating the adverse effects caused by volume changes using engineered porous structures. As an example, a lithium ion battery anode of porous MnO sandwiched between CNT and carbon demonstrates a high capacity of 554 mAh g(-1) even after 1000 cycles at 2 A g(-1). An all-solid-state symmetric pseudocapacitor consisting of CNT@MnOOH@polypyrrole exhibits a high specific capacitance of 148 F g(-1) and excellent capacitance retention (92% after 10000 cycles at 2 A g(-1)). Several other examples and applications have further confirmed the effectiveness of improving the electrochemical properties by core/shell sandwiched structures.

  12. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  13. Transition metal (Fe, Co and Ni) oxide nanoparticles grafted graphitic carbon nitrides as efficient optical limiters and recyclable photocatalysts

    NASA Astrophysics Data System (ADS)

    Sridharan, Kishore; Kuriakose, Tintu; Philip, Reji; Park, Tae Joo

    2014-07-01

    A single-step pyrolysis assisted route towards the large scale fabrication of metal oxide nanoparticles (Fe2O3, Co3O4 and NiO) ingrained in graphitic carbon nitride (GCN) is demonstrated. Urea, an abundantly available precursor, plays a dual role during the synthesis: while it acts as a reducing agent, it also gets converted to GCN. The formation of GCN and the in-situ growth and embedment of oxide nanoparticles are discussed on the basis of the experimental results. The wide absorption of the samples in the visible light region makes them suitable for nonlinear transmission and photocatalytic activity studies. Visible light photocatalytic activities of the samples are studied by monitoring the degradation of Rhodamine B dye. Optical limiting properties of the prepared samples are studied through the open aperture z-scan technique using 5 ns laser pulses at a wavelength of 532 nm. The cost-efficient and time saving synthetic approach is complemented by the magnetic behaviour of the samples, which enables their use as recyclable photocatalyst and magnetically controllable optical limiters.

  14. A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method.

    PubMed

    Lou, Zaizhu; Huang, Baibiao; Ma, Xiangchao; Zhang, Xiaoyang; Qin, Xiaoyan; Wang, Zeyan; Dai, Ying; Liu, Yuanyuan

    2012-12-07

    A novel 3D AgCl hierarchical superstructure, with fast growth along the 〈111〉 directions of cubic seeds, is synthesized by using a wet chemical oxidation method. The morphological structures and the growth process are investigated by scanning electron microscopy and X-ray diffraction. The crystal structures are analyzed by their crystallographic orientations. The surface energy of AgCl facets {100}, {110}, and {111} with absorbance of Cl(-) ions is studied by density functional theory calculations. Based on the experimental and computational results, a plausible mechanism is proposed to illustrate the formation of the 3D AgCl hierarchical superstructures. With more active sites, the photocatalytic activity of the 3D AgCl hierarchical superstructures is better than those of concave and cubic ones in oxygen evolution under irradiation by visible light.

  15. Transition metal catalyzed transformations of unsaturated molecules

    SciTech Connect

    Not Available

    1989-01-01

    In this proposal, research in three areas of transition metal catalyzed transformations of small molecules is proposed. The first encompasses metal catalyzed processes for the synthesis of several classes of carbon monoxide containing polymers. This section describes plans for metal catalyzed synthesis of (a) new alternating copolymers of carbon monoxide and olefins, (b) block copolymers consisting of segments of the olefin homopolymer and the olefin- carbon monoxide alternating copolymer, and (c) polycarbonates, polyesters and polyamides. The second section involves the examination of the chemistry of metal complexes incorporating oxo and hydrocarbyl ligands as a model for the heterogeneous oxidation of olefins and alkanes by meal oxides. Specific plans are to mimic in solution two proposed key steps in the heterogeneous oxidations. These are (a) the heterolytic cleavage of an alkyl (or allyl) C-H bond that is assisted by an oxo group, and (a) the transfer of an oxo group to the resultant metal bound alkyl (or allyl) ligand. The third section concerned with the development of a hybrid catalyst system involving both homogeneous and heterogeneous components for the oxidative functionalization of alkanes. The basic idea is to employ a transition metal in the elemental state to activate C-H bonds of alkanes and form surface alkyl groups. An additional transition metal species will be present in solution which will serve to oxidize these surface alkyl groups to ultimately yield oxidatively functionalized organic products. 57 refs.

  16. High-pressure Synthesis and Magnetic Properties of 4d and 5d Transition-metal Oxides

    NASA Astrophysics Data System (ADS)

    Cheng, J.-G.

    2011-03-01

    The pressure effect on synthesis of oxides with perovskite A BO3 and perovskite-related structures has become more clear in recent years. The geometric tolerance factor t ≡ (A-O)/ √ 2 (B-O) measures the structural stability. High-pressure synthesis enlarges the range of the t factor where the perovskite structure can be stabilized. For the A BO3 compounds with t 1, high pressure reduces the t factor since the A-O bond is more compressible than the B-O bond. Therefore, perovskite would be the high-pressure phase for ambient-pressure polytype structures. However, the bonding compressibility argument is no longer valid for the ABO3 with t < 1 . Adt / dP 0 isnormallyobtainedfortlessthanbutverycloseto 1 , i . e . theorthorhombicdistortionbecomessmallerunderpressure . Forthosehighlydistortedperovskiteswithtfactorfarlessthanone , pressureenlargesfurthertheorthorhombicdistortionandeventuallyleadstoaphasetransitiontothepost - perovskitephase . Asfor < formula > < ? TeX , high pressure prefers the small-volume perovskite phase relative to a competitive pyrochlore phase . Understanding the pressure effect and the new capacity provided by a Walker-type multianvil press enabled us to expand the perovskite family and to obtain new phases of 4d and 5d oxides. Studies of these new 4d and 5d oxides allow us not only to address long-standing problems, but also to explore exotic physical properties. (1) In the perovskite (A= alkaline earth), we have completed the phase diagram from A= Ca to Sr and to Ba and also accounted for the A-cation size-variance effect. A systematic study of the Curie temperature and the critical behavior as a function of the average A-site size and the size variance as well as external high pressures reveals explicitly the crucial role of the lattice strain on the ferromagnetism. The mean-field critical behaviour near found previously in is not typical of these perovskite ruthenates. is completely suppressed by Pb doping in not due to the steric effect

  17. Thin films of metal oxides grown by chemical vapor deposition from volatile transition metal and lanthanide metal complexes

    NASA Astrophysics Data System (ADS)

    Pollard, Kimberly Dona

    1998-08-01

    This thesis describes the synthesis and characterization of novel volatile metal-organic complexes for the chemical vapor deposition (CVD) of metal oxides. Monomeric tantalum complexes, lbrack Ta(OEt)sb4(beta-diketonate)) are prepared by the acid-base reaction of lbrack Tasb2(OEt)sb{10}rbrack with a beta-diketone, (RC(O)CHsb2C(O)Rsp' for R = CHsb3, Rsp' = CFsb3; R = Rsp'=C(CHsb3)sb3; R = Csb3Fsb7,\\ Rsp'=C(CHsb3)sb3;\\ R=Rsp'=CFsb3; and R = Rsp' = CHsb3). The products are characterized spectroscopically. Thermal CVD using these complexes as precursors gave good quality Tasb2Osb5 thin films which are characterized by XPS, SEM, electrical measurements, and XRD. Factors affecting the film deposition such as the type of carrier gas and the temperature of the substrate were considered. Catalyst-enhanced CVD reactions with each of the precursors and a palladium catalyst, ((2-methylallyl)Pd(acac)), were studied as a lower temperature route to good quality Tasb2Osb5 films. The decomposition mechanism at the hot substrate surface was studied. Precursors for the formation of yttria by CVD were examined. New complexes of the form (Y(hfac)sb3(glyme)), (hfac = \\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3 for n = 1-4) were synthesized and characterized spectroscopically. X-ray structural determinations of three new complexes were obtained. CVD reaction conditions were determined which give YOF films and, with catalyst-enhanced CVD, reaction conditions which give selective formation of Ysb2Osb3, YOF, or YFsb3. The films were studied by XPS, SEM, and XRD. Decomposition mechanisms which lead to film formation, together with a possible route for fluorine atom transfer from the ligand to the metal resulting in fluorine incorporation, were studied by analysis of exhaust products using GC-MS. Novel precursors of the form lbrack Ce(hfac)sb3(glyme)rbrack,\\ (hfac=\\{CFsb3C(O)CHC(O)CFsb3\\}sp-,\\ glyme=CHsb3O(CHsb2CHsb2O)sb{n}CHsb3, n = 1-4) for CVD of ceria were

  18. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide

    NASA Astrophysics Data System (ADS)

    Ganga, B. G.; Santhosh, P. N.; Nanda, B. R. K.

    2017-04-01

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along ≤ft[1 0 \\bar{1}\\right] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along ≤ft[1 0 1\\right] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the {{d}{{x2}-{{y}2}}} orbital is spin-polarized, then the original long-range ordering is maintained. However, if {{d}{{x2}-{{y}2}}} orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  19. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide.

    PubMed

    Ganga, B G; Santhosh, P N; Nanda, B R K

    2017-04-20

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along [Formula: see text] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along [Formula: see text] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the [Formula: see text] orbital is spin-polarized, then the original long-range ordering is maintained. However, if [Formula: see text] orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  20. Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M 3 O 8 and M 3 O 8 - (M = Cr, W), from Photoelectron Spectroscopy and Quantum Chemical Calculations

    SciTech Connect

    Li, Shenggang; Zhai, Hua-Jin; Wang, Lai-Sheng; Dixon, David A.

    2009-09-28

    We report a comparative study of reduced transition metal oxide clusters, M₃O₈⁻ (M = Cr, W) anions and their neutrals, via anion photoelectron spectroscopy (PES) and density functional theory (DFT) and molecular orbital theory (CCSD(T)) calculations. Well-resolved PES spectra are obtained for M₃O₈⁻ (M = Cr, W) at 193 and 157 nm photon energies. Different PES spectra are observed for M = Cr versus M = W. ExtensiveDFT and CCSD(T) calculations are performed to locate the ground and low-lying excited states for the neutrals and anions. The ground states of Cr₃O₈ and Cr₃O₈⁻ are predicted to be the ³B₂ and ⁴B₂ states of a C₂v structure, respectively, revealing ferromagnetic spin coupling for Cr 3d electrons. In contrast, the ground states of W₃O₈ and W₃O₈⁻ are predicted to be the ¹A' state (Cs symmetry) and the ²A₁ state (C₂v symmetry), respectively, showing metal-metal d-d bonding in the anion. The current cluster geometries are in qualitative agreement with prior DFT studies at the PBE level for M = Cr and the B3LYP level for M = W. The BP86 and PW91 functionals significantly outperform the B3LYP functional for the Cr species, in terms of relative energies, electron detachment energies, and electronic excitation energies, whereas the B3LYP functional is better for the W species. Accurate heats of formation for the ground states of M₃O₈ are calculated from the clustering energies and the heats of formation of MO₂ and MO₃. The energetics have been used to predict redox reaction thermochemistry.

  1. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    NASA Astrophysics Data System (ADS)

    Carraher, Jack McCaslin

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding 'greener' sources of commodity chemicals and fuels. High-valent Chromium from Hydroperoxido-Chromium(III). The decomposition of pentaaquahydroperoxido chromium(III) ion (hereafter Cr aqOOH2+) in acidic aqueous solutions is kinetically complex and generates mixtures of products (Craq3+, HCrO 4-, H2O2, and O2). The yield of high-valent chromium products (known carcinogens) increased from a few percent at pH 1 to 70 % at pH 5.5 (near biological pH). Yields of H 2O2 increased with acid concentration. The reproducibility of the kinetic data was poor, but became simplified in the presence of H2O2 or 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) dianion (ABTS2-). Both are capable of scavenging strongly oxidizing intermediates). The observed rate constants (pH 1, [O2] ≤ 0.03 mM) in the presence of these scavengers are independent of [scavenger] and within the error are the same (k,ABTS2- = (4.9 +/- 0.2) x 10-4 s-1 and kH2O2 = (5.3 +/- 0.7) x 10-4 s-1); indicating involvement of the scavengers in post-rate determining steps. In the presence of either scavenger, decomposition of CrOOH2+ obeyed a two-term rate law, k obs / s-1 = (6.7 +/- 0.7) x 10-4 + (7.6 +/- 1.1) x 10-4 [H+]. Effect of [H+] on the kinetics and the product distribution, cleaner kinetics in the presence of scavengers, and independence of kobs on [scavenger] suggest a dual-pathway mechanism for the decay of Craq OOH2+. The H+-catalyzed path

  2. Transition Metal-Involved Photon Upconversion.

    PubMed

    Ye, Shi; Song, En-Hai; Zhang, Qin-Yuan

    2016-12-01

    Upconversion (UC) luminescence of lanthanide ions (Ln(3+)) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln(3+), transition metal (TM) ions, e.g., Mn(2+), usually possess a single broadband emission due to its 3d(5) electronic configuration. Wavelength-tuneable single UC emission can be achieved in some TM ion-activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln(3+) can be modulated by TM ions (specifically d-block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln(3+) owing to the well-shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d(0) ion-containing hosts (d(0) normally viewed as charged anion groups, such as MoO6(6-) and TiO4(4-)) may also have a strong influence on the electric dipole transition of Ln(3+), resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide-ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln(3+) tuned by TM or d(0) ions, and the UC of d(0) ion-centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices.

  3. Transition-Metal Oxide Superconductivity

    DTIC Science & Technology

    1988-04-20

    pyramidally coordinated complexes of the 02"- deficient compounds, and (iii) that ordering of the sources that produce the mixed-valence Cu2+ɛ+) ions in...With the strong antiferromagnetic exchange coupling of the Fe2+(3+) pairs in ferrites , no superconducting cells should be anticipated and only normal...I couplings dictate significant antiferromagnetic ordering and little chance of superconductivity. This group includes the common ferrite conduction

  4. Selenophene transition metal complexes

    SciTech Connect

    White, Carter James

    1994-07-27

    This research shows that selenophene transition metal complexes have a chemistry that is similar to their thiophene analogs. Selenophene coordination has been demonstrated and confirmed by molecular structure in both the η5- and the η1(Se)-coordination modes. The reaction chemistry of selenophene complexes closely resembles that of the analogous thiophene complexes. One major difference, however, is that selenophene is a better donor ligand than thiophene making the selenophene complexes more stable than the corresponding thiophene complexes. The 77Se NMR chemical shift values for selenophene complexes fall within distinct regions primarily depending on the coordination mode of the selenophene ligand. In the final paper, the C-H bond activation of η1(S)-bound thiophenes, η1(S)-benzothiophene and η1(Se)-bound selenophenes has been demonstrated. The deprotonation and rearrangement of the η1(E)-bound ligand to the carbon bound L-yl complex readily occurs in the presence of base. Reprotonation with a strong acid gives a carbene complex that is unreactive towards nucleophilic attack at the carbene carbon and is stable towards exposure to air. The molecular structure of [Cp(NO)(PPh3)Re(2-benzothioenylcarbene)]O3SCF3 was determined and contains a Re-C bond with substantial double bond character. Methyl substitution for the thienylcarbene or selenylcarbene gives a carbene that rearranges thermally to give back the η1(E)-bound complex. Based on these model reactions, a new mechanism for the H/D exchange of thiophene over the hydrodesulfurization catalyst has been proposed.

  5. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    PubMed

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  6. Ligand field splittings in core level transitions for transition metal (TM) oxides: Tanabe-Sugano diagrams and (TM) dangling bonds in vacated O-atom defects

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry

    2013-04-01

    Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding

  7. Supported 3-D Pt nanostructures: the straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium

    NASA Astrophysics Data System (ADS)

    Li, Zesheng; Ji, Shan; Pollet, Bruno G.; Shen, Pei Kang

    2013-10-01

    Noble metal nanostructures with branched morphologies [i.e., 3-D Pt nanoflowers (NFs)] by tri-dimensionally integrating onto conductive carbon materials are proved to be an efficient and durable electrocatalysts for methanol oxidation. The well-supported 3-D Pt NFs are readily achieved by an efficient cobalt-induced/carbon-mediated galvanic reaction approach. Due to the favorable nanostructures (3-D Pt configuration allowing a facile mass transfer) and supporting effects (including framework stabilization, spatially separate feature, and improved charge transport effects), these 3-D Pt NFs manifest much higher electrocatalytic activity and stability toward methanol oxidation than that of the commercial Pt/C and Pt-based electrocatalysts.

  8. Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.

    PubMed

    Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao

    2005-01-01

    The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.

  9. High-Strength Stereolithographic 3D Printed Nanocomposites: Graphene Oxide Metastability.

    PubMed

    Manapat, Jill Z; Mangadlao, Joey Dacula; Tiu, Brylee David Buada; Tritchler, Grace C; Advincula, Rigoberto C

    2017-03-22

    The weak thermomechanical properties of commercial 3D printing plastics have limited the technology's application mainly to rapid prototyping. In this report, we demonstrate a simple approach that takes advantage of the metastable, temperature-dependent structure of graphene oxide (GO) to enhance the mechanical properties of conventional 3D-printed resins produced by stereolithography (SLA). A commercially available SLA resin was reinforced with minimal amounts of GO nanofillers and thermally annealed at 50 and 100 °C for 12 h. Tensile tests revealed increasing strength and modulus at an annealing temperature of 100 °C, with the highest tensile strength increase recorded at 673.6% (for 1 wt % GO). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) also showed increasing thermal stability with increasing annealing temperature. The drastic enhancement in mechanical properties, which is seen to this degree in 3D-printed samples reported in literature, is attributed to the metastable structure of GO, polymer-nanofiller cross-linking via acid-catalyzed esterification, and removal of intercalated water, thus improving filler-matrix interaction as evidenced by spectroscopy and microscopy analyses.

  10. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts.

    PubMed

    Huang, Huajie; Yang, Shubin; Vajtai, Robert; Wang, Xin; Ajayan, Pulickel M

    2014-08-13

    Homogeneous dispersion of ultrafine Pt nanoparticles on 3D architectures constructed of graphene and exfoliated graphitic carbon nitride results in hybrids with 3D porous structures, large surface area, high nitrogen content, and good electrical conductivity. This leads to excellent electrocatalytic activity, unusually high poison tolerance, and reliable stability for methanol oxidation, making them of interest as catalysts in direct methanol fuel cells.

  11. Cointercalation of titanium dichalcogenides with transition metals and copper

    NASA Astrophysics Data System (ADS)

    Titov, A. A.; Titov, A. N.; Titova, S. G.; Pryanichnikov, S. V.; Chezganov, D. S.

    2017-01-01

    Cointercalated materials are studied, obtained by introducing copper into a TiSe2 lattice preintercalated with transition metals M = Mn, Fe, Co, or Ni. The analysis of the state of cointercalated systems at 950°C shows that copper reduces manganese and iron, but it is incapable of reducing cobalt or nickel. To explain the results, the values of the binding energy of hybrid states M3d/Ti3 d are compared.

  12. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy.

  13. Stabilization of 3d Transition Metal Hydrido Complexes in SrH2Mg2[Co(I)H5], BaH2Mg5[Co(-I)H4]2, and RbH2Mg5[Co(-I)H4 Ni(0)H4] via Easily Polarizable Hydride Ligands.

    PubMed

    Fahlquist, Henrik; Moser, David; Noréus, Dag; Refson, Keith; Parker, Stewart F

    2016-04-04

    A combined study using neutron diffraction, inelastic neutron scattering, and first-principles calculations describe cobalt with a very low formal oxidation state of (-I) in a slightly distorted tetrahedral Co(-I)H4-complex in BaH2Mg5[Co(-I)H4]2 and in the structurally related RbH2Mg5[Co(-I)H4 Ni(0)H4]. This indicates that the electron "back donating" effect via the polarizable hydride ions to the counterions in the solid state hydrides, can be compared to more conventional "back bonding" able to reduce the oxidation state down to -I. The hydrides were synthesized by hot sintering of transition metal powders with corresponding binary alkali- and alkaline earth hydrides. In the similarly synthesized SrH2Mg2[Co(I)H5], cobalt is formally + I-valent, showing a high sensitivity to differences in the counterion framework, which can also influence electrical properties.

  14. Direct probe of Mott-Hubbard to charge-transfer insulator transition and electronic structure evolution in transition-metal systems

    SciTech Connect

    Olalde-Velasco, P; Jimenez-Mier, J; Denlinger, JD; Hussain, Z; Yang, WL

    2011-07-11

    We report the most direct experimental verification of Mott-Hubbard and charge-transfer insulators through x-ray emission spectroscopy in transition-metal (TM) fluorides. The p-d hybridization features in the spectra allow a straightforward energy alignment of the anion-2p and metal-3d valence states, which visually shows the difference between the two types of insulators. Furthermore, in parallel with the theoretical Zaanen-Sawatzky-Allen diagram, a complete experimental systematics of the 3d Coulomb interaction and the 2p-3d charge-transfer energy is reported and could serve as a universal experimental trend for other TM systems including oxides.

  15. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

    PubMed Central

    Gethin, David T.; Syverud, Kristin; Hill, Katja E.; Thomas, David W.

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials. PMID:26090461

  16. 3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications.

    PubMed

    Rees, Adam; Powell, Lydia C; Chinga-Carrasco, Gary; Gethin, David T; Syverud, Kristin; Hill, Katja E; Thomas, David W

    2015-01-01

    Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying film surfaces by a bioprinting process. Two different nanocelluloses were used, prepared with TEMPO mediated oxidation and a combination of carboxymethylation and periodate oxidation. The combination of carboxymethylation and periodate oxidation produced a homogeneous material with short nanofibrils, having widths <20 nm and lengths <200 nm. The small dimensions of the nanofibrils reduced the viscosity of the nanocellulose, thus yielding a material with good rheological properties for use as a bioink. The nanocellulose bioink was thus used for printing 3D porous structures, which is exemplified in this study. We also demonstrated that both nanocelluloses did not support bacterial growth, which is an interesting property of these novel materials.

  17. A hybrid metalloarsenate 3D framework-1D interrupted metal oxide.

    PubMed

    Hughes, Robert W; Gerrard, Lee A; Price, Daniel J; Weller, Mark T

    2003-06-30

    Complex metal arsenates of the stoichiometry M(1)(-)(x)()M'(6)(OH)(3)(AsO(4)H(2)(x)()(/3))(3)(HAsO(4)), M = M' = Co, Ni, have been synthesized under hydrothermal conditions. The two compounds display a very similar structural topology to that of the mineral dumortierite, an uncommon complex oxyborosilicate of aluminum. The hybrid structures consist of well separated, vacancy interrupted chains of face sharing MO(6) octahedra, with short M.M distances near 2.5 A, embedded in a metalloarsenate 3D framework having the topology of the aluminosilicate cancrinite. The framework also contains a quadruply bridging hydroxide ion. Magnetic susceptibility measurements reveal a strong antiferromagnetic interaction and magnetic transition to low temperature spin canted phases below 51 K (Co) and 42 K (Ni). The material may be considered as a zeotype framework structure templated by an interrupted one-dimensional metal oxide.

  18. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-07

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions.

  19. First insertion of NO into a transition-metal cluster-carbon bond: regioselective formation, structure, and reactions of the first alkanenitrile oxide complexes

    SciTech Connect

    Goldhaber, A.; Vollhardt, K.P.C.; Walborsky, E.C.; Wolfgruber, M.

    1986-02-05

    The chemistry of NO in the presence of transition metals is receiving considerable current attention because of its role in air pollution, its potential in organic synthesis by carbon-nitrogen bond formation, and an increasing interest in its basic features. The nitrosyl cation has been reacted with many mono and polynuclear metal systems, leading mainly to substitution and reduction. Insertion into alkyl and aryl metal bonds in mono-metallic complexes is documented. The unprecedented title reaction and some preliminary chemistry of the products are reported here. 27 references, 1 figure.

  20. Alkane Soluble Transition Metal Complexes.

    DTIC Science & Technology

    1983-10-01

    A.l. Shilov and A.A. Uhtelrman, Cooed. Chim. ev., 1977, 54 , 97. 4. O.W. Parshall, "Catalysis", Vol 1. Chemical Society Spec. Per. Report (3d C. Kemball...freshly pulverized, fused wete prepared by standard procedures. The method of potassium hydrogusmiphbsa at 16 *C for 8 h or until the de- Clark wasn... method as *Hsaism*UaeLtAl 6 CRW MW OIOIflWY VOL IL NO.61 IM M 0. MAML. & FRAN= AND P. it. mAyn1zy described pesavituly.1 The oxides (P-XC.M.)sP-O

  1. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  2. Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes

    NASA Astrophysics Data System (ADS)

    Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.

    2013-03-01

    The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.

  3. Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles

    SciTech Connect

    Djerdj, Igor Arcon, Denis; Jaglicic, Zvonko; Niederberger, Markus

    2008-07-15

    The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol-gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol-gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO{sub 2} nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed. - Graphical abstract: In the first part of this article, nonaqueous sol-gel routes to ternary metal oxide nanoparticles are briefly reviewed, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the appearance of an unprecedented superstructure in MnO nanoparticles. In the second part, doping experiments of TiO{sub 2} with Fe and Co are presented, along with their characterization including magnetic measurements.

  4. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture.

  5. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.

    PubMed

    Wang, Xu-Dong; Xu, Yang-Fan; Chen, Bai-Xue; Zhou, Ning; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2016-10-20

    Cupric oxide (CuO), a narrow-bandgap semiconductor, has a band alignment that makes it an ideal photocathode for the renewable production of solar fuels. However, the photoelectrochemical performance of CuO is limited by its poor conductivity and short electron diffusion lengths. Herein, a three-dimensional (3D) architecture consisting of CuO nanosheets supported onto transparent conducting macroporous antimony-doped tin oxide (mpATO@CuONSs) is designed as an excellent photocathode for promoting the hydrogen evolution reaction (HER). Owing to the 3D structure affording superior light-harvesting characteristics, large contact areas with the electrolyte, and highly conductive pathways for separation and transport of charge carriers, the mpATO@CuONSs photocathode produces an impressively high photocurrent density of -4.6 mA cm(-2) at 0 V versus the reversible hydrogen electrode (RHE), which is much higher than that of the CuONSs array onto planar FTO glass (-1.9 mA cm(-2) ).

  6. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  7. Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord.

    PubMed

    López-Dolado, Elisa; González-Mayorga, Ankor; Portolés, María Teresa; Feito, María José; Ferrer, María Luisa; Del Monte, Francisco; Gutiérrez, María Concepción; Serrano, María Concepción

    2015-08-26

    The increasing prevalence and high sanitary costs of lesions affecting the central nervous system (CNS) at the spinal cord are encouraging experts in different fields to explore new avenues for neural repair. In this context, graphene and its derivatives are attracting significant attention, although their toxicity and performance in the CNS in vivo remains unclear. Here, the subacute tissue response to 3D flexible and porous scaffolds composed of partially reduced graphene oxide is investigated when implanted in the injured rat spinal cord. The interest of these structures as potentially useful platforms for CNS regeneration mainly relies on their mechanical compliance with neural tissues, adequate biocompatibility with neural cells in vitro and versatility to carry topographical and biological guidance cues. Early tissue responses are thoroughly investigated locally (spinal cord at C6 level) and in the major organs (i.e., kidney, liver, lung, and spleen). The absence of local and systemic toxic responses, along with the positive signs found at the lesion site (e.g., filler effect, soft interface for no additional scaring, preservation of cell populations at the perilesional area, presence of M2 macrophages), encourages further investigation of these materials as promising components of more efficient material-based platforms for CNS repair.

  8. Transition Metal Diborides as Electrode Material for MHD Direct Power Extraction: High-temperature Oxidation of ZrB2-HfB2 Solid Solution with LaB6 Addition

    NASA Astrophysics Data System (ADS)

    Sitler, Steven; Hill, Cody; Raja, Krishnan S.; Charit, Indrajit

    2016-06-01

    Transition metal borides are being considered for use as potential electrode coating materials in magnetohydrodynamic direct power extraction plants from coal-fired plasma. These electrode materials will be exposed to aggressive service conditions at high temperatures. Therefore, high-temperature oxidation resistance is an important property. Consolidated samples containing an equimolar solid solution of ZrB2-HfB2 with and without the addition of 1.8 mol pct LaB6 were prepared by ball milling of commercial boride material followed by spark plasma sintering. These samples were oxidized at 1773 K (1500 °C) in two different conditions: (1) as-sintered and (2) anodized (10 V in 0.1 M KOH electrolyte). Oxidation studies were carried out in 0.3 × 105 and 0.1 Pa oxygen partial pressures. The anodic oxide layers showed hafnium enrichment on the surface of the samples, whereas the high-temperature oxides showed zirconium enrichment. The anodized samples without LaB6 addition showed about 2.5 times higher oxidation resistance in high-oxygen partial pressures than the as-sintered samples. Addition of LaB6 improved the oxidation resistance in the as-sintered condition by about 30 pct in the high-oxygen partial pressure tests.

  9. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  10. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  11. Oxidized carbon fiber supported vertical WS2 nanosheets arrays as efficient 3 D nanostructure electrocatalyts for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Yan, Kai-Li; Liu, Zi-Zhang; Lu, Shan-Shan; Dong, Bin; Chi, Jing-Qi; Li, Xiao; Liu, Yan-Ru; Chai, Yong-Ming; Liu, Chen-Guang

    2017-04-01

    Oxidized carbon fiber (oCF) as support successfully realizes the vertical growth of uniform WS2 nanosheets arrays for efficient hydrogen evolution reaction (HER) via a facile hydrothermal process. Thanks to oxygen functional groups on oCF, vertical WS2 nanosheets structures have grown more easily on oCF, which can provide better dispersion, short charge transfer distance and more exposed active sites for HER in comparison with bulk WS2 and WS2 nanosheets on bare carbon fiber (CF) fabricated at the same condition. The electrochemical measurements confirmed that WS2/oCF possesses better HER activity than bulk WS2 and WS2/CF. Especially, the 10-h stability with unchanged vertical WS2 nanosheets morphology further demonstrate the positive effect of oxygen functional groups on the enhanced vertical structure and close combination between WS2 and oCF. It may offer a facile way to realize more exposed active sites from stable electrocatalyst hybrids of transition metal sulfides by surface oxidization of carbon supports.

  12. Microwave assisted synthesis of technologically important transition metal silicides

    SciTech Connect

    Vaidhyanathan, B.; Rao, K.J.

    1997-12-01

    A novel, simple, clean and fast microwave assisted method of preparing important transition metal silicides (MoSi{sub 2}, WSi{sub 2}, CoSi{sub 2}, and TiSi{sub 2}) has been described. Amorphous carbon is used both as a microwave susceptor and as a preventer of oxidation. {copyright} {ital 1997 Materials Research Society.}

  13. [Non-empirical interatomic potentials for transition metals]. Progress report

    SciTech Connect

    Not Available

    1993-05-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  14. [Non-empirical interatomic potentials for transition metals

    SciTech Connect

    Not Available

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials.

  15. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles.

  16. Methane activation on supported transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Carstens, Jason Ned

    At present, there is considerable interest in utilizing methane more efficiently as both a fuel source and as a starting material for the production of other, more valuable products. However, methane is a very stable molecule with strong C-H bonds that are difficult to break. This makes methane combustion or the formation of carbon-carbon bonds quite difficult. The present work focuses on the use of supported transition metal catalysts as a means of activating methane (i.e. breaking C-H bonds) at low temperatures to produce valuable products or energy. The conversion of methane into higher hydrocarbons. A low temperature (<750 K), direct process to effectively convert methane into higher hydrocarbons would be quite desirable. Such a process is thermodynamically feasible if the reaction is broken up into two separate steps. The first step is the adsorption of methane onto a transition metal catalyst at temperatures above about 600 K to produce a surface carbon species. The second step is a low temperature (<373 K) hydrogenation to convert the carbon species into higher hydrocarbons. T. Koerts et al. have pursued this approach by dissociatively absorbing methane onto silica supported transition metal catalysts at temperatures ranging between 573 K and 773 K. The result was a surface carbonaceous species and hydrogen. In the second step, the carbonaceous intermediates produced small alkanes upon hydrogenation around 373 K. A maximum yield to higher hydrocarbons of 13% was obtained on a ruthenium catalyst. The present study was conducted to further investigate the nature of the carbonaceous species reported by Koerts. Methane combustion. This investigation was conducted in an effort to better understand the mechanism of methane combustion on Pd catalysts. In the first part of this study, temperature programmed reduction (TPR) was used to investigate the oxidation and reduction dynamics of a 10 wt% Pd/ZrOsb2 catalyst used for methane combustion. TPR experiments indicate

  17. Photochemistry of Transition Metal Hydrides.

    PubMed

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  18. Catabolism of hyaluronan: involvement of transition metals

    PubMed Central

    Šoltés, Ladislav; Kogan, Grigorij

    2009-01-01

    One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes. Eight transition metals – V23, Mn25, Fe26, Co27, Ni28, Cu29, Zn30, and Mo42 – naturally occurring in living organism are essential for the control of various metabolic and signaling pathways. They are also the key elements in catabolism of hyaluronan in the joint. In this overview, the role of these metals in physiological and pathophysiological catabolism of hyaluronan is described. The participation of these metals in the initiation and propagation of the radical degradation hyaluronan is critically reviewed. PMID:21217859

  19. In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Bing; Wang, Lidong; Wang, Yang; Yuan, Yinan; Miao, Qinghua; Yang, Ziyue; Fei, Weidong

    2016-03-01

    In this study, a new, effective strategy is reported for the fabrication of composites using manganese oxide (MnO2) grown in situ on three-dimensional (3D) graphene by the reverse microemulsion (water-in-oil) method. A uniform coating of nanoscale MnO2 layers can be observed on the internal surface of 3D graphene, which could benefit rapid ionic and electronic transport. The electrochemical performance of the MnO2/3D graphene composites is optimized by the control of the composite structure and mass loading of MnO2. The MnO2/3D graphene composite thus prepared exhibits a significantly high specific capacitance of 659.7 F g-1 at 0.3 A g-1 and an excellent retention life of 106% after 1000 cycles. The facile synthesis and excellent electrochemical performance of the MnO2/3D graphene composites indicate that the developed method demonstrates potential applications for the fabrication of novel electrode materials for use in energy storage devices.

  20. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  1. Synthesis of transition metal carbonitrides

    DOEpatents

    Munir, Zuhair A. R.; Eslamloo-Grami, Maryam

    1994-01-01

    Transition metal carbonitrides (in particular, titanium carbonitride, TiC.sub.0.5 N.sub.0.5) are synthesized by a self-propagating reaction between the metal (e.g., titanium) and carbon in a nitrogen atmosphere. Complete conversion to the carbonitride phase is achieved with the addition of TiN as diluent and with a nitrogen pressure .gtoreq.0.6 MPa. Thermodynamic phase-stability calculations and experimental characterizations of quenched samples provided revealed that the mechanism of formation of the carbonitride is a two-step process. The first step involves the formation of the nonstoichiometric carbide, TiC.sub.0.5, and is followed by the formation of the product by the incorporation of nitrogen in the defect-structure carbide.

  2. Reactivity of transition metal solvates

    NASA Astrophysics Data System (ADS)

    Berezin, Boris D.

    1991-09-01

    Reactivity data are generalised for one of the most important classes of complexes, solvates, which are quantitatively nearly unstudied. Various approaches to studying and describing the reactivity are compared with respect to solvation of the reagents and the transition state. The specifics and mechanism of ligand substitution in pure and mixed organic solvents are found. The reactivity of simple (homoleptic) and mixed solvates toward macrocycles is examined in detail using porphyrins as an example. The kinetic method of indicator reactions is applied to porphyrins in order to study the state of transition metal salts in organic solvents and the stability of the coordination spheres of acidosalts (MXnn-2), acidosolvates (MX2Sn-2) and their transition states. The concentration dependence of the rate constant of an indicator reaction is demonstrated to be due to a change in the inner coordination sphere and a shift of equilibria between the various coordination complexes. The bibliography includes 38 references.

  3. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  4. 3D Flower-like β-MnO2/Reduced Graphene Oxide Nanocomposites for Catalytic Ozonation of Dichloroacetic Acid

    PubMed Central

    Li, Gang; Li, Kezheng; Liu, Aijuan; Yang, Ping; Du, Yukou; Zhu, Mingshan

    2017-01-01

    Considering the potential use of manganese oxide based nanocomposite in catalytic ozonation of water contaminant, we report unique three-dimensional (3D) nanoarchitectures composed of β-MnO2 and reduced graphene oxide (RGO) for catalytic ozonation of dichloroacetic acid (DCAA) from drinking water. The catalytic results show that the 3D β-MnO2/RGO nanocomposites (FMOG) can be used as efficient and stable ozonation catalysts to eliminate DCAA from water. The probable mechanism of catalytic ozonation was also proposed by detecting intermediates using gas chromatography-mass spectrometry. This result likely paves a facile avenue and initiates new opportunities for the exploration of heterogeneous catalysts for the removal of disinfection by-products from drinking water.

  5. 3D Flower-like β-MnO2/Reduced Graphene Oxide Nanocomposites for Catalytic Ozonation of Dichloroacetic Acid

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Kezheng; Liu, Aijuan; Yang, Ping; Du, Yukou; Zhu, Mingshan

    2017-03-01

    Considering the potential use of manganese oxide based nanocomposite in catalytic ozonation of water contaminant, we report unique three-dimensional (3D) nanoarchitectures composed of β-MnO2 and reduced graphene oxide (RGO) for catalytic ozonation of dichloroacetic acid (DCAA) from drinking water. The catalytic results show that the 3D β-MnO2/RGO nanocomposites (FMOG) can be used as efficient and stable ozonation catalysts to eliminate DCAA from water. The probable mechanism of catalytic ozonation was also proposed by detecting intermediates using gas chromatography-mass spectrometry. This result likely paves a facile avenue and initiates new opportunities for the exploration of heterogeneous catalysts for the removal of disinfection by-products from drinking water.

  6. 3D Graphene-Foam-Reduced-Graphene-Oxide Hybrid Nested Hierarchical Networks for High-Performance Li-S Batteries.

    PubMed

    Hu, Guangjian; Xu, Chuan; Sun, Zhenhua; Wang, Shaogang; Cheng, Hui-Ming; Li, Feng; Ren, Wencai

    2016-02-24

    A 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical network is synthesized to achieve high sulfur loading and content simultaneously, which solves the "double low" issues of Li-S batteries. The obtained Li-S cathodes show a high areal capacity two times larger than that of commercial lithium-ion batteries, and a good cycling performance comparable to those at low sulfur loading.

  7. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    NASA Astrophysics Data System (ADS)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  8. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  9. Time-resolved XAFS spectroscopic studies of B-H and N-H oxidative addition to transition metal catalysts relevant to hydrogen storage

    SciTech Connect

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  10. Transition-metal-free Chemoselective Oxidative C-C Coupling of the sp(3) C-H Bond of Oxindoles with Arenes and Addition to Alkene: Synthesis of 3-Aryl Oxindoles, and Benzofuro- and Indoloindoles.

    PubMed

    Sattar, Moh; Rathore, Vandana; Prasad, Ch Durga; Kumar, Sangit

    2017-04-04

    A transition-metal (TM)-free and halogen-free NaOtBu-mediated oxidative cross-coupling between the sp(3) C-H bond of oxindoles and sp(2) C-H bond of nitroarenes has been developed to access 3-aryl substituted and 3,3-aryldisubstituted oxindoles in DMSO at room temperature in a short time. Interestingly, the sp(3) C-H bond of oxindoles could also react with styrene under TM-free conditions for the practical synthesis of quaternary 3,3-disubstituted oxindoles. The synthesized 3-oxindoles have also been further transformed into advanced heterocycles, that is, benzofuroindoles, indoloindoles, and substituted indoles. Mechanistic experiments of the reaction suggests the formation of an anion intermediate from the sp(3) C-H bond of oxindole by tert-butoxide base in DMSO. The addition of nitrobenzene to the in-situ generated carbanion leads to the 3-(nitrophenyl)oxindolyl carbanion in DMSO which is subsequently oxidized to 3-(nitro-aryl) oxindole by DMSO.

  11. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation.

    PubMed

    Wang, Ben; Li, Jing; Wang, Guiyuan; Liang, Weixin; Zhang, Yabin; Shi, Lei; Guo, Zhiguang; Liu, Weimin

    2013-03-13

    Solid surfaces possessing both superhydrophobic and superoleophilic properties have attracted significant interest in fundamental investigations and potential applications in the fields of self-cleaning surfaces, oil/water separation, and microfluidic channels. In this paper, a general methodology for robust superhydrophobic fabrics and sponges was proposed via the in situ growth of both transition-metal oxides and metallic nanocrystals, including the simple neutralization reaction and oxidation-reduction reaction. The porous surfaces coated with Group VIII and IB nanocrystals (such as Fe, Co, Ni, Cu, and Ag) can not only present multiscale surface roughness, but also readily coordinate with thiols, leading to special wettability. In our previous work, it has been confirmed that the interaction between the nanocrystals and thiols plays a significant role in the introduction of hydrophobic ingredients. In this work, it has been demonstrated that the efficient control of the nucleation and growth of Group VIII and IB nanocrystals on the porous surfaces becomes the key factor in the formation of multiscale surface roughness, resulting in the achievement of controllable special wettability. In addition, these as-prepared superhydrophobic and superoleophilic fabrics and sponges were successfully used for application in oil/water separation.

  12. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples.

  13. Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals.

    PubMed

    Burrows, Cynthia J; Muller, James G; Kornyushyna, Olga; Luo, Wenchen; Duarte, Victor; Leipold, Michael D; David, Sheila S

    2002-10-01

    In vitro work in this laboratory has identified new DNA lesions resulting from further oxidation of a common biomarker of oxidative damage, 8-oxo-7,8-dihydroguanine (OG). The major product of oxidation of OG in a nucleoside, nucleotide, or single-stranded oligodeoxynucleotide using metal ions that act as one-electron oxidants is the new nucleoside derivative spiroiminodihydantoin (Sp). In duplex DNA an equilibrating mixture of two isomeric products, guanidinohydantoin (Gh) and iminoallantoin (Ia), is produced. These products are also formed by the overall four-electron oxidation of guanosine by photochemical processes involving O(2). DNA template strands containing either Sp or Gh/Ia generally acted as a block to DNA synthesis with the Klenow exo(-) fragment of pol I. However, when nucleotide insertion did occur opposite the lesions, only 2'-deoxyadenosine 5-triphosphate and 2'-deoxyguanine 5-triphosphate were used for primer extension. The Escherichia coli DNA repair enzyme Fpg was able to remove the Sp and Gh/Ia lesions from duplex DNA substrates, although the efficiency was depended on the base opposite the lesion.

  14. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    NASA Astrophysics Data System (ADS)

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-08-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes.

  15. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  16. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics.

    PubMed

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-08-20

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes.

  17. Synthesis, structural studies, and oxidation catalysis of the late-first-row-transition-metal complexes of a 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam.

    PubMed

    Jones, Donald G; Wilson, Kevin R; Cannon-Smith, Desiray J; Shircliff, Anthony D; Zhang, Zhan; Chen, Zhuqi; Prior, Timothy J; Yin, Guochuan; Hubin, Timothy J

    2015-03-02

    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni(2+) complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn(2+), Fe(2+), and Cu(2+) complexes identified the Mn(2+) complex as a potential mild oxidation catalyst worthy of continued development.

  18. 3D hierarchical walnut-like CuO nanostructures: Preparation, characterization and their efficient catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Weitang; Zhang, Yujuan; Duan, Tao; Zhu, Wenkun; Yi, Zao; Cui, Xudong

    2016-07-01

    In this work, 3D hierarchical walnut-shaped, 2D nanosheet and 3D microspheres single phase CuO nanostructures are functioning as catalysts and supporting materials, differing from the conventional ways. The novel nanostructures were synthesized via hydrothermal method under a stainless steel autoclave. The as-prepared materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and H2 temperature-programmed reduction (H2-TPR). The walnut-shaped structures with high O/Cu atomic ratio (1.22) exhibit high oxygen adsorption capacity and greatly enhanced catalytic activity. These results will be enrich the techniques for tuning the morphologies of metal oxide micro/nanostructures and open a new field in catalytic applications.

  19. SNW 2000 Proceedings. Oxide Thickness Variation Induced Threshold Voltage Fluctuations in Decanano MOSFETs: a 3D Density Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Kaya, S.; Davies, J. H.; Saini, S.

    2000-01-01

    We use the density gradient (DG) simulation approach to study, in 3D, the effect of local oxide thickness fluctuations on the threshold voltage of decanano MOSFETs in a statistical manner. A description of the reconstruction procedure for the random 2D surfaces representing the 'atomistic' Si-SiO2 interface variations is presented. The procedure is based on power spectrum synthesis in the Fourier domain and can include either Gaussian or exponential spectra. The simulations show that threshold voltage variations induced by oxide thickness fluctuation become significant when the gate length of the devices become comparable to the correlation length of the fluctuations. The extent of quantum corrections in the simulations with respect to the classical case and the dependence of threshold variations on the oxide thickness are examined.

  20. Platinum nanoparticles decorated robust binary transition metal nitride-carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhan, Guohe; Fu, Zhenggao; Sun, Dalei; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2016-09-01

    Titanium cobalt nitride (TiCoN)-CNTs hybrid support is prepared by a facile and efficient method, including a one-pot solvothermal process followed by a nitriding process, and this hybrid support is further decorated with Pt nanoparticles to catalyze the oxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Notably, Pt/CNTs@TiCoN catalyst exhibits a much higher mass activity and durability than that of the conventional Pt/C (JM) for methanol oxidation. The experimental data indicates that the CNTs@TiCoN hybrid support combines the merits of the CNTs's high conductivity and the superb corrosion resistance of external TiCoN coating.

  1. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    PubMed

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction.

  2. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    SciTech Connect

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; Yu, Xiqian; Bak, Seong -Min; Fu, Zheng -Wen

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterization revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.

  3. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries

    DOE PAGES

    Yue, Ji -Li; Yang, Xiao -Qing; Zhou, Yong -Ning; ...

    2015-10-09

    High rate capability and long cycle life are challenging goals for the development of room temperature sodium-ion batteries. Here we report a new single phase quaternary O3-type layer-structured transition metal oxide Na(NiCoFeTi)1/4O2 synthesized by a simple solid-state reaction as a new cathode material for sodium-ion batteries. It can deliver a reversible capacity of 90.6 mA h g–1 at a rate as high as 20C. At 5C, 75.0% of the initial specific capacity can be retained after 400 cycles with a capacity-decay rate of 0.07% per cycle, demonstrating a superior long-term cyclability at high current density. X-ray diffraction and absorption characterizationmore » revealed reversible phase transformations and electronic structural changes during the Na+ deintercalation/intercalation process. Ni, Co and Fe ions contribute to charge compensation during charge and discharge. Although Ti ions do not contribute to the charge transfer, they play a very important role in stabilizing the structure during charge and discharge by suppressing the Fe migration. Additionally, Ti substitution can also smooth the charge–discharge plateaus effectively, which provides a potential advantage for the commercialization of this material for room temperature sodium-ion batteries.« less

  4. Transition metal doped arsenene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Wang, Sake; Du, Yanhui; Yu, Jin; Tang, Wencheng

    2016-12-01

    Using first-principles calculations, we investigate the structural, electronic, and magnetic properties of 3d transition metal (TM) atoms substitutional doping of an arsenene monolayer. Based on the binding energy, the TM-substituted arsenene systems were found to be robust. Magnetic states were obtained for Ti, V, Cr, Mn and Fe doping. More importantly, a half-metallic state resulted from Ti and Mn doping, while the spin-polarized semiconducting state occurred with V, Cr and Fe doping. Our studies demonstrated the potential applications of TM-substituted arsenene for spintronics and magnetic storage devices.

  5. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  6. Preparation of nanocomposites containing nanoclusters of transition metals

    SciTech Connect

    Milne, S.B.; Lukehart, C.M., Wittig, J.E.

    1996-10-01

    New nanocomposites containing nanoclusters of transition metals have been prepared and characterized by TEM, XRD, and energy dispersive spectroscopy. Organometallic or other coordination compounds functionalized with trialkoxysilyl groups have been synthesized and covalently incorporated into silica xerogels using standard sol-gel techniques. Thermal oxidative treatment of these xerogels in air followed by reduction in hydrogen yielded the desired nanocomposite phases. Using these methods, Mo, Re, Fe, Ru, Os, Pd, Pt, Cu. and Ag nanocomposites have been prepared.

  7. Ballistic performance comparison of monolayer transition metal dichalcogenide MX{sub 2} (M = Mo, W; X = S, Se, Te) metal-oxide-semiconductor field effect transistors

    SciTech Connect

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K.

    2014-02-28

    We study the transport properties of monolayer MX{sub 2} (M = Mo, W; X = S, Se, Te) n- and p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) using full-band ballistic non-equilibrium Green's function simulations with an atomistic tight-binding Hamiltonian with hopping potentials obtained from density functional theory. We discuss the subthreshold slope, drain-induced barrier lowering (DIBL), as well as gate-induced drain leakage (GIDL) for different monolayer MX{sub 2} MOSFETs. We also report the possibility of negative differential resistance behavior in the output characteristics of nanoscale monolayer MX{sub 2} MOSFETs.

  8. Interfacial interaction in monolayer transition metal dichalcogenide/metal oxide heterostructures and its effects on electronic and optical properties: The case of MX2/CeO2

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Huang, Wei-Qing; Hu, Wangyu; Huang, Gui-Fang; Wen, Shuangchun

    2017-01-01

    Using the density functional theory (DFT), we systematically study the interfacial interaction in monolayer MX2 (M = Mo, W; X = S, Se)/CeO2 heterostructures and its effects on electronic and optical properties. The interfacial interaction in the MX2/CeO2 heterostructures depends largely on chalcogens, and its strength determines the band gap variation and important electronic states at the band edges of the heterostructures. The MX2/CeO2 heterostructures with the same chalcogen have similar absorption spectra, from ultraviolet to near-infrared regions. These results suggest that chalcogens importantly determine the properties of MX2/metal oxide heterostructures.

  9. Effect of longer-range lattice anisotropy on the electronic structure and magnetism of spin-orbit-coupled 5 d transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Bogdanov, Nikolay; Katukuri, Vamshi; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Berndt; van den Brink, Jeroen; Hozoi, Liviu

    Our detailed quantum chemistry calculations provide magnetic g factors and exchange interactions for the quasi two-dimensional iridates Sr2IrO and Ba2IrO4. While canonical ligand-field considerations predict g| |-factors < 2 for the positive tetragonal distortions present in Sr2IrO4, we find g| | > 2 . This implies that the d levels in Sr2IrO4 are inverted with respect to the ordering deduced from the local ligand distortions, whereas we find them in Ba2IrO4 to be instead normally ordered. Electron spin resonance measurements confirm the level inversion in Sr2IrO4. This d-level switching is driven by the specific ionic charge distribution within adjacent IrO2 and SrO layers. Since polar discontinuities and the associated complications do not arise for such layers, our results highlight the tetravalent d-metal 214 oxides as ideal platforms to explore d-level reconstruction and engineering in the context of oxide heterostructures. Present address: Electronic structure theory, MPI-FKF, Stuttgart.

  10. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  11. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    Photovoltaics provide a direct means of converting photons into useful, electric power; however traditional silicon-based technologies are too expensive for global commercialization. Dye-sensitized mesoporous semiconducting thin films, when utilized in regenerative photoelectrochemical cells, are one category of next generation photovoltaics that could eventually circumvent this issue. In fact, their architecture also affords a clear platform for implementation of a direct, solar fuel-forming system. The mechanisms involved in the myriad of molecular processes that occur in these molecular--solid-state hybrid materials are poorly understood. Thus, the overriding goal of this dissertation was to evaluate sensitized mesoporous, nanocrystalline metal-oxide thin films critically so as to elucidate mechanistic phenomena. Using transient and steady-state absorption and emission spectroscopies as well as (photo)electrochemistry, various previously unobserved processes have been identified. Chapter 2 demonstrates for the first time that the electric fields emanating from these charged thin films affect surface-anchored molecular sensitizers via a Stark effect. In most cases, further, but incomplete, ionic screening of the charged nanoparticles from the sensitizers, as non-Faradaic electrolyte redistribution, was spectroscopically inferred after rapid semiconductor charging. Chapter 3 highlights the reactivity of Co(I) coordination-compound catalysts anchored to anatase TiO2 thin-film electrodes. Visible-light excitation resulted in prompt excited-state electron injection into TiO2 while introduction of benzylbromide into the fluid solution surrounding the thin film led to a 2e--transfer, oxidative-addition reaction to Co1 forming a stable Co--benzyl product. Subsequent visible-light excitation initiated a photocatalytic cycle for C--C bond formation. Unique to the nanocrystalline thin films employed here, Chapter 4 demonstrates that traditional time-resolved polarization

  12. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  13. Solid-state transition metal chemistry with quinolin-4-yl-methyl-[N-(n-butyl)amino]-diphenylphosphine oxide (4-qmape): Crystal structure of the 4-qmape ligand

    NASA Astrophysics Data System (ADS)

    Żurowska, Bogumiła; Brzuszkiewicz, Anna; Boduszek, Bogdan

    2012-11-01

    A series of three perchlorate coordination compounds of bioactive diethyl quinolin-4-yl-methyl(N-butylamino)diphenylphosphine oxide (4-qmape) ligand, with the following stoichiometries [M(2-qmape)2](ClO4)2 Mdbnd Cu and Ni and [Co(2-qmape)2](ClO4)2, were obtained and studied. Stoichiometry and stereochemistry of the compounds was confirmed by spectroscopic and magnetic studies as well as by elemental analyses. In particular, the crystal structure of the free ligand was determined. The 4-qmape ligand has a potential capacity to coordinate to metal ions by following atoms: phosphoryl oxygen, amino nitrogen and quinolyl nitrogen. In studied compounds, 4-qmape adopts the didentate N,O-coordination mode, bonding metal centers through the phosphoryl oxygen and amino nitrogen. Quinoline nitrogen atom does not participate in coordination. The all complexes are monomeric with tetrahedral environment of metal ions. Magnetic studies (1.8-300 K) indicate existence of a very weak exchange coupling between metal centers in crystal lattice.

  14. Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images

    SciTech Connect

    Kinoshita, K.; Kishida, S.; Yoda, T.

    2011-09-15

    Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V{sub accel}) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni{sub 1+{delta}}O ({delta} < 0) and insulating (stoichiometric) or n-type Ni{sub 1+{delta}}O ({delta}{>=} 0).

  15. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  16. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities.

  17. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  18. 3D CFD Model of a Tubular Porous-Metal Supported Solid Oxide Electrolysis Cell

    SciTech Connect

    G.L. Hawkes; B.D. Hawkes; M.S. Sohal; P.T. Torgerson; T. Armstrong; M.C. Williams

    2007-10-01

    Currently there is strong interest in the large-scale production of hydrogen as an energy carrier for the non-electrical market [1, 2, and 3]. High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, with no consumption of fossil fuels, no production of greenhouse gases, and no other forms of air pollution. A high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion efficiency of 45 to 55%. A research program is under way at the INL to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. The future SOEC market includes the 1200MW GEN4 reactor which has projected 40-50% efficiency, 400 tones H2 production per day (at 5kg H2/car/300 mile day this corresponds to 80,000 cars/day). DOE is planning for 26GW of nuclear hydrogen production by 2025.

  19. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    DOE PAGES

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into amore » spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less

  20. Microwave-assisted synthesis of transition metal phosphide

    SciTech Connect

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  1. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers.

    PubMed

    Cheng, Chong Sage; Deng, Jie; Lei, Bei; He, Ai; Zhang, Xiang; Ma, Lang; Li, Shuang; Zhao, Changsheng

    2013-12-15

    Recent studies showed that graphene oxide (GO) presented high adsorption capacities to various water contaminants. However, the needed centrifugation after adsorption and the potential biological toxicity of GO restricted its applications in wastewater treatment. In this study, a facile method is provided by using biopolymers to mediate and synthesize 3D GO based gels. The obtained hybrid gels present well-defined and interconnected 3D porous network, which allows the adsorbate molecules to diffuse easily into the adsorbent. The adsorption experiments indicate that the obtained porous GO-biopolymer gels can efficiently remove cationic dyes and heavy metal ions from wastewater. Methylene blue (MB) and methyl violet (MV), two cationic dyes, are chosen as model adsorbates to investigate the adsorption capability and desorption ratio; meanwhile, the influence of contacting time, initial concentration, and pH value on the adsorption capacity of the prepared GO-biopolymer gels are also studied. The GO-biopolymer gels displayed an adsorption capacity as high as 1100 mg/g for MB dye and 1350 mg/g for MV dye, respectively. Furthermore, the adsorption kinetics and isotherms of the MB were studied in details. The experimental data of MB adsorption fitted well with the pseudo-second-order kinetic model and the Langmuir isotherm, and the results indicated that the adsorption process was controlled by the intraparticle diffusion. Moreover, the adsorption data revealed that the porous GO-biopolymer gels showed good selective adsorbability to cationic dyes and metal ions.

  2. Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores

    PubMed Central

    Lee, Hyung Ik; Lee, Yoon Yun; Kang, Dong-Uk; Lee, Kirim; Kwon, Young-Uk; Kim, Ji Man

    2016-01-01

    We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2–35 nm and specific surface area in the ranges of 180–250 m2 g−1. The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides. PMID:26893025

  3. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  4. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  5. Nitric oxide spatial distribution in single cultured hippocampus neurons: investigation by projection of reconstructed 3-D image and visualization technique.

    PubMed

    Yang, Yong; Ning, Gang-Min; Kutor, John; Hong, Di-Hui; Zhang, Mu; Zheng, Xiao-Xiang

    2004-01-01

    Recent studies have revealed a non-homogeneous distribution of nitric oxide synthase (NOS) in neurons. However, it is not yet clear whether the intracellular distribution of NOS represents the intracellular nitric oxide (NO) distribution. In the present study, software developed in our laboratory was applied to the reconstructed image obtained from confocal slice images in order to project the 3-D reconstructed images in any direction and to cut the neuron in different sections. This enabled the spatial distribution of NO to be visualized in any direction and section. In single neurons, NO distribution was seen to be heterogeneous. After stimulation with glutamate, the spatial changes in different areas of the neuron were different. These findings are consistent with immunocytochemical data on the intracellular localization of nNOS in hippocampus neurons, and will help to elucidate the specificity of nitric oxide signaling. Finally, the administration of SNAP and L-NAME was used to examine DAF-2 distribution in the neurons. The results showed this distribution to be homogenous; therefore, it did not account for the NO distribution results.

  6. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M João; Silva, Teresa M; Montemor, M Fátima

    2015-08-07

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  7. Signatures of correlation in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Gatti, Matteo; Guzzo, Matteo; Reining, Lucia

    Photoemission satellites are a genuine fingerprint of electronic correlation that cannot be interpreted within the quasiparticle band-structure picture. Here we show that they can be understood in terms of the coupling between different elementary excitations, as in the case of plasmon sidebands. Using examples from different correlated materials, we discuss how this coupling can be explained by advanced calculations based on first-principles many-body perturbation theory that combine GW-like approximations for the self-energy with the cumulant expansion of the Green's function. This approach is not limited to low-energy satellites, but allows for a consistent explanation of signatures of correlation over a wide range of binding energies.

  8. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  9. The role of transition metal ions chemistry on multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N.

    2003-04-01

    A modelling study of the role of transition metal ions chemistry on cloud chemistry is presented. First, new developments of the Model of Multiphase Cloud Chemistry (M2C2) are described: the transition metal ions reactivity and variable photolysis in the aqueous phase. Secondly, three summertime scenarios describing urban, remote and marine conditions are simulated. First, comparisons between results from M2C2 and from CAPRAM2.3 models for the same scenarios (Herrmann et al., 2000) show a good agreement between the two models with respect to their different chemical mechanisms. Secondly, chemical regimes in cloud are analysed to understand the role of transition metal ions chemistry on cloud chemistry. This study focuses on HOx chemistry, which afterwards influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the few measurements of Fe speciation available. In the polluted case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered. This implies a more important oxidation of VOCs in droplets, which produces the HO2 radical, the hydrogen peroxide precursor. In fact, the HO2 radical is mainly converted into hydrogen peroxide by reactions between HO2/O2- radicals with Fe(II). This production of hydrogen peroxide leads to a rapid conversion of S(IV) into S(VI) at the beginning of the simulation.

  10. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  11. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  12. Transition metal catalysis in confined spaces.

    PubMed

    Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H

    2015-01-21

    Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.

  13. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  14. Generic trend of work functions in transition-metal carbides and nitrides

    SciTech Connect

    Yoshitake, Michiko

    2014-11-15

    Transition-metal carbides and nitrides (TMCs and TMNs) are promising electrode materials for various electronic devices such as metal-oxide-semiconductor field-effect transistors and metal-insulator-metal capacitors. In this paper, the work functions of TMCs and TMNs are discussed systematically. Based upon the origin of the work function, the effect upon transition metal species by different periodic table groups is explained, carbides are compared with nitrides for the same transition metal, and the effect of carbon or nitrogen vacancies is discussed. In addition, a method to estimate the generic trend of the work function is proposed for TMC{sub x}, TMN{sub x}, TMC{sub 1−y}N{sub y} (transition metal carbonitrides), and TM{sub 1−z}TM′{sub z}C (alloy carbides)

  15. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  16. Growth of 3-D flower/grass-like metal oxide nanoarchitectures based on catalyst-assisted oxidation method

    NASA Astrophysics Data System (ADS)

    Hu, Lijiao; Ju, Yang; Hosoi, Atsushi

    2014-03-01

    Cu2O grass-like and ZnO flower-like nanoarchitectures were fabricated directly on Cu powders and Zn powders using a novel thermal oxidation stress-induced (TOS) method based on catalyst assistance at a low temperature of 150°C under moderate humid atmosphere. The experiments of Al powder were also carried out based on TOS method. Overlapping migration (OLM) of Cu and Zn atoms and toothpaste squeezing migration (TSM) of Al atoms caused by different atom densities in metal oxide materials were studied.

  17. Transition metal-free decarboxylative alkylation reactions.

    PubMed

    Liu, Ping; Zhang, Guanghui; Sun, Peipei

    2016-11-22

    This review summarizes advances in the decarboxylative alkylation of carboxylic acids and their derivatives under transition metal-free conditions in recent years. Unlike most transition metal-catalyzed decarboxylative coupling reactions which tend to undergo catalytic cycles, the mechanisms of reactions under metal-free conditions are usually diverse and even ambiguous in some cases. This article offers an overview of reaction types and their corresponding mechanisms, highlights some of the advantages and limitations, and focuses on introducing UV and visible light-induced, organocatalyst and peroxide promoted radical processes for decarboxylative alkylation and the formation of C-C bonds.

  18. Mid-IR Transition Metal Lasers (Postprint)

    DTIC Science & Technology

    2007-01-01

    alexandrite was demonstrated in 1979. [2] Cr4+ and Cr2+ infrared laser materials took even longer to be discovered. However, transition metal laser...already been mentioned. Other transition metal laser ions such as Cr3+ in alexandrite [19] and Ti3+ in YAlO3 [20] have excited state absorption (ESA...Washington, DC. 19. Shand, M.L., J.C. Walling, and R.C. Morris, Excited-state absorption in the pump region of alexandrite , Journal of Applied Physics

  19. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    SciTech Connect

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; Chapman, Karena W.; Parker, Joseph F.; Long, Jeffrey W.; Rolison, Debra R.

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.

  20. Transition metal d -band occupancy in skutterudites studied by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Prytz, Ø.; Taftø, J.; Ahn, C. C.; Fultz, B.

    2007-03-01

    The transition-metal 3d occupancy of a series of thermoelectric skutterudites is investigated using electron energy-loss spectroscopy. We find that bonding causes an emptying of the 3d states in the binary skutterudites CoP3 , CoAs3 , CoSb3 , and NiP3 , while compared to the pure Fe the 3d occupancy in LaFe4P12 is significantly increased, consistent with the idea that each interstitial La atom (rattler) donates three electrons to compensate for missing valence electron of Fe as compared to Co. These experimental results are in agreement with previous models suggesting a predominantly covalent bonding between transition metal and pnictogen atoms in skutterudites, and provide evidence of charge transfer from La to the Fe-P complex in LaFe4P12 .

  1. An insight into fluorescent transition metal complexes.

    PubMed

    Chia, Y Y; Tay, M G

    2014-09-21

    The emission from transition metal complexes is usually produced from triplet excited states. Owing to strong spin-orbit coupling (SOC), the fast conversion of singlet to triplet excited states via intersystem crossing (ISC) is facilitated. Hence, in transition metal complexes, emission from singlet excited states is not favoured. Nevertheless, a number of examples of transition metal complexes that fluoresce with high intensity have been found and some of them were even comprehensively studied. In general, three common photophysical characteristics are used for the identification of fluorescent emission from a transition metal complex: emission lifetimes on the nanosecond scale; a small Stokes shift; and intense emission under aerated conditions. For most of the complexes reviewed here, singlet emission is the result of ligand-based fluorescence, which is the dominant emission process due to poor metal-ligand interactions leading to a small metal contribution in the excited states, and a competitive fluorescence rate constant when compared to the ISC rate constant. In addition to the pure fluorescence from metal complexes, another two types of fluorescent emissions were also reviewed, namely, delayed fluorescence and fluorescence-phosphorescence dual emissions. Both emissions also have their respective unique characteristics, and thus they are discussed in this perspective.

  2. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  3. Magnetic properties of nanocrystalline transition metals

    NASA Astrophysics Data System (ADS)

    Aus, Martin J.

    1999-09-01

    In the past decade, considerable attention has been devoted to the nanoprocessing of magnetic materials to enhance specific magnetic properties. For nanocrystalline materials in which the grain size approaches the dimensions of the domain wall thickness of conventional materials, considerable changes in magnetic behaviour are expected. In the present work, various electrodeposited ferromagnetic nanocrystalline pure metals and alloys were characterized by using a vibrating sample magnetometer. The systems investigated include pure Ni and Co as well as alloys of Ni-P, Ni-Fe and Co-Fe. These studies explored the effect of gram size on coercivity, indicating that the crystallographic texture is more significant than gram size. In addition, these studies reported, for the first time, that saturation magnetization of pore-free electroplated bulk nanocrystalline transition metals and their alloys is relatively little affected by grain size. In contrast, previously reported results for ultra-fine particles and nanomaterials produced from compacted powders showed a strong decrease in saturation magnetization with decreasing grain size. The difference in results for pore-free electrodeposits and ultrafine particles/compacted powders has been attributed to antiferromagnetic surface oxide layers, which is a direct result of large internal porosity in the latter group of materials. Further magnetic studies were completed on nanocrystalline electrodeposits produced by magnetoelectrohydrolysis. The effects of applied magnetic field strength and substrate orientation on saturation magnetization and coercivity of Ni-Fe and Co were explored. The results have shown that both nanoprocessing and electroplating in a magnetic field can improve soft magnetic properties by lowering the coercivity. Thermomagnetic studies examined saturation magnetization as a function of temperature, Curie temperature and coercivity changes during annealing. The Curie temperatures of electrodeposited

  4. Electronic and magnetic properties of NbSe2 monolayer doped vacancy and transition metal atoms

    NASA Astrophysics Data System (ADS)

    Manchanda, Priyanka; Sellmyer, David; Skomski, Ralph

    2015-03-01

    Two-dimensional transition-metal dichalcogenides (2D TMDs) have attracted much attention recently due to potential applications including optoelectronic devices. Atomically thin layers of materials such as MoS2, WS2, NbS2, NbSe2, TaTe2 can easily be synthesized by exfoliation techniques and exhibit variety electronic phases such as metal, semiconductor, superconductor depending on the choice of metal. Most of the TMDs are nonmagnetic and various techniques have been proposed to induce or modulate magnetic properties that are essential for nanoelectronic device applications. We use DFT calculations to analyze the effect of strain, hydrogen adsorption, and doping. Emphasis is on the magnetic properties of NbSe2 monolayers containing vacancies and 3 d transition metal atoms. We find that magnetism can be induced by vacancy creation and transition metal-substitution in NbSe2, with effects similar to strain and hydrogen adsorption. The moment mainly arises from the localized nonbonding 3d electrons of the transition-metal atoms. Our findings contribute to the ongoing search ``for-better-than-graphene'' thin-film materials for novel electronic devices. This research is partially supported by DOE BES (DE-FG02-04ER46152).

  5. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  6. Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors.

    PubMed

    Gao, Jian; Kim, Young Duck; Liang, Liangbo; Idrobo, Juan Carlos; Chow, Phil; Tan, Jiawei; Li, Baichang; Li, Lu; Sumpter, Bobby G; Lu, Toh-Ming; Meunier, Vincent; Hone, James; Koratkar, Nikhil

    2016-11-01

    Large-area "in situ" transition-metal substitution doping for chemical-vapor-deposited semiconducting transition-metal-dichalcogenide monolayers deposited on dielectric substrates is demonstrated. In this approach, the transition-metal substitution is stable and preserves the monolayer's semiconducting nature, along with other attractive characteristics, including direct-bandgap photoluminescence.

  7. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  8. Lanthanoid-transition-metal bonding in bismetallocenes.

    PubMed

    Butovskii, Mikhail V; Oelkers, Benjamin; Bauer, Tobias; Bakker, Jacinta M; Bezugly, Viktor; Wagner, Frank R; Kempe, Rhett

    2014-03-03

    Bismetallocenes [Cp2 LuReCp2 ] and [Cp*2 LaReCp2 ] (Cp=cyclopentadienyl; Cp*=pentamethylcyclopentadienyl) were prepared using different synthetic strategies. Salt metathesis-performed in aromatic hydrocarbons to avoid degradation pathways caused by THF-were identified as an attractive alternative to alkane elimination. Although alkane elimination is more attractive in the sense of its less elaborate workup, the rate of the reaction shows a strong dependence on the ionic radius of Ln(3+) (Ln=lanthanide) within a given ligand set. Steric hindrance can cause a dramatic decrease in the reaction rate of alkane elimination. In this case, salt metathesis should be considered the better alternative. Covalent bonding interactions between the Ln and transition-metal (TM) cations has been quantified on the basis of the delocalization index. Its magnitude lies within the range characteristic for bonds between transition metals. Secondary interactions were identified between carbon atoms of the Cp ligand of the transition metal and the Ln cation. Model calculations clearly indicated that the size of these interactions depends on the capability of the TM atom to act as an electron donor (i.e., a Lewis base). The consequences can even be derived from structural details. The observed clear dependency of the LuRu and interfragment LuC bonding on the THF coordination of the Lu atom points to a tunable Lewis acidity at the Ln site, which provides a method of significantly influencing the structure and the interfragment bonding.

  9. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  10. Transition metal-induced degradation of a pharmaceutical compound in reversed-phase liquid chromatographic analysis.

    PubMed

    Wang, Qinggang; He, Brian Lingfeng; Zhang, Jin; Huang, Yande; Kleintop, Brent; Raglione, Thomas

    2015-01-01

    Drug degradation that occurs in HPLC analysis, during either sample preparation or chromatographic separation, can greatly impact method robustness and result accuracy. In this work, we report a case study of drug dimerization in HPLC analysis where proximate causes were attributed to either the LC columns or the HPLC instrument. Solution stress studies indicated that the same pseudo-dimeric degradants could also be formed rapidly when the compound was exposed to certain oxidative transition metal ions, such as Cu(II) and Fe(III). Two pseudo-dimeric degradants were isolated from transition metal stressed samples and their structures were elucidated. A degradation pathway was proposed, whereby the degradation was initiated through transition metal-induced single electron transfer oxidation. Further studies confirmed that the dimerization was induced by trace transition metals in the HPLC flow path, which could arise from either the stainless steel frits in the LC column or stainless steel tubing in the HPLC instrument. Various procedures to prevent transition metal-induced drug degradation were explored, and a general strategy to mitigate such risks is briefly discussed.

  11. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  12. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  13. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  14. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made.

  15. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles.

    PubMed

    Chia, Sing Ling; Tay, Chor Yong; Setyawati, Magdiel I; Leong, David T

    2015-02-11

    Our current mechanistic understanding on the effects of engineered nanoparticles (NPs) on cellular physiology is derived mainly from 2D cell culture studies. However, conventional monolayer cell culture may not accurately model the mass transfer gradient that is expected in 3D tissue physiology and thus may lead to artifactual experimental conclusions. Herein, using a micropatterned agarose hydrogel platform, the effects of ZnO NPs (25 nm) on 3D colon cell spheroids of well-defined sizes are examined. The findings show that cell dimensionality plays a critical role in governing the spatiotemporal cellular outcomes like inflammatory response and cytotoxicity in response to ZnO NPs treatment. More importantly, ZnO NPs can induce different modes of cell death in 2D and 3D cell culture systems. Interestingly, the outer few layers of cells in 3D model could only protect the inner core of cells for a limited time and periodically slough off from the spheroids surface. These findings suggest that toxicological conclusions made from 2D cell models might overestimate the toxicity of ZnO NPs. This 3D cell spheroid model can serve as a reproducible platform to better reflect the actual cell response to NPs and to study a more realistic mechanism of nanoparticle-induced toxicity.

  16. Reduction of transition metals by human (THP-1) monocytes is enhanced by activators of protein kinase C.

    PubMed

    Wood, J L; Graham, A

    1999-11-01

    Macrophages oxidize low density lipoprotein (LDL) by enzymatic and non-enzymatic mechanisms; however, it is evident that macrophage reduction of transition metals can accelerate LDL oxidation in vitro, and possibly in vivo. Distinct cellular pathways contribute to this process, including trans-plasma membrane electron transport (TPMET), and production of free thiols or superoxide. Here, we explore the role of protein kinase C (PKC) in regulating transition metal reduction by each of these redox-active pathways, in human (THP-1) monocytes. We demonstrate that PKC agonists and/or inhibitors modulate reduction of transition metals by monocytes: both thiol-independent (direct) and thiol-dependent (indirect) pathways for transition metal reduction are enhanced by PKC activation, suggesting a potential strategy for therapeutic intervention.

  17. Transitional Metal/Chalcogen Dependant Interactions of Hairpin DNA with Transition Metal Dichalcogenides, MX2.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Sofer, Zdenek; Pumera, Martin

    2015-08-03

    Owing to the attractive properties that transition metal dichalcogenides (TMDs) display, they have found recent application in the fabrication of biosensing devices. These devices involve the immobilization of a recognition element such as DNA onto the surface of TMDs. Therefore, it is imperative to examine the interactions between TMDs and DNA. Herein, we explore the effect of different transition metals (Mo and W) and chalcogens (S and Se) on the interactions between hairpin DNA and TMDs of both bulk and t-BuLi exfoliated forms. We discovered that the interactions are strongly dependent on the metal/chalcogen composition in TMDs.

  18. Spinning around in Transition-Metal Chemistry.

    PubMed

    Swart, Marcel; Gruden, Maja

    2016-12-20

    The great diversity and richness of transition metal chemistry, such as the features of an open d-shell, opened a way to numerous areas of scientific research and technological applications. Depending on the nature of the metal and its environment, there are often several energetically accessible spin states, and the progress in accurate theoretical treatment of this complicated phenomenon is presented in this Account. The spin state energetics of a transition metal complex can be predicted theoretically on the basis of density functional theory (DFT) or wave function based methodology, where DFT has advantages since it can be applied routinely to medium-to-large-sized molecules and spin-state consistent density functionals are now available. Additional factors such as the effect of the basis set, thermochemical contributions, solvation, relativity, and dispersion, have been investigated by many researchers, but challenges in unambiguous assignment of spin states still remain. The first DFT studies showed intrinsic spin-state preferences of hybrid functionals for high spin and early generalized gradient approximation functionals for low spin. Progress in the development of density functional approximations (DFAs) then led to a class of specially designed DFAs, such as OPBE, SSB-D, and S12g, and brought a very intriguing and fascinating observation that the spin states of transition metals and the SN2 barriers of organic molecules are somehow intimately linked. Among the many noteworthy results that emerged from the search for the appropriate description of the complicated spin state preferences in transition metals, we mainly focused on the examination of the connection between the spin state and the structures or coordination modes of the transition metal complexes. Changes in spin states normally lead only to changes in the metal-ligand bond lengths, but to the best of our knowledge, the dapsox ligand showed the first example of a transition-metal complex where a

  19. Regenerating Pt-3d-Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Menning, Carl A.; Chen, Jingguang G.

    The interchange between the Pt-Ni-Pt and Ni-Pt-Pt bimetallic configurations in O 2 and H 2 is confirmed experimentally at atmospheric pressure using in situ X-ray absorption spectroscopy (XAS). The subsurface Pt-3d-Pt structure, a desirable configuration as cathode electrocatalysts for PEM fuel cells, is found to be preferred in the reducing environment of H 2 whereas the surface 3d-Pt-Pt configuration is preferred in O 2. This process has been found to be reversible, providing useful insights into the maintenance and regeneration of the desirable subsurface structure.

  20. Dimensional diversity in transition metal trihalides

    SciTech Connect

    Jianhua Lin; Miller, G.J. )

    1993-04-14

    Structural variations of the second- and third-row transition metal trihalides are rationalized via tight-binding band calculations and evaluation of Madelung energetic factors. The observed structure for a given metal halide is controlled by both the coordination geometry at the anion and the d electron configuration at the metal. As the polarizability of the halide increases, the M-X-M angle, in general, decreases so that three-dimensional frameworks occur for the fluorides, while layer and chain structures are found for the chlorides, bromides, and iodides. Within a particular halide system, systematic structural trends also occur as the d electron configuration changes. 56 refs., 23 figs., 4 tabs.

  1. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model

    PubMed Central

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Jung Shim, Hyun; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-01-01

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms. PMID:26399322

  2. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model.

    PubMed

    Min, Seul Ki; Park, Jun Sang; Luo, Lidan; Kwon, Yeo Seon; Lee, Hoo Cheol; Shim, Hyun Jung; Kim, Il-Doo; Lee, Ja-Kyeong; Shin, Hwa Sung

    2015-09-24

    Drugs are currently being developed to attenuate oxidative stress as a treatment for brain injuries. C-phycocyanin (C-Pc) is an antioxidant protein of green microalgae known to exert neuroprotective effects against oxidative brain injury. Astrocytes, which compose many portions of the brain, exert various functions to overcome oxidative stress; however, little is known about how C-Pc mediates the antioxidative effects of astrocytes. In this study, we revealed that C-Pc intranasal administration to the middle cerebral artery occlusion (MCAO) rats ensures neuroprotection of ischemic brain by reducing infarct size and improving behavioral deficits. C-Pc also enhanced viability and proliferation but attenuated apoptosis and reactive oxygen species (ROS) of oxidized astrocytes, without cytotoxicity to normal astrocytes and neurons. To elucidate how C-Pc leads astrocytes to enhance neuroprotection and repair of ischemia brain, we firstly developed 3D oxidized astrocyte model. C-Pc had astrocytes upregulate antioxidant enzymes such as SOD and catalase and neurotrophic factors BDNF and NGF, while alleviating inflammatory factors IL-6 and IL-1β and glial scar. Additionally, C-Pc improved viability of 3D oxidized neurons. In summary, C-Pc was concluded to activate oxidized astrocytes to protect and repair the ischemic brain with the combinatorial effects of improved antioxidative, neurotrophic, and anti-inflammatory mechanisms.

  3. First principle investigation of the magnetic properties of transition metal doped (ZnS)n (n=1-16) clusters

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Singh, Kanchan L.; Sharma, Hitesh

    2015-08-01

    The magnetic properties of (ZnS)n clusters (n = 1 - 16) due to 3d transition metals have been investigated using spin polarized density functional theory. The transition metals are more stable at Zn site than at the S site in (ZnS)n clusters. The binding energy of (ZnS)n clusters increases significantly on doping with transition metal indicating enhanced structural stability of the doped (ZnS)n clusters. All 3d transition metals induced magnetic moment of order 5μB-1μB per atom in all (ZnS)n clusters. The magnetic moment is mainly localized on the TM dopant. The magnetic moment increases gradually with the increase in number of electrons in 3d orbital which is in accordance with Hund's rule till Mn and decreases thereafter. All 3d TMs retain their atomic magnetic moment in ZnS clusters of all sizes. Ti, V, Cr and Mn interact anti-ferromagnetically with the surrounding S and Zn, whereas Sc, Fe, Co, Ni and Cu interact with ferromagnetic interactions.

  4. Transition metal-boron complexes BnM: from bowls (n = 8-14) to tires (n = 14).

    PubMed

    Li, Si-Dian; Miao, Chang-Qing; Guo, Jin-Chang; Ren, Guang-Ming

    2006-11-30

    Transition metal-boron complexes BnM have been predicted at density functional theory level to be molecular bowls (n = 8-14) hosting a transition metal atom (M) inside or molecular tires (n = 14) centered with a transition metal atom. Small Bn clusters prove to be effective inorganic ligands to all the VB-VIIIB transition metal elements in the periodic table. Density functional evidences obtained in this work strongly suggest that bowl-shaped fullerene analogues of Bn units exist in small BnM complexes and the bowl-to-tire structural transition occur to the first-row transition metal complexes BnM (M = Mn, Fe, Co) at n = 14, a size obviously smaller than n = 20 where the 2D-3D structural transition occurs to bare Bn. The half-sandwich-type B12Cr (C3v), full sandwich-type (B12)2Cr (D3d), bowl-shaped B14Fe (C2), and tire-shaped B14Fe (D7d) and B14Fe- (C7v) are the most interesting prototypes to be targeted in future experiments. These BnM complexes may serve as building blocks to form extended boron-rich BnMm tubes or cages (m > or = 2) or as structural units to be placed inside carbon nanotubes with suitable diameters.

  5. Composite System of Graphene Oxide and Polypeptide Thermogel As an Injectable 3D Scaffold for Adipogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells.

    PubMed

    Patel, Madhumita; Moon, Hyo Jung; Ko, Du Young; Jeong, Byeongmoon

    2016-03-02

    As two-dimensional (2D) nanomaterials, graphene (G) and graphene oxide (GO) have evolved into new platforms for biomedical research as biosensors, imaging agents, and drug delivery carriers. In particular, the unique surface properties of GO can be an important tool in modulating cellular behavior and various biological sequences. Here, we report that a composite system of graphene oxide/polypeptide thermogel (GO/P), prepared by temperature-sensitive sol-to-gel transition of a GO-suspended poly(ethylene glycol)-poly(L-alanine) (PEG-PA) aqueous solution significantly enhances the expression of adipogenic biomarkers, including PPAR-γ, CEBP-α, LPL, AP2, ELOVL3, and HSL, compared to both a pure hydrogel system and a composite system of G/P, graphene-incorporated hydrogel. We prove that insulin, an adipogenic differentiation factor, preferentially adhered to GO, is supplied to the incorporated stem cells in a sustained manner over the three-dimensional (3D) cell culture period. On the other hand, insulin is partially denatured in the presence of G and interferes with the adipogenic differentiation of the stem cells. The study suggests that a 2D/3D composite system is a promising platform as a 3D cell culture matrix, where the surface properties of 2D materials in modulating the fates of the stem cells are effectively transcribed in a 3D culture system.

  6. Understanding the trends in transition metal sorption by vacancy sites in birnessite

    NASA Astrophysics Data System (ADS)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2013-01-01

    Hexagonal birnessite, a layer-type Mn(IV) oxide, ubiquitous in nature from the ocean floor to topsoil, functions as an important sorbent for transition metals. Spectroscopic experiments have shown that Co, Ni, Cu, and Zn bind to Mn(IV) vacancy sites in birnessite to form interlayer triple-corner-sharing inner-sphere surface complexes (TCS species), while they also may enter the vacancy site (INC species) to become part of the hexagonal sheet structure, effectively replacing the absent Mn4+ ion. Experimentally, the INC/(TCS + INC) ratio has been found to be both metal-specific: 90-100%, 10-45%, 0-20%, and 0%, respectively for Co [Co(III) when inside a vacancy site], Ni, Cu, and Zn. In the case of Ni and Cu, the ratio tends to increase with pH. To understand these two trends, we performed electronic structure calculations based on density functional theory (DFT) for both of the sorbed species of the four transition metals. Overall, the relative stability among Co-, Ni-, Cu-, and Zn-INC species was estimated by calculating the energy difference for the INC vs. the TCS species, yielding, -214, -23, +4, and +34 kJ/mol, respectively, for Co, Ni, Cu, and Zn, which agrees with the order of experimental INC/(TCS + INC) ratios. Comparisons between DFT's fully-relaxed and constrained geometry optimizations of the INC species demonstrate that, when a transition metal cation enters a vacancy, stresses are exerted on the surrounding ions which then can be relieved by structural distortions of the birnessite octahedra. Electronic structure analysis further indicates that stereoactive 3d states of a metal cation promote these structural distortions of the trigonally-compressed Mn(IV) octahedral sheet. This compensating effect varies in the same way as the INC/(TCS + INC) ratio. In particular, the fully-occupied 3d states of Zn2+ are non-stereoactive, such that Zn-INC cannot benefit from structural distortions and remains unstable. As the number of H bonded to a Mn vacancy

  7. Laser materials based on transition metal ions

    NASA Astrophysics Data System (ADS)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  8. Strong electron correlations in biomimetic transition metal molecules

    NASA Astrophysics Data System (ADS)

    Labute, Montiago Xavier

    The first-row transition metals (Fe, Co, V,...) are key players in the active sites of proteins and enzymes responsible for diverse biological processes such as NO regulation and photosynthesis. Many small transition metal complexes possess chemical coordination environments in the vicinity of the metal atom that are reminiscent of these active sites. We have studied the electronic structure of these molecules and discussed the relevance for their biological analogues. The specific question on which we wish to focus is: Do strong correlations (resulting from the localized character of the TM 3d-orbitals) contribute significantly to the reaction energetics of these molecules and, if so, can these effects be observed by experiment? To accomplish these ends we focus on the cobalt valence tautomer molecules and the phenomenon of electron transfer in aqueous hexaammine cobalt ions. We utilize theoretical methods in order to study the cobalt valence tautomer molecules which undergo an interconversion with temperature that is reminiscent of the changes in structure and spin that the heme group experiences as the result of Fe-ligand interactions. We perform fully ab initio calculations using the GGA implementation of density functional theory with the computer code SIESTA. In addition, a simple Anderson Impurity Model has been employed that more properly accounts for the Coulomb interaction among the 3d electrons on the cobalt atom. The calculated Co K x-ray absorption near-edge spectra XANES agrees well with experimental data and a prediction for the Co L-edge XAS that could be tested in future experiments is also presented. We believe that there are structures in both spectra that may only be explained by a strong admixture of configurations. It is conjectured that strong electron correlations help explain the non-Arrhenius rate behavior observed in the high-spin to low-spin relaxation rate at low temperatures. Work on electron-transfer in CoNH32 +/3+6aq using these

  9. A rule for counting neighbours in rare-earth transition metal compounds

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.

    1991-09-01

    In (R, T) compounds (R: rare earth; T: 3d transition metal) such as R 2T 17, R 2T 14B, and so on, the exchange interaction between a rare-earth spin (operator) SR and the neighbouring 3d spins can be written as -2 JRTzRTSR·< ST>, where < ST> is a site average of the expectation value of the transition metal spins in the molecular field approximation. zRT is the number of nearest T neighbours of an R-atom. A more precise definition is given in the main text. Analogously, zTR, the average number of nearest R neighbours of a T atom can be defined. We stress that a consistent definition must lead to the relation zRTNR = zTRNT for a stoichiometric compound containing NR rare-earth atoms and NT transition metal atoms per formula unit. Appropriate definitions are discussed for more intricate cases, in particular for off-stoichiometric compounds.

  10. Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-05-01

    Surface conductive engineering on Li2S is critical for construction of advanced cathodes of lithium-sulfur batteries. Herein, we construct a high-performance Li2S-based composite cathode with the help of three-dimensional reduced graphene oxide (3D-rGO) network and outer carbon coating. Typically, the Li2S@C particles are uniformly embedded into 3D-rGO to form a binder-free 3D-rGO-Li2S@C cathode by the combination of a liquid solution-evaporation coating and PVP (Polyvinyl Pyrrolidone) carbonization. The 3D-rGO-Li2S@C cathode exhibits a high initial discharge capacity of 856 mAh g-1 at 0.1C, superior cycling stability with a capacity of 388.4 mAh g-1 after 200 cycles at 1C, corresponding to a low capacity fading rate. It is demonstrated that the outer conductive coating is effective and necessary for electrochemical enhancement of Li2S cathodes by improving electrical conductivity and prohibiting polysulfide from shuttling during cycling.

  11. Clean Synthesis of an Economical 3D Nanochain Network of PdCu Alloy with Enhanced Electrocatalytic Performance towards Ethanol Oxidation.

    PubMed

    Liu, Jiawei; Huang, Zhao; Cai, Kai; Zhang, Huan; Lu, Zhicheng; Li, Tingting; Zuo, Yunpeng; Han, Heyou

    2015-12-01

    A one-pot method for the fast synthesis of a 3D nanochain network (NNC) of PdCu alloy without any surfactants is described. The composition of the as-prepared PdCu alloy catalysts can be precisely controlled by changing the precursor ratio of Pd to Cu. First, the Cu content changes the electronic structure of Pd in the 3D NNC of PdCu alloy. Second, the 3D network structure offers large open pores, high surface areas, and self-supported properties. Third, the surfactant-free strategy results in a relatively clean surface. These factors all contribute to better electrocatalytic activity and durability towards ethanol oxidation. Moreover, the use of copper in the alloy lowers the price of the catalyst by replacing the noble metal palladium with non-noble metal copper. The composition-optimized Pd80 Cu20 alloy in the 3D NNC catalyst shows an increased electrochemically active surface area (80.95 m(2)  g(-1) ) and a 3.62-fold enhancement of mass activity (6.16 A mg(-1) ) over a commercial Pd/C catalyst.

  12. Multifunctional Ligands in Transition Metal Catalysis

    SciTech Connect

    Crabtree, Robert H

    2011-01-01

    Sophisticated ligands are now being designed that do far more than just fulfil their traditional spectator roles by binding to the metal and providing a sterically-defined binding pocket for the substrate in homogeneous transition metal catalysis. This Focus review emphasizes selected cases in which ligands carry additional functional groups that change the properties of the ligand as a result of an external stimulus or undergo catalytically-relevant ligand-based reactivity. These include proton responsive ligands capable of gaining or losing one or more protons, ligands having a hydrogen bonding function, electroresponsive ligands capable of gaining or losing one or more electrons, and photoresponsive ligands capable of undergoing a useful change of properties upon irradiation. Molecular recognition ligands and proton coupled electron transfer (PCET) are briefly discussed.

  13. Raman spectroscopy of transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S.

    2016-09-01

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  14. Raman spectroscopy of transition metal dichalcogenides.

    PubMed

    Saito, R; Tatsumi, Y; Huang, S; Ling, X; Dresselhaus, M S

    2016-09-07

    Raman spectroscopy of transition metal dichalcogenides (TMDs) is reviewed based on our recent theoretical and experimental works. First, we discuss the semi-classical and quantum mechanical description for the polarization dependence of Raman spectra of TMDs in which the optical dipole transition matrix elements as a function of laser excitation energy are important for understanding the polarization dependence of the Raman intensity and Raman tensor. Overviewing the symmetry of TMDs, we discuss the dependence of the Raman spectra of TMDs on layer thickness, polarization, laser energy and the structural phase. Furthermore, we discuss the Raman spectra of twisted bilayer and heterostructures of TMDs. Finally, we give our perspectives on the Raman spectroscopy of TMDs.

  15. Spin doping using transition metal phthalocyanine molecules

    NASA Astrophysics Data System (ADS)

    Atxabal, A.; Ribeiro, M.; Parui, S.; Urreta, L.; Sagasta, E.; Sun, X.; Llopis, R.; Casanova, F.; Hueso, L. E.

    2016-12-01

    Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale.

  16. Spin doping using transition metal phthalocyanine molecules

    PubMed Central

    Atxabal, A.; Ribeiro, M.; Parui, S.; Urreta, L.; Sagasta, E.; Sun, X.; Llopis, R.; Casanova, F.; Hueso, L. E.

    2016-01-01

    Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale. PMID:27941810

  17. Radiation damage of transition metal carbides

    SciTech Connect

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  18. Theoretical studies of transition metal dimers

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Bauschlicher, Charles W., Jr.

    1985-01-01

    The CASSCF approach was used to perform the MCSCF calculations for a number of transition metal dimers, including the Sc2, Ti2, Cr2, Cu2, TiV, Y2, Nb2, and Mo2 molecules; in addition, CASSCF/CI calculations were carried out for Sc2, Ti2, Cu2, and Y2. The CASSCF procedure is shown to provide a consistent set of calculations for these molecules, from which trends and a simple qualitative picture of the electronic structure may be derived. In particular, the calculations confirmed the ground states of the Sc2 and the TiV, and led to predictions for other molecules in this series. In addition to specific predictions, the study provides a simple qualitative picture of the bonding in these dimers.

  19. Transition metal-ligand bonding. II

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1986-01-01

    The nature of the bonding of CO, H2O, and NH3 to transition metal atoms is analyzed using the constrained-space-orbital-variation (CSOV) technique. The cooperative effects for Ni(CO)2 are found to be different than those for Ni(H2O)2. The bonding between neutral systems and the positive ions is found to be quite different; NiCO(+) has little pi bonding, while NiCO has strong pi bonding. The positive ion of NiH2O is far more strongly bound than the neutral, while for NiCO the positive ion and neutral are bound by about the same energy.

  20. Spin doping using transition metal phthalocyanine molecules.

    PubMed

    Atxabal, A; Ribeiro, M; Parui, S; Urreta, L; Sagasta, E; Sun, X; Llopis, R; Casanova, F; Hueso, L E

    2016-12-12

    Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale.

  1. Transition metal catalysis and nucleophilic fluorination.

    PubMed

    Hollingworth, Charlotte; Gouverneur, Véronique

    2012-03-21

    Transition metal catalyzed transformations using fluorinating reagents have been developed extensively for the preparation of synthetically valuable fluorinated targets. This is a topic of critical importance to facilitate laboratory and industrial chemical synthesis of fluorine containing pharmaceuticals and agrochemicals. Translation to (18)F-radiochemistry is also emerging as a vibrant research field because functional imaging based on Positron Emission Tomography (PET) is increasingly used for both diagnosis and pharmaceutical development. This review summarizes how fluoride sources have been used for the catalytic nucleophilic fluorination of various substrates inclusive of aryl triflates, alkynes, allylic halides, allylic esters, allylic trichloroacetimidates, benzylic halides, tertiary alkyl halides and epoxides. Until recently, progress in this field of research has been slow in part because of the challenges associated with the dual reactivity profile of fluoride (nucleophile or base). Despite these difficulties, some remarkable breakthroughs have emerged. This includes the demonstration that Pd(0)/Pd(II)-catalyzed nucleophilic fluorination to access fluoroarenes from aryl triflates is feasible, and the first examples of Tsuji-Trost allylic alkylation with fluoride using either allyl chlorides or allyl precursors bearing O-leaving groups. More recently, allylic fluorides were also made accessible under iridium catalysis. Another reaction, which has been greatly improved based on careful mechanistic work, is the catalytic asymmetric hydrofluorination of meso epoxides. Notably, each individual transition metal catalyzed nucleophilic fluorination reported to date employs a different F-reagent, an observation indicating that this area of research will benefit from a larger pool of nucleophilic fluoride sources. In this context, a striking recent development is the successful design, synthesis and applications of a fluoride-derived electrophilic late stage

  2. Optical and magnetic properties of transition-metal ions in tetrahedral and octahedral compounds

    NASA Astrophysics Data System (ADS)

    Li, Huifang; Wang, Huaiqian; Kuang, Xiaoyu

    2011-10-01

    This paper presents the complete energy matrix of the 3d2 system containing the electron-electron interaction, the ligand-field interaction, the spin-orbit coupling interaction, and the Zeeman interaction, in which the optical spectra and g-factor of V3+and Ti2+ ions in the series of tetrahedral AIIBVI (AII=Zn, Cd, BVI=S, Se, Te) semiconductor materials are determined. In the investigation of the optical and magnetic properties of these transition-metal ions in the tetrahedral coordination complexes, we compared the data obtained from the transition-metal ions in the tetrahedral coordination complexes with those obtained from the corresponding ions in the octahedral ones, and found that the tetrahedral complexes have weaker crystal-field strength, inverse energy level ordering and stronger covalence effect.

  3. In situ Oxidation of phenol and o-aminophenol in the channels of 3d-supramolecular coordination polymers

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-Din H.; Werida, Amal H.

    2010-09-01

    The host attractive properties of supramolecular coordination polymers of the type _infty^3 [(R3Sn)3FeIII(CN)6], where R = methyl (I), n-butyl (II), and phenyl (III), afford the ability to be used as effective oxidizing reagents for phenol and o-aminophenol forming new host-guest supramolecular coordination polymers. Phenol was oxidized to 1,4-benzoquinone while o-aminophenol was oxidized to poly-o-aminophenol by the polymers I and II and to 2-aminophenoxazin-3-one by the polymer III. The oxidation products were investigated by methods of spectroscopy and high-performance liquid chromatography. The redox reactions were characterized by first-order kinetics. Moreover, mechanisms of the oxidation processes of phenol and o-aminophenol have been proposed.

  4. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  5. Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance.

    PubMed

    Frieke Kuper, C; Gröllers-Mulderij, Mariska; Maarschalkerweerd, Thérèse; Meulendijks, Nicole M M; Reus, Astrid; van Acker, Frédérique; Zondervan-van den Beuken, Esther K; Wouters, Mariëlle E L; Bijlsma, Sabina; Kooter, Ingeborg M

    2015-03-01

    We investigated the toxicity of aggregated nanoparticles of cerium oxide (CeO2) using an in vitro 3D human bronchial epithelial model that included a mucociliary apparatus (MucilAir™). CeO2 was dispersed in saline and applied to the apical surface of the model. CeO2 did not induce distinct effects in the model, whereas it did in BEAS-2B and A549 cell cultures. The absence of effects of CeO2 was not because of the model's insensitivity. Nanoparticles of zinc oxide (ZnO) elicited positive responses in the toxicological assays. Respiratory mucus (0.1% and 1%) added to dispersions increased aggregation/agglomeration to such an extent that most CeO2 sedimented within a few minutes. Also, the mucociliary apparatus of the model removed CeO2 from the central part of the apical surface to the borders. This 'clearance' may have prevented the majority of CeO2 from reaching the epithelial cells. Chemical analysis of cerium in the basal tissue culture medium showed only minimal translocation of cerium across the 3D barrier. In conclusion, mucociliary defence appeared to prevent CeO2 reaching the respiratory epithelial cells in this 3D in vitro model. This model and approach can be used to study compounds of specific toxicological concern in airway defence mechanisms in vitro.

  6. Induce magnetism into silicene by embedding transition-metal atoms

    SciTech Connect

    Sun, Xiaotian; Wang, Lu E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong E-mail: yyli@suda.edu.cn

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.

  7. Correlations in rare-earth transition-metal permanent magnets

    SciTech Connect

    Skomski, R. Manchanda, P.; Kashyap, A.

    2015-05-07

    It is investigated how electron-electron correlations affect the intrinsic properties of rare-earth transition-metal magnets. Focusing on orbital moment and anisotropy, we perform model calculations for 3d-4f alloys and density-functional theory (DFT) calculations for NdCo{sub 5}. On an independent-electron level, the use of a single Slater determinant with broken spin symmetry introduces Hund's rule correlations, which govern the behavior of rare-earth ions and of alloys described by the local spin density approximation (LSDA) and LSDA + U approximations to DFT. By contrast, rare-earth ions in intermetallics involve configuration interactions between two or more Slater determinants and lead to phenomena such as spin-charge distribution. Analyzing DFT as a Legendre transformation and using Bethe's crystal-field theory, we show that the corresponding density functionals are very different from familiar LSDA-type expressions and outline the effect of spin-charge separation on the magnetocrystalline anisotropy.

  8. Density functional calculation of transition metal adatom adsorption on graphene.

    PubMed

    Mao, Yuliang; Yuan, Jianmei; Zhong, Jianxin

    2008-03-19

    The functionalization of graphene (a single graphite layer) by the addition of transition metal atoms of Mn, Fe and Co to its surface has been investigated computationally using density functional theory. In the calculation, the graphene surface supercell was constructed from a single layer of graphite (0001) surface separated by vertical vacuum layers 2 nm thick. We found that the center of the hexagonal ring formed by carbon from graphene is the most stable site for Mn, Fe, Co to stay after optimization. The calculated spin-polarized band structures of the graphene encapsulating the Mn adatom indicate that the conduction bands are modified and move down due to the coupling between the Mn atom and graphene. For Fe adsorbed on the graphene surface, it is semi-half-metallic, and the spin polarization P is found to be 100%. The system of Co adatom on graphene exhibits metallic electronic structure due to the density of states (DOS) peak at the band center with both majority and minority spins. Local density of states analyses indicate a larger promotion of 4s electrons into the 3d state in Fe and Co, resulting in lower local moments compared to an Mn adatom on the graphite surface.

  9. Anodization control for barrier-oxide thinning and 3D interconnected pores and direct electrodeposition of nanowire networks on native aluminium substrates.

    PubMed

    Gillette, Eleanor; Wittenberg, Stefanie; Graham, Lauren; Lee, Kwijong; Rubloff, Gary; Banerjee, Parag; Lee, Sang Bok

    2015-02-07

    Here we report a strategy for combining techniques for pore branching and barrier layer thinning to produce 3D porous anodized aluminum oxide films with direct ohmic contact to the native aluminum. This method provides an example of a rationally designed template which need not be removed from the aluminum, but which is also not constrained to traditional 2D pore geometry. We first demonstrate the barrier layer removal and pore branching techniques independently, and then combine them to produce free standing arrays of interconnected Ni nanostructures. Nickel nanostructures are deposited directly onto the aluminum to demonstrate the success of the structural modification, and showcase the potential for these films to be used as templates. This approach is the first to demonstrate the design and execution of multiple pore modification techniques in the same membrane, and demonstrates the first directly deposited 3D structures on aluminum substrates.

  10. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials.

    PubMed

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-01-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  11. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials

    NASA Astrophysics Data System (ADS)

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-05-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  12. Novel Vertical 3D Structure of TaOx-based RRAM with Self-localized Switching Region by Sidewall Electrode Oxidation

    PubMed Central

    Yu, Muxi; Cai, Yimao; Wang, Zongwei; Fang, Yichen; Liu, Yefan; Yu, Zhizhen; Pan, Yue; Zhang, Zhenxing; Tan, Jing; Yang, Xue; Li, Ming; Huang, Ru

    2016-01-01

    A novel vertical 3D RRAM structure with greatly improved reliability behavior is proposed and experimentally demonstrated through basically compatible process featuring self-localized switching region by sidewall electrode oxidation. Compared with the conventional structure, due to the effective confinement of the switching region, the newly-proposed structure shows about two orders higher endurance (>108 without verification operation) and better retention (>180h@150 °C), as well as high uniformity. Corresponding model is put forward, on the base of which thorough theoretical analysis and calculations are conducted as well, demonstrating that, resulting from the physically-isolated switching from neighboring cells, the proposed structure exhibits dramatically improved reliability due to effective suppression of thermal effects and oxygen vacancies diffusion interference, indicating that this novel structure is very promising for future high density 3D RRAM application. PMID:26884054

  13. The change of the LMM auger spectra in 3d-metals due to oxidation and its correlation with the change of the atomic magnetic moment.

    PubMed

    Zheltysheva, Olga R; Surnin, Dmitry V; Guy, Dmitry E; Gil'mutdinov, Faat Z; Ruts, Yuri V; Grebennikov, Vladimir I

    2005-12-01

    The surfaces of crystalline samples of 3d-metals (Mn, Fe, Co, Ni, and Cu) and their stoichiometric oxides have been studied by Auger spectroscopy. A correlation between the change in the LVV (L-inner level-valence-valence electron transition) Auger intensities and the change of the squares of the corresponding atomic-magnetic moments has been observed. This is because of the complicated nature of the Auger process. That is, the Auger electron emission is a result of the inner atomic level excitation by electron impact and Auger annihilation of the inner-level hole. Therefore, the Auger process has been considered a second-order process, and spin polarization of the valence states has been taken into account for the LMM (L-inner level-M-inner level-M-inner level electron transition) Auger spectra of 3d-metals.

  14. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    NASA Astrophysics Data System (ADS)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  15. Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae

    PubMed Central

    Begg, Stephanie L.; Eijkelkamp, Bart A.; Luo, Zhenyao; Couñago, Rafael M.; Morey, Jacqueline R.; Maher, Megan J.; Ong, Cheryl-lynn Y.; McEwan, Alastair G.; Kobe, Bostjan; O’Mara, Megan L.; Paton, James C.; McDevitt, Christopher A.

    2015-01-01

    Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth’s crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress. PMID:25731976

  16. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  17. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(tr