Science.gov

Sample records for 3d tumor position

  1. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  2. Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography.

    PubMed

    Hernández-Montes, Maria del Socorro; Pérez-López, Carlos; Santoyo, Fernando Mendoza

    2007-01-01

    3-D pulsed digital holography is a noninvasive optical method used to measure the depth position of breast tumor tissue immersed in a semisolid gel model. A master gel without inhomogeneities is set to resonate at an 810 Hz frequency; then, an identically prepared gel with an inhomogeneity is interrogated with the same resonant frequency in the original setup. Comparatively, and using only an out-of-plane sensitive setup, gel surface displacement can be measured, evidencing an internal inhomogeneity. However, the depth position cannot be measured accurately, since the out-of-plane component has the contribution of in-plane surface displacements. With the information gathered, three sensitivity vectors can be obtained to separate contributions from x, y, and z vibration displacement components, individual displacement maps for the three orthogonal axes can be built, and the inhomogeneity's depth position can be accurately measured. Then, the displacement normal to the gel surface is used to find the depth profile and its cross section. Results from the optical data obtained are compared and correlated to the inhomogeneity's physically measured position. Depth position is found with an error smaller than 1%. The inhomogeneity and its position within the gel can be accurately found, making the method a promising noninvasive alternative to study mammary tumors.

  3. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  4. Localization of liver tumors in freehand 3D laparoscopic ultrasound

    NASA Astrophysics Data System (ADS)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.

    2012-02-01

    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  5. 3D tumor models: history, advances and future perspectives.

    PubMed

    Benien, Parul; Swami, Archana

    2014-05-01

    Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.

  6. Ovarian tumor characterization using 3D ultrasound.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Saba, Luca; Molinari, Filippo; Guerriero, Stefano; Suri, Jasjit S

    2012-12-01

    Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Preoperative determination of whether a tumor is benign or malignant has often been found to be difficult. Because of such inconclusive findings from ultrasound images and other tests, many patients with benign conditions have been offered unnecessary surgeries thereby increasing patient anxiety and healthcare cost. The key objective of our work is to develop an adjunct Computer Aided Diagnostic (CAD) technique that uses ultrasound images of the ovary and image mining algorithms to accurately classify benign and malignant ovarian tumor images. In this algorithm, we extract texture features based on Local Binary Patterns (LBP) and Laws Texture Energy (LTE) and use them to build and train a Support Vector Machine (SVM) classifier. Our technique was validated using 1000 benign and 1000 malignant images, and we obtained a high accuracy of 99.9% using a SVM classifier with a Radial Basis Function (RBF) kernel. The high accuracy can be attributed to the determination of the novel combination of the 16 texture based features that quantify the subtle changes in the images belonging to both classes. The proposed algorithm has the following characteristics: cost-effectiveness, complete automation, easy deployment, and good end-user comprehensibility. We have also developed a novel integrated index, Ovarian Cancer Index (OCI), which is a combination of the texture features, to present the physicians with a more transparent adjunct technique for ovarian tumor classification.

  7. Heralding a new paradigm in 3D tumor modeling.

    PubMed

    Fong, Eliza L S; Harrington, Daniel A; Farach-Carson, Mary C; Yu, Hanry

    2016-11-01

    Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This

  8. Engineering cancer microenvironments for in vitro 3-D tumor models

    PubMed Central

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan

    2017-01-01

    The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612

  9. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  10. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  11. 3D photon counting integral imaging with unknown sensor positions.

    PubMed

    Xiao, Xiao; Javidi, Bahram

    2012-05-01

    Photon counting techniques have been introduced with integral imaging for three-dimensional (3D) imaging applications. The previous reports in this area assumed a priori knowledge of exact sensor positions for 3D image reconstruction, which may be difficult to satisfy in certain applications. In this paper, we extend the photon counting 3D imaging system to situations where sensor positions are unknown. To estimate sensor positions in photon counting integral imaging, scene details of photon counting images are needed for image correspondences matching. Therefore, an iterative method based on the total variation maximum a posteriori expectation maximization (MAP-EM) algorithm is used to restore photon counting images. Experimental results are presented to show the feasibility of the method. To the best of our knowledge, this is the first report on 3D photon counting integral imaging with unknown sensor positions. © 2012 Optical Society of America

  12. Identifying positioning-based attacks against 3D printed objects and the 3D printing process

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2017-05-01

    Zeltmann, et al. demonstrated that structural integrity and other quality damage to objects can be caused by changing its position on a 3D printer's build plate. On some printers, for example, object surfaces and support members may be stronger when oriented parallel to the X or Y axis. The challenge presented by the need to assure 3D printed object orientation is that this can be altered in numerous places throughout the system. This paper considers attack scenarios and discusses where attacks that change printing orientation can occur in the process. An imaging-based solution to combat this problem is presented.

  13. Rapid 3D extrusion of synthetic tumor microenvironments

    PubMed Central

    Grolman, Joshua M.; Zhang, Douglas; Smith, Andrew M.; Moore, Jeffrey S.

    2016-01-01

    Solid tumors house an assortment of complex and dynamically changing microenvironments in which signaling events between multiple cell types are known to play a critical role in tumor progression, invasion, and metastasis. To deepen our understanding of this biology, it is desirable to accurately model these structures in vitro for basic studies and for drug screening; however, current systems fall short of mimicking the complex organization of cells and matrix in vivo. Here we demonstrate the generation of spatially-organized 3D hydrogels of cells and matrix produced from a simple concentric flow device in a single step. Multiple cell types are pre-seeded in different spatial domains such as concentric regions of vessel-like tubular structures to reproducibly establish heterotypic cellular environments in 3D. Using macrophages and breast adenocarcinoma cells as an example of a paracrine loop that regulates metastasis, we explored the effects of clinical drug treatments and observed a dose-dependent modulation of cellular migration. This versatile and tunable approach for tissue fabrication will enable a means to study a wide range of microenvironments and may provide a clinically-viable solution for personalized assessment of patient response to therapeutics. PMID:26283579

  14. Toward 3D-guided prostate biopsy target optimization: an estimation of tumor sampling probabilities

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the ~23% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still yields false negatives. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. We obtained multiparametric MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy. Given an RMS needle delivery error of 3.5 mm for a contemporary fusion biopsy system, P >= 95% for 21 out of 81 tumors when the point of optimal sampling probability was targeted. Therefore, more than one biopsy core must be taken from 74% of the tumors to achieve P >= 95% for a biopsy system with an error of 3.5 mm. Our experiments indicated that the effect of error along the needle axis on the percentage of core involvement (and thus the measured tumor burden) was mitigated by the 18 mm core length.

  15. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.

    PubMed

    Liu, Wenming; Tian, Chang; Yan, Mingming; Zhao, Lei; Ma, Chao; Li, Tianbao; Xu, Juan; Wang, Jinyi

    2016-10-18

    The construction of a micro-platform capable of microscale control for continuous, dynamic, and high-throughput biomimetic tumor manipulation and analysis plays a significant role in biological and clinical research. Here, we introduce a pneumatic microstructure-based microfluidic platform for versatile three-dimensional (3D) tumor cultures. The manipulative potential of pneumatic microstructures in a fabrication-optimized microfluidic device can be stimulated to achieve ultra-repetitive (tens of thousands of times) and persistent (over several months) microfluidic control. We demonstrated that the microfluidic platform is reusable (dozens of times) for stable, reproducible, and high-throughput generation of tumors with uniform size. Various heterotypic and homotypic 3D tumor arrays can be produced successfully in the device based on robust pneumatic control. On-chip monitoring and analysis of tumor phenotypes and responses to different culture conditions and chemotherapies were also achieved in real-time in the microfluidic platform. The results indicate that fibroblasts cocultured with tumor cells positively promote the phenotypical appearance of heterotypic tumors. This microfluidic advancement offers a new methodological approach for the development of high-performance and non-disposable 3D culture systems and for tissue-mimicking cancer research. We believe that it could be valuable for various tumor-related research fields such as oncology, pharmacology, tissue engineering, and bioimaging.

  16. Continuously perfused microbubble array for 3D tumor spheroid model

    PubMed Central

    Agastin, Sivaprakash; Giang, Ut-Binh T.; Geng, Yue; DeLouise, Lisa A.; King, Michael R.

    2011-01-01

    Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow. The flow characteristics such as streamline directions, shear stress profile, and velocity profile inside the microfluidic system were first examined computationally using a COMSOL simulation. Colo205 tumor spheroids were created by a modified hanging drop method and maintained inside PDMS microbubble cavities in perfusion culture. Cell viability inside the microbubbles was examined by live cell staining and confocal imaging. E-selectin mediated cell sorting of Colo205 and MDA-MB-231 cell lines on functionalized microbubble and PDMS surfaces was achieved. Finally, to validate this microfluidic system for drug screening purposes, the toxicity of the anti-cancer drug, doxorubicin, on Colo205 cells in spheroids was tested and compared to cells in 2D culture. Colo205 spheroids cultured in flow showed a threefold increase in resistance to doxorubicin compared to Colo205 monolayer cells cultured under static conditions, consistent with the resistance observed previously in other MCTS models. The advantages presented by our microfluidic system, such as the ability to control the size uniformity of the spheroids and to perform real-time imaging on cells in the growth platform, show potential for high throughput drug screening development. PMID:21716809

  17. Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology

    PubMed Central

    El-Hamidi, Hamid; Celli, Jonathan P.

    2014-01-01

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  18. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  19. 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors.

    PubMed

    Wörz, Stefan; Sander, Petra; Pfannmöller, Martin; Rieker, Ralf J; Joos, Stefan; Mechtersheimer, Gunhild; Boukamp, Petra; Lichter, Peter; Rohr, Karl

    2010-08-01

    We introduce a new model-based approach for automatic quantification of colocalizations in multichannel 3D microscopy images. The approach uses different 3D parametric intensity models in conjunction with a model fitting scheme to localize and quantify subcellular structures with high accuracy. The central idea is to determine colocalizations between different channels based on the estimated geometry of the subcellular structures as well as to differentiate between different types of colocalizations. A statistical analysis was performed to assess the significance of the determined colocalizations. This approach was used to successfully analyze about 500 three-channel 3D microscopy images of human soft tissue tumors and controls.

  20. Towards a Noninvasive Intracranial Tumor Irradiation Using 3D Optical Imaging and Multimodal Data Registration

    PubMed Central

    Posada, R.; Daul, Ch.; Wolf, D.; Aletti, P.

    2007-01-01

    Conformal radiotherapy (CRT) results in high-precision tumor volume irradiation. In fractioned radiotherapy (FRT), lesions are irradiated in several sessions so that healthy neighbouring tissues are better preserved than when treatment is carried out in one fraction. In the case of intracranial tumors, classical methods of patient positioning in the irradiation machine coordinate system are invasive and only allow for CRT in one irradiation session. This contribution presents a noninvasive positioning method representing a first step towards the combination of CRT and FRT. The 3D data used for the positioning is point clouds spread over the patient's head (CT-data usually acquired during treatment) and points distributed over the patient's face which are acquired with a structured light sensor fixed in the therapy room. The geometrical transformation linking the coordinate systems of the diagnosis device (CT-modality) and the 3D sensor of the therapy room (visible light modality) is obtained by registering the surfaces represented by the two 3D point sets. The geometrical relationship between the coordinate systems of the 3D sensor and the irradiation machine is given by a calibration of the sensor position in the therapy room. The global transformation, computed with the two previous transformations, is sufficient to predict the tumor position in the irradiation machine coordinate system with only the corresponding position in the CT-coordinate system. Results obtained for a phantom show that the mean positioning error of tumors on the treatment machine isocentre is 0.4 mm. Tests performed with human data proved that the registration algorithm is accurate (0.1 mm mean distance between homologous points) and robust even for facial expression changes. PMID:18364992

  1. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  2. New Position Algorithms for the 3-D CZT Drift Detector

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Kuvvetli, I.

    2017-06-01

    The 3-D position sensitive CZT detector for high-energy astrophysics developed at DTU has been investigated with a digitizer readout system. The 3-D CZT detector is based on the CZT drift-strip detector principle and was fabricated using a REDLEN CZT crystal (20 mm × 20 mm × 5 mm). The detector contains 12 drift cells, each comprising one collecting anode strip with four drift strips, biased such that the electrons are focused and collected by the anode strips. Three-dimensional position determination is achieved using the anode strip signals, the drift-strip signals, and the signals from ten cathode strips. For the characterization work, we used a DAQ system with a 16 channels 250-MHz 14-b digitizer, SIS3316. It allowed us to analyze the pulse shapes of the signals from four detector cells at a time. The 3-D CZT setup was characterized with a finely collimated radioactive source of 137Cs at 662 keV. The analysis required development of novel position determination algorithms which are the subject of this paper. Using the digitizer readout, we demonstrate improved position determination compared to the previous read out system based on analog electronics. Position resolutions of 0.4-mm full width at half maximum (FWHM) in the x-, y-, and z-directions were achieved and the energy resolution was 7.2-keV FWHM at 662 keV. The timing information allows identification of multiple interaction events within one detector cell, e.g., Compton scattering followed by photoelectric absorption. These characteristics are very important for a high-energy spectral-imager suitable for use in advanced Compton telescopes, or as focal detector for new hard X-ray and soft γ-ray focusing telescopes or in polarimeter instrumentation. CZT detectors are attractive for these applications since they offer relatively high-quantum efficiency. From a technical point of view it is advantageous that their cooling requirements are modest.

  3. Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification.

    PubMed

    Sun, Shuh-Ping; Wu, Ching-Jung

    2004-01-01

    This paper describes the full size solid 3D Anthropometric Model using in the positioning and verification process for radiation treatment planning of the skull of cancer patients in radiotherapy. In order to obtain a full scale 3D, solid Anthropometric Model, data is first collected through computed tomography and optical scanning. Through surface reconstruction, a model is made of the patients skull, after which rapid prototyping and rapid tooling is applied to acquire a 1:1 solid model, thus, it can replace the patient for the tumor positioning and verification in radiotherapy. The 3D Anthropometric Model are not only provide a clear picture of the external appearance, but also allow insight into the internal structure of organic bodies, which is of great advantage in radiotherapy. During radiotherapy planning, 3D Anthropometric Model can be used to simulate all kinds of situations on the simulator and the linear accelerator, without the patient needing to be present, so that the medical physicist or dosimetrist will be able to design a precise treatment plan that is tailored to the patient. The 3D Anthropometric Model production system can effectively help us solve problems related to r adiotherapy positioning and verification, helping both radiotherapists and cancer patients. We expect that the application of 3D Anthropometric Model can reduce the time that needs to be spent on pretreatment procedures and enhance the quality of health care for cancer patients.

  4. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood.

    PubMed

    Zheng, Siyang; Lin, Henry K; Lu, Bo; Williams, Anthony; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2011-02-01

    Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

  5. New techniques of determining focus position in gamma knife operation using 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Xiong, Yingen; Wang, Dezong; Zhou, Quan

    1994-09-01

    In this paper, new techniques of determining the focus of a disease position in a gamma knife operation are presented. In these techniques, the transparent 3D color image of the human body organ is reconstructed using a new three-dimensional reconstruction method, and then the position, the area, and the volume of focus of a disease such as cancer or a tumor are calculated. They are used in the gamma knife operation. The CT pictures are input into a digital image processing system. The useful information is extracted and the original data are obtained. Then the transparent 3D color image is reconstructed using these original data. By using this transparent 3D color image, the positions of the human body organ and the focus of a disease are determined in a coordinate system. While the 3D image is reconstructed, the area and the volume of human body organ and focus of a disease can be calculated at the same time. It is expressed through actual application that the positions of human body organ and focus of a disease can be determined exactly by using the transparent 3D color image. It is very useful in gamma knife operation or other surgical operation. The techniques presented in this paper have great application value.

  6. On-Line Operating 3-D Seafloor Positioning System (1)

    NASA Astrophysics Data System (ADS)

    Eguchi, T.

    2003-12-01

    We propose a new observation system of on-line 3-D positioning which will be deployed on the sea-bottom of convergent type plate boundaries where large inter-plate seismic events occurred historically. The system has observation sites at assigned intervals along optical fiber cables. Using the several cables, crossing each other, we can construct a real-time operating network of triangular base lines. Each observing site on the cable will be equipped with two-kind high gain instruments i.e., the laser ranging and pressure gauge sensors, as well as additional apparatuses to remove the influence of temperature and salinity etc. on the data. Attenuation rate of visible rays in seawater is relatively smaller at bands of blue-color (wave length; ˜ 450nm) to yellowish green-color ( ˜ 550nm). The attenuation rate of optical signals of blue to yellow-green color in highly transparent seawater is 0.1 ˜ 0.5 dB/m. If we can utilize the high power optical laser output of the blue to yellow-green band for the positioning, the signals can reach the target receiver station with highly sensitive detector located at the distance of 10**2 m or larger. Using additional data of thermal and salinity fields etc. for compensating refractive index of laser signal ray path in clean seawater, we may attain the resolution of laser ranging at an order of 1 mm for each triangular base line with the total length of 1 ˜ 2 km. The base line consists of several secondary positioning stations with the spacing of ˜ 10**2 m. To improve the data resolution, we apply signal processing such as low-pass filtering etc. As is important, we cannot decompose the change of the base line distance data into 3-D individual components. We need another kind data, such as pure vertical coordinate of the positioning sites to resolve the 3-D components. To measure the vertical coordinate of the seafloor stations, we utilize data from the high gain pressure sensor. In the case of crystallized quartz

  7. READOUT ASIC FOR 3D POSITION-SENSITIVE DETECTORS.

    SciTech Connect

    DE GERONIMO,G.; VERNON, E.; ACKLEY, K.; DRAGONE, A.; FRIED, J.; OCONNOR, P.; HE, Z.; HERMAN, C.; ZHANG, F.

    2007-10-27

    We describe an application specific integrated circuit (ASIC) for 3D position-sensitive detectors. It was optimized for pixelated CZT sensors, and it measures, corresponding to an ionizing event, the energy and timing of signals from 121 anodes and one cathode. Each channel provides low-noise charge amplification, high-order shaping, along with peak- and timing-detection. The cathode's timing can be measured in three different ways: the first is based on multiple thresholds on the charge amplifier's voltage output; the second uses the threshold crossing of a fast-shaped signal; and the third measures the peak amplitude and timing from a bipolar shaper. With its power of 2 mW per channel the ASIC measures, on a CZT sensor Connected and biased, charges up to 100 fC with an electronic resolution better than 200 e{sup -} rms. Our preliminary spectral measurements applying a simple cathode/mode ratio correction demonstrated a single-pixel resolution of 4.8 keV (0.72 %) at 662 keV, with the electronics and leakage current contributing in total with 2.1 keV.

  8. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures.

    PubMed

    Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Sugo, Nobuo; Terazono, Sayaka; Okonogi, Shinichi; Sakaeyama, Yuki; Fuchinoue, Yutaka; Ando, Syunpei; Fukushima, Daisuke; Nomoto, Jun; Nemoto, Masaaki

    2016-06-01

    Deep regions are not visible in three-dimensional (3D) printed rapid prototyping (RP) models prepared from opaque materials, which is not the case with translucent images. The objectives of this study were to develop an RP model in which a skull base tumor was simulated using mesh, and to investigate its usefulness for surgical simulations by evaluating the visibility of its deep regions. A 3D printer that employs binder jetting and is mainly used to prepare plaster models was used. RP models containing a solid tumor, no tumor, and a mesh tumor were prepared based on computed tomography, magnetic resonance imaging, and angiographic data for four cases of petroclival tumor. Twelve neurosurgeons graded the three types of RP model into the following four categories: 'clearly visible,' 'visible,' 'difficult to see,' and 'invisible,' based on the visibility of the internal carotid artery, basilar artery, and brain stem through a craniotomy performed via the combined transpetrosal approach. In addition, the 3D positional relationships between these structures and the tumor were assessed. The internal carotid artery, basilar artery, and brain stem and the positional relationships of these structures with the tumor were significantly more visible in the RP models with mesh tumors than in the RP models with solid or no tumors. The deep regions of PR models containing mesh skull base tumors were easy to visualize. This 3D printing-based method might be applicable to various surgical simulations.

  9. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy

    SciTech Connect

    Tsunashima, Yoshikazu . E-mail: tsunashima@pmrc.tsukuba.ac.jp; Sakae, Takeji; Shioyama, Yoshiyuki; Kagei, Kenji; Terunuma, Toshiyuki; Nohtomi, Akihiro; Akine, Yasuyuki

    2004-11-01

    Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use.

  10. A 3-D high accuracy positioning system based on visible light communication with novel positioning algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Huanhuan; Xu, Zhaowen; Yu, Changyuan; Gurusamy, Mohan

    2017-08-01

    A novel indoor positioning system (IPS) with high positioning precision, based on visible light communication (VLC), is proposed and demonstrated with the dimensions of 100 cm×118.5 cm×128.7 cm. The average positioning distance error is 1.72 cm using the original 2-D positioning algorithm. However, at the corners of the test-bed, the positioning errors are relatively larger than other places. Thus, an error correcting algorithm (ECA) is applied at the corners in order to improve the positioning accuracy. The average positioning errors of four corners decrease from 3.67 cm to 1.55 cm. Then, a 3-D positioning algorithm is developed and the average positioning error of 1.90 cm in space is achieved. Four altitude levels are chosen and on each receiver plane with different heights, four points are picked up to test the positioning error. The average positioning errors in 3-D space are all within 3 cm on these four levels and the performance on each level is similar. A random track is also drawn to show that in 3-D space, the positioning error of random point is within 3 cm.

  11. Visual fatigue while watching 3D stimuli from different positions.

    PubMed

    Aznar-Casanova, J Antonio; Romeo, August; Gómez, Aurora Torrents; Enrile, Pedro Martin

    When observers focus their stereoscopic visual system for a long time (e.g., watching a 3D movie) they may experience visual discomfort or asthenopia. We tested two types of models for predicting visual fatigue in a task in which subjects were instructed to discriminate between 3D characters. One model was based on viewing distance (focal distance, vergence distance) and another in visual direction (oculomotor imbalance). A 3D test was designed to assess binocular visual fatigue while looking at 3D stimuli located in different visual directions and viewed from two distances from the screen. The observers were tested under three conditions: (a) normal vision; (b) wearing a lens (-2 diop.); (c) wearing a base-out prism (2▿) over each eye. Sensitivity and specificity were calculated (as Signal Detection Theory parameters: SDT). An ANOVA and SDT analyses revealed that impaired visual performance were directly related to short distance and larger deviation in visual direction, particularly when the stimuli were located nearer and at more than 24° to the centre of the screen in dextroversion and beyond. This results support a mixed model, combining a model based on the visual angle (related to viewing distance) and another based on the oculomotor imbalance (related to visual direction). This mixed model could help to predict the distribution of seats in the cinema room ranging from those that produce greater visual comfort to those that produce more visual discomfort. Also could be a first step to pre-diagnosis of binocular vision disorders. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  12. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images

    PubMed Central

    Choi, Ye Ra; Park, Sang Joon; Hur, Bo Yun; Han, Joon Koo

    2017-01-01

    Background & aims To evaluate accuracy and reliability of three-dimensional ultrasound (3D US) for response evaluation of hepatic metastasis from colorectal cancer (CRC) using a personalized 3D-printed tumor model. Methods Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Results 3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05). 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97) as well as a high inter-observer intraclass correlation (0.978; 0.958–0.988). Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961). Conclusions 3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume. PMID:28797089

  13. Ideal Positions: 3D Sonography, Medical Visuality, Popular Culture.

    PubMed

    Seiber, Tim

    2016-03-01

    As digital technologies are integrated into medical environments, they continue to transform the experience of contemporary health care. Importantly, medicine is increasingly visual. In the history of sonography, visibility has played an important role in accessing fetal bodies for diagnostic and entertainment purposes. With the advent of three-dimensional (3D) rendering, sonography presents the fetus visually as already a child. The aesthetics of this process and the resulting imagery, made possible in digital networks, discloses important changes in the relationship between technology and biology, reproductive health and political debates, and biotechnology and culture.

  14. The production of 3D tumor spheroids for cancer drug discovery.

    PubMed

    Sant, Shilpa; Johnston, Paul A

    2017-03-01

    New cancer drug approval rates are ≤5% despite significant investments in cancer research, drug discovery and development. One strategy to improve the rate of success of new cancer drugs transitioning into the clinic would be to more closely align the cellular models used in the early lead discovery with pre-clinical animal models and patient tumors. For solid tumors, this would mandate the development and implementation of three dimensional (3D) in vitro tumor models that more accurately recapitulate human solid tumor architecture and biology. Recent advances in tissue engineering and regenerative medicine have provided new techniques for 3D spheroid generation and a variety of in vitro 3D cancer models are being explored for cancer drug discovery. Although homogeneous assay methods and high content imaging approaches to assess tumor spheroid morphology, growth and viability have been developed, the implementation of 3D models in HTS remains challenging due to reasons that we discuss in this review. Perhaps the biggest obstacle to achieve acceptable HTS assay performance metrics occurs in 3D tumor models that produce spheroids with highly variable morphologies and/or sizes. We highlight two methods that produce uniform size-controlled 3D multicellular tumor spheroids that are compatible with cancer drug research and HTS; tumor spheroids formed in ultra-low attachment microplates, or in polyethylene glycol dimethacrylate hydrogel microwell arrays. Published by Elsevier Ltd.

  15. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.

    PubMed

    Liu, Wenming; Wang, Jian-Chun; Wang, Jinyi

    2015-02-21

    Three-dimensional tumor culture methods offer a high degree of biological and clinical relevance to in vitro models as well as cancer therapy. However, a straightforward, dynamic, and high-throughput method for micro-manipulation of 3D tumors is not yet well established. In this study, we present a novel and simple strategy for producing biomimetic 3D tumors in a controllable, high throughput manner based on an integrated microfluidic system with well-established pneumatic microstructures. Serial manipulations, including one-step cell localization, array-like self-assembly, and real-time analysis of 3D tumors, are accomplished smoothly in the microfluidic device. The recovery of tumor products from the chip is performed by dynamic off-switch of the pneumatic microstructures. In addition, this microfluidic platform is demonstrated to be capable of producing multiple types of 3D tumors and performing the evaluation of tumor targeting by nanomedicine. The pneumatic microfluidic-based 3D tumor production shows potential for research on tumor biology, tissue engineering, and drug delivery.

  16. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  17. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques.

    PubMed

    Daftari, Inder k; Aghaian, Elsa; O'Brien, Joan M; Dillon, William; Phillips, Theodore L

    2005-11-01

    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights < or = 3 mm. A small intraobserver variation with a mean of (-0.22 +/- 4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm3

  18. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques

    SciTech Connect

    Daftari, Inder k; Aghaian, Elsa; O'Brien, Joan M.; Dillon, William; Phillips, Theodore L.

    2005-11-15

    The aim of this study is to (1) compare the delineation of the tumor volume for ocular melanoma on high-resolution three-dimensional (3D) T2-weighted fast spin echo magnetic resonance imaging (MRI) images with conventional techniques of A- and B-scan ultrasound, transcleral illumination, and placement of tantalum markers around tumor base and (2) to evaluate whether the surgically placed marker ring tumor delineation can be replaced by 3D MRI based tumor delineation. High-resolution 3D T2-weighted fast spin echo (3D FSE) MRI scans were obtained for 60 consecutive ocular melanoma patients using a 1.5 T MRI (GE Medical Systems, Milwaukee, WI), in a standard head coil. These patients were subsequently treated with proton beam therapy at the UC Davis Cyclotron, Davis, CA. The tumor was delineated by placement of tantalum rings (radio-opaque markers) around the tumor periphery as defined by pupillary transillumination during surgery. A point light source, placed against the sclera, was also used to confirm ring agreement with indirect ophthalmoscopy. When necessary, intraoperative ultrasound was also performed. The patients were planned using EYEPLAN software and the tumor volumes were obtained. For analysis, the tumors were divided into four categories based on tumor height and basal diameter. In order to assess the impact of high-resolution 3D T2 FSE MRI, the tumor volumes were outlined on the MRI scans by two independent observers and the tumor volumes calculated for each patient. Six (10%) of 60 patients had tumors, which were not visible on 3D MRI images. These six patients had tumors with tumor heights {<=}3 mm. A small intraobserver variation with a mean of (-0.22{+-}4)% was seen in tumor volumes delineated by 3D T2 FSE MR images. The ratio of tumor volumes measured on MRI to EYEPLAN for the largest to the smallest tumor volumes varied between 0.993 and 1.02 for 54 patients. The tumor volumes measured directly on 3D T2 FSE MRI ranged from 4.03 to 0.075 cm{sup 3

  19. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education.

    PubMed

    Bernhard, Jean-Christophe; Isotani, Shuji; Matsugasumi, Toru; Duddalwar, Vinay; Hung, Andrew J; Suer, Evren; Baco, Eduard; Satkunasivam, Raj; Djaladat, Hooman; Metcalfe, Charles; Hu, Brian; Wong, Kelvin; Park, Daniel; Nguyen, Mike; Hwang, Darryl; Bazargani, Soroush T; de Castro Abreu, Andre Luis; Aron, Monish; Ukimura, Osamu; Gill, Inderbir S

    2016-03-01

    To assess the impact of 3D printed models of renal tumor on patient's understanding of their conditions. Patient understanding of their medical condition and treatment satisfaction has gained increasing attention in medicine. Novel technologies such as additive manufacturing [also termed three-dimensional (3D) printing] may play a role in patient education. A prospective pilot study was conducted, and seven patients with a primary diagnosis of kidney tumor who were being considered for partial nephrectomy were included after informed consent. All patients underwent four-phase multi-detector computerized tomography (MDCT) scanning from which renal volume data were extracted to create life-size patient-specific 3D printed models. Patient knowledge and understanding were evaluated before and after 3D model presentation. Patients' satisfaction with their specific 3D printed model was also assessed through a visual scale. After viewing their personal 3D kidney model, patients demonstrated an improvement in understanding of basic kidney physiology by 16.7 % (p = 0.018), kidney anatomy by 50 % (p = 0.026), tumor characteristics by 39.3 % (p = 0.068) and the planned surgical procedure by 44.6 % (p = 0.026). Presented herein is the initial clinical experience with 3D printing to facilitate patient's pre-surgical understanding of their kidney tumor and surgery.

  20. Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models

    PubMed Central

    Kim, Jiyun; Tanner, Kandice

    2015-01-01

    Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance. PMID:26284194

  1. 3D tumor spheroids: an overview on the tools and techniques used for their analysis.

    PubMed

    Costa, Elisabete C; Moreira, André F; de Melo-Diogo, Duarte; Gaspar, Vítor M; Carvalho, Marco P; Correia, Ilídio J

    2016-12-01

    In comparison with 2D cell culture models, 3D spheroids are able to accurately mimic some features of solid tumors, such as their spatial architecture, physiological responses, secretion of soluble mediators, gene expression patterns and drug resistance mechanisms. These unique characteristics highlight the potential of 3D cellular aggregates to be used as in vitro models for screening new anticancer therapeutics, both at a small and large scale. Nevertheless, few reports have focused on describing the tools and techniques currently available to extract significant biological data from these models. Such information will be fundamental to drug and therapeutic discovery process using 3D cell culture models. The present review provides an overview of the techniques that can be employed to characterize and evaluate the efficacy of anticancer therapeutics in 3D tumor spheroids.

  2. Individualized Surgical Approach Planning for Petroclival Tumors Using a 3D Printer.

    PubMed

    Muelleman, Thomas John; Peterson, Jeremy; Chowdhury, Naweed Iffat; Gorup, Jason; Camarata, Paul; Lin, James

    2016-06-01

    Objectives To determine the utility of three-dimensional (3D) printed models in individualized petroclival tumor resection planning by measuring the fidelity of printed anatomical structures and comparing tumor exposure afforded by different approaches. Design Case series and review of the literature. Setting Tertiary care center. Participants Three patients with petroclival lesions. Main Outcome Measures Subjective opinion of access by neuro-otologists and neurosurgeons as well as surface area of tumor exposure. Results Surgeons found the 3D models of each patient's skull and tumor useful for preoperative planning. Limitations of individual surgical approaches not identified through preoperative imaging were apparent after 3D models were evaluated. Significant variability in exposure was noted between models for similar or identical approaches. A notable drawback is that our printing process did not replicate mastoid air cells. Conclusions We found that 3D modeling is useful for individualized preoperative planning for approaching petroclival tumors. Our printing techniques did produce authentic replicas of the tumors in relation to bony structures.

  3. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  4. Tissue engineering of a human 3D in vitro tumor test system.

    PubMed

    Moll, Corinna; Reboredo, Jenny; Schwarz, Thomas; Appelt, Antje; Schürlein, Sebastian; Walles, Heike; Nietzer, Sarah

    2013-08-06

    Cancer is one of the leading causes of death worldwide. Current therapeutic strategies are predominantly developed in 2D culture systems, which inadequately reflect physiological conditions in vivo. Biological 3D matrices provide cells an environment in which cells can self-organize, allowing the study of tissue organization and cell differentiation. Such scaffolds can be seeded with a mixture of different cell types to study direct 3D cell-cell-interactions. To mimic the 3D complexity of cancer tumors, our group has developed a 3D in vitro tumor test system. Our 3D tissue test system models the in vivo situation of malignant peripheral nerve sheath tumors (MPNSTs), which we established with our decellularized porcine jejunal segment derived biological vascularized scaffold (BioVaSc). In our model, we reseeded a modified BioVaSc matrix with primary fibroblasts, microvascular endothelial cells (mvECs) and the S462 tumor cell line. For static culture, the vascular structure of the BioVaSc is removed and the remaining scaffold is cut open on one side (Small Intestinal Submucosa SIS-Muc). The resulting matrix is then fixed between two metal rings (cell crowns). Another option is to culture the cell-seeded SIS-Muc in a flow bioreactor system that exposes the cells to shear stress. Here, the bioreactor is connected to a peristaltic pump in a self-constructed incubator. A computer regulates the arterial oxygen and nutrient supply via parameters such as blood pressure, temperature, and flow rate. This setup allows for a dynamic culture with either pressure-regulated pulsatile or constant flow. In this study, we could successfully establish both a static and dynamic 3D culture system for MPNSTs. The ability to model cancer tumors in a more natural 3D environment will enable the discovery, testing, and validation of future pharmaceuticals in a human-like model.

  5. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  6. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells.

    PubMed

    El Assal, Rami; Gurkan, Umut A; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M; Demirci, Utkan

    2016-12-22

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi's sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery.

  7. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells

    PubMed Central

    El Assal, Rami; Gurkan, Umut A.; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M.; Demirci, Utkan

    2016-01-01

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi’s sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery. PMID:28004818

  8. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  9. Quantification of tumor morphology via 3D histology: application to oral cavity cancers

    NASA Astrophysics Data System (ADS)

    Doyle, Scott; Brandwein-Gensler, Margaret; Tomaszewski, John

    2016-03-01

    Traditional histopathology quantifies disease through the study of glass slides, i.e. two-dimensional samples that are representative of the overall process. We hypothesize that 3D reconstruction can enhance our understanding of histopathologic interpretations. To test this hypothesis, we perform a pilot study of the risk model for oral cavity cancer (OCC), which stratifies patients into low-, intermediate-, and high-risk for locoregional disease-free survival. Classification is based on study of hematoxylin and eosin (H and E) stained tissues sampled from the resection specimens. In this model, the Worst Pattern of Invasion (WPOI) is assessed, representing specific architectural features at the interface between cancer and non-cancer tissue. Currently, assessment of WPOI is based on 2D sections of tissue, representing complex 3D structures of tumor growth. We believe that by reconstructing a 3D model of tumor growth and quantifying the tumor-host interface, we can obtain important diagnostic information that is difficult to assess in 2D. Therefore, we introduce a pilot study framework for visualizing tissue architecture and morphology in 3D from serial sections of histopathology. This framework can be used to enhance predictive models for diseases where severity is determined by 3D biological structure. In this work we utilize serial H and E-stained OCC resections obtained from 7 patients exhibiting WPOI-3 (low risk of recurrence) through WPOI-5 (high risk of recurrence). A supervised classifier automatically generates a map of tumor regions on each slide, which are then co-registered using an elastic deformation algorithm. A smooth 3D model of the tumor region is generated from the registered maps, which is suitable for quantitative tumor interface morphology feature extraction. We report our preliminary models created with this system and suggest further enhancements to traditional histology scoring mechanisms that take spatial architecture into consideration.

  10. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity.

    PubMed

    Liang, Youyun; Jeong, Jaehyun; DeVolder, Ross J; Cha, Chaenyung; Wang, Fei; Tong, Yen Wah; Kong, Hyunjoon

    2011-12-01

    Three dimensional (3D) tumor spheroid models are becoming important biomedical tools for both fundamental and applied cancer studies, but current models do not account for different levels of cancer malignancy. Several studies have reported that the mechanical rigidity of a hydrogel plays a significant role in regulating the phenotypes of cancer cells adhered to the gel surface. This finding suggests that matrix rigidity should also modulate the malignancy of 3D tumor spheroids. However, the role of matrix stiffness is often confounded by concurrent changes in 3D matrix permeability. This study reports an advanced strategy to assemble 3D liver tumor spheroids with controlled intercellular organization, phenotypes, and angiogenic activities using hydrogels with controlled stiffness and minimal differences in molecular diffusivity. The elastic moduli of cell-encapsulated collagen gels were increased by stiffening interconnected collagen fibers with varied amounts of poly(ethylene glycol) di-(succinic acid N-hydroxysuccinimidyl ester). Interestingly, hepatocellular carcinoma cells encapsulated in a fat-like, softer hydrogel formed malignant cancer spheroids, while cells cultured in a liver-like, stiffer gel formed compact hepatoids with suppressed malignancy. Overall, both the hydrogel and the 3D tumor spheroids developed in this study will be greatly useful to better understand and regulate the emergent behaviors of various cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    NASA Astrophysics Data System (ADS)

    Arias, Néstor; Meneses, Néstor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  12. 3D multi-cell simulation of tumor growth and angiogenesis.

    PubMed

    Shirinifard, Abbas; Gens, J Scott; Zaitlen, Benjamin L; Popławski, Nikodem J; Swat, Maciej; Glazier, James A

    2009-10-16

    We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors.

  13. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  14. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.

  15. 3D Mass Spectrometry Imaging Reveals a Very Heterogeneous Drug Distribution in Tumors

    PubMed Central

    Giordano, S.; Morosi, L.; Veglianese, P.; Licandro, S. A.; Frapolli, R.; Zucchetti, M.; Cappelletti, G.; Falciola, L.; Pifferi, V.; Visentin, S.; D’Incalci, M.; Davoli, E.

    2016-01-01

    Mass Spectrometry Imaging (MSI) is a widespread technique used to qualitatively describe in two dimensions the distribution of endogenous or exogenous compounds within tissue sections. Absolute quantification of drugs using MSI is a recent challenge that just in the last years has started to be addressed. Starting from a two dimensional MSI protocol, we developed a three-dimensional pipeline to study drug penetration in tumors and to develop a new drug quantification method by MALDI MSI. Paclitaxel distribution and concentration in different tumors were measured in a 3D model of Malignant Pleural Mesothelioma (MPM), which is known to be a very heterogeneous neoplasm, highly resistant to different drugs. The 3D computational reconstruction allows an accurate description of tumor PTX penetration, adding information about the heterogeneity of tumor drug distribution due to the complex microenvironment. The use of an internal standard, homogenously sprayed on tissue slices, ensures quantitative results that are similar to those obtained using HPLC. The 3D model gives important information about the drug concentration in different tumor sub-volumes and shows that the great part of each tumor is not reached by the drug, suggesting the concept of pseudo-resistance as a further explanation for ineffective therapies and tumors relapse. PMID:27841316

  16. Experimental anti-tumor therapy in 3-D: spheroids--old hat or new challenge?

    PubMed

    Friedrich, Juergen; Ebner, Reinhard; Kunz-Schughart, Leoni A

    2007-01-01

    To give a state-of-the-art overview on the promise of three-dimensional (3-D) culture systems for anticancer drug development, with particular emphasis on multicellular tumor spheroids (MCTS). Cell-based assays have become an integral component in many stages of routine anti-tumor drug testing. However, they are almost always based on homogenous monolayer or suspension cultures and thus represent a rather artificial cellular environment. 3-D cultures--such as the well established spheroid culture system--better reflect the in vivo behavior of cells in tumor tissues and are increasingly recognized as valuable advanced tools for evaluating the efficacy of therapeutic intervention. The present article summarizes past and current applications and particularly discusses technological challenges, required improvements and recent progress with the use of the spheroid model in experimental therapeutics, as a basis for sophisticated drug/therapy screening. A brief overview is given focusing on the nomenclature of spherical 3-D cultures, their potential to mimic many aspects of the pathophysiological situation in tumors, and currently available protocols for culturing and analysis. A list of spheroid-forming epithelial cancer cell lines of different origin is provided and the recent trend to use spheroids for testing combination treatment strategies is highlighted. Finally, various spheroid co-culture approaches are presented that have been established to study heterologous cell interactions in solid tumors and thereby are able to reflect the cellular tumor environment with increasing accuracy. The intriguing observation that in order to retain certain tumor initiating cell properties, some primary tumor cell populations must be maintained exclusively in 3-D culture is mentioned, adding a new but fascinating challenge for future therapeutic campaigns.

  17. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion.

    PubMed

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J

    2007-06-21

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  18. 3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments

    PubMed Central

    Albritton, Jacob L.

    2017-01-01

    ABSTRACT Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. PMID:28067628

  19. Detecting Distance between Injected Microspheres and Target Tumor via 3D Reconstruction of Tissue Sections

    SciTech Connect

    Carson, James P.; Kuprat, Andrew P.; Colby, Sean M.; Davis, Cassi A.; Basciano, Christopher; Greene, Kevin; Feo, John T.; Kennedy, Andrew

    2012-08-28

    One treatment increasing in use for solid tumors in the liver is radioembolization via the delivery of 90Y microspheres to the vascular bed within or near the location of the tumor. It is desirable as part of the treatment for the microspheres to embed preferentially in or near the tumor. This work details an approach for analyzing the deposition of microspheres with respect to the location of the tumor. The approach used is based upon thin-slice serial sectioning of the tissue sample, followed by high resolution imaging, microsphere detection, and 3-D reconstruction of the tumor surface. Distance from the microspheres to the tumor was calculated using a fast deterministic point inclusion method.

  20. Exploring Drug Dosing Regimens In Vitro Using Real-Time 3D Spheroid Tumor Growth Assays.

    PubMed

    Lal-Nag, Madhu; McGee, Lauren; Titus, Steven A; Brimacombe, Kyle; Michael, Sam; Sittampalam, Gurusingham; Ferrer, Marc

    2017-03-01

    Two-dimensional monolayer cell proliferation assays for cancer drug discovery have made the implementation of large-scale screens feasible but only seem to reflect a simplified view that oncogenes or tumor suppressor genes are the genetic drivers of cancer cell proliferation. However, there is now increased evidence that the cellular and physiological context in which these oncogenic events occur play a key role in how they drive tumor growth in vivo and, therefore, in how tumors respond to drug treatments. In vitro 3D spheroid tumor models are being developed to better mimic the physiology of tumors in vivo, in an attempt to improve the predictability and efficiency of drug discovery for the treatment of cancer. Here we describe the establishment of a real-time 3D spheroid growth, 384-well screening assay. The cells used in this study constitutively expressed green fluorescent protein (GFP), which enabled the real-time monitoring of spheroid formation and the effect of chemotherapeutic agents on spheroid size at different time points of sphere growth and drug treatment. This real-time 3D spheroid assay platform represents a first step toward the replication in vitro of drug dosing regimens being investigated in vivo. We hope that further development of this assay platform will allow the investigation of drug dosing regimens, efficacy, and resistance before preclinical and clinical studies.

  1. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    PubMed Central

    2011-01-01

    The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D) allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP) allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine) in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor) to oncologists, radiotherapists and pathologists. PMID:22087558

  2. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  3. 3D in vitro bioengineered tumors based on collagen I hydrogels

    PubMed Central

    Szot, Christopher S.; Buchanan, Cara F.; Freeman, Joseph W.; Rylander, Marissa N.

    2011-01-01

    Cells cultured within a three-dimensional (3D) in vitro environment have the ability to acquire phenotypes and respond to stimuli analogous to in vivo biological systems. This approach has been utilized in tissue engineering and can also be applied to the development of a physiologically relevant in vitro tumor model. In this study, collagen I hydrogels cultured with MDA-MB-231 human breast cancer cells were bioengineered as a platform for in vitro solid tumor development. The cell–cell and cell-matrix interactions present during in vivo tissue progression were encouraged within the 3D hydrogel architecture, and the biocompatibility of collagen I supported unconfined cellular proliferation. The development of necrosis beyond a depth of ~150–200 μm and the expression of hypoxia-inducible factor (HIF)-1α were demonstrated in the in vitro bioengineered tumors. Oxygen and nutrient diffusion limitations through the collagen I matrix as well as competition for available nutrients resulted in growing levels of intra-cellular hypoxia, quantified by a statistically significant (p < 0.01) upregulation of HIF-1α gene expression. The bioengineered tumors also demonstrated promising angiogenic potential with a statistically significant (p < 0.001) upregulation of vascular endothelial growth factor (VEGF)-A gene expression. In addition, comparable gene expression analysis demonstrated a statistically significant increase of HIF-1α (p < 0.05) and VEGF-A (p < 0.001) by MDA-MB-231 cells cultured in the 3D collagen I hydrogels compared to cells cultured in a monolayer on two-dimensional tissue culture polystyrene. The results presented in this study demonstrate the capacity of collagen I hydrogels to facilitate the development of 3D in vitro bioengineered tumors that are representative of the pre-vascularized stages of in vivo solid tumor progression. PMID:21782234

  4. Characterizing 3D morphology of multicellular tumor spheroids using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Wang, Shunqiang; Kessel, Sarah; Rubinoff, Ian; Liu, Yaling; Li, Peter Y.; Qiu, Jean; Zhou, Chao

    2017-02-01

    There is strong evidence that the morphological parameters of multicellular tumor spheroids (MCTS), particularly size, sphericity, and growth pattern, play a role in their cytochemical responses. Because tumor spheroids accurately represent the three-dimensional (3D) structure of in vivo tumors, they may also mimic in vivo cytochemical responses, thus lending them relevance to cancer research. Knowledge of MCTS attributes, including oxygen and nutrient gradients, hypoxia resistance, and drug response, assist specialists seeking the most efficient ways to treat cancer. Structural information on tumor spheroids can provide insight into these attributes, and become a valuable asset for treatment in vivo. Currently, high-resolution bioimaging modalities, most notably bright field imaging, phase contrast imaging, fluorescent microscopy, and confocal imaging, are being employed for this purpose. However, these modalities lack sufficient penetration depth to resolve the entire geometry of large spheroids (>200um). In response to this deficiency, we propose a potential high-throughput imaging platform using optical coherence tomography (OCT) to quantify MCTS morphology. OCT's high resolution and depth penetration allow us to obtain complete, high-detailed, 3D tumor reconstructions with accurate diameter measurements. Furthermore, a computer-based voxel counting method is used to quantify tumor volume, which is significantly more accurate than the estimations required by 2D-projection modalities. Thus, this imaging platform provides one of the most complete and robust evaluations of tumor spheroid morphology, and shows great potential for contribution to the study of cancer treatment and drug discovery.

  5. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  6. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  7. A 3D summary display for reporting organ tumors and other pathologies

    NASA Astrophysics Data System (ADS)

    Shen, Hong; Shao, Min

    2006-03-01

    We describe a visualization tool for the reporting of organ tumors such as lung nodules. It provides a 3D visual summary of all the detected and segmented tumors and allows the user to navigate through the display. The detected and segmented nodules are displayed, using surface rendering to show their shapes and relative sizes. Anatomic features are used as references. In this implementation, the two lung surfaces are rendered semi-transparent as the visual reference. However, other references could be used, such as the thoracic cage, airways, or vessel trees. The display is of 3D nature, meaning that user can rotate the objects as a whole, view the display at different angles. The user can also zoom the display at will to see an enlarged view of a nodule. The 3D display is spatially synchronized with the main window that displays the volume data. A click on a nodule in the 3D display will update the main display to the corresponding slice where the nodule is located, and the nodule location will be outlined in the slice that is shown in the main widow. This is a general reporting tool that can be applied to all oncology applications using all modalities, whenever the segmentation and detection of tumors are essential. It can also be extended as a visualization tool for combinatorial reporting of all relevant pathologies.

  8. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection.

    PubMed

    Wong, K C; Kumta, S M; Geel, N V; Demol, J

    2015-01-01

    Resection of a pelvic tumor is challenging because of its complex three-dimensional (3D) anatomy and deep-seated location with nearby vital structures. The resection is technically demanding if a custom implant is used for reconstruction of the bone defect as the surgeon needs to ensure the resection margin is sufficiently wide and the orientation of intended resection planes must match that of the custom implant. We describe a novel workflow of performing a partial acetabular resection in a patient with pelvic chondrosarcoma and reconstruction with a custom pelvic implant in a one-step operation. A multi-planar bone resection was virtually planned. A computer-aided design implant that both matched the bone defect and biomechanically evaluated was prefabricated with 3D printing technology. The 3D-printed patient-specific instruments (PSIs) were used to reproduce the same planned resection. The histology of the tumor specimen showed a clear resection margin. The errors of the achieved resection and implant position were deviating (1-4 mm) from the planned. The patient could walk unaided with a good hip function. No tumor recurrence and implant loosening were noted at 11 months after surgery. The use of this novel CT-based method for surgical planning, the engineering software for implant design and validation, together with 3D printing technology for implant and PSI fabrication makes it possible to generate a personalized, biomechanically evaluated implant for accurate reconstruction after a pelvic tumor resection in a one-step operation. Further study in a larger population is needed to assess the clinical efficacy of the workflow in complex bone tumor surgery.

  9. Intrinsic subtypes and tumor grades in breast cancer are associated with distinct 3-D power Doppler sonographic vascular features.

    PubMed

    Chang, Yeun-Chung; Huang, Yao-Sian; Huang, Chiun-Sheng; Chen, Jeon-Hor; Chang, Ruey-Feng

    2014-08-01

    This study aimed to investigate the three-dimensional (3-D) power Doppler ultrasonographic (PDUS) vascular features of breast carcinoma according to intrinsic subtypes, nodal stage, and tumor grade. Total 115 receiving mastectomy breast carcinomas (mean size, 2.5 cm; range, 0.7-6.5 cm), including 102 invasive ductal carcinomas (IDC), 10 ductal carcinomas in situ (DCIS), and 3 invasive lobular carcinomas (ILC) diagnosed after mastectomy, were used in this retrospective study. Sixty IDC had nodal status and histopathologic tumor grades available for analysis. Vascular features, including number of vascular trees (NV), longest path length (LPL), total vessel length (TVL), number of bifurcations (NB), distance metric (DM), inflection count metric (ICM), vessel diameter (VD), and vessel-to-volume ratio (VVR) were extracted using 3-D thinning method. The Mann-Whitney U test, Student's t-test, one-way ANOVA, and Kruskal-Wallis test were performed as appropriate. There was no significant difference of vascular features among IDC, DCIS and ILC. Except VD, vascular features in luminal type were significantly lower compared to HER2-enriched or triple negative types (p<0.05). Compared to ER+ (estrogen receptor positive) tumors, all features in ER- (estrogen receptor negative) tumors were significantly higher (p<0.01). Despite some significantly higher vascular features in high grade IDC compared to low and intermediate grade, there was no significant correlation between vascular features and nodal stages. Differences in 3-D PDUS vascular features among intrinsic types of IDC are attributed to their ER status. Vascular features extracted by 3-D PDUS correlate with tumor grades but not nodal stage in IDC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Large-scale pharmacological profiling of 3D tumor models of cancer cells.

    PubMed

    Mathews Griner, Lesley A; Zhang, Xiaohu; Guha, Rajarshi; McKnight, Crystal; Goldlust, Ian S; Lal-Nag, Madhu; Wilson, Kelli; Michael, Sam; Titus, Steve; Shinn, Paul; Thomas, Craig J; Ferrer, Marc

    2016-12-01

    The discovery of chemotherapeutic agents for the treatment of cancer commonly uses cell proliferation assays in which cells grow as two-dimensional (2D) monolayers. Compounds identified using 2D monolayer assays often fail to advance during clinical development, most likely because these assays do not reproduce the cellular complexity of tumors and their microenvironment in vivo. The use of three-dimensional (3D) cellular systems have been explored as enabling more predictive in vitro tumor models for drug discovery. To date, small-scale screens have demonstrated that pharmacological responses tend to differ between 2D and 3D cancer cell growth models. However, the limited scope of screens using 3D models has not provided a clear delineation of the cellular pathways and processes that differentially regulate cell survival and death in the different in vitro tumor models. Here we sought to further understand the differences in pharmacological responses between cancer tumor cells grown in different conditions by profiling a large collection of 1912 chemotherapeutic agents. We compared pharmacological responses obtained from cells cultured in traditional 2D monolayer conditions with those responses obtained from cells forming spheres versus cells already in 3D spheres. The target annotation of the compound library screened enabled the identification of those key cellular pathways and processes that when modulated by drugs induced cell death in all growth conditions or selectively in the different cell growth models. In addition, we also show that many of the compounds targeting these key cellular functions can be combined to produce synergistic cytotoxic effects, which in many cases differ in the magnitude of their synergism depending on the cellular model and cell type. The results from this work provide a high-throughput screening framework to profile the responses of drugs both as single agents and in pairwise combinations in 3D sphere models of cancer cells.

  11. Large-scale pharmacological profiling of 3D tumor models of cancer cells

    PubMed Central

    Mathews Griner, Lesley A; Zhang, Xiaohu; Guha, Rajarshi; McKnight, Crystal; Goldlust, Ian S; Lal-Nag, Madhu; Wilson, Kelli; Michael, Sam; Titus, Steve; Shinn, Paul; Thomas, Craig J; Ferrer, Marc

    2016-01-01

    The discovery of chemotherapeutic agents for the treatment of cancer commonly uses cell proliferation assays in which cells grow as two-dimensional (2D) monolayers. Compounds identified using 2D monolayer assays often fail to advance during clinical development, most likely because these assays do not reproduce the cellular complexity of tumors and their microenvironment in vivo. The use of three-dimensional (3D) cellular systems have been explored as enabling more predictive in vitro tumor models for drug discovery. To date, small-scale screens have demonstrated that pharmacological responses tend to differ between 2D and 3D cancer cell growth models. However, the limited scope of screens using 3D models has not provided a clear delineation of the cellular pathways and processes that differentially regulate cell survival and death in the different in vitro tumor models. Here we sought to further understand the differences in pharmacological responses between cancer tumor cells grown in different conditions by profiling a large collection of 1912 chemotherapeutic agents. We compared pharmacological responses obtained from cells cultured in traditional 2D monolayer conditions with those responses obtained from cells forming spheres versus cells already in 3D spheres. The target annotation of the compound library screened enabled the identification of those key cellular pathways and processes that when modulated by drugs induced cell death in all growth conditions or selectively in the different cell growth models. In addition, we also show that many of the compounds targeting these key cellular functions can be combined to produce synergistic cytotoxic effects, which in many cases differ in the magnitude of their synergism depending on the cellular model and cell type. The results from this work provide a high-throughput screening framework to profile the responses of drugs both as single agents and in pairwise combinations in 3D sphere models of cancer cells. PMID

  12. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.

    PubMed

    Dai, Xingliang; Ma, Cheng; Lan, Qing; Xu, Tao

    2016-10-11

    Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting. During the in vitro culture period, the printed glioma stem cells not only maintained their inherent characteristics of cancer stem cells (Nestin), but also showed differentiation potential (glial fibrillary acidic protein and β-tubulin III). In order to verify the vascularization potential of glioma stem cells, tumor angiogenesis biomarker, vascular endothelial growth factor was detected by immunohistochemistry, and its expression increased from week one to three during the culture period. Drug-sensitivity results showed that 3D printed tumor model was more resistant to temozolomide than 2D monolayer model at TMZ concentrations of 400-1600 μg ml(-1). In summary, 3D bioprinted glioma model provides a novel alternative tool for studying gliomagenesis, glioma stem cell biology, drug resistance, and anticancer drug susceptibility in vitro.

  13. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    SciTech Connect

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  14. Correlation of 3D volumetric positioning errors and temperature distributions: theory and measurement

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Bach, P.; Yang, J.; Wang, C.

    2006-11-01

    In a real machine shop environment and under various spindle loads, the machine thermal expansion may cause large 3D volumetric positioning errors. With an intelligent controller, it is possible to compensate these errors provide that the relations between the 3D volumetric positioning errors and the temperature distribution were measured. A laser vector measurement technique developed by Optodyne was used for a quick measurement of 3D volumetric positioning errors of a CNC machining center under various spindle loads, machine movement and ambient conditions. Correlation calculations were used to determine the key temperatures and the various positioning errors. Preliminary results showed that large machine temperature changes caused somewhat small straightness error changes but large squareness error changes. Using the measured position errors, several error maps could be generated. Compensation tables at an actual thermal state can be interpolated to achieve higher accuracy at various thermal loadings.

  15. Nanotechnology meets 3D in vitro models: tissue engineered tumors and cancer therapies.

    PubMed

    da Rocha, E L; Porto, L M; Rambo, C R

    2014-01-01

    Advances in nanotechnology are providing to medicine a new dimension. Multifunctional nanomaterials with diagnostics and treatment modalities integrated in one nanoparticle or in cooperative nanosystems are promoting new insights to cancer treatment and diagnosis. The recent convergence between tissue engineering and cancer is gradually moving towards the development of 3D disease models that more closely resemble in vivo characteristics of tumors. However, the current nanomaterials based therapies are accomplished mainly in 2D cell cultures or in complex in vivo models. The development of new platforms to evaluate nano-based therapies in parallel with possible toxic effects will allow the design of nanomaterials for biomedical applications prior to in vivo studies. Therefore, this review focuses on how 3D in vitro models can be applied to study tumor biology, nanotoxicology and to evaluate nanomaterial based therapies. © 2013.

  16. Activating the nuclear piston mechanism of 3D migration in tumor cells.

    PubMed

    Petrie, Ryan J; Harlin, Heather M; Korsak, Lulu I T; Yamada, Kenneth M

    2017-01-02

    Primary human fibroblasts have the remarkable ability to use their nucleus like a piston, switching from low- to high-pressure protrusions in response to the surrounding three-dimensional (3D) matrix. Although migrating tumor cells can also change how they migrate in response to the 3D matrix, it is not clear if they can switch between high- and low-pressure protrusions like primary fibroblasts. We report that unlike primary fibroblasts, the nuclear piston is not active in fibrosarcoma cells. Protease inhibition rescued the nuclear piston mechanism in polarized HT1080 and SW684 cells and generated compartmentalized pressure. Achieving compartmentalized pressure required the nucleoskeleton-cytoskeleton linker protein nesprin 3, actomyosin contractility, and integrin-mediated adhesion, consistent with lobopodia-based fibroblast migration. In addition, this activation of the nuclear piston mechanism slowed the 3D movement of HT1080 cells. Together, these data indicate that inhibiting protease activity during polarized tumor cell 3D migration is sufficient to restore the nuclear piston migration mechanism with compartmentalized pressure characteristic of nonmalignant cells.

  17. Activating the nuclear piston mechanism of 3D migration in tumor cells

    PubMed Central

    2017-01-01

    Primary human fibroblasts have the remarkable ability to use their nucleus like a piston, switching from low- to high-pressure protrusions in response to the surrounding three-dimensional (3D) matrix. Although migrating tumor cells can also change how they migrate in response to the 3D matrix, it is not clear if they can switch between high- and low-pressure protrusions like primary fibroblasts. We report that unlike primary fibroblasts, the nuclear piston is not active in fibrosarcoma cells. Protease inhibition rescued the nuclear piston mechanism in polarized HT1080 and SW684 cells and generated compartmentalized pressure. Achieving compartmentalized pressure required the nucleoskeleton–cytoskeleton linker protein nesprin 3, actomyosin contractility, and integrin-mediated adhesion, consistent with lobopodia-based fibroblast migration. In addition, this activation of the nuclear piston mechanism slowed the 3D movement of HT1080 cells. Together, these data indicate that inhibiting protease activity during polarized tumor cell 3D migration is sufficient to restore the nuclear piston migration mechanism with compartmentalized pressure characteristic of nonmalignant cells. PMID:27998990

  18. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma.

    PubMed

    Marrero, Bernadette; Messina, Jane L; Heller, Richard

    2009-10-01

    An in vitro 3D model was developed utilizing a synthetic microgravity environment to facilitate studying the cell interactions. 2D monolayer cell culture models have been successfully used to understand various cellular reactions that occur in vivo. There are some limitations to the 2D model that are apparent when compared to cells grown in a 3D matrix. For example, some proteins that are not expressed in a 2D model are found up-regulated in the 3D matrix. In this paper, we discuss techniques used to develop the first known large, free-floating 3D tissue model used to establish tumor spheroids. The bioreactor system known as the High Aspect Ratio Vessel (HARVs) was used to provide a microgravity environment. The HARVs promoted aggregation of keratinocytes (HaCaT) that formed a construct that served as scaffolding for the growth of mouse melanoma. Although there is an emphasis on building a 3D model with the proper extracellular matrix and stroma, we were able to develop a model that excluded the use of matrigel. Immunohistochemistry and apoptosis assays provided evidence that this 3D model supports B16.F10 cell growth, proliferation, and synthesis of extracellular matrix. Immunofluorescence showed that melanoma cells interact with one another displaying observable cellular morphological changes. The goal of engineering a 3D tissue model is to collect new information about cancer development and develop new potential treatment regimens that can be translated to in vivo models while reducing the use of laboratory animals.

  19. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.

    PubMed

    Ma, Hongshi; Luo, Jian; Sun, Zhe; Xia, Lunguo; Shi, Mengchao; Liu, Mingyao; Chang, Jiang; Wu, Chengtie

    2016-12-01

    Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface. Taking advantage of biocompatibility, biodegradability and the excellent photothermal effect of polydopamine, the bifunctional scaffolds with mussel-inspired nanostructures could be used as a satisfactory and controllable photothermal agent, which effectively induced tumor cell death in vitro, and significantly inhibited tumor growth in mice. In addition, owing to the nanostructured surface, the prepared polydopamine-modified bioceramic scaffolds could support the attachment and proliferation of rabbit bone mesenchymal stem cells (rBMSCs), and significantly promoted the formation of new bone tissues in rabbit bone defects even under photothermal treatment. Therefore, the mussel-inspired nanostructures in 3D-printed bioceramic exhibited a remarkable capability for both cancer therapy and bone regeneration, offering a promising strategy to construct bifunctional biomaterials which could be widely used for therapy of tumor-induced tissue defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells.

    PubMed

    Mazzini, Giuliano; Carpignano, Francesca; Surdo, Salvatore; Aredia, Francesca; Panini, Nicolò; Torchio, Martina; Erba, Eugenio; Danova, Marco; Scovassi, Anna Ivana; Barillaro, Giuseppe; Merlo, Sabina

    2015-10-01

    In this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS. Quantitative image analyses of several fluorescence microscopy fields of silicon samples were performed for automatic cell recognition and count, in order to quantify the fraction of cells inside the gaps, with respect to the total number of cells in the examined field. Our results show that higher fractions of cells in the gaps are obtained with more aggressive cell lines, thus supporting in a quantitative way the observation that the behavior of tumor cells on the 3D-SMS depends on their aggressiveness level.

  1. [Possibility of 3D Printing in Ophthalmology - First Experiences by Stereotactic Radiosurgery Planning Scheme of Intraocular Tumor].

    PubMed

    Furdová, A; Furdová, Ad; Thurzo, A; Šramka, M; Chorvát, M; Králik, G

    Nowadays 3D printing allows us to create physical objects on the basis of digital data. Thanks to its rapid development the use enormously increased in medicine too. Its creations facilitate surgical planning processes, education and research in context of organ transplantation, individualization prostheses, breast forms, and others.Our article describes the wide range of applied 3D printing technology possibilities in ophthalmology. It is focusing on innovative implementation of eye tumors treatment planning in stereotactic radiosurgery irradiation.We analyze our first experience with 3D printing model of the eye in intraocular tumor planning stereotactic radiosurgery. 3D printing, model, Fused Deposition Modelling, stereotactic radiosurgery, prostheses, intraocular tumor.

  2. Integration of GPR and Laser Position Sensors for Real-Time 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Viggiano, D.

    2005-05-01

    Non-invasive 3D imaging visualizes anatomy and contents inside objects. Such tools are a commodity for medical doctors diagnosing a patient's health without scalpel and airport security staff inspecting the contents of baggage without opening. For geologists, hydrologists, archeologists and engineers wanting to see inside the shallow subsurface, such 3D tools are still a rarity. Theory and practice show that full-resolution 3D Ground Penetrating Radar (GPR) imaging requires unaliased recording of dipping reflections and diffractions. For a heterogeneous subsurface, minimum grid spacing of GPR measurements should be at least quarter wavelength or less in all directions. Consequently, positioning precision needs to be better than eighth wavelength for correct grid point assignment. Until now 3D GPR imaging has not been practical: data acquisition and processing took weeks to months, data analysis required geophysical training with no versatile 3D systems commercially available. We have integrated novel rotary laser positioning technology with GPR into a highly efficient and simple to use 3D imaging system. The laser positioning enables acquisition of centimeter accurate x, y, and z coordinates from multiple small detectors attached to moving GPR antennae. Positions streaming with 20 updates/second from each detector are fused in real-time with the GPR data. We developed software for automated data acquisition and real-time 3D GPR data quality control on slices at selected depths. Standard formatted (SEGY) data cubes and animations are generated within an hour after the last trace has been acquired. Examples can be seen at www.3dgpr.info. Such instant 3D GPR can be used as an on-site imaging tool supporting field work, hypothesis testing, and optimal sample collection. Rotary laser positioning has the flexibility to be integrated with multiple moving GPR antennae and other geophysical sensors enabling simple and efficient high resolution 3D data acquisition at

  3. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    PubMed

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor

  4. 3D scanning characteristics of an amorphous silicon position sensitive detector array system.

    PubMed

    Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel

    2012-02-13

    The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

  5. Characteristics of tumor and host cells in 3-D simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Chopra, V.; Dinh, T.; Wood, T.; Pellis, N.; Hannigan, E.

    Co-cultures of three-dimensional (3-D) constructs of one cell type with dispersed cells of a second cell type in low-shear rotating suspension cultures in simulated microgravity environment have been used to investigate invasive properties of normal and malignant cell types. We have shown that the epithelial and endothelial cells undergo a switch in characteristics when grown in an in vitro 3-D environment, that mimics the in vivo host environment as compared with conventional two-dimensional (2-D) monolayer cultures. Histological preparations and immunohistochemical staining procedures of cocultured harvests demonstrated various markers of interest: like collagen vimentin, mucin, elastin, fibrin, fibrinogen, cytokeratin, adhesion molecules and various angiogenic factors by tumor cells from gynecological cancer patients along with fibroblasts, endothelial cells and patient-derived mononuclear cells (n=8). The growth rate was enhanced 10-15 folds by 3-D cocultures of patient-derived cells as compared with 2-D monolayer cultures and 3-D monocultures. The production of interleukin-2, interleukin-6, interleukin -8, vascular endothelial cell growth factor, basic fibroblast growth factor, and angiogenin was studied by using ELISA and RT- PCR. Human umbilical vein-derived endothelial cell (HUVEC) were used to study the mitogenic response of the conditioned medium collected from 3-D monocultures and cocultures during proliferation and migration assays. The conditioned medium collected from 3-D cocultures of cancer cells also 1) increased the expression of message levels of vascular endothelial growth factor and its receptor flt-1 and KDR was observed by HUVEC, and 2) increased the expression of intracellular and vascular cell adhesion molecules on the surface of HUVEC, when measured by using Live cell ELISA assays and immunofluorescent staining as compared with 3-D monocultures of normal epithelial cells. There was an increase in production of 1) enzymatic activity that

  6. 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells.

    PubMed

    Parlato, Stefania; De Ninno, Adele; Molfetta, Rosa; Toschi, Elena; Salerno, Debora; Mencattini, Arianna; Romagnoli, Giulia; Fragale, Alessandra; Roccazzello, Lorenzo; Buoncervello, Maria; Canini, Irene; Bentivegna, Enrico; Falchi, Mario; Bertani, Francesca Romana; Gerardino, Annamaria; Martinelli, Eugenio; Natale, Corrado; Paolini, Rossella; Businaro, Luca; Gabriele, Lucia

    2017-04-24

    Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches.

  7. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

    PubMed

    Dou, Qi; Chen, Hao; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-07-01

    False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

  8. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery.

    PubMed

    Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-07-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.

  9. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  10. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  11. Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model

    PubMed Central

    Decaup, E; Jean, C; Laurent, C; Gravelle, P; Fruchon, S; Capilla, F; Marrot, A; Al Saati, T; Frenois, F-X; Laurent, G; Klein, C; Varoqueaux, N; Savina, A; Fournié, J-J; Bezombes, C

    2013-01-01

    Follicular lymphomas (FLs) account for 35–40% of all adult lymphomas. Treatment typically involves chemotherapy combined with the anti-CD20 monoclonal antibody (MAb) rituximab (RTX). The development of the type II anti-CD20 MAb obinutuzumab (GA101) aims to further improve treatment. Here, using FL cells we show that RTX and GA101 display a similar activity on RL cells cultured in 2D. However, 2D culture cannot mimic tumor spatial organization and conventional 2D models may not reflect the effects of antibodies as they occur in vivo. Thus, we created a non-Hodgkin's lymphoma (NHL) 3D culture system, termed multicellular aggregates of lymphoma cells (MALC), and used it to compare RTX and GA101 activity. Our results show that both antibodies display greater activity towards FL cells in 3D culture compared with 2D culture. Moreover, we observed that in the 3D model GA101 was more effective than RTX both in inhibiting MALC growth through induction of (lysosomal) cell death and senescence and in inhibiting intracellular signaling pathways, such as mammalian target of rapamycin, Akt, PLCgamma (Phospholipase C gamma) and Syk. Altogether, our study demonstrates that spatial organization strongly influences the response to antibody treatment, supporting the use of 3D models for the testing of therapeutic agents in NHL. PMID:23933705

  12. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype.

    PubMed

    Cassereau, Luke; Miroshnikova, Yekaterina A; Ou, Guanqing; Lakins, Johnathon; Weaver, Valerie M

    2015-01-10

    Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype.

  13. Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model.

    PubMed

    Decaup, E; Jean, C; Laurent, C; Gravelle, P; Fruchon, S; Capilla, F; Marrot, A; Al Saati, T; Frenois, F-X; Laurent, G; Klein, C; Varoqueaux, N; Savina, A; Fournié, J-J; Bezombes, C

    2013-08-09

    Follicular lymphomas (FLs) account for 35-40% of all adult lymphomas. Treatment typically involves chemotherapy combined with the anti-CD20 monoclonal antibody (MAb) rituximab (RTX). The development of the type II anti-CD20 MAb obinutuzumab (GA101) aims to further improve treatment. Here, using FL cells we show that RTX and GA101 display a similar activity on RL cells cultured in 2D. However, 2D culture cannot mimic tumor spatial organization and conventional 2D models may not reflect the effects of antibodies as they occur in vivo. Thus, we created a non-Hodgkin's lymphoma (NHL) 3D culture system, termed multicellular aggregates of lymphoma cells (MALC), and used it to compare RTX and GA101 activity. Our results show that both antibodies display greater activity towards FL cells in 3D culture compared with 2D culture. Moreover, we observed that in the 3D model GA101 was more effective than RTX both in inhibiting MALC growth through induction of (lysosomal) cell death and senescence and in inhibiting intracellular signaling pathways, such as mammalian target of rapamycin, Akt, PLCgamma (Phospholipase C gamma) and Syk. Altogether, our study demonstrates that spatial organization strongly influences the response to antibody treatment, supporting the use of 3D models for the testing of therapeutic agents in NHL.

  14. Machine tool 3D volumetric positioning error measurement under various thermal conditions

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Bach, P.; Liotto, G.; Wang, C.

    2006-11-01

    To manufacture good quality or accurate parts, the measurement and compensation of three dimensional volumetric positioning errors of a machine tool are very important. Using a conventional laser interferometer to measure the straightness and squareness errors is very difficult and time consuming. Recently, Optodyne has developed a laser vector technique for the measurement of 3D volumetric positioning errors, including 3 linear displacement errors, 6 straightness errors and 3 squareness errors in a very short time. Using this laser vector technique combine with the data obtained from a set of thermocouples placed at key locations of the machine tool structure, the relations between the machine temperature distribution and the 3D positioning errors can be measured and modeled. The results can be used to compensate the 3D volumetric positioning errors under various thermal conditions. Reported here are the definition of the 3D volumetric positioning errors; the basic theory and description of the laser vector technique; the temperature sensors and the laser vector technique measurement results obtained on a vertical CNC machining center under different spindle load, machine temperature and environmental temperature.

  15. 3D variational brain tumor segmentation on a clustered feature set

    NASA Astrophysics Data System (ADS)

    Popuri, Karteek; Cobzas, Dana; Jagersand, Martin; Shah, Sirish L.; Murtha, Albert

    2009-02-01

    Tumor segmentation from MRI data is a particularly challenging and time consuming task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. Our work addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multi-dimensional feature set. Further, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this paper is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to the previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned inside and outside region voxel probabilities in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance, during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters in the ventricles to be in the tumor and hence better disambiguate the tumor from brain tissue. We show the performance of our method on real MRI scans. The experimental dataset includes MRI scans, from patients with difficult instances, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Our method shows good results on these test cases.

  16. Differentiation of brain tumor-related edema based on 3D T1rho imaging.

    PubMed

    Villanueva-Meyer, J E; Barajas, R F; Mabray, M C; Chen, W; Shankaranarayanan, A; Koon, P; Barani, I J; Tihan, T; Cha, S

    2017-06-01

    Cerebral edema associated with brain tumors is an important source of morbidity. Its type depends largely on the capillary ultra-structures of the histopathologic subtype of underlying brain tumor. The purpose of our study was to differentiate vasogenic edema associated with brain metastases and infiltrative edema related to diffuse gliomas using quantitative 3D T1 rho (T1ρ) imaging. Preoperative MR examination including whole brain 3D T1ρ imaging was performed in 23 patients with newly diagnosed brain tumors (9 with metastasis, 8 with lower grade glioma, LGG, 6 with glioblastoma, GBM). Mean T1ρ values were measured in regions of peritumoral non-enhancing T2 signal hyperintensity, excluding both enhancing and necrotic or cystic component, and normal-appearing white matter. Mean T1ρ values were significantly elevated in the vasogenic edema surrounding intracranial metastases when compared to the infiltrative edema associated with either LGG or GBM (p=0.02 and <0.01, respectively). No significant difference was noted between T1ρ values of infiltrative edema between LGG and GBM (p=0.84 and 0.96, respectively). Our study demonstrates the feasibility and potential diagnostic role of T1ρ in the quantitative differentiation between edema related to intracranial metastases and gliomas and as a potentially complementary tool to standard MR techniques in further characterizing pathophysiology of vasogenic and infiltrative edema. Copyright © 2017. Published by Elsevier B.V.

  17. 3D surface imaging of the human female torso in upright to supine positions.

    PubMed

    Reece, Gregory P; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K; Weston, June; Fingeret, Michelle C; Lane, Chris; Duncan, Kelly; Markey, Mia K

    2015-04-01

    Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman's torso as she is tilted from 0 to 90°. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from five subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than 1% for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the five subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table-3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles.

  18. Biologically relevant 3D tumor arrays: treatment response and the importance of stromal partners

    NASA Astrophysics Data System (ADS)

    Rizvi, Imran; Celli, Jonathan P.; Xu, Feng; Evans, Conor L.; Abu-Yousif, Adnan O.; Muzikansky, Alona; Elrington, Stefan A.; Pogue, Brian W.; Finkelstein, Dianne M.; Demirci, Utkan; Hasan, Tayyaba

    2011-02-01

    The development and translational potential of therapeutic strategies for cancer is limited, in part, by a lack of biological models that capture important aspects of tumor growth and treatment response. It is also becoming increasingly evident that no single treatment will be curative for this complex disease. Rationally-designed combination regimens that impact multiple targets provide the best hope of significantly improving clinical outcomes for cancer patients. Rapidly identifying treatments that cooperatively enhance treatment efficacy from the vast library of candidate interventions is not feasible, however, with current systems. There is a vital, unmet need to create cell-based research platforms that more accurately mimic the complex biology of human tumors than monolayer cultures, while providing the ability to screen therapeutic combinations more rapidly than animal models. We have developed a highly reproducible in vitro three-dimensional (3D) tumor model for micrometastatic ovarian cancer (OvCa), which in conjunction with quantitative image analysis routines to batch-process large datasets, serves as a high throughput reporter to screen rationally-designed combination regimens. We use this system to assess mechanism-based combination regimens with photodynamic therapy (PDT), which sensitizes OvCa to chemo and biologic agents, and has shown promise in clinic trials. We show that PDT synergistically enhances carboplatin efficacy in a sequence dependent manner. In printed heterocellular cultures we demonstrate that proximity of fibroblasts enhances 3D tumor growth and investigate co-cultures with endothelial cells. The principles described here could inform the design and evaluation of mechanism-based therapeutic options for a broad spectrum of metastatic solid tumors.

  19. An intraoperative 3D ultrasound system for tumor margin determination in breast cancer surgery.

    PubMed

    DeJean, Paul; Brackstone, Muriel; Fenster, Aaron

    2010-02-01

    The purpose of this study was to analyze the clinical utility of a portable three-dimensional ultrasound (3DUS) system to be used for surgical guidance of lumpectomy surgeries. In 11%-60% of lumpectomy surgeries, a second surgery is required to fully resect the tumor. Previous studies have used 3DUS as a guidance tool with the hope of more accuracy in resecting the entire tumor during the first surgery. However, they utilized larger systems, which are not easily integrated into the operating room. The portable 3DUS scanning system we developed consisted of a motorized "tilt" scanner coupled to a Terason t3000 portable ultrasound machine (Terason Ultrasound, Burlington, MA). The 3DUS system was evaluated by measuring agar "tumor" phantoms of known volumes and acquiring and segmenting images from nine patients undergoing lumpectomy. Experiments on simulated agar tumor phantoms have shown that our device could be used to measure objects with smooth, well-defined boundaries of known volume with an error of 3%. It was possible to view and segment estimated tumor margins from the clinical images in three dimensions. Correspondence between measurements obtained in the laboratory and the operating room varied with tumor geometry and the degree of spiculation in the ultrasound image. The measured values obtained by the system did not correspond closely with those obtained using histology. However, a more accurate histological measurement using 3D histology may provide a better basis for comparison. The results of imaging simulated agar tumor phantoms indicate the system's consistency in measuring objects of known volume and geometry. The system could be used for segmenting the approximate boundary of lumpectomy patients' breast tumors relative to inserted guide wires. The potential advantages of this system are a reduction in the number of re-excision surgeries required and a reduction in the operative time with the patient under anesthesia.

  20. 3D position estimation using a single coil and two magnetic field sensors.

    PubMed

    Tadayon, P; Staude, G; Felderhoff, T

    2015-01-01

    This paper presents an algorithm which enables the estimation of relative 3D position of a sensor module with two magnetic sensors with respect to a magnetic field source using a single transmitting coil. Starting with the description of the ambiguity problem caused by using a single coil, a system concept comprising two sensors having a fixed spatial relation to each other is introduced which enables the unique determination of the sensors' position in 3D space. For this purpose, an iterative two-step algorithm is presented: In a first step, the data of one sensor is used to limit the number of possible position solutions. In a second step, the spatial relation between the sensors is used to determine the correct sensor position.

  1. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection.

    PubMed

    Zhang, Jie; Zhuang, Dong-Xiao; Yao, Cheng-Jun; Lin, Ching-Po; Wang, Tian-Liang; Qin, Zhi-Yong; Wu, Jin-Song

    2016-06-01

    OBJECT The extent of resection is one of the most essential factors that influence the outcomes of glioma resection. However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. Three-dimensional proton MR spectroscopy ((1)H-MRS) can provide metabolic information and has been used in preoperative tumor differentiation, grading, and radiotherapy planning. Resection based on glioma metabolism information may provide for a more extensive resection and yield better outcomes for glioma patients. In this study, the authors attempt to integrate 3D (1)H-MRS into neuronavigation and assess the feasibility and validity of metabolically based glioma resection. METHODS Choline (Cho)-N-acetylaspartate (NAA) index (CNI) maps were calculated and integrated into neuronavigation. The CNI thresholds were quantitatively analyzed and compared with structural MRI studies. Glioma resections were performed under 3D (1)H-MRS guidance. Volumetric analyses were performed for metabolic and structural images from a low-grade glioma (LGG) group and high-grade glioma (HGG) group. Magnetic resonance imaging and neurological assessments were performed immediately after surgery and 1 year after tumor resection. RESULTS Fifteen eligible patients with primary cerebral gliomas were included in this study. Three-dimensional (1)H-MRS maps were successfully coregistered with structural images and integrated into navigational system. Volumetric analyses showed that the differences between the metabolic volumes with different CNI thresholds were statistically significant (p < 0.05). For the LGG group, the differences between the structural and the metabolic volumes with CNI thresholds of 0.5 and 1.5 were statistically significant (p = 0.0005 and 0.0129, respectively). For the HGG group, the differences between the structural and metabolic volumes with CNI thresholds of 0.5 and 1.0 were statistically significant (p = 0.0027 and 0

  2. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance

    PubMed Central

    Kang, Hyejoo; Lovelock, Dale M.; Yorke, Ellen D.; Kriminiski, Sergey; Lee, Nancy; Amols, Howard I.

    2011-01-01

    Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0–8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PMID:21330971

  3. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  4. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    PubMed Central

    2011-01-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme. PMID:21970578

  5. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    NASA Astrophysics Data System (ADS)

    Kim, Nammoon; Kim, Youngok

    2011-10-01

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  6. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views.

  7. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy.

    PubMed

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-03-06

    Many real-time imaging techniques have been developed to localize the target in 3D space or in 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem during 2D BEV tracking.

  8. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  9. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    PubMed Central

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  10. Local position measurement system for fast and accurate 3D monitoring

    NASA Astrophysics Data System (ADS)

    Fischer, Alexander; Pracherstorfer, Gerald; Stelzer, Andreas; Soeser, Andreas

    2003-07-01

    This contribution describes the components necessary for measurement of the three-dimensional local position of objects with high accuracy and high measurement rate. The methodology is based on the FMCW (frequency modulated continuous wave) technology in state of the art technology described as sensor system. A high speed real-time network collects data and transfers it to a master processing unit (MPU) where 3-D position data is calculated. It is described how to measure and how to process position data for a local, wide area measurement system. Results are shown for a series of static measurements and an outdoor Motocross race.

  11. Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses

    NASA Astrophysics Data System (ADS)

    Nikitin, A. G.

    2017-08-01

    Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses and arbitrary potentials are classified. All non-equivalent classes of such equations are presented together with the corresponding symmetry algebras. The specific symmetries connected with the presence of the ordering-ambiguity parameters are discussed, and an extended class of systems which keep their forms for arbitrary or particular changes of these parameters is specified.

  12. 3D Image-Guided Automatic Pipette Positioning for Single Cell Experiments in vivo

    PubMed Central

    Long, Brian; Li, Lu; Knoblich, Ulf; Zeng, Hongkui; Peng, Hanchuan

    2015-01-01

    We report a method to facilitate single cell, image-guided experiments including in vivo electrophysiology and electroporation. Our method combines 3D image data acquisition, visualization and on-line image analysis with precise control of physical probes such as electrophysiology microelectrodes in brain tissue in vivo. Adaptive pipette positioning provides a platform for future advances in automated, single cell in vivo experiments. PMID:26689553

  13. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    NASA Astrophysics Data System (ADS)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  14. Cross-sectional imaging combined with 3D-MR angiography (3D-MRA): diagnostic tool for preoperative vascular assessment of head and neck tumors.

    PubMed

    Sadick, Maliha; Sadick, Haneen; Hörmann, Karl; Düber, Christoph; Diehl, Steffen J

    2005-10-01

    Head and neck cancer accounts for 5% of all malignancies worldwide. The presence of lymph node metastases and vascular infiltration influence patient outcome. This prospective study describes the preoperative morphologic assessment of the vascular status of patients with head and neck tumors by means of high spatial resolution and extended coverage of the arterial and venous system reaching from the supra-aortic region to the skull base. Cross-sectional imaging combined with contrast-enhanced 3D-maximum intensity projection MR angiography (3D-MRA) was applied using a dedicated head and neck coil with a 4-channel panorama array system interface to assess vascular involvement in patients with suspected head and neck cancer. 32 patients underwent preoperative assessment by magnetic resonance imaging (MRI). The results were then correlated with surgical and histological findings. 3 of the 32 patients (9%) demonstrated involvement of the arterial system. In 2 of these 3 cases, MRA correctly predicted the arterial status, while in 1 case it gave a false negative result. 11 of the 32 patients (34%) presented with involvement of the venous system. 10 cases showed complete concordance between the findings of the MR venography and the intraoperative status, while in 1 case a false negative result was produced. In patients with suspected head and neck tumors, 3D-MRA in combination with cross sectional imaging is a valuable diagnostic tool for the detection of vascular involvement.

  15. Current issues on 3D volumetric positioning accuracy: measurement, compensation, and definition

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2008-10-01

    Traditionally, manufacturers have ensured part accuracy by linear calibration of each machine tool axis. The conventional definition of the 3-D volumetric positioning error is the root mean square of the three-axis displacement error. 20 years ago, the dominate error is the lead screw pitch error of 3 axes. This definition is adequate. However, now the machine accuracy has been improved with better lead screw, linear encoder and compensation, the dominate errors become the squareness errors and straightness errors. Hence the above definition is inadequate. During the past years, the industry has seen demand emerge for the "volumetric accuracy" specification on machine tools. One hurdle remains: a standard definition so that everyone measures volumetric accuracy with the same yardstick. The issue has been discussed in many Standards Committees, machine tool builders and the metrology community. Reported here are, a new 3D volumetric positioning error measurement and compensation technique, proposed definitions or measures of 3 D volumetric positioning errors of a CNC machine tool, and its verification.

  16. A comparative study of dose distribution of PBT, 3D-CRT and IMRT for pediatric brain tumors.

    PubMed

    Takizawa, Daichi; Mizumoto, Masashi; Yamamoto, Tetsuya; Oshiro, Yoshiko; Fukushima, Hiroko; Fukushima, Takashi; Terunuma, Toshiyuki; Okumura, Toshiyuki; Tsuboi, Koji; Sakurai, Hideyuki

    2017-02-22

    It was reported that proton beam therapy (PBT) reduced the normal brain dose compared with X-ray therapy for pediatric brain tumors. We considered whether there was not the condition that PBT was more disadvantageous than intensity modulated photon radiotherapy (IMRT) and 3D conventional radiotherapy (3D-CRT) for treatment of pediatric brain tumors about the dose reduction for the normal brain when the tumor location or tumor size were different. The subjects were 12 patients treated with PBT at our institute, including 6 cases of ependymoma treated by local irradiation and 6 cases of germinoma treated by irradiation of all four cerebral ventricles. IMRT and 3D-CRT treatment plans were made for these 12 cases, with optimization using the same planning conditions as those for PBT. Model cases were also compared using sphere targets with different diameters or locations in the brain, and the normal brain doses with PBT, IMRT and 3D-CRT were compared using the same planning conditions. PBT significantly reduced the average dose to normal brain tissue compared to 3D-CRT and IMRT in all cases. There was no difference between 3D-CRT and IMRT. The average normal brain doses for PBT, 3D-CRT, and IMRT were 5.1-34.8% (median 14.9%), 11.0-48.5% (23.8%), and 11.5-53.1% (23.5%), respectively, in ependymoma cases; and 42.3-61.2% (48.9%), 54.5-74.0% (62.8%), and 56.3-72.1% (61.2%), respectively, in germinoma cases. In the model cases, PBT significantly reduced the average normal brain dose for larger tumors and for tumors located at the periphery of the brain. PBT reduces the average dose to normal brain tissue, compared with 3D-CRT and IMRT. The effect is higher for a tumor that is larger or located laterally.

  17. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  18. Twin-beam real-time position estimation of micro-objects in 3D

    NASA Astrophysics Data System (ADS)

    Gurtner, Martin; Zemánek, Jiří

    2016-12-01

    Various optical methods for measuring positions of micro-objects in 3D have been reported in the literature. Nevertheless, the majority of them are not suitable for real-time operation, which is needed, for example, for feedback position control. In this paper, we present a method for real-time estimation of the position of micro-objects in 3D1; the method is based on twin-beam illumination and requires only a very simple hardware setup whose essential part is a standard image sensor without any lens. The performance of the proposed method is tested during a micro-manipulation task in which the estimated position served as feedback for the controller. The experiments show that the estimate is accurate to within  ∼3 μm in the lateral position and  ∼7 μm in the axial distance with the refresh rate of 10 Hz. Although the experiments are done using spherical objects, the presented method could be modified to handle non-spherical objects as well.

  19. Development of fast patient position verification software using 2D-3D image registration and its clinical experience

    PubMed Central

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-01-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy. PMID:26081313

  20. Development of fast patient position verification software using 2D-3D image registration and its clinical experience.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro; Fukuhara, Riki; Haneishi, Hideaki

    2015-09-01

    To improve treatment workflow, we developed a graphic processing unit (GPU)-based patient positional verification software application and integrated it into carbon-ion scanning beam treatment. Here, we evaluated the basic performance of the software. The algorithm provides 2D/3D registration matching using CT and orthogonal X-ray flat panel detector (FPD) images. The participants were 53 patients with tumors of the head and neck, prostate or lung receiving carbon-ion beam treatment. 2D/3D-ITchi-Gime (ITG) calculation accuracy was evaluated in terms of computation time and registration accuracy. Registration calculation was determined using the similarity measurement metrics gradient difference (GD), normalized mutual information (NMI), zero-mean normalized cross-correlation (ZNCC), and their combination. Registration accuracy was dependent on the particular metric used. Representative examples were determined to have target registration error (TRE) = 0.45 ± 0.23 mm and angular error (AE) = 0.35 ± 0.18° with ZNCC + GD for a head and neck tumor; TRE = 0.12 ± 0.07 mm and AE = 0.16 ± 0.07° with ZNCC for a pelvic tumor; and TRE = 1.19 ± 0.78 mm and AE = 0.83 ± 0.61° with ZNCC for lung tumor. Calculation time was less than 7.26 s.The new registration software has been successfully installed and implemented in our treatment process. We expect that it will improve both treatment workflow and treatment accuracy.

  1. Depth position measurement of inhomogeneities in semi-solid organic materials using 3D pulsed digital holography

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, María; Mendoza Santoyo, Fernando; Pérez-López, C.

    2006-02-01

    We show experimental results to determine the depth of inhomogeneities such as glass spheres and biological human tumors, in semi-solids organic materials, like gels (phantom), using the non invasive optical technique called 3D Pulsed Digital Holography (PDH). We reported previously that this technique may be used for the detection of biological tissues1. 3D Pulsed Digital Holography allowed us to make a quantitative analysis of the changes that the phantom suffers when it contains inhomogeneities as compared to a phantom that does not have one. The results obtained there showed quite remarkably the internal fault in semi-solids. In here we report early results obtained from three different object illumination positions that gave 3 wrapped phase maps that allowed the calculation of the depth position of the inhomogeneity within the phantom. The optical technique used looks at the phantom surface micro displacement, where measurements are correlated to the z position of the inhomogeneity inside the phantom. Likewise, the technique is able to show the deformation that the material undergoes in x, y, and z.

  2. Positioning evaluation of corrective osteotomy for the malunited radius: 3-D CT versus 2-D radiographs.

    PubMed

    Vroemen, Joy C; Dobbe, Johannes G G; Strackee, Simon D; Streekstra, Geert J

    2013-02-01

    The authors retrospectively investigated the postoperative position of the distal radius after a corrective osteotomy using 2-dimensional (2-D) and 3-dimensional (3-D) imaging techniques to determine whether malposition correlates with clinical outcome. Twenty-five patients who underwent a corrective osteotomy were available for follow-up. The residual positioning errors of the distal end were determined retrospectively using standard 2-D radiographs and 3-D computed tomography evaluations based on a scan of both forearms, with the contralateral healthy radius serving as reference. For 3-D analysis, use of an anatomical coordinate system for each reference bone allowed the authors to express the residual malalignment parameters in displacements (Δx, Δy, Δz) and rotations (Δφx, Δφy, Δφz) for aligning the affected bone in a standardized way with the corresponding reference bone. The authors investigated possible correlations between malalignment parameters and clinical outcome using patients' questionnaires. Two-dimensional radiographic evaluation showed a radial inclination of 24.9°±6.8°, a palmar tilt of 4.5°±8.6°, and an ulnar variance of 0.8±1.7 mm. With 3-D analysis, residual displacements were 2.6±3 (Δx), 2.4±3 (Δy), and -2.2±4 (Δz) mm. Residual rotations were -6.2°±10° (Δφx), 0.3°±7° (Δφy), and -5.1°±10° (Δφz). The large standard deviation is indicative of persistent malalignment in individual cases. Statistically significant correlations were found between 3-D rotational deficits and clinical outcome but not between 2-D evaluation parameters. Considerable residual malalignments and statistically significant correlations between malalignment parameters and clinical outcome confirm the need for better positioning techniques.

  3. Simultaneous, accurate measurement of the 3D position and orientation of single molecules

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2012-01-01

    Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640

  4. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments.

    PubMed

    Mossel, Annette

    2015-12-14

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system's capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m.

  5. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  6. A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.

    PubMed

    Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang

    2009-10-06

    A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.

  7. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  8. Real-time 2D/3D registration for tumor motion tracking during radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Gendrin, C.; Bloch, C.; Spoerk, J.; Pawiro, S. A.; Weber, C.; Figl, M.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2012-02-01

    Organ motion during radiotherapy is one of causes of uncertainty in dose delivery. To cope with this, the planned target volume (PTV) has to be larger than needed to guarantee full tumor irradiation. Existing methods deal with the problem by performing tumor tracking using implanted fiducial markers or magnetic sensors. In this work, we investigate the feasibility of using x-ray based real time 2D/3D registration for non-invasive tumor motion tracking during radiotherapy. Our method uses purely intensity based techniques, thus avoiding markers or fiducials. X-rays are acquired during treatment at a rate of 5.4Hz. We iteratively compare each x-ray with a set of digitally reconstructed radiographs (DRR) generated from the planning volume dataset, finding the optimal match between the x-ray and one of the DRRs. The DRRs are generated using a ray-casting algorithm, implemented using general purpose computation on graphics hardware (GPGPU) programming techniques using CUDA for greater performance. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the PTV. The phantom motion is measured with an rms error of 2.1 mm and mean registration time is 220 ms. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is seen. Mean registration time is always under 105 ms which is well suited for our purposes. These results demonstrate that real-time organ motion monitoring using image based markerless registration is feasible.

  9. 3D positional control of magnetic levitation system using adaptive control: improvement of positioning control in horizontal plane

    NASA Astrophysics Data System (ADS)

    Nishino, Toshimasa; Fujitani, Yasuhiro; Kato, Norihiko; Tsuda, Naoaki; Nomura, Yoshihiko; Matsui, Hirokazu

    2012-01-01

    The objective of this paper is to establish a technique that levitates and conveys a hand, a kind of micro-robot, by applying magnetic forces: the hand is assumed to have a function of holding and detaching the objects. The equipment to be used in our experiments consists of four pole-pieces of electromagnets, and is expected to work as a 4DOF drive unit within some restricted range of 3D space: the three DOF are corresponding to 3D positional control and the remaining one DOF, rotational oscillation damping control. Having used the same equipment, Khamesee et al. had manipulated the impressed voltages on the four electric magnetics by a PID controller by the use of the feedback signal of the hand's 3D position, the controlled variable. However, in this system, there were some problems remaining: in the horizontal direction, when translating the hand out of restricted region, positional control performance was suddenly degraded. The authors propose a method to apply an adaptive control to the horizontal directional control. It is expected that the technique to be presented in this paper contributes not only to the improvement of the response characteristic but also to widening the applicable range in the horizontal directional control.

  10. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors.

    PubMed

    Pavesi, Andrea; Tan, Anthony T; Koh, Sarene; Chia, Adeline; Colombo, Marta; Antonecchia, Emanuele; Miccolis, Carlo; Ceccarello, Erica; Adriani, Giulia; Raimondi, Manuela T; Kamm, Roger D; Bertoletti, Antonio

    2017-06-15

    The tumor microenvironment imposes physical and functional constraints on the antitumor efficacy of adoptive T cell immunotherapy. Preclinical testing of different T cell preparations can help in the selection of efficient immune therapies, but in vivo models are expensive and cumbersome to develop, while classical in vitro 2D models cannot recapitulate the spatiotemporal dynamics experienced by T cells targeting cancer. Here, we describe an easily customizable 3D model, in which the tumor microenvironment conditions are modulated and the functionality of different T cell preparations is tested. We incorporate human cancer hepatocytes as a single cell or as tumor cell aggregates in a 3D collagen gel region of a microfluidic device. Human T cells engineered to express tumor-specific T cell receptors (TCR-T cells) are then added in adjacent channels. The TCR-T cells' ability to migrate and kill the tumor target and the profile of soluble factors were investigated under conditions of varying oxygen levels and in the presence of inflammatory cytokines. We show that only the 3D model detects the effect that oxygen levels and the inflammatory environment impose on engineered TCR-T cell function, and we also used the 3D microdevice to analyze the TCR-T cell efficacy in an immunosuppressive scenario. Hence, we show that our microdevice platform enables us to decipher the factors that can alter T cell function in 3D and can serve as a preclinical assay to tailor the most efficient immunotherapy configuration for a specific therapeutic goal.

  11. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  12. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  13. 3D PIC-MCC simulations of positive streamers in air gaps

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Li, Y.; Wang, H.; Liu, C.

    2017-10-01

    Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.

  14. Engineering a 3D microfluidic culture platform for tumor-treating field application

    NASA Astrophysics Data System (ADS)

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-05-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.

  15. Engineering a 3D microfluidic culture platform for tumor-treating field application

    PubMed Central

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  16. Adaptive enhancement and visualization techniques for 3D THz images of breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Wu, Yuhao; Bowman, Tyler; Gauch, John; El-Shenawee, Magda

    2016-03-01

    This paper evaluates image enhancement and visualization techniques for pulsed terahertz (THz) images of tissue samples. Specifically, our research objective is to effectively differentiate between heterogeneous regions of breast tissues that contain tumors diagnosed as triple negative infiltrating ductal carcinoma (IDC). Tissue slices and blocks of varying thicknesses were prepared and scanned using our lab's THz pulsed imaging system. One of the challenges we have encountered in visualizing the obtained images and differentiating between healthy and cancerous regions of the tissues is that most THz images have a low level of details and narrow contrast, making it difficult to accurately identify and visualize the margins around the IDC. To overcome this problem, we have applied and evaluated a number of image processing techniques to the scanned 3D THz images. In particular, we employed various spatial filtering and intensity transformation techniques to emphasize the small details in the images and adjust the image contrast. For each of these methods, we investigated how varying filter sizes and parameters affect the amount of enhancement applied to the images. Our experimentation shows that several image processing techniques are effective in producing THz images of breast tissue samples that contain distinguishable details, making further segmentation of the different image regions promising.

  17. Real-time sensing of mouth 3-D position and orientation

    NASA Astrophysics Data System (ADS)

    Burdea, Grigore C.; Dunn, Stanley M.; Mallik, Matsumita; Jun, Heesung

    1990-07-01

    A key problem in using digital subtraction radiography in dentistry is the ability to reposition the X-ray source and patient so as to reproduce an identical imaging geometry. In this paper we describe an approach to solving this problem based on real time sensing of the 3-D position and orientation of the patient's mouth. The research described here is part of a program which has a long term goal to develop an automated digital subtraction radiography system. This will allow the patient and X-ray source to be accurately repositioned without the mechanical fixtures that are presently used to preserve the imaging geometry. If we can measure the position and orientation of the mouth, then the desired position of the source can be computed as the product of the transformation matrices describing the desired imaging geometry and the position vector of the targeted tooth. Position and orientation of the mouth is measured by a real time sensing device using low-frequency magnetic field technology. We first present the problem of repositioning the patient and source and then outline our analytic solution. Then we describe an experimental setup to measure the accuracy, reproducibility and resolution of the sensor and present results of preliminary experiments.

  18. Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing

    PubMed Central

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-01-01

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing. PMID:24956301

  19. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.

    PubMed

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2011-08-04

    Current tissue engineering techniques have various drawbacks: they often incorporate uncontrolled and imprecise scaffold geometries, whereas the current conventional cell seeding techniques result mostly in random cell placement rather than uniform cell distribution. For the successful reconstruction of deficient tissue, new material engineering approaches have to be considered to overcome current limitations. An emerging method to produce complex biological products including cells or extracellular matrices in a controlled manner is a process called bioprinting or biofabrication, which effectively uses principles of rapid prototyping combined with cell-loaded biomaterials, typically hydrogels. 3D tissue printing is an approach to manufacture functional tissue layer-by-layer that could be transplanted in vivo after production. This method is especially advantageous for stem cells since a controlled environment can be created to influence cell growth and differentiation. Using printed tissue for biotechnological and pharmacological needs like in vitro drug-testing may lead to a revolution in the pharmaceutical industry since animal models could be partially replaced by biofabricated tissues mimicking human physiology and pathology. This would not only be a major advancement concerning rising ethical issues but would also have a measureable impact on economical aspects in this industry of today, where animal studies are very labor-intensive and therefore costly. In this review, current controlled material and cell positioning techniques are introduced highlighting approaches towards 3D tissue printing.

  20. Comparison of Brain Tumor Contrast-enhancement on T1-CUBE and 3D-SPGR Images.

    PubMed

    Majigsuren, Mungunkhuyag; Abe, Takashi; Kageji, Teruyoshi; Matsuzaki, Kenji; Takeuchi, Mayumi; Iwamoto, Seiji; Otomi, Yoichi; Uyama, Naoto; Nagahiro, Shinji; Harada, Masafumi

    2016-01-01

    T1-Cube (GE HealthCare) is a relatively new 3-dimensional (3D) fast spin-echo (FSE)-based magnetic resonance (MR) imaging sequence that uses a variable flip angle to acquire gap-free volume scans. We compared the gadolinium enhancement characteristics of a heterogeneous population of brain tumors imaged by T1-Cube and then 3D fast spoiled gradient recall acquisition in steady state (3D FSPGR) 3-tesla MR imaging to identify the superior modality for specific diagnostic purposes. We examined 61 lesions from 32 patients using the 2 sequences after administration of gadopentetic acid (Gd-DTPA; 0.1 mmol/kg). Two neuroradiologists independently measured each lesion twice using a region-of-interest (ROI) method. We measured the contrast-to-noise ratio (CNR), the difference in signal intensity (SI) between the tumor and normal white matter relative to the standard deviation (SD) of the SI within the lesion, for both post-contrast 3D FSPGR and post-contrast T1-Cube images of the same tumor and compared modality-specific CNRs for all tumors and in subgroups defined by tumor size, enhancement ratio, and histopathology. The mean CNR was significantly higher on T1-Cube images than 3D FSPGR images for the total tumor population (1.85 ± 0.97 versus 1.12 ± 1.05, P < 0.01) and the histologic types, i.e., metastasis (P < 0.01) and lymphoma (P < 0.05). The difference in CNR was even larger for smaller tumors in the metastatic group (4.95 to 23.5 mm(2)) (P < 0.01). In contrast, mean CNRs did not differ between modalities for high grade glioma and meningioma. Gadolinium enhancement of brain tumors was generally higher when imaged by T1-Cube than 3D FSPGR, and T1-Cube with Gd enhancement may be superior to 3D FSPGR for detecting smaller metastatic tumors.

  1. Radio triangulation - mapping the 3D position of the solar radio emission

    NASA Astrophysics Data System (ADS)

    Magdalenic, Jasmina

    2016-04-01

    Understanding the relative position of the sources of the radio emission and the associated solar eruptive phenomena (CME and the associated shock wave) has always been a challenge. While ground-based radio interferometer observations provide us with the 2D position information for the radio emission originating from the low corona (up to 2.5 Ro), this is not the case for the radio emission originating at larger heights. The radio triangulation measurements (also referred to as direction-finding or goniopolarimetric measurements) from two or more widely separated spacecraft can provide information on the 3D positions of the sources of the radio emission. This type of interplanetary radio observations are currently performed by STEREO WAVES and WIND WAVES instruments, providing a unique possibility for up to three simultaneous radio triangulations (using up to three different pairs of spacecraft). The recent results of the radio triangulation studies bring new insight into the causal relationship of the solar radio emission and CMEs. In this presentation I will discuss some of the most intriguing results on the source positions of: a) type III radio bursts indicating propagation of the fast electrons accelerated along the open field lines, b) type II radio bursts indicating interaction of the CME-driven shocks and other coronal structures e.g. streamers and c) type IV-like radio bursts possibly associated with CME-CME interaction.

  2. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors.

    PubMed

    Oishi, Makoto; Fukuda, Masafumi; Yajima, Naoki; Yoshida, Kenzo; Takahashi, Machiko; Hiraishi, Tetsuya; Takao, Tetsuro; Saito, Akihiko; Fujii, Yukihiko

    2013-07-01

    In this paper, the authors' goal was to report their novel presurgical simulation method applying interactive virtual simulation (IVS) using 3D computer graphics (CG) data and microscopic observation of color-printed plaster models based on these CG data in surgery for skull base and deep tumors. For 25 operations in 23 patients with skull base or deep intracranial tumors (meningiomas, schwannomas, epidermoid tumors, chordomas, and others), the authors carried out presurgical simulation based on 3D CG data created by image analysis for radiological data. Interactive virtual simulation was performed by modifying the 3D CG data to imitate various surgical procedures, such as bone drilling, brain retraction, and tumor removal, with manipulation of a haptic device. The authors also produced color-printed plaster models of modified 3D CG data by a selective laser sintering method and observed them under the operative microscope. In all patients, IVS provided detailed and realistic surgical perspectives of sufficient quality, thereby allowing surgeons to determine an appropriate and feasible surgical approach. Surgeons agreed that in 44% of the 25 operations IVS showed high utility (as indicated by a rating of "prominent") in comprehending 3D microsurgical anatomies for which reconstruction using only 2D images was complicated. Microscopic observation of color-printed plaster models in 12 patients provided further utility in confirming realistic surgical anatomies. The authors' presurgical simulation method applying advanced 3D imaging and modeling techniques provided a realistic environment for practicing microsurgical procedures virtually and enabled the authors to ascertain complex microsurgical anatomy, to determine the optimal surgical strategies, and also to efficiently educate neurosurgical trainees, especially during surgery for skull base and deep tumors.

  3. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    PubMed Central

    Hafeman, Dean G.; Harkins, James B.; Witkowski, Charles E.; Lewis, Nathan S.; Warmack, Robert J.; Brown, Gilbert M.; Thundat, Thomas

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium. PMID:16618926

  4. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems.

    PubMed

    Brancato, Virginia; Gioiella, Filomena; Profeta, Martina; Imparato, Giorgia; Guarnieri, Daniela; Urciuolo, Francesco; Melone, Pietro; Netti, Paolo A

    2017-07-15

    Therapeutic approaches based on nanomedicine have garnered great attention in cancer research. In vitro biological models that better mimic in vivo conditions are crucial tools to more accurately predict their therapeutic efficacy in vivo. In this work, a new 3D breast cancer microtissue has been developed to recapitulate the complexity of the tumor microenvironment and to test its efficacy as screening platform for drug delivery systems. The proposed 3D cancer model presents human breast adenocarcinoma cells and cancer-associated fibroblasts embedded in their own ECM, thus showing several features of an in vivo tumor, such as overexpression of metallo-proteinases (MMPs). After demonstrating at molecular and protein level the MMP2 overexpression in such tumor microtissues, we used them to test a recently validated formulation of endogenous MMP2-responsive nanoparticles (NP). The presence of the MMP2-sensitive linker allows doxorubicin release from NP only upon specific enzymatic cleavage of the peptide. The same NP without the MMP-sensitive linker and healthy breast microtissues were also produced to demonstrate NP specificity and selectivity. Cell viability after NP treatment confirmed that controlled drug delivery is achieved only in 3D tumor microtissues suggesting that the validation of therapeutic strategies in such 3D tumor model could predict human response. A major issue of modern cancer research is the development of accurate and predictive experimental models of human tumors consistent with tumor microenvironment and applicable as screening platforms for novel therapeutic strategies. In this work, we developed and validated a new 3D microtissue model of human breast tumor as a testing platform of anti-cancer drug delivery systems. To this aim, biodegradable nanoparticles responsive to physiological changes specifically occurring in tumor microenvironment were used. Our findings clearly demonstrate that the breast tumor microtissue well recapitulates in

  5. 3D position determination in monolithic crystals coupled to SiPMs for PET.

    PubMed

    Etxebeste, Ane; Barrio, John; Muñoz, Enrique; Oliver, Josep F; Solaz, Carles; Llosá, Gabriela

    2016-05-21

    The interest in using continuous monolithic crystals in positron emission tomography (PET) has grown in the last years. Coupled to silicon photomultipliers (SiPMs), the detector can combine high sensitivity and high resolution, the two main factors to be maximized in a positron emission tomograph. In this work, the position determination capability of a detector comprised of a [Formula: see text] mm(3) LYSO crystal coupled to an [Formula: see text]-pixel array of SiPMs is evaluated. The 3D interaction position of γ-rays is estimated using an analytical model of the light distribution including reflections on the facets of the crystal. Monte Carlo simulations have been performed to evaluate different crystal reflectors and geometries. The method has been characterized and applied to different cases. Intrinsic resolution obtained with the position estimation method used in this work, applied to experimental data, achieves sub-millimetre resolution values. Average resolution over the detector surface for 5 mm thick crystal is  ∼0.9 mm FWHM and  ∼1.2 mm FWHM for 10 mm thick crystal. Depth of interaction resolution is close to 2 mm FWHM in both cases, while the FWTM is  ∼5.3 mm for 5 mm thick crystal and  ∼9.6 mm for 10 mm thick crystal.

  6. Patient-tailored plate for bone fixation and accurate 3D positioning in corrective osteotomy.

    PubMed

    Dobbe, J G G; Vroemen, J C; Strackee, S D; Streekstra, G J

    2013-02-01

    A bone fracture may lead to malunion of bone segments, which gives discomfort to the patient and may lead to chronic pain, reduced function and finally to early osteoarthritis. Corrective osteotomy is a treatment option to realign the bone segments. In this procedure, the surgeon tries to improve alignment by cutting the bone at, or near, the fracture location and fixates the bone segments in an improved position, using a plate and screws. Three-dimensional positioning is very complex and difficult to plan, perform and evaluate using standard 2D fluoroscopy imaging. This study introduces a new technique that uses preoperative 3D imaging to plan positioning and design a patient-tailored fixation plate that only fits in one way and realigns the bone segments as planned. The method is evaluated using artificial bones and renders realignment highly accurate and very reproducible (d(err) < 1.2 ± 0.8 mm and φ(err) < 1.8° ± 2.1°). Application of a patient-tailored plate is expected to be of great value for future corrective osteotomy surgeries.

  7. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.

    PubMed

    Santo, Vítor E; Rebelo, Sofia P; Estrada, Marta F; Alves, Paula M; Boghaert, Erwin; Brito, Catarina

    2017-01-01

    There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.

    PubMed

    Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M

    2014-07-01

    The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.

  9. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    SciTech Connect

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  10. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models

    NASA Astrophysics Data System (ADS)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor

  11. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors

    PubMed Central

    Tan, Anthony T.; Koh, Sarene; Chia, Adeline; Colombo, Marta; Antonecchia, Emanuele; Miccolis, Carlo; Raimondi, Manuela T.; Kamm, Roger D.

    2017-01-01

    The tumor microenvironment imposes physical and functional constraints on the antitumor efficacy of adoptive T cell immunotherapy. Preclinical testing of different T cell preparations can help in the selection of efficient immune therapies, but in vivo models are expensive and cumbersome to develop, while classical in vitro 2D models cannot recapitulate the spatiotemporal dynamics experienced by T cells targeting cancer. Here, we describe an easily customizable 3D model, in which the tumor microenvironment conditions are modulated and the functionality of different T cell preparations is tested. We incorporate human cancer hepatocytes as a single cell or as tumor cell aggregates in a 3D collagen gel region of a microfluidic device. Human T cells engineered to express tumor-specific T cell receptors (TCR–T cells) are then added in adjacent channels. The TCR–T cells’ ability to migrate and kill the tumor target and the profile of soluble factors were investigated under conditions of varying oxygen levels and in the presence of inflammatory cytokines. We show that only the 3D model detects the effect that oxygen levels and the inflammatory environment impose on engineered TCR–T cell function, and we also used the 3D microdevice to analyze the TCR–T cell efficacy in an immunosuppressive scenario. Hence, we show that our microdevice platform enables us to decipher the factors that can alter T cell function in 3D and can serve as a preclinical assay to tailor the most efficient immunotherapy configuration for a specific therapeutic goal. PMID:28614795

  12. Method of Calibrating Response Statistics for ML Estimation of 3D Interaction Position in a Thick-Detector Gamma Camera

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Furenlid, Lars R.; Moore, Stephen K.

    2015-01-01

    High-energy photon detectors are often made thick in order to improve their photon-detection efficiency. To avoid issues of parallax and increased signal variance that result from random interaction depth, we must determine the 3D interaction position in the imaging detector. With this goal in mind, we examine a method of calibrating response statistics of a thick-detector gamma camera to produce a maximum- likelihood estimate of 3D interaction position. We parameterize the mean detector response as a function of 3D position and estimate the parameters by maximizing their likelihood given prior knowledge of the pathlength distribution and a complete list of camera signals for an ensemble of gamma-ray interactions. Demonstrating this calibration method with simulated gamma-camera data, we show that the resulting calibration is accurate and can be used to produce unbiased estimates of 3D interaction position. PMID:26617458

  13. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    SciTech Connect

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-07-15

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  14. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.

    PubMed

    Knecht, Hans; Mai, Sabine

    2017-01-01

    The 3D nuclear architecture is closely related to cellular functions and chromosomes are organized in distinct territories. Quantitative 3D telomere FISH analysis (3D Q-FISH) and 3D super-resolution imaging (3D-SIM) at a resolution up to 80 nm as well as the recently developed combined quantitative 3D TRF2-telomere immune FISH technique (3D TRF2/Telo-Q-FISH) have substantially contributed to elucidate molecular pathogenic mechanisms of hematological diseases. Here we report the methods we applied to uncover major molecular steps involved in the pathogenesis of EBV-associated Hodgkin's lymphoma. These methods allowed us to identify the EBV-encoded oncoprotein LMP1 as a key element in the formation of Hodgkin (H-cell) and multinucleated Reed-Sternberg cells (RS-cell), the diagnostic tumor cell of classical Hodgkin's lymphoma (cHL). LMP1 mediates multinuclearity through downregulation of shelterin proteins, in particular telomere repeat binding factor 2 (TRF2).

  15. Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.

    2005-04-01

    An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.

  16. Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Ming; Zhang, Juan; Li, Lihua

    2017-03-01

    Convolutional neural networks (CNNs) are the state-of-the-art deep learning network architectures that can be used in a range of applications, including computer vision and medical image analysis. It exhibits a powerful representation learning mechanism with an automated design to learn features directly from the data. However, the common 2D CNNs only use the two dimension spatial information without evaluating the correlation between the adjoin slices. In this study, we established a method of 3D CNNs to discriminate between malignant and benign breast tumors. To this end, 143 patients were enrolled which include 66 benign and 77 malignant instances. The MRI images were pre-processed for noise reduction and breast tumor region segmentation. Data augmentation by spatial translating, rotating and vertical and horizontal flipping is applied to the cases to reduce possible over-fitting. A region-of-interest (ROI) and a volume-of-interest (VOI) were segmented in 2D and 3D DCE-MRI, respectively. The enhancement ratio for each MR series was calculated for the 2D and 3D images. The results for the enhancement ratio images in the two series are integrated for classification. The results of the area under the ROC curve(AUC) values are 0.739 and 0.801 for 2D and 3D methods, respectively. The results for 3D CNN which combined 5 slices for each enhancement ratio images achieved a high accuracy(Acc), sensitivity(Sens) and specificity(Spec) of 0.781, 0.744 and 0.823, respectively. This study indicates that 3D CNN deep learning methods can be a promising technology for breast tumor classification without manual feature extraction.

  17. The use of 2D and 3D displays for shape-understanding versus relative-position tasks.

    PubMed

    St John, M; Cowen, M B; Smallman, H S; Oonk, H M

    2001-01-01

    Research on when and how to use three-dimensional (3D) perspective views on flat screens for operational tasks such as air traffic control is complex. We propose a functional distinction between tasks: those that require shape understanding versus those that require precise judgments of relative position. The distortions inherent in 3D displays hamper judging relative positions, whereas the integration of dimensions in 3D displays facilitates shape understanding. We confirmed these hypotheses with two initial experiments involving simple block shapes. The shape-understanding tasks were identification or mental rotation. The relative-position tasks were locating shadows and determining directions and distances between objects. We then extended the results to four experiments involving complex natural terrain. We compare our distinction with the integral/separable task distinction of Haskel and Wickens (1993). Applications for this research include displays for air traffic control, geoplots for military command and control, and potentially, any display of 3D information.

  18. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  19. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  20. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  1. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  2. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel

    PubMed Central

    Poincloux, Renaud; Collin, Olivier; Lizárraga, Floria; Romao, Maryse; Debray, Marcel; Piel, Matthieu; Chavrier, Philippe

    2011-01-01

    Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement. PMID:21245302

  3. Evolution of Ciona intestinalis Tumor necrosis factor alpha (CiTNFα): Polymorphism, tissues expression, and 3D modeling.

    PubMed

    Vizzini, Aiti; Giovanna, Parisi Maria; Cardinale, Laura; Testasecca, Lelia; Cammarata, Matteo

    2017-02-01

    Although the Tumor necrosis factor gene superfamily seems to be very conserved in vertebrates, phylogeny, tissue expression, genomic and gene organization, protein domains and polymorphism analyses showed that a strong change has happened mostly in invertebrates in which protochordates were a constraint during the immune-molecules history and evolution. RT PCR was used to investigate differential gene expression in different tissues. The expression shown was greater in the pharynx. Single-nucleotide polymorphism has been investigated in Ciona intestinalis Tumor necrosis factor alpha (CiTNFα) mRNA isolated from the pharynx of 30 ascidians collected from Licata, Sicily (Italy), by denaturing gradient gel electrophoresis (DGGE). For this analysis, CiTNFα nucleotide sequence was separated into two fragments, TNF-1 and -2, respectively, of 630 and 540 bp. We defined 23 individual DGGE patterns (named 1 to 10 for TNF-1 and 1 to 13 for TNF-2). Five patterns for TNF-1 accounted for <10% of the individuals, whereas the pattern 13 of TNF-2 accounted for >20% of the individuals. All the patterns were verified by direct sequencing. Single base-pair mutations were observed mainly within COOH-terminus, leading to 30 nucleotide sequence variants and 30 different coding sequences segregating in two main different clusters. Although most of the base mutations were silent, four propeptide variants were detected and six amino acid replacements occurred within COOH-terminus. Statistical tests for neutrality indicated negative selection pressure on signal and mature peptide domains, but possible positive selection pressure on COOH-terminus domain. Lastly we displayed the in silico 3D structure analysis including the CiTNFα variable region.

  4. 3D Ultrasound and Virtual Touch® in Breast Tumors - Two Clinical Cases.

    PubMed

    Leonida, Claudiu V; Topciu, Alina

    2017-01-01

    Visualization of infraclinical malignant lesions using 3D breast ultrasound, and differentiation of benign and malignant lesions using ARFI Virtual Touch® technology in two patients. 3D ultrasound is useful in early detection of architectural distortions, even in the soft tissue of the breast, and Virtual Touch® ARFI differentiates more accurately malignant vs. benign lesions, allowing the patient to be regraded in the BiRADS score (increasing or decreasing the BiRADS score, depending on the situation). Celsius.

  5. AlgiMatrix™ Based 3D Cell Culture System as an In-Vitro Tumor Model for Anticancer Studies

    PubMed Central

    Godugu, Chandraiah; Patel, Apurva R.; Desai, Utkarsh; Andey, Terrick; Sams, Alexandria; Singh, Mandip

    2013-01-01

    Background Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening. Methods Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids. Results IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro. Conclusion The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations. PMID:23349734

  6. Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom.

    PubMed

    Wang, Zhigang; Aarya, Isshaa; Gueorguieva, Mariana; Liu, Dun; Luo, Hongyan; Manfredi, Luigi; Wang, Lijun; McLean, Donald; Coleman, Stuart; Brown, Stuart; Cuschieri, Alfred

    2012-11-01

    Minimally invasive treatment of solid cancers, especially in the breast and liver, remains clinically challenging, despite a variety of treatment modalities, including radiofrequency ablation (RFA), microwave ablation or high-intensity focused ultrasound. Each treatment modality has advantages and disadvantages, but all are limited by placement of a probe or US beam in the target tissue for tumor ablation and monitoring. The placement is difficult when the tumor is surrounded by large blood vessels or organs. Patient-specific image-based 3D modeling for thermal ablation simulation was developed to optimize treatment protocols that improve treatment efficacy. A tissue-mimicking breast gel phantom was used to develop an image-based 3D computer-aided design (CAD) model for the evaluation of a planned RF ablation. First, the tissue-mimicking gel was cast in a breast mold to create a 3D breast phantom, which contained a simulated solid tumor. Second, the phantom was imaged in a medical MRI scanner using a standard breast imaging MR sequence. Third, the MR images were converted into a 3D CAD model using commercial software (ScanIP, Simpleware), which was input into another commercial package (COMSOL Multiphysics) for RFA simulation and treatment planning using a finite element method (FEM). For validation of the model, the breast phantom was experimentally ablated using a commercial (RITA) RFA electrode and a bipolar needle with an electrosurgical generator (DRE ASG-300). The RFA results obtained by pre-treatment simulation were compared with actual experimental ablation. A 3D CAD model, created from MR images of the complex breast phantom, was successfully integrated with an RFA electrode to perform FEM ablation simulation. The ablation volumes achieved both in the FEM simulation and the experimental test were equivalent, indicating that patient-specific models can be implemented for pre-treatment planning of solid tumor ablation. A tissue-mimicking breast gel phantom

  7. 3D numerical study of tumor microenvironmental flow in response to vascular-disrupting treatments.

    PubMed

    Wu, Jie; Cai, Yan; Xu, Shixiong; Longs, Quan; Ding, Zurong; Dong, Cheng

    2012-06-01

    The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three groups, and disrupting vessels of lower maturity could effectively enhance fluid transport across vasculature into interstitial space.

  8. Importance of protocol target definition on the ability to spare normal tissue: An IMRT and 3D-CRT planning comparison for intraorbital tumors

    SciTech Connect

    Hein, Patrick A.; Gladstone, David J.; Bellerive, Marc R.; Hug, Eugen B. . E-mail: Eugen.B.Hug@hitchcock.org

    2005-08-01

    were fulfilled in all cases (5/5) with 3D-CRT and IMRT. Using the protocol criteria, lens sparing was achieved only for two tumor sites (retrobulbar and lateral position) with either planning technique. Mean lens doses were 8.5 and 10.4 Gy for 3D-CRT and 7.5 and 13.2 Gy for IMRT, respectively. The mean lens doses for the other three tumor locations averaged 26.8 Gy. IMRT plans reduced the lens dose in four of five cases by an average of 2.6 Gy compared with 3D-CRT. Modified target protocol prescription markedly reduced mean lens doses by 23-50% and by as much as 18 Gy. Recorded mean lens doses after protocol modification were 26% lower using IMRT plans compared with 3D-CRT. The cold spot as a result of the relaxed volume coverage requirements was within 2% of the original protocol criteria and located at the edge of the PTV, outside the CTV. Compared with 3D-CRT, IMRT resulted in an increase of brain volume receiving 10% (V10) and 20% (V20) of the prescribed dose. Conclusion: Strict adherence to IRS-V protocol criteria prohibits at present lens sparing within compliance criteria for the majority of intraorbital tumor locations because of protocol-specific CTV and PTV target definitions. Changing protocol definitions by prescribing to the volume rather than to a dose constraint, IMRT planning significantly reduced lens doses. This was not accomplished to the same degree with 3D-CRT. Our study underlines the importance of appropriate selection of planning objectives to maximize the specific capabilities and advantages of IMRT in terms of sufficient target coverage and simultaneous sparing of critical structures. Our results can add to the ongoing discussion in the design of future 3D-CRT/IMRT protocols.

  9. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    NASA Astrophysics Data System (ADS)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  10. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    PubMed Central

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-01-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation. PMID:27248849

  11. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  12. Computer Vision Tracking Using Particle Filters for 3D Position Estimation

    DTIC Science & Technology

    2014-03-27

    5 2.2 Photogrammetry ...focus on particle filters. 2.2 Photogrammetry Photogrammetry is the process of determining 3-D coordinates through images. The mathematical underpinnings...of photogrammetry are rooted in the 1480s with Leonardo da Vinci’s study of perspectives [8, p. 1]. However, digital photogrammetry did not emerge

  13. Simulation of 3D tumor cell growth using nonlinear finite element method.

    PubMed

    Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi

    2016-01-01

    We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.

  14. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery.

    PubMed

    Chwalek, Karolina; Bray, Laura J; Werner, Carsten

    2014-12-15

    Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.

  15. Gadolinium enhanced 3D proton density driven equilibrium MR imaging in the evaluation of cisternal tumor and associated structures: comparison with balanced fast-field-echo sequence.

    PubMed

    Ahn, Sung Jun; Yoo, Mi Ri; Suh, Sang Hyun; Lee, Seung-Koo; Lee, Kyu Sung; Son, Eun Jin; Chung, Tae-Sub

    2014-01-01

    Although Gadolinium enhanced bFFE is commonly used to evaluate cisternal tumors, banding artifact may interrupt interpretation and adjacent nerve and vessels differentiation is known to be difficult. We analyzed the qualities of Gd enhanced 3D PDDE in the evaluation of cisternal tumors, comparing with bFFE. Forty five cisternal tumors (33 schwannoma and 12 meningioma) on both bFFE and PDDE were retrospectively reviewed. For quantitative analysis, contrast ratios of CSF to tumor and tumor to parenchyma (CRC/T and CRT/P) on both sequences were compared by paired t-test. For qualitative analysis, the readers gauged the qualities of the two MR sequences with respect to the degree of demarcating cisternal structures (tumor, basilar artery, AICA, trigeminal nerve, facial nerve and vestibulocochlear nerve). In quantitative analysis, CRC/T and CRT/P on 3D PDDE was significantly lower than that of 3D bFFE (p < 0.01). In qualitative analysis, basilar artery, AICA, facial nerve and vestibulocochlear nerves were significantly better demarcated on 3D PDDE than on bFFE (p < 0.01). The degree of demarcation of tumor on 3D PDDE was not significantly different with that on 3D bFFE (p = 0.13). Although the contrast between tumor and the surrounding structures are reduced, Gd enhanced 3D PDDE provides better demarcation of cranial nerves and major vessels adjacent to cisternal tumors than Gd enhanced bFFE.

  16. Prone Hypofractionated Whole-Breast Radiotherapy Without a Boost to the Tumor Bed: Comparable Toxicity of IMRT Versus a 3D Conformal Technique

    SciTech Connect

    Hardee, Matthew E.; Raza, Shahzad; Becker, Stewart J.; Jozsef, Gabor; Lymberis, Stella C.; Hochman, Tsivia; Goldberg, Judith D.; DeWyngaert, Keith J.; Formenti, Silvia C.

    2012-03-01

    Purpose: We report a comparison of the dosimetry and toxicity of three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT) among patients treated in the prone position with the same fractionation and target of the hypofractionation arm of the Canadian/Whelan trial. Methods and Materials: An institutional review board-approved protocol identified a consecutive series of early-stage breast cancer patients treated according to the Canadian hypofractionation regimen but in the prone position. Patients underwent IMRT treatment planning and treatment if the insurance carrier approved reimbursement for IMRT; in case of refusal, a 3D-CRT plan was used. A comparison of the dosimetric and toxicity outcomes during the acute, subacute, and long-term follow-up of the two treatment groups is reported. Results: We included 97 consecutive patients with 100 treatment plans in this study (3 patients with bilateral breast cancer); 40 patients were treated with 3D-CRT and 57 with IMRT. IMRT significantly reduced the maximum dose (Dmax median, 109.96% for 3D-CRT vs. 107.28% for IMRT; p < 0.0001, Wilcoxon test) and improved median dose homogeneity (median, 1.15 for 3D-CRT vs. 1.05 for IMRT; p < 0.0001, Wilcoxon test) when compared with 3D-CRT. Acute toxicity consisted primarily of Grade 1 to 2 dermatitis and occurred in 92% of patients. Grade 2 dermatitis occurred in 13% of patients in the 3D-CRT group and 2% in the IMRT group. IMRT moderately decreased rates of acute pruritus (p = 0.03, chi-square test) and Grade 2 to 3 subacute hyperpigmentation (p = 0.01, Fisher exact test). With a minimum of 6 months' follow-up, the treatment was similarly well tolerated in either group, including among women with large breast volumes. Conclusion: Hypofractionated breast radiotherapy is well tolerated when treating patients in the prone position, even among those with large breast volumes. Breast IMRT significantly improves dosimetry but yields only a modest but

  17. Comparison of Radiation Treatment Plans for Breast Cancer between 3D Conformal in Prone and Supine Positions in Contrast to VMAT and IMRT Supine Positions

    NASA Astrophysics Data System (ADS)

    Bejarano Buele, Ana Isabel

    The treatment regimen for breast cancer patients typically involves Whole Breast Irradiation (WBI). The coverage and extent of the radiation treatment is dictated by location of tumor mass, breast tissue distribution, involvement of lymph nodes, and other factors. The current standard treatment approach used at our institution is a 3D tangential beam geometry, which involves two fields irradiating the breast, or a four field beam arrangement covering the whole breast and involved nodes, while decreasing the dose to organs as risk (OARs) such as the lung and heart. The coverage of these targets can be difficult to achieve in patients with unfavorable thoracic geometries, especially in those cases in which the planning target volume (PTV) is extended to the chest wall. It is a well-known fact that exposure of the heart to ionizing radiation has been proved to increase the subsequent rate of ischemic heart disease. In these cases, inverse planned treatments have become a proven alternative to the 3D approach. The goal of this research project is to evaluate the factors that affect our current techniques as well as to adapt the development of inverse modulated techniques for our clinic, in which breast cancer patients are one of the largest populations treated. For this purpose, a dosimetric comparison along with the evaluation of immobilization devices was necessary. Radiation treatment plans were designed and dosimetrically compared for 5 patients in both, supine and prone positions. For 8 patients, VMAT and IMRT plans were created and evaluated in the supine position. Skin flash incorporation for inverse modulated plans required measurement of the surface dose as well as an evaluation of breast volume changes during a treatment course. It was found that prone 3D conformal plans as well as the VMAT and IMRT plans are generally superior in sparing OARs to supine plans with comparable PTV coverage. Prone setup leads to larger shifts in breast volume as well as in

  18. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry.

    PubMed

    Kessel, Sarah; Cribbes, Scott; Déry, Olivier; Kuksin, Dmitry; Sincoff, Eric; Qiu, Jean; Chan, Leo Li-Ying

    2016-06-01

    Oncologists have investigated the effect of protein or chemical-based compounds on cancer cells to identify potential drug candidates. Traditionally, the growth inhibitory and cytotoxic effects of the drugs are first measured in 2D in vitro models, and then further tested in 3D xenograft in vivo models. Although the drug candidates can demonstrate promising inhibitory or cytotoxicity results in a 2D environment, similar effects may not be observed under a 3D environment. In this work, we developed an image-based high-throughput screening method for 3D tumor spheroids using the Celigo image cytometer. First, optimal seeding density for tumor spheroid formation was determined by investigating the cell seeding density of U87MG, a human glioblastoma cell line. Next, the dose-response effects of 17-AAG with respect to spheroid size and viability were measured to determine the IC50 value. Finally, the developed high-throughput method was used to measure the dose response of four drugs (17-AAG, paclitaxel, TMZ, and doxorubicin) with respect to the spheroid size and viability. Each experiment was performed simultaneously in the 2D model for comparison. This detection method allowed for a more efficient process to identify highly qualified drug candidates, which may reduce the overall time required to bring a drug to clinical trial.

  19. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus.

    PubMed

    Del Bufalo, Francesca; Manzo, Teresa; Hoyos, Valentina; Yagyu, Shigeki; Caruana, Ignazio; Jacot, Jeffrey; Benavides, Omar; Rosen, Daniel; Brenner, Malcolm K

    2016-04-01

    Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  1. Hydrogels to Model 3D in vitro Microenvironment of Tumor Vascularization

    PubMed Central

    Song, Hyun-Ho Greco; Park, Kyung Min; Gerecht, Sharon

    2014-01-01

    A growing number of failing clinical trials for cancer therapy is substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. When coupled with other technologies such as lithography and three-dimensional printing, one can even create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process. PMID:24969477

  2. Treating benign optic nerve tumors with a 3-D conformal plan

    SciTech Connect

    Millunchick, Cheryl Hope

    2013-07-01

    A 68 year old male patient presented for radiation therapy for treatment of a benign tumor, a glioma of his left optic nerve. The radiation oncologist intended to prescribe 52.2 Gy to the planning target volume, while maintaining a maximum of 54 Gy to the optic nerves and the optic chiasm and a maximum of 40–45 Gy to the globes in order to minimize the possibility of damaging the optic system, which is especially important as this is a benign tumor. The dosimetrist devised a conformal non-coplanar three-dimensional plan with a slightly weighted forward planning component. This plan was created in approximately 15 minutes after the critical organs and the targets were delineated and resulted in an extremely conformal and homogenous plan, treating the target while sparing the nearby critical structures. This approach can also be extended to other tumors in the brain - benign or malignant.

  3. Segmentation of Skin Tumors in High-Frequency 3-D Ultrasound Images.

    PubMed

    Sciolla, Bruno; Cowell, Lester; Dambry, Thibaut; Guibert, Benoît; Delachartre, Philippe

    2017-01-01

    High-frequency 3-D ultrasound imaging is an informative tool for diagnosis, surgery planning and skin lesion examination. The purpose of this article was to describe a semi-automated segmentation tool providing easy access to the extent, shape and volume of a lesion. We propose an adaptive log-likelihood level-set segmentation procedure using non-parametric estimates of the intensity distribution. The algorithm has a single parameter to control the smoothness of the contour, and we describe how a fixed value yields satisfactory segmentation results with an average Dice coefficient of D = 0.76. The algorithm is implemented on a grid, which increases the speed by a factor of 100 compared with a standard pixelwise segmentation. We compare the method with parametric methods making the hypothesis of Rayleigh or Nakagami distributed signals, and illustrate that our method has greater robustness with similar computational speed. Benchmarks are made on realistic synthetic ultrasound images and a data set of nine clinical 3-D images acquired with a 50-MHz imaging system. The proposed algorithm is suitable for use in a clinical context as a post-processing tool.

  4. 3D tissue engineered micro-tumors for optical-based therapeutic screening platform

    NASA Astrophysics Data System (ADS)

    Spano, Joseph L.; Schmitt, Trevor J.; Bailey, Ryan C.; Hannon, Timothy S.; Elmajdob, Mohamed; Mason, Eric M.; Ye, Guochang; Das, Soumen; Seal, Sudipta; Fenn, Michael B.

    2016-03-01

    Melanoma is an underserved area of cancer research, with little focus on studying the effects of tumor extracellular matrix (ECM) properties on melanoma tumor progression, metastasis, and treatment efficacy. We've developed a Raman spectral mapping-based in-vitro screening platform that allows for nondestructive in-situ, multi-time point assessment of a novel potential nanotherapeutic adjuvant, nanoceria (cerium oxide nanoparticles), for treating melanoma. We've focused primarily on understanding melanoma tumor ECM composition and how it influences cell morphology and ICC markers. Furthermore, we aim to correlate this with studies on nanotherapeutic efficacy to coincide with the goal of predicting and preventing metastasis based on ECM composition. We've compiled a Raman spectral database for substrates containing varying compositions of fibronectin, elastin, laminin, and collagens type I and IV. Furthermore, we've developed a machine learning-based semi-quantitative analysis platform utilizing dimensionality reduction with subsequent pixel classification and semi-quantitation of ECM composition using Direct Classical Least Squares for classification and estimation of the reorganization of these components by taking 2D maps using Raman spectroscopy. Gaining an understanding of how tissue properties influence ECM organization has laid the foundation for future work utilizing Raman spectroscopy to assess therapeutic efficacy and matrix reorganization imparted by nanoceria. Specifically, this will allow us to better understand the role of HIF1a in matrix reorganization of the tumor microenvironment. By studying the relationship between substrate modulus and nanoceria's ability to inhibit an ECM that is conducive to tumor formation, we endeavor to show that nanoceria may prevent or even revert tumor conducive microenvironments.

  5. Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector

    PubMed Central

    Hunter, William C. J.; Barrett, Harrison H.; Furenlid, Lars R.

    2010-01-01

    High-energy (> 100 keV) photon detectors are often made thick relative to their lateral resolution in order to improve their photon-detection efficiency. To avoid issues of parallax and increased signal variance that result from random interaction depth, we must determine the 3D interaction position in the imaging detector. With this goal in mind, we examine a method of calibrating response statistics of a thick-detector gamma camera to produce a maximum-likelihood estimate of 3D interaction position. We parameterize the mean detector response as a function of 3D position, and we estimate these parameters by maximizing their likelihood given prior knowledge of the pathlength distribution and a complete list of camera signals for an ensemble of gamma-ray interactions. Furthermore, we describe an iterative method for removing multiple-interaction events from our calibration data and for refining our calibration of the mean detector response to single interactions. We demonstrate this calibration method with simulated gamma-camera data. We then show that the resulting calibration is accurate and can be used to produce unbiased estimates of 3D interaction position. PMID:20191099

  6. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids

    PubMed Central

    Sun, Lingli; Li, Guanying; Chen, Xiang; Chen, Yu; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2015-01-01

    Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of “off-on” phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids. PMID:26423609

  7. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Sun, Lingli; Li, Guanying; Chen, Xiang; Chen, Yu; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2015-10-01

    Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of “off-on” phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids.

  8. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids.

    PubMed

    Sun, Lingli; Li, Guanying; Chen, Xiang; Chen, Yu; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2015-10-01

    Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of "off-on" phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids.

  9. Estimation of Pulmonary Motion in Healthy Subjects and Patients with Intrathoracic Tumors Using 3D-Dynamic MRI: Initial Results

    PubMed Central

    Schoebinger, Max; Herth, Felix; Tuengerthal, Siegfried; Meinzer, Heinz-Peter; Kauczor, Hans-Ulrich

    2009-01-01

    Objective To estimate a new technique for quantifying regional lung motion using 3D-MRI in healthy volunteers and to apply the technique in patients with intra- or extrapulmonary tumors. Materials and Methods Intraparenchymal lung motion during a whole breathing cycle was quantified in 30 healthy volunteers using 3D-dynamic MRI (FLASH [fast low angle shot] 3D, TRICKS [time-resolved interpolated contrast kinetics]). Qualitative and quantitative vector color maps and cumulative histograms were performed using an introduced semiautomatic algorithm. An analysis of lung motion was performed and correlated with an established 2D-MRI technique for verification. As a proof of concept, the technique was applied in five patients with non-small cell lung cancer (NSCLC) and 5 patients with malignant pleural mesothelioma (MPM). Results The correlation between intraparenchymal lung motion of the basal lung parts and the 2D-MRI technique was significant (r = 0.89, p < 0.05). Also, the vector color maps quantitatively illustrated regional lung motion in all healthy volunteers. No differences were observed between both hemithoraces, which was verified by cumulative histograms. The patients with NSCLC showed a local lack of lung motion in the area of the tumor. In the patients with MPM, there was global diminished motion of the tumor bearing hemithorax, which improved siginificantly after chemotherapy (CHT) (assessed by the 2D- and 3D-techniques) (p < 0.01). Using global spirometry, an improvement could also be shown (vital capacity 2.9 ± 0.5 versus 3.4 L ± 0.6, FEV1 0.9 ± 0.2 versus 1.4 ± 0.2 L) after CHT, but this improvement was not significant. Conclusion A 3D-dynamic MRI is able to quantify intraparenchymal lung motion. Local and global parenchymal pathologies can be precisely located and might be a new tool used to quantify even slight changes in lung motion (e.g. in therapy monitoring, follow-up studies or even benign lung diseases). PMID:19885311

  10. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

    PubMed Central

    Baek, NamHuk; Seo, Ok Won; Kim, MinSung; Hulme, John; An, Seong Soo A

    2016-01-01

    Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR) on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549), muscle (C2C12), prostate (DU145), testis (F9), pituitary epithelial-like (GH3), cervical cancer (HeLa), HeLa contaminant (HEp2), embryo (NIH3T3), embryo (PA317), neuroblastoma (SH-SY5Y), osteosarcoma U2OS, and embryonic kidney cells (293T), were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were halted 3 and 5 days from the start of the treatment in all spheroids. All cell lines maintained their spheroid shape, except SHSY-5, which behaved in an unpredictable manner when exposed to toxic concentrations of DXR. Cytotoxic effects of DXR towards SH-SY5Y seemed to cause degradation of

  11. Brain tumor segmentation in 3D MRIs using an improved Markov random field model

    NASA Astrophysics Data System (ADS)

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2011-10-01

    Markov Random Field (MRF) models have been recently suggested for MRI brain segmentation by a large number of researchers. By employing Markovianity, which represents the local property, MRF models are able to solve a global optimization problem locally. But they still have a heavy computation burden, especially when they use stochastic relaxation schemes such as Simulated Annealing (SA). In this paper, a new 3D-MRF model is put forward to raise the speed of the convergence. Although, search procedure of SA is fairly localized and prevents from exploring the same diversity of solutions, it suffers from several limitations. In comparison, Genetic Algorithm (GA) has a good capability of global researching but it is weak in hill climbing. Our proposed algorithm combines SA and an improved GA (IGA) to optimize the solution which speeds up the computation time. What is more, this proposed algorithm outperforms the traditional 2D-MRF in quality of the solution.

  12. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  13. 3D model-based documentation with the Tumor Therapy Manager (TTM) improves TNM staging of head and neck tumor patients.

    PubMed

    Pankau, Thomas; Wichmann, Gunnar; Neumuth, Thomas; Preim, Bernhard; Dietz, Andreas; Stumpp, Patrick; Boehm, Andreas

    2015-10-01

    Many treatment approaches are available for head and neck cancer (HNC), leading to challenges for a multidisciplinary medical team in matching each patient with an appropriate regimen. In this effort, primary diagnostics and its reliable documentation are indispensable. A three-dimensional (3D) documentation system was developed and tested to determine its influence on interpretation of these data, especially for TNM classification. A total of 42 HNC patient data sets were available, including primary diagnostics such as panendoscopy, performed and evaluated by an experienced head and neck surgeon. In addition to the conventional panendoscopy form and report, a 3D representation was generated with the "Tumor Therapy Manager" (TTM) software. These cases were randomly re-evaluated by 11 experienced otolaryngologists from five hospitals, half with and half without the TTM data. The accuracy of tumor staging was assessed by pre-post comparison of the TNM classification. TNM staging showed no significant differences in tumor classification (T) with and without 3D from TTM. However, there was a significant decrease in standard deviation from 0.86 to 0.63 via TTM ([Formula: see text]). In nodal staging without TTM, the lymph nodes (N) were significantly underestimated with [Formula: see text] classes compared with [Formula: see text] with TTM ([Formula: see text]). Likewise, the standard deviation was reduced from 0.79 to 0.69 ([Formula: see text]). There was no influence of TTM results on the evaluation of distant metastases (M). TNM staging was more reproducible and nodal staging more accurate when 3D documentation of HNC primary data was available to experienced otolaryngologists. The more precise assessment of the tumor classification with TTM should provide improved decision-making concerning therapy, especially within the interdisciplinary tumor board.

  14. Estimating 3D positions and velocities of projectiles from monocular views.

    PubMed

    Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P

    2009-05-01

    In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.

  15. Beam position controlling method for 3D optical system and its application in non-planar ring resonators.

    PubMed

    Yuan, Jie; Chen, Meixiong; Long, Xingwu; Tan, Yanyang; Kang, Zhenglong; Li, Yingying

    2012-08-13

    A novel theoretical beam position controlling method for 3D optical system has been proposed in this paper. Non-planar ring resonator, which is a typical 3D optical system, has been chosen as an example to show its application. To the best of our knowledge, the generalized ray matrices, augmented 5 × 5 ray matrices for paraxial dielectric interface transmission and paraxial optical-wedge transmission, and their detailed deducing process have been proposed in this paper for the first time. By utilizing the novel coordinate system for Gaussian beam reflection and the generalized ray matrix of paraxial optical-wedge transmission, the rules and some novel results of the optical-axis perturbations of non-planar ring resonators have been obtained. Wedge angle-induced mismatching errors of non-planar ring resonators have been found out and two experimental beam position controlling methods to effectively eliminate the wedge angle-induced mismatching errors have been proposed. All those results have been confirmed by related alignment experiments and the experimental results have been described with diagrammatic representation. These findings are important to the beam control, cavity design, and cavity alignment of high precision non-planar ring laser gyroscopes. Those generalized ray matrices and their deducing methods are valuable for ray analysis of various kinds of paraxial optical-elements and resonators. This novel theoretical beam position controlling method for 3D optical system is valuable for the controlling of various kinds of 3D optical systems.

  16. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  17. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  18. Topographical guidance of 3D tumor cell migration at an interface of collagen densities.

    PubMed

    Bordeleau, Francois; Tang, Lauren N; Reinhart-King, Cynthia A

    2013-12-01

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of high- and low-density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the high-density side into the low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a low-to-high density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration.

  19. Designing PDT-based combinations to overcome chemoresistance in heterocellular 3D tumor models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rizvi, Imran; Briars, Emma A.; Bulin, Anne-Laure; Anbil, Sriram; Vecchio, Daniela; Alkhateeb, Ahmed; Hanna, William R.; Celli, Jonathan P.; Hasan, Tayyaba

    2016-03-01

    A major barrier to treating advanced-stage cancers is heterogeneity in the responsiveness of metastatic disease to conventional therapies leading to resistance and treatment failure. Photodynamic therapy (PDT) has been shown to synergize with conventional agents and to overcome the evasion pathways that cause resistance. Developing PDT-based combinations that target resistant tumor populations and cooperate mechanistically with conventional agents is an increasingly promising approach to improve therapeutic efficacy while minimizing toxicity, particularly in complex disease sites. Identifying the molecular, cellular, and microenvironmental cues that lead to heterogeneity and treatment resistance is critical to developing strategies to target unresponsive regions of stubborn disease. Cell-based research platforms that integrate key microenvironmental cues are emerging as increasingly important tools to improve the translational efficiency of new agents, and to design combination regimens. Among the challenges associated with developing and scaling complex cell-based screening platforms is the need to integrate, and balance, biological relevance with appropriate, high-content imaging routines that provide meaningful quantitative readouts of therapeutic response. The benefits and challenges associated with deriving meaningful insights from complex cell-based models will be presented, with a particular emphasis on overcoming chemoresistance mediated by physical stress and communication with stromal partners (e.g. tumor endothelial cells, which are emerging as dynamic regulators of treatment resistance) using PDT-based combinations.

  20. Topographical guidance of 3D tumor cell migration at an interface of collagen densities

    PubMed Central

    Bordeleau, Francois; Tang, Lauren N.; Reinhart-King, Cynthia A.

    2014-01-01

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of High and Low density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the High-density side into the Low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a Low-to-High density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration. PMID:24304905

  1. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  2. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  3. 3D Stationary electric current density in a spherical tumor treated with low direct current: an analytical solution.

    PubMed

    Jiménez, Rolando Placeres; Pupo, Ana Elisa Bergues; Cabrales, Jesús Manuel Bergues; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Nava, Juan José Godina; Aguilera, Andrés Ramírez; Mateus, Miguel Angel O'Farril; Jarque, Manuel Verdecia; Brooks, Soraida Candida Acosta

    2011-02-01

    Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.

  4. Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D ultrasound image guidance

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Stolka, Philipp; Kang, Hyun-Jae; Clarke, Clyde; Rucker, Caleb; Croom, Jordon; Burdette, E. Clif; Webster, Robert J., III

    2010-02-01

    Many recent studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to place the ablator device precisely into the target. Irregularly shaped target volumes typically require multiple insertions and several overlapping (thermal) lesions, which are even more challenging to accomplish in a precise, predictable, and timely manner without causing excessive damage to surrounding normal tissues. In answer to these problems, we have developed a steerable acoustic ablator called the ACUSITT with the ability of directional energy delivery to precisely shape the applied thermal dose . In this paper, we address image guidance for this device, proposing an innovative method for accurate tracking and tool registration with spatially-registered intra-operative three-dimensional US volumes, without relying on an external tracking device. This method is applied to guid-ance of the flexible, snake-like, lightweight, and inexpensive ACUSITT to facilitate precise placement of its ablator tip within the liver, with ablation monitoring via strain imaging. Recent advancements in interstitial high-power ultrasound applicators enable controllable and penetrating heating patterns which can be dynamically altered. This paper summarizes the design and development of the first synergistic system that integrates a novel steerable interstitial acoustic ablation device with a novel trackerless 3DUS guidance strategy.

  5. Experimental validation of improved 3D SBP positioning algorithm in PET applications using UW Phase II Board

    NASA Astrophysics Data System (ADS)

    Jorge, L. S.; Bonifacio, D. A. B.; DeWitt, Don; Miyaoka, R. S.

    2016-12-01

    Continuous scintillator-based detectors have been considered as a competitive and cheaper approach than highly pixelated discrete crystal positron emission tomography (PET) detectors, despite the need for algorithms to estimate 3D gamma interaction position. In this work, we report on the implementation of a positioning algorithm to estimate the 3D interaction position in a continuous crystal PET detector using a Field Programmable Gate Array (FPGA). The evaluated method is the Statistics-Based Processing (SBP) technique that requires light response function and event position characterization. An algorithm has been implemented using the Verilog language and evaluated using a data acquisition board that contains an Altera Stratix III FPGA. The 3D SBP algorithm was previously successfully implemented on a Stratix II FPGA using simulated data and a different module design. In this work, improvements were made to the FPGA coding of the 3D positioning algorithm, reducing the total memory usage to around 34%. Further the algorithm was evaluated using experimental data from a continuous miniature crystal element (cMiCE) detector module. Using our new implementation, average FWHM (Full Width at Half Maximum) for the whole block is 1.71±0.01 mm, 1.70±0.01 mm and 1.632±0.005 mm for x, y and z directions, respectively. Using a pipelined architecture, the FPGA is able to process 245,000 events per second for interactions inside of the central area of the detector that represents 64% of the total block area. The weighted average of the event rate by regional area (corner, border and central regions) is about 198,000 events per second. This event rate is greater than the maximum expected coincidence rate for any given detector module in future PET systems using the cMiCE detector design.

  6. Characterization of an experimental arrangement to measure position of particles in 3D with a high accuracy

    NASA Astrophysics Data System (ADS)

    Martínez González, A.; Guerrero Viramontes, J. A.; Moreno Hernández, D.

    2011-09-01

    Single particle position calculation in three dimensions (3D) with high accuracy is the very important in several branches of science. On the other hand, the use of in-line holography to study very small objects in a dynamic volume is a technique of importance for scientists and engineers across a variety of disciplines for obtaining information about size, shape, trajectory and velocity of small objects such as dust particles. However, in general for in-line holography, accurate determination of the object's position in the optical axis direction is difficult. In order to overcome this shortcoming, we proposed to use in-line holography set up to record particle images in two orthogonal forward configurations. In this study, we avoid digital holography reconstruction to calculate particle position. To determine particle position, the proposed method is based on the calculation of the size and position of the central spot size (CSS) of a particle diffraction image. The size of the CSS is calculated by using the Continuous Wavelet Transform (CWT) and Continuous Hough Transforms (CHT), an then the size of the CSS is related to a calibration curve calculated experimentally in order to determine the "z" particle position and centroid of the CSS render the "x-y" position of a particle image. The procedure proposed in this work to determine the 3D particle position is so simple since it avoids a complicated experimental set-up and several computational steps in order to obtain the 3D position of the particles. Our approach offers the following advantages: First, the mathematical accuracy, light illumination as well as particle and medium refractive indexes are used during the analysis. Second, it is not required to resolve the size of particle since we calculate only the size of CSS of a diffraction particle image pattern.

  7. Effect of sitting, standing, and supine body positions on facial soft tissue: detailed 3D analysis.

    PubMed

    Ozsoy, U; Sekerci, R; Ogut, E

    2015-10-01

    Medical imaging techniques require various body positions. Gravity causes changes in the facial soft tissue and acts in different directions according to the position of the head during imaging. The aim of this study was to evaluate the effect of positional changes on the facial soft tissue. The faces of subjects were scanned in the standing, sitting, and supine body positions. Differences in the positions were compared using the root mean square (RMS), mean absolute deviation (MAD), and mean signed distance (MSD). The displacement of 15 midsagittal and 20 bilateral landmarks was evaluated. The RMS, MAD, and MSD values of the sitting-standing comparison were significantly lower than those of the sitting-supine and standing-supine comparisons. There were no significant differences between the sitting-supine and standing-supine comparisons. Sixteen out of 135 measurements (12%) of the midsagittal landmarks and 94 out of 180 (52%) measurements of the bilateral landmarks showed significant displacements among the body positions. These results demonstrate a significant change in the facial soft tissue caused by body position. Furthermore, these data show the different susceptibilities of the facial soft tissue landmarks to the effect of body position along the x, y, and z axes.

  8. IMRT vs. 3D Noncoplanar Treatment Plans for Maxillary Sinus Tumors: A New Tool for Quantitative Evaluation

    SciTech Connect

    Levin, Daphne Menhel, Janna; Alezra, Dror; Pfeffer, Raphael

    2008-01-01

    We compared 9-field, equispaced intensity modulated radiation therapy (IMRT), 4- to 5-field, directionally optimized IMRT, and 3-dimensional (3D) noncoplanar planning approaches for tumors of the maxillary sinus. Ten patients were planned retrospectively to compare the different treatment techniques. Prescription doses were 60 to 70 Gy. Critical structures contoured included optic nerves and chiasm, lacrimal glands, lenses, and retinas. As an aid for plan assessment, we introduced a new tool: Critical Organ Scoring Index (COSI), which allows quantitative evaluation of the tradeoffs between target coverage and critical organ sparing. This index was compared with other, commonly used conformity indices. For a reliable assessment of both tumor coverage and dose to critical organs in the different planning techniques, we introduced a 2D, graphical representation of COSI vs. conformity index (CI). Dose-volume histograms and mean, maximum, and minimum organ doses were also compared. IMRT plans delivered lower doses to ipsilateral structures, but were unable to spare them. 3D plans delivered less dose to contralateral structures, and were more homogeneous, as well. Both IMRT approaches gave similar results. In cases where choice of optimal plan was difficult, the novel 2D COSI-CI representation gave an accurate picture of the tradeoffs between target coverage and organ sparing, even in cases where other conformity indices failed. Due to their unique anatomy, maxillary sinus tumors may benefit more from a noncoplanar approach than from IMRT. The new graphical representation proposed is a quick, visual, reliable tool, which may facilitate the physician's choice of best treatment plan for a given patient.

  9. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    SciTech Connect

    Kim, Sun-Ah; Lee, Eun Kyung; Kuh, Hyo-Jeong

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  10. Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation.

    PubMed

    Clatz, Olivier; Sermesant, Maxime; Bondiau, Pierre-Yves; Delingette, Hervé; Warfield, Simon K; Malandain, Grégoire; Ayache, Nicholas

    2005-10-01

    We propose a new model to simulate the three-dimensional (3-D) growth of glioblastomas multiforma (GBMs), the most aggressive glial tumors. The GBM speed of growth depends on the invaded tissue: faster in white than in gray matter, it is stopped by the dura or the ventricles. These different structures are introduced into the model using an atlas matching technique. The atlas includes both the segmentations of anatomical structures and diffusion information in white matter fibers. We use the finite element method (FEM) to simulate the invasion of the GBM in the brain parenchyma and its mechanical interaction with the invaded structures (mass effect). Depending on the considered tissue, the former effect is modeled with a reaction-diffusion or a Gompertz equation, while the latter is based on a linear elastic brain constitutive equation. In addition, we propose a new coupling equation taking into account the mechanical influence of the tumor cells on the invaded tissues. The tumor growth simulation is assessed by comparing the in-silico GBM growth with the real growth observed on two magnetic resonance images (MRIs) of a patient acquired with 6 mo difference. Results show the feasibility of this new conceptual approach and justifies its further evaluation.

  11. Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow.

    PubMed

    Gunkel, Manuel; Chung, Inn; Wörz, Stefan; Deeg, Katharina I; Simon, Ronald; Sauter, Guido; Jones, David T W; Korshunov, Andrey; Rohr, Karl; Erfle, Holger; Rippe, Karsten

    2017-02-01

    The microscopic analysis of telomere features provides a wealth of information on the mechanism by which tumor cells maintain their unlimited proliferative potential. Accordingly, the analysis of telomeres in tissue sections of patient tumor samples can be exploited to obtain diagnostic information and to define tumor subgroups. In many instances, however, analysis of the image data is conducted by manual inspection of 2D images at relatively low resolution for only a small part of the sample. As the telomere feature signal distribution is frequently heterogeneous, this approach is prone to a biased selection of the information present in the image and lacks subcellular details. Here we address these issues by using an automated high-resolution imaging and analysis workflow that quantifies individual telomere features on tissue sections for a large number of cells. The approach is particularly suited to assess telomere heterogeneity and low abundant cellular subpopulations with distinct telomere characteristics in a reproducible manner. It comprises the integration of multi-color fluorescence in situ hybridization, immunofluorescence and DNA staining with targeted automated 3D fluorescence microscopy and image analysis. We apply our method to telomeres in glioblastoma and prostate cancer samples, and describe how the imaging data can be used to derive statistically reliable information on telomere length distribution or colocalization with PML nuclear bodies. We anticipate that relating this approach to clinical outcome data will prove to be valuable for pretherapeutic patient stratification.

  12. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    SciTech Connect

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2011-08-15

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods: Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2

  13. An FPGA-Based Real-Time Maximum Likelihood 3D Position Estimation for a Continuous Crystal PET Detector

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Xiao, Yong; Cheng, Xinyi; Li, Deng; Wang, Liwei

    2016-02-01

    For the continuous crystal-based positron emission tomography (PET) detector built in our lab, a maximum likelihood algorithm adapted for implementation on a field programmable gate array (FPGA) is proposed to estimate the three-dimensional (3D) coordinate of interaction position with the single-end detected scintillation light response. The row-sum and column-sum readout scheme organizes the 64 channels of photomultiplier (PMT) into eight row signals and eight column signals to be readout for X- and Y-coordinates estimation independently. By the reference events irradiated in a known oblique angle, the probability density function (PDF) for each depth-of-interaction (DOI) segment is generated, by which the reference events in perpendicular irradiation are assigned to DOI segments for generating the PDFs for X and Y estimation in each DOI layer. Evaluated by the experimental data, the algorithm achieves an average X resolution of 1.69 mm along the central X-axis, and DOI resolution of 3.70 mm over the whole thickness (0-10 mm) of crystal. The performance improvements from 2D estimation to the 3D algorithm are also presented. Benefiting from abundant resources of FPGA and a hierarchical storage arrangement, the whole algorithm can be implemented into a middle-scale FPGA. By a parallel structure in pipelines, the 3D position estimator on the FPGA can achieve a processing throughput of 15 M events/s, which is sufficient for the requirement of real-time PET imaging.

  14. Atomic identification of fluorescent Q-dots on tau-positive fibrils in 3D-reconstructed pick bodies.

    PubMed

    Uematsu, Miho; Adachi, Eijiro; Nakamura, Ayako; Tsuchiya, Kuniaki; Uchihara, Toshiki

    2012-04-01

    Pick body disease, characterized by the presence of Pick bodies, is distinguished from neurofibrillary tangles in Alzheimer disease on the basis of their smooth, spherical shape. Quantum dots (QDs) are nanometer-scale, water-soluble fluorophores that are detectable both as a fluorescent signal by light microscopy and as electron-dense particles under electron microscopy. In this study, tau-positive Pick bodies were immunofluorescently labeled with QD nanocrystals composed of cadmium selenide for three-dimensional (3D) reconstruction and subsequently subjected to electron microscopic observation to identify QD immunolabeling on the same Pick body for comparison in detail. The identity of the QD nanocrystals, which label the tau-positive fibrils, was confirmed by the presence of both cadmium and selenium on these nanocrystals, demonstrated as parallel peaks corresponding to these atoms on energy-dispersive X-ray spot analysis under super-resolution scanning transmission electron microscopy. This confirmation of the specificity of the QD labeling through both its fluorescence and energy-dispersive X-ray spectra reinforces the reliability of the labeling. In addition, this exact comparison of the same structure by electron microscopy and 3D light microscopy demonstrates how its ultrastructural details are related to its surrounding structures on a 3D basis, providing further insights into how molecules woven into specific pathological ultrastructures are at work in situ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. MO-F-CAMPUS-I-04: Magnetic Resonance Imaging of An in Vitro 3D Tumor Model

    SciTech Connect

    Veiga, C; Long, T; Siow, B; Loizidou, M; Royle, G; Ricketts, K

    2015-06-15

    Purpose: To investigate the use of an in vitro 3D tumor model (tumoroid) as a bio-phantom for repetitive and sequential magnetic resonance imaging (MRI) studies. Methods: The tissue engineered tumoroid comprised an artificial cancer mass (ACM) containing 30 million HT29 cancer cells seeded in a collagen type I matrix, whose density was increased by plastic compression (dry/wet weight=40%). The ACM was embedded in an uncompressed collagen gel that mimicked the tumor stroma, and the tumoroid was incubated for 24h before imaging. Images were acquired using the 1T ICON™ (Bruker Corporation, Billerica, MA) MRI scanner. T1 maps were calculated using an IR-RARE sequence (TE=12ms, TR=10000ms, 7 inversion times), while for T2 maps a MSME technique (TR=6000ms, 16 echoes) was used. T1 and T2 fittings were performed using a pixel-wise approach to produce relaxometric parametric maps. Results: The images acquired and corresponding T1 and T2 maps indicate contrast between the ACM and the stroma. T1 was 2500 and 2800ms, while T2 was 520 and 760ms, for the ACM and stroma respectively. The ACM construct was not homogenous and internal features were visible, which can be explained by local gradients of cell and/or collagen density. The viability of the cells was confirmed via confocal microscopy for several days after the imaging session, demonstrating the suitability of the tumoroid for sequential imaging studies. Conclusions: We have engineered a tumor model compatible with repetitive and sequential MRI. We found T1 and T2 contrast between the ACM and stroma using a pre-clinical MRI scanner. The model, which enables controllable cell and matrix densities, has potential for a wide range of applications in radiotherapy, such as to study tumor progression and to validate imaging biomarkers. Further work is necessary to understand the mechanisms behind the contrast achieved, and to correlate findings with biology and histology data.

  16. A closed-form expression of the positional uncertainty for 3D point clouds.

    PubMed

    Bae, Kwang-Ho; Belton, David; Lichti, Derek D

    2009-04-01

    We present a novel closed-form expression of positional uncertainty measured by a near-monostatic and time-of-flight laser range finder with consideration of its measurement uncertainties. An explicit form of the angular variance of the estimated surface normal vector is also derived. This expression is useful for the precise estimation of the surface normal vector and the outlier detection for finding correspondence in order to register multiple three-dimensional point clouds. Two practical algorithms using these expressions are presented: a method for finding optimal local neighbourhood size which minimizes the variance of the estimated normal vector and a resampling method of point clouds.

  17. 3D image-guided robotic needle positioning system for small animal interventions.

    PubMed

    Bax, Jeffrey S; Waring, Christopher S R; Sherebrin, Shi; Stapleton, Shawn; Hudson, Thomas J; Jaffray, David A; Lacefield, James C; Fenster, Aaron

    2013-01-01

    This paper presents the design of a micro-CT guided small animal robotic needle positioning system. In order to simplify the robotic design and maintain a small targeting error, a novel implementation of the remote center of motion is used in the system. The system has been developed with the objective of achieving a mean targeting error of <200 μm while maintaining a high degree of user friendliness. The robot is compact enough to operate within a 25 cm diameter micro-CT bore. Small animals can be imaged and an intervention performed without the need to transport the animal from one workspace to another. Not requiring transport of the animal reduces opportunities for targets to shift from their localized position in the image and simplifies the workflow of interventions. An improved method of needle calibration is presented that better characterizes the calibration using the position of the needle tip in photographs rather than the needle axis. A calibration fixture was also introduced, which dramatically reduces the time requirements of calibration while maintaining calibration accuracy. Two registration modes have been developed to correspond the robot coordinate system with the coordinate system of the micro-CT scanner. The two registration modes offer a balance between the time required to complete a registration and the overall registration accuracy. The development of slow high accuracy and fast low accuracy registration modes provides users with a degree of flexibility in selecting a registration mode best suited for their application. The target registration error (TRE) of the higher accuracy primary registration was TRE(primary) = 31 ± 12 μm. The error in the lower accuracy combined registration was TRE(combined) = 139 ± 63 μm. Both registration modes are therefore suitable for small-animal needle interventions. The targeting accuracy of the robotic system was characterized using targeting experiments in tissue-mimicking gelatin phantoms. The results

  18. Estimation of Compton imager using single 3D position-sensitive LYSO scintillator: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho

    2017-07-01

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm3 and 0.3 × 0.3 × 0.3 cm3, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-to-noise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of 137Cs (662 keV) could be distinguishable if they were more than 17° apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  19. Reduced dose to small bowel with the prone position and a belly board versus the supine position in neoadjuvant 3D conformal radiotherapy for rectal adenocarcinoma.

    PubMed

    White, Rohen; Foroudi, Farshad; Sia, Joseph; Marr, Mary Ann; Lim Joon, Daryl

    2017-06-01

    No consensus exists regarding the optimal treatment setup for neoadjuvant radiotherapy of rectal cancer using a 3D conformal (3D CRT) technique. Positioning the patient prone with a belly board aims to reduce the amount of small bowel irradiated. Twenty-five patients with locally advanced rectal cancer underwent computed tomography (CT) planning for neoadjuvant chemoradiotherapy. Patients were simulated prone with a belly board and then in the supine position. Questionnaires rating the comfort of each position were completed. 3D CRT plans were generated for both positions to a prescribed dose of 50.4 Gy in 1.8 Gy daily fractions. Dose-volume parameters in 5 Gy increments for small bowel, large bowel and bladder wall were compared. Small bowel V5 Gy, V10 Gy, V15 Gy and V20 Gy values were significantly higher in the supine position (398, 366, 245, 151 cm(3) for supine vs. 243, 213, 161, 122 cm(3) for prone respectively; P < 0.001, <0.001, <0.001 and 0.025). Large bowel V5 Gy, V10 Gy and V15 Gy values were significantly higher in the supine position (266, 209, 147 cm(3) supine, 175, 139, 108 cm(3) prone respectively; P = 0.001, <0.001, 0.003). There was a significant difference in comfort scores favouring the supine position (P = 0.015). A significant increase in small and large bowel dose was seen in the supine plans. Treatment in the prone position with a belly board may reduce toxicity when using a 3D CRT technique. Whilst both setup positions were tolerable the supine was more comfortable. © 2016 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  20. Automatic camera-based identification and 3-D reconstruction of electrode positions in electrocardiographic imaging.

    PubMed

    Schulze, Walther H W; Mackens, Patrick; Potyagaylo, Danila; Rhode, Kawal; Tülümen, Erol; Schimpf, Rainer; Papavassiliu, Theano; Borggrefe, Martin; Dössel, Olaf

    2014-12-01

    Electrocardiographic imaging (ECG imaging) is a method to depict electrophysiological processes in the heart. It is an emerging technology with the potential of making the therapy of cardiac arrhythmia less invasive, less expensive, and more precise. A major challenge for integrating the method into clinical workflow is the seamless and correct identification and localization of electrodes on the thorax and their assignment to recorded channels. This work proposes a camera-based system, which can localize all electrode positions at once and to an accuracy of approximately 1 ± 1 mm. A system for automatic identification of individual electrodes is implemented that overcomes the need of manual annotation. For this purpose, a system of markers is suggested, which facilitates a precise localization to subpixel accuracy and robust identification using an error-correcting code. The accuracy of the presented system in identifying and localizing electrodes is validated in a phantom study. Its overall capability is demonstrated in a clinical scenario.

  1. A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie

    2016-07-01

    We describe a high-order numerical magnetohydrodynamics (MHD) solver built upon a novel non-linear entropy stable numerical flux function that supports eight travelling wave solutions. By construction the solver conserves mass, momentum, and energy and is entropy stable. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver described herein is especially well-suited for flows involving strong discontinuities. Furthermore, we present a new formulation to guarantee positivity of the pressure. We present the underlying theory and implementation of the new solver into the multi-physics, multi-scale adaptive mesh refinement (AMR) simulation code FLASH (http://flash.uchicago.edu).

  2. [Dosimetry verification of radioactive seed implantation with 3D printing template and CT guidance for paravertebral/retroperitoneal malignant tumor].

    PubMed

    Ji, Z; Jiang, Y L; Guo, F X; Peng, R; Sun, H T; Fan, J H; Wang, J J

    2017-04-04

    Objective: To compare the dose distributions of postoperative plans with preoperative plans for seeds implantations of paravertebral/retroperitoneal tumors assisted by 3D printing guide template and CT guidance, explore the effects of the technology for seeds implantations in dosimetry level and provide data support for the optimization and standardization in seeds implantation. Methods: Between December 2015 and July 2016, a total of 10 patients with paravertebral/retroperitoneal tumors (12 lesions) received 3D printing template assist radioactive seeds implantations in department of radiation oncology of Peking University Third Hospital, and included in the study. The diseases included cervical cancer, kidney cancer, abdominal stromal tumor, leiomyosarcoma of kidney, esophageal cancer and carcinoma of ureter. The prescribed doses was 110-150 Gy. All patients received preoperative planning design, individual template design and production, and the dose distribution of postoperative plan was compared with preoperative plan. Dose parameters including D(90), MPD, V(100), V(150,)conformal index(CI), EI of target volume and D(2cc) of organs at risk (spinal cord, aorta, kidney). Statistical software was SPSS 19.0 and statistical method was non-parameters Wilcoxon symbols test. Results: A total of 10 3D printing templates were designed and produced which were including 12 treatment areas.The mean D(90) of postoperative target area (GTV) was 131.1 (97.8-167.4 Gy) Gy. The actual seeds number of post operation increased by 3 to 12 in 5 cases (42.0%). The needle was well distributed. For postoperative plans, the mean D(90,)MPD, V(100,)V(150) was 131.1 Gy, 69.3 Gy, 90.2% and 65.2%, respectively, and which was 140.2 Gy, 65.6 Gy, 91.7% and 26.8%, respectively, in preoperative plans. This meant that the actual dose of target volume was slightly lower than preplanned dose, and the high dose area of target volume was larger than preplanned range, but there was no statistical

  3. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    NASA Astrophysics Data System (ADS)

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  4. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  5. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents.

    PubMed

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-12

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.

  6. Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids

    PubMed Central

    Judée, Florian; Fongia, Céline; Ducommun, Bernard; Yousfi, Mohammed; Lobjois, Valérie; Merbahi, Nofel

    2016-01-01

    This work investigates the regionalized antiproliferative effects of plasma-activated medium (PAM) on colon adenocarcinoma multicellular tumor spheroid (MCTS), a model that mimics 3D organization and regionalization of a microtumor region. PAM was generated by dielectric barrier plasma jet setup crossed by helium carrier gas. MCTS were transferred in PAM at various times after plasma exposure up to 48 hours and effect on MCTS growth and DNA damage were evaluated. We report the impact of plasma exposure duration and delay before transfer on MCTS growth and DNA damage. Local accumulation of DNA damage revealed by histone H2AX phosphorylation is observed on outermost layers and is dependent on plasma exposure. DNA damage is completely reverted by catalase addition indicating that H2O2 plays major role in observed genotoxic effect while growth inhibitory effect is maintained suggesting that it is due to others reactive species. SOD and D-mannitol scavengers also reduced DNA damage by 30% indicating that and OH* are involved in H2O2 formation. Finally, PAM is able to retain its cytotoxic and genotoxic activity upon storage at +4 °C or −80 °C. These results suggest that plasma activated media may be a promising new antitumor strategy for colorectal cancer tumors. PMID:26898904

  7. Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids

    NASA Astrophysics Data System (ADS)

    Judée, Florian; Fongia, Céline; Ducommun, Bernard; Yousfi, Mohammed; Lobjois, Valérie; Merbahi, Nofel

    2016-02-01

    This work investigates the regionalized antiproliferative effects of plasma-activated medium (PAM) on colon adenocarcinoma multicellular tumor spheroid (MCTS), a model that mimics 3D organization and regionalization of a microtumor region. PAM was generated by dielectric barrier plasma jet setup crossed by helium carrier gas. MCTS were transferred in PAM at various times after plasma exposure up to 48 hours and effect on MCTS growth and DNA damage were evaluated. We report the impact of plasma exposure duration and delay before transfer on MCTS growth and DNA damage. Local accumulation of DNA damage revealed by histone H2AX phosphorylation is observed on outermost layers and is dependent on plasma exposure. DNA damage is completely reverted by catalase addition indicating that H2O2 plays major role in observed genotoxic effect while growth inhibitory effect is maintained suggesting that it is due to others reactive species. SOD and D-mannitol scavengers also reduced DNA damage by 30% indicating that and OH* are involved in H2O2 formation. Finally, PAM is able to retain its cytotoxic and genotoxic activity upon storage at +4 °C or -80 °C. These results suggest that plasma activated media may be a promising new antitumor strategy for colorectal cancer tumors.

  8. Hypofractionated breast cancer radiotherapy. Helical tomotherapy in supine position or classic 3D-conformal radiotherapy in prone position: which is better?

    PubMed

    Cammarota, Fabrizio; Giugliano, Francesca Maria; Iadanza, Luciano; Cutillo, Luisa; Muto, Matteo; Toledo, Diego; Ravo, Vincenzo; Falivene, Sara; Muto, Paolo

    2014-03-01

    We propose a comparative dosimetric study of whole-breast hypofractionated radiation therapy using helical tomotherapy (HT) in supine position and 3-D conformal radiotherapy (3D-CRT) in prone position. Twelve patients undergoing breast-conserving therapy were retrospectively selected from October to December 2012. Specific dose-volume parameters were selected for the study. The target coverage was adequate in all patients for both techniques. Significant differences in lung dose distribution were observed: maximum dose (mean value over the 12 plans) was 23.41 Gy in HT plans and 6.65 Gy in 3D-CRT; V20 (i.e. the lung volume receiving 20 Gy) was 0.31% in HT plans and 0.0% in 3D-CRT plans. The mean dose to the heart was 5.57 Gy and 0.93 Gy, respectively. The differences between the two techniques were significant (p<0.05) only for some parameters. We noted better results in the prone position, but with HT, dose constraints were mentioned for the whole set of considered organs.

  9. Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision

    NASA Astrophysics Data System (ADS)

    Sulzmann, Armin; Breguet, Jean-Marc; Jacot, Jacques

    1995-12-01

    The aim of our project is to control the position in 3D-space of a micro robot with sub micron accuracy and manipulate Microsystems aided by a real time 3D computer graphics (virtual reality). As Microsystems and micro structures become smaller, it is necessary to build a micro robot ((mu) -robot) capable of manipulating these systems and structures with a precision of 1 micrometers or even higher. These movements have to be controlled and guided. The first part of our project was to develop a real time 3D computer graphics (virtual reality) environment man-machine interface to guide the newly developed robot similar to the environment we built in a macroscopic robotics. Secondly we want to evaluate measurement techniques to verify its position in the region of interest (workspace). A new type of microrobot has been developed for our purposed. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speed up to 4 mm/s. Resolution smaller than 10 nm is achievable. We also focus on the vision system and on the virtual reality interface of the complex system. Basically the user interacts with the virtual 3D microscope and sees the (mu) -robot as if he is looking through a real microscope. He is able to simulate the assembly of the missing parts, e.g. parts of the micrometer, beforehand in order to verify the assembly manipulation steps such assembly of the missing parts, e.g. parts of a micromotor, beforehand in order to verify the assembly manipulation steps such as measuring, moving the table to the right position or performing the manipulation. Micro manipulation is form of a teleoperation is then performed by the robot-unit and the position is controlled by vision. First results have shown, that a guided manipulations with submicronics absolute accuracy can be achieved. Key idea of this approach is to use the intuitiveness of immersed vision to perform robotics tasks in an environment where human has only access

  10. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.

    PubMed

    Cribbes, Scott; Kessel, Sarah; McMenemy, Scott; Qiu, Jean; Chan, Leo Li-Ying

    2017-01-01

    Three-dimensional (3D) tumor models have been increasingly used to investigate and characterize cancer drug compounds. The ability to perform high-throughput screening of 3D multicellular tumor spheroids (MCTS) can highly improve the efficiency and cost-effectiveness of discovering potential cancer drug candidates. Previously, the Celigo Image Cytometer has demonstrated a novel method for high-throughput screening of 3D multicellular tumor spheroids. In this work, we employed the Celigo Image Cytometer to examine the effects of 14 cancer drug compounds on 3D MCTS of the glioblastoma cell line U87MG in 384-well plates. Using parameters such as MCTS diameter and invasion area, growth and invasion were monitored for 9 and 3 d, respectively. Furthermore, fluorescent staining with calcein AM, propidium iodide, Hoechst 33342, and caspase 3/7 was performed at day 9 posttreatment to measure viability and apoptosis. Using the kinetic and endpoint data generated, we created a novel multiparametric drug-scoring system for 3D MCTS that can be used to identify and classify potential drug candidates earlier in the drug discovery process. Furthermore, the combination of quantitative and qualitative image data can be used to delineate differences between drugs that induce cytotoxic and cytostatic effects. The 3D MCTS-based multiparametric scoring method described here can provide an alternative screening method to better qualify tested drug compounds.

  11. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing.

    PubMed

    Yip, Derek; Cho, Cheul H

    2013-04-12

    Two-dimensional (2D) monolayer cultures are the standard in vitro model for cancer research. However, they fail to recapitulate the three-dimensional (3D) environment and quickly lose their function. In this study, we developed a new 3D multicellular heterospheroid tumor model in a collagen hydrogel culture system that more closely mimics the in vivo tumor microenvironment for anti-cancer drug testing. Three aspects of cancer were chosen to be modeled based on their ability to resist anti-cancer drugs: 3D, multicellularity, and extracellular matrix (ECM) barrier. The hanging drop method and co-culture of liver carcinoma with stromal fibroblasts were used to form controlled and uniform heterospheroids. These heterospheroids were then encapsulated in collagen gel in order to create a 3D model of liver cancer that would act more similarly to in vivo ECM conditions. The 3D heterospheroid tumor model was tested with an anti-cancer drug to determine how each of the above aspects affects drug resistance. The results demonstrate that the 3D heterospheroid model is more resistant to drug over 2D monolayer and homospheroid cultures, indicating stromal fibroblasts and collagen hydrogel culture system provides more resistance to anti-cancer drug. This study will provide useful information toward the development of improved biomimetic tumor models in vitro for cancer research in pre-clinical drug development. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A 3D-QSAR Study on Betulinic Acid Derivatives as Anti-Tumor Agents and the Synthesis of Novel Derivatives for Modeling Validation.

    PubMed

    Ding, Weimin; Zhang, Sheng; Zhu, Meixuan; Wang, Shaoming; Xu, Tao; Qu, Haijing; Yu, Tao; Yan, Xiufeng; Wang, Yang

    2017-01-01

    Betulinic acid is a lupane-type triterpene firstly extracted from the bark of white birch. It has displayed anti-inflammatory, antioxidant, anti-HIV and selective cytotoxicity. To understand the structure- anti-tumor activity relationship of betulinic acid and betulin derivatives and to synthesize novel anti-tumor derivatives of betulinic acid and betulin. The 3D-QSAR methods including CoMFA and CoMSIA methods were performed to study the structureanti- tumor activity relationship of betulinic acid (BA) and betulin (BE) derivatives. According to the models, near the C-3 site, non-bulky, negatively charged electron-donating, hydrophobic, non-hydrogen-bond-donating and hydrogen-bond-accepting groups are favored to the activity. Around the C-28 site, the bulky, positively charged electron-withdrawing and hydrophobic groups are favored, whereas hydrophilic groups may be introduced at the terminal of the side chain. Based on the models, BA and BE were esterified with substituted amino acid derivatives achieving novel derivatives for the modeling validation. The experimental results verified the modeling rules, and showed when different rules may apply to the new structures, the steric effects might be more important. The synthesized derivatives were showed promising cytotoxicity against tested cancer cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Investigating the interaction between positions and signals of height-channel loudspeakers in reproducing immersive 3d sound

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Antonios

    Since transmission capacities have significantly increased over the past few years, researchers are now able to transmit a larger amount of data, namely multichannel audio content, in the consumer applications. What has not been investigated in a systematic way yet is how to deliver the multichannel content. Specifically, researchers' attention is focused on the quest of a standardized immersive reproduction format that incorporates height loudspeakers coupled with the new high-resolution and three-dimensional (3D) media content for a comprehensive 3D experience. To better understand and utilize the immersive audio reproduction, this research focused on the (1) interaction between the positioning of height loudspeakers and the signals fed to the loudspeakers, (2) investigation of the perceptual characteristics associated with the height ambiences, and (3) the influence of inverse filtering on perceived sound quality for the realistic 3D sound reproduction. The experiment utilized the existence of two layers of loudspeakers: horizontal layer following the ITU-R BS.775 five-channel loudspeaker configuration and height layer locating a total of twelve loudspeakers at the azimuth of +/-30°, +/-50°, +/-70°, +/-90°, +/-110° and +/-130° and elevation of 30°. Eight configurations were formed, each of which selected four height-loudspeakers from twelve. In the subjective evaluation, listeners compared, ranked and described the eight randomly presented configurations of 4-channel height ambiences. The stimuli for the experiment were four nine-channel (5 channels for the horizontal and 4 for the height loudspeakers) multichannel music. Moreover, an approach of Finite Impulse Response (FIR) inverse filtering was attempted, in order to remove the particular room's acoustic influence. Another set of trained professionals was informally asked to use descriptors to characterize the newly presented multichannel music with height ambiences rendered with inverse filtering. The

  14. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds.

    PubMed

    Kador, Karl E; Grogan, Shawn P; Dorthé, Erik W; Venugopalan, Praseeda; Malek, Monisha F; Goldberg, Jeffrey L; D'lima, Darryl D

    2016-02-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.

  15. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds

    PubMed Central

    Kador, Karl E.; Grogan, Shawn P.; Dorthé, Erik W.; Venugopalan, Praseeda; Malek, Monisha F.

    2016-01-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies. PMID:26729061

  16. Fabrication and characterization of microsieve electrode array (µSEA) enabling cell positioning on 3D electrodes

    NASA Astrophysics Data System (ADS)

    Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.

    2017-01-01

    Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was  >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of  <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.

  17. Reliability of a new method for evaluating femoral stem positioning after total hip arthroplasty based on stereoradiographic 3D reconstruction.

    PubMed

    Guenoun, Benjamin; El Hajj, Firass; Biau, David; Anract, Philippe; Courpied, Jean-Pierre

    2015-01-01

    The goal of this study was to validate a new method for determining femoral stem positioning based on 3D models derived from the EOS biplanar system. Independents observers measured stem anteversion and femoral offset using CT scan and EOS system of 28 femoral stems implanted in composite femurs. In parallel, the same parameters were measured on biplanar lower limb radiographs acquired from 30 patients who had undergone total hip arthroplasty. CT scanner and biplanar X-ray measurements on composite femurs were highly correlated: 0.94 for femoral offset (P < 0.01), 0.98 for stem anteversion (P < 0.01). The inter and intra-observer reproducibility when measuring composite bones was excellent with both imaging modalities as when measuring femoral stem positioning in patients with the biplanar X-ray system.

  18. Analysis of positions and substituents on genotoxicity of fluoroquinolones with quantitative structure-activity relationship and 3D Pharmacophore model.

    PubMed

    Fengxian, Chen; Reti, Hai

    2017-02-01

    The genotoxicity values of 21 quinolones were studied to establish a quantitative structure-activity relationship model and 3D Pharmacophore model separately for screening essential positions and substituents that contribute to genotoxicity of fluoroquinolones (FQs). A full factor experimental design was performed to analyze the specific main effect and second-order interaction effect of different positions and substituents on genotoxicity, forming a reasonable modification scheme which was validated on typical FQ with genotoxicity and efficacy data. Four positions (1, 5, 7, 8) were screened finally to form the full factorial experimental design which contained 72 congeners in total, illustrating that: the dominant effect of 5 and 7-positions on genotoxicity of FQs is main effect; meanwhile the effect of 1 and 8-positions is a second-order interaction effect; two adjacent positions always have stronger second-order interaction effect and lower genotoxicity; the obtained modification scheme had been validated on typical FQ congeners with the modified compound has a lower genotoxicity, higher synthesis feasibilities and efficacy.

  19. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-12-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution

  20. Wavelet-Based 3D Reconstruction of Microcalcification Clusters from Two Mammographic Views: New Evidence That Fractal Tumors Are Malignant and Euclidean Tumors Are Benign

    PubMed Central

    Batchelder, Kendra A.; Tanenbaum, Aaron B.; Albert, Seth; Guimond, Lyne; Kestener, Pierre; Arneodo, Alain; Khalil, Andre

    2014-01-01

    The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the “CC-MLO fractal dimension plot”, where a “fractal zone” and “Euclidean zones” (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue. PMID:25222610

  1. Wavelet-based 3D reconstruction of microcalcification clusters from two mammographic views: new evidence that fractal tumors are malignant and Euclidean tumors are benign.

    PubMed

    Batchelder, Kendra A; Tanenbaum, Aaron B; Albert, Seth; Guimond, Lyne; Kestener, Pierre; Arneodo, Alain; Khalil, Andre

    2014-01-01

    The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique (MLO) views. As a novelty, we define the "CC-MLO fractal dimension plot", where a "fractal zone" and "Euclidean zones" (non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74% and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and 96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally, based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study, benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.

  2. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  3. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  4. Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation.

    PubMed

    Köhler, G; Hofmann, A; Lechner, M; Mayer, F; Wundsam, H; Emmanuel, K; Fortelny, R H

    2016-02-01

    In patients with terminal ostomies, parastomal hernias (PSHs) occur on a frequent basis. They are commonly associated with various degrees of complaints and occasionally lead to life-threatening complications. Various strategies and measures have been tested and evaluated, but to date there is a lack of published evidence with regard to the best surgical technique for the prevention of PSH development. We conducted a retrospective analysis of prospectively collected data of eighty patients, who underwent elective permanent ostomy formation between 2009 and 2014 by means of prophylactic implantation of a three-dimensional (3D) funnel mesh in intraperitoneal onlay (IPOM) position. PSH developed in three patients (3.75%). No mesh-related complications were encountered and none of the implants had to be removed. Ostomy-related complications had to be noted in seven (8.75%) cases. No manifestation of ostomy prolapse occurred. Follow-up time was a median 21 (range 3-47) months. The prophylactical implantation of a specially shaped, 3D mesh implant in IPOM technique during initial formation of a terminal enterostomy is safe, highly efficient and comparatively easy to perform. As opposed to what can be achieved with flat or keyhole meshes, the inner boundary areas of the ostomy itself can be well covered and protected from the surging viscera with the 3D implants. At the same time, the vertical, tunnel-shaped part of the mesh provides sufficient protection from an ostomy prolapse. Further studies will be needed to compare the efficacy of various known approaches to PSH prevention.

  5. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients

    PubMed Central

    Nie, Dong; Zhang, Han; Adeli, Ehsan; Liu, Luyan

    2016-01-01

    High-grade glioma is the most aggressive and severe brain tumor that leads to death of almost 50% patients in 1–2 years. Thus, accurate prognosis for glioma patients would provide essential guidelines for their treatment planning. Conventional survival prediction generally utilizes clinical information and limited handcrafted features from magnetic resonance images (MRI), which is often time consuming, laborious and subjective. In this paper, we propose using deep learning frameworks to automatically extract features from multi-modal preoperative brain images (i.e., T1 MRI, fMRI and DTI) of high-grade glioma patients. Specifically, we adopt 3D convolutional neural networks (CNNs) and also propose a new network architecture for using multi-channel data and learning supervised features. Along with the pivotal clinical features, we finally train a support vector machine to predict if the patient has a long or short overall survival (OS) time. Experimental results demonstrate that our methods can achieve an accuracy as high as 89.9% We also find that the learned features from fMRI and DTI play more important roles in accurately predicting the OS time, which provides valuable insights into functional neuro-oncological applications. PMID:28149967

  6. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients.

    PubMed

    Nie, Dong; Zhang, Han; Adeli, Ehsan; Liu, Luyan; Shen, Dinggang

    2016-10-01

    High-grade glioma is the most aggressive and severe brain tumor that leads to death of almost 50% patients in 1-2 years. Thus, accurate prognosis for glioma patients would provide essential guidelines for their treatment planning. Conventional survival prediction generally utilizes clinical information and limited handcrafted features from magnetic resonance images (MRI), which is often time consuming, laborious and subjective. In this paper, we propose using deep learning frameworks to automatically extract features from multi-modal preoperative brain images (i.e., T1 MRI, fMRI and DTI) of high-grade glioma patients. Specifically, we adopt 3D convolutional neural networks (CNNs) and also propose a new network architecture for using multi-channel data and learning supervised features. Along with the pivotal clinical features, we finally train a support vector machine to predict if the patient has a long or short overall survival (OS) time. Experimental results demonstrate that our methods can achieve an accuracy as high as 89.9% We also find that the learned features from fMRI and DTI play more important roles in accurately predicting the OS time, which provides valuable insights into functional neuro-oncological applications.

  7. 3D lacunarity in multifractal analysis of breast tumor lesions in dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Soares, Filipe; Janela, Filipe; Pereira, Manuela; Seabra, João; Freire, Mário M

    2013-11-01

    Dynamic contrast-enhanced magnetic resonance (DCE-MR) of the breast is especially robust for the diagnosis of cancer in high-risk women due to its high sensitivity. Its specificity may be, however, compromised since several benign masses take up contrast agent as malignant lesions do. In this paper, we propose a novel method of 3D multifractal analysis to characterize the spatial complexity (spatial arrangement of texture) of breast tumors at multiple scales. Self-similar properties are extracted from the estimation of the multifractal scaling exponent for each clinical case, using lacunarity as the multifractal measure. These properties include several descriptors of the multifractal spectra reflecting the morphology and internal spatial structure of the enhanced lesions relatively to normal tissue. The results suggest that the combined multifractal characteristics can be effective to distinguish benign and malignant findings, judged by the performance of the support vector machine classification method evaluated by receiver operating characteristics with an area under the curve of 0.96. In addition, this paper confirms the presence of multifractality in DCE-MR volumes of the breast, whereby multiple degrees of self-similarity prevail at multiple scales. The proposed feature extraction and classification method have the potential to complement the interpretation of the radiologists and supply a computer-aided diagnosis system.

  8. Silibinin affects tumor cell growth because of reduction of stemness properties and induction of apoptosis in 2D and 3D models of MDA-MB-468.

    PubMed

    Abdollahi, Pegah; Ebrahimi, Marzieh; Motamed, Nasrin; Samani, Fazel S

    2015-06-01

    Silibinin, with a strong antioxidant activity and a weak cytotoxic property, is considered a candidate for cancer prevention. As there is no information on its effect on breast cancer tumor-initiating cells [cancer stem cells (CSCs)] in a 3D culture model, which more closely mimic natural tissues, we carried out this study to determine whether silibinin can target breast CSCs in MDA-MB-468 cells cultured under 3D and 2D conditions. Silibinin was added to culture medium of MDA-MB-468 at a half maximal inhibitory concentration (IC50) dose in 2D and 3D models. Then, stemness properties were assessed using colony and sphere-formation tests. Flow cytometry and real-time PCR were used to determine the different expression levels of stem cell-related marker at protein and mRNA levels under both culture conditions. Our results showed that silibinin inhibits cell growth in a dose-dependent manner by induction of apoptosis, alteration of the cell cycle, reduction of stemness properties and function, and induction of tumoral differentiation. The mechanism of silibinin action and also the response of tumor cells differed when cells were cultured in a 3D model compared with a 2D model. Silibinin may potentially target breast CSCs. Moreover, tumor-initiating cells are more sensitive to silibinin in a 3D culture than in a 2D culture.

  9. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.

    PubMed

    Yoshii, Yukie; Waki, Atsuo; Yoshida, Kaori; Kakezuka, Anna; Kobayashi, Maki; Namiki, Hideo; Kuroda, Yusei; Kiyono, Yasushi; Yoshii, Hiroshi; Furukawa, Takako; Asai, Tatsuya; Okazawa, Hidehiko; Gelovani, Juri G; Fujibayashi, Yasuhisa

    2011-09-01

    Two-dimensional (2D) cell cultures are essential for drug development and tumor research. However, the limitations of 2D cultures are widely recognized, and a better technique is needed. Recent studies have indicated that a strong physical contact between cells and 2D substrates induces cellular characteristics that differ from those of tumors growing in vivo. 3D cell cultures using various substrates are then developing; nevertheless, conventional approaches have failed in maintenance of cellular proliferation and viability, uniformity, reproducibility, and/or simplicity of these assays. Here, we developed a 3D culture system with inorganic nanoscale scaffolding using nanoimprinting technology (nano-culture plates), which reproduced the characteristics of tumor cells growing in vivo. Diminished cell-to-substrate physical contact facilitated spontaneous tumor cell migration, intercellular adhesion, and multi-cellular 3D-spheroid formation while maintaining cellular proliferation and viability. The resulting multi-cellular spheroids formed hypoxic core regions similar to tumors growing in vivo. This technology allows creating uniform and highly-reproducible 3D cultures, which is easily applicable for microscopic and spectrophotometric assays, which can be used for high-throughput/high-content screening of anticancer drugs and should accelerate discovery of more effective anticancer therapies.

  10. Accuracy of Tumor Sizing in Breast Cancer: A Comparison of Strain Elastography, 3-D Ultrasound and Conventional B-Mode Ultrasound with and without Compound Imaging.

    PubMed

    Stachs, Angrit; Pandjaitan, Alexander; Martin, Annett; Stubert, Johannes; Hartmann, Steffi; Gerber, Bernd; Glass, Änne

    2016-12-01

    The objective of this study was to compare the accuracy of strain elastography (SE), 3-D ultrasound (US), B-mode US with compound imaging (CI) and B-mode US without compound imaging for lesion sizing in breast cancer. The prospective study included 93 patients with invasive breast cancer. The largest tumor diameters measured by B-mode US, B-mode US with CI, SE and 3-D US were compared in Bland-Altman plots versus pathology as reference. A general linear model repeated measures (GLM Rep) was applied to investigate factors influencing tumor sizing. All methods underestimated pathologic size, with SE (-0.08 ± 7.7 mm) and 3-D US (-1.4 ± 6.5 mm) having the smallest mean differences from pathology. Bland-Altman plots revealed that B-mode US, B-mode US with CI and 3-D US systematically underestimated large tumor sizes, and only SE was technically comparable to pathology. The study indicates that sonographic underestimation of tumor size occurs mainly in tumors >20 mm; in this subgroup, SE is superior to other ultrasound methods.

  11. Value of power Doppler sonography with 3D reconstruction in preoperative diagnostics of extraprostatic tumor extension in clinically localized prostate cancer.

    PubMed

    Zalesky, Miroslav; Urban, Michael; Smerhovský, Zdenek; Zachoval, Roman; Lukes, Martin; Heracek, Jiri

    2008-01-01

    The aim of the study is to investigate the value of preoperative power Doppler sonography with 3D reconstruction (3D-PDS) for diagnostics of extraprostatic extension of prostate cancer. In the prospective study we examined 146 patients with clinically localized prostate cancer who underwent radical prostatectomy. Prior to surgery, each patient underwent 3D-PDS, transrectal ultrasound (TRUS), and digital rectal examination (DRE). Furthermore, we determined the prostate volume, prostate specific antigen (PSA) level, PSA density (PSAD), and Gleason score. The risk of locally advanced cancer was assessed using Partin tables. We determined the sensitivity, specificity, and predictive values of these diagnostic procedures. We plotted the receiver operating characteristic (ROC) curves and calculated the areas under the curves (AUC). Multivariate logistic regression was used to identify the significant predictors of extraprostatic tumor extension. Based on this we developed diagnostic nomograms maximizing the probability of accurate diagnosis. The significant differences between patients with organ confined and locally advanced tumor (based on the postoperative assessment) were observed in the PSA levels (P < 0.014), PSAD (P < 0.004), DRE (P < 0.037), TRUS (P < 0.003), and 3D-PDS (P < 0.000). The highest AUC value of 0.776 (P < 0.000) was found for 3D-PDS. The observed AUC value for TRUS was 0.670 (P < 0.000) and for PSAD 0.639 (P < 0.004). In multivariate regression analysis, the PSAD, preoperative Gleason score, and 3D-PDS finding were identified as significant preoperative predictors of extraprostatic tumor extension. Our data suggest that the 3D-PDS is a valuable preoperative diagnostic examination to identify locally advanced prostate cancer. Therefore, it can be used to maximize the probability of the accurate diagnosis of extraprostatic tumor extension.

  12. Accurate and high-performance 3D position measurement of fiducial marks by stereoscopic system for railway track inspection

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Serikova, Mariya G.; Pantyushina, Ekaterina N.; Volkova, Daria A.

    2016-04-01

    Modern demands for railway track measurements require high accuracy (about 2-5 mm) of rails placement along the track to ensure smooth, safe and fast transportation. As a mean for railways geometry measurements we suggest a stereoscopic system which measures 3D position of fiducial marks arranged along the track by image processing algorithms. The system accuracy was verified during laboratory tests by comparison with precise laser tracker indications. The accuracy of +/-1.5 mm within a measurement volume 150×400×5000 mm was achieved during the tests. This confirmed that the stereoscopic system demonstrates good measurement accuracy and can be potentially used as fully automated mean for railway track inspection.

  13. Handy Compton camera using 3D position-sensitive scintillators coupled with large-area monolithic MPPC arrays

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Kato, T.; Nakamori, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Yamamoto, K.

    2013-12-01

    The release of radioactive isotopes (mainly 137Cs, 134Cs and 131I) from the crippled Fukushima Daiichi Nuclear Plant remains a serious problem in Japan. To help identify radiation hotspots and ensure effective decontamination operation, we are developing a novel Compton camera weighting only 1 kg and measuring just ∼10 cm2 in size. Despite its compactness, the camera realizes a wide 180° field of vision with a sensitivity about 50 times superior to other cameras being tested in Fukushima. We expect that a hotspot producing a 5 μSv/h dose at a distance of 3 m can be imaged every 10 s, with angular resolution better than 10° (FWHM). The 3D position-sensitive scintillators and thin monolithic MPPC arrays are the key technologies developed here. By measuring the pulse-height ratio of MPPC-arrays coupled at both ends of a Ce:GAGG scintillator block, the depth of interaction (DOI) is obtained for incident gamma rays as well as the usual 2D positions, with accuracy better than 2 mm. By using two identical 10 mm cubic Ce:GAGG scintillators as a scatterer and an absorber, we confirmed that the 3D configuration works well as a high-resolution gamma camera, and also works as spectrometer achieving typical energy resolution of 9.8% (FWHM) for 662 keV gamma rays. We present the current status of the prototype camera (weighting 1.5 kg and measuring 8.5×14×16 cm3 in size) being fabricated by Hamamatsu Photonics K.K. Although the camera still operates in non-DOI mode, angular resolution as high as 14° (FWHM) was achieved with an integration time of 30 s for the assumed hotspot described above.

  14. Microcomputer-based technique for 3-D reconstruction and volume measurement of computed tomographic images. Part 2: Anaplastic primary brain tumors.

    PubMed

    Albright, R E; Fram, E K

    1988-12-01

    Serial computed tomography (CT) plays an integral part in monitoring effects of therapy for primary anaplastic brain tumors. Despite advances in CT technology, clinicians often cannot obtain accurate quantitative volume information to complement the qualitative assessment of tumor change. This paper presents a microcomputer-based method that provides both quantitative volume measurements and 3-D reconstructions of primary anaplastic brain tumors based on their hard copy CT or magnetic resonance imaging studies. The findings of this study demonstrate that planimetry is feasible for routine clinical use and is superior in accuracy to the spherical geometric model, which is shown to significantly overestimate tumor volume. The findings of 62 quantitative tumor studies (17 patients) showed a direct relationship between the total tumor volume and the volume of the hypodense intratumor core. There was no evidence of a relationship between the total tumor volume and the amount of peritumor low density (edema).

  15. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    NASA Astrophysics Data System (ADS)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  16. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    PubMed Central

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-01-01

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 × 20 × 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 × 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT. PMID:22380355

  17. Verification of proton range, position, and intensity in IMPT with a 3D liquid scintillator detector system

    SciTech Connect

    Archambault, L.; Poenisch, F.; Sahoo, N.; Robertson, D.; Lee, A.; Gillin, M. T.; Mohan, R.; Beddar, S.

    2012-03-15

    Purpose: Intensity-modulated proton therapy (IMPT) using spot scanned proton beams relies on the delivery of a large number of beamlets to shape the dose distribution in a highly conformal manner. The authors have developed a 3D system based on liquid scintillator to measure the spatial location, intensity, and depth of penetration (energy) of the proton beamlets in near real-time. Methods: The detector system consists of a 20 x 20 x 20 cc liquid scintillator (LS) material in a light tight enclosure connected to a CCD camera. This camera has a field of view of 25.7 by 19.3 cm and a pixel size of 0.4 mm. While the LS is irradiated, the camera continuously acquires images of the light distribution produced inside the LS. Irradiations were made with proton pencil beams produced with a spot-scanning nozzle. Pencil beams with nominal ranges in water between 9.5 and 17.6 cm were scanned to irradiate an area of 10 x 10 cm square on the surface of the LS phantom. Image frames were acquired at 50 ms per frame. Results: The signal to noise ratio of a typical Bragg peak was about 170. Proton range measured from the light distribution produced in the LS was accurate to within 0.3 mm on average. The largest deviation seen between the nominal and measured range was 0.6 mm. Lateral position of the measured pencil beam was accurate to within 0.4 mm on average. The largest deviation seen between the nominal and measured lateral position was 0.8 mm; however, the accuracy of this measurement could be improved by correcting light scattering artifacts. Intensity of single proton spots were measured with precision ranging from 3 % for the smallest spot intensity (0.005 MU) to 0.5 % for the largest spot (0.04 MU). Conclusions: Our LS detector system has been shown to be capable of fast, submillimeter spatial localization of proton spots delivered in a 3D volume. This system could be used for beam range, intensity and position verification in IMPT.

  18. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester.

    PubMed

    Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2013-11-26

    An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.

  19. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method

    NASA Astrophysics Data System (ADS)

    Ge, Zhanyu; Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Wei, Jun; Bogot, Naama; Cascade, Philip N.; Kazerooni, Ella A.; Zhou, Chuan

    2004-05-01

    We are developing a computer-aided detection system to aid radiologists in diagnosing lung cancer in thoracic computed tomographic (CT) images. The purpose of this study was to improve the false-positive (FP) reduction stage of our algorithm by developing and incorporating a gradient field technique. This technique extracts 3D shape information from the gray-scale values within a volume of interest. The gradient field feature values are higher for spherical objects, and lower for elongated and irregularly-shaped objects. A data set of 55 thin CT scans from 40 patients was used to evaluate the usefulness of the gradient field technique. After initial nodule candidate detection and rule-based first stage FP reduction, there were 3487 FP and 65 true positive (TP) objects in our data set. Linear discriminant classifiers with and without the gradient field feature were designed for the second stage FP reduction. The accuracy of these classifiers was evaluated using the area Az under the receiver operating characteristic (ROC) curve. The Az values were 0.93 and 0.91 with and without the gradient field feature, respectively. The improvement with the gradient field feature was statistically significant (p=0.01).

  20. a Uav Based 3-D Positioning Framework for Detecting Locations of Buried Persons in Collapsed Disaster Area

    NASA Astrophysics Data System (ADS)

    Moon, H.; Kim, C.; Lee, W.

    2016-06-01

    Regarding spatial location positioning, indoor location positioning theories based on wireless communication techniques such as Wi-Fi, beacon, UWB and Bluetooth has widely been developing across the world. These techniques are mainly focusing on spatial location detection of customers using fixed wireless APs and unique Tags in the indoor environment. Besides, since existing detection equipment and techniques using ultrasound or sound etc. to detect buried persons and identify survival status for them cause 2nd damages on the collapsed debris for rescuers. In addition, it might take time to check the buried persons. However, the collapsed disaster sites should consider both outdoor and indoor environments because empty spaces under collapsed debris exists. In order to detect buried persons from the empty spaces, we should collect wireless signals with Wi-Fi from their mobile phone. Basically, the Wi-Fi signal measure 2-D location. However, since the buried persons have Z value with burial depth, we also should collect barometer sensor data from their mobile phones in order to measure Z values according to weather conditions. Specially, for quick accessibility to the disaster area, a drone (UAV; Unmanned Arial Vehicle) system, which is equipped with a wireless detection module, was introduced. Using these framework, this study aims to provide the rescuers with effective rescue information by calculating 3-D location for buried persons based on the wireless and barometer sensor fusion.

  1. a Statistical Analysis on the System Performance of a Bluetooth Low Energy Indoor Positioning System in a 3d Environment

    NASA Astrophysics Data System (ADS)

    Haagmans, G. G.; Verhagen, S.; Voûte, R. L.; Verbree, E.

    2017-09-01

    Since GPS tends to fail for indoor positioning purposes, alternative methods like indoor positioning systems (IPS) based on Bluetooth low energy (BLE) are developing rapidly. Generally, IPS are deployed in environments covered with obstacles such as furniture, walls, people and electronics influencing the signal propagation. The major factor influencing the system performance and to acquire optimal positioning results is the geometry of the beacons. The geometry of the beacons is limited to the available infrastructure that can be deployed (number of beacons, basestations and tags), which leads to the following challenge: Given a limited number of beacons, where should they be placed in a specified indoor environment, such that the geometry contributes to optimal positioning results? This paper aims to propose a statistical model that is able to select the optimal configuration that satisfies the user requirements in terms of precision. The model requires the definition of a chosen 3D space (in our case 7 × 10 × 6 meter), number of beacons, possible user tag locations and a performance threshold (e.g. required precision). For any given set of beacon and receiver locations, the precision, internal- and external reliability can be determined on forehand. As validation, the modeled precision has been compared with observed precision results. The measurements have been performed with an IPS of BlooLoc at a chosen set of user tag locations for a given geometric configuration. Eventually, the model is able to select the optimal geometric configuration out of millions of possible configurations based on a performance threshold (e.g. required precision).

  2. Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Unmanned Aerial System Metrology

    DTIC Science & Technology

    2013-10-18

    2012. 136. Zhang, J., Y. Wang, J. Chen, and K. Xue. “A framework of surveillance system using a PTZ camera,” Computer Science and Information Technology...Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Small Unmanned Aircraft System Metrology...United States Government. AFIT-ENY-DS-13-D- Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Small

  3. A 3D in situ cell counter reveals that breast tumor cell (MDA-MB-231) proliferation rate is reduced by the collagen matrix density.

    PubMed

    Kim, Beum Jun; Zhao, Shuting; Bunaciu, Rodica P; Yen, Andrew; Wu, Mingming

    2015-01-01

    Many cell types require the biophysical and biochemical cues within the 3D extracellular matrix (ECM) to exhibit their true physiologically relevant behavior. As a result, cell culture platforms have been evolving from traditional 2D petridish plates into 3D biomatrices, and there is a need for developing analytic tools to characterize 3D cell culture. The existing cell counting method, using a hemocytometer or coulter counter, requires that cells are suspended in fluids prior to counting. This poses a challenge for 3D cell culture as cells are embedded in a 3D biomatrix. We use a facile 3D cell counting method that overcomes this limitation and allows for in situ cell counting in a 3D cell culture using equipment that is commonly available in a biology lab. Using a breast tumor cell line, MDA-MB-231, as a model system, we demonstrated that MDA-MB-231 cells (1) grow slower within a 3D collagen matrix than on a 2D substrate for an extended growth time (a week) with a comparable, initial cell-to-cell distance, (2) their cell growth rate decreases with the increase of collagen concentration, showing a linear growth rate rather than an exponential growth rate. Further work using flow cytometry showed that the observed growth rate reduction was consistent with the retardation of the transition to S (synthesis) phase in the cell cycle. This work demonstrates the validity of the 3D cell counting method and the importance of cell-ECM interactions in cell proliferation. © 2015 American Institute of Chemical Engineers.

  4. A 3D in situ cell counter reveals that breast tumor cell (MDA-MB-231) proliferation rate is reduced by the collagen matrix density

    PubMed Central

    Bunaciu, Rodica P.; Yen, Andrew; Wu, Mingming

    2015-01-01

    Many cell types require the biophysical and biochemical cues within the 3D extracellular matrix (ECM) to exhibit their true physiologically relevant behavior. As a result, cell culture platforms have been evolving from traditional 2D petri-dish plates into 3D biomatrices, and there is a need for developing analytic tools to characterize 3D cell culture. The existing cell counting method, using a hemocytometer or coulter counter, requires that cells are suspended in fluids prior to counting. This poses a challenge for 3D cell culture as cells are embedded in a 3D biomatrix. We use a facile 3D cell counting method that overcomes this limitation and allows for in situ cell counting in a 3D cell culture using equipment that is commonly available in a biology lab. Using a breast tumor cell line, MDA-MB-231, as a model system, we demonstrated that MDA-MB-231 cells (1) grow slower within a 3D collagen matrix than on a 2D substrate for an extended growth time (a week) with a comparable, initial cell-to-cell distance, (2) their cell growth rate decreases with the increase of collagen concentration, showing a linear growth rate rather than an exponential growth rate. Further work using flow cytometry showed that the observed growth rate reduction was consistent with the retardation of the transition to S (synthesis) phase in the cell cycle. This work demonstrates the validity of the 3D cell counting method and the importance of cell-ECM interactions in cell proliferation. PMID:25683564

  5. Assessment of the embryo flash position and migration with 3D ultrasound within 60 min of embryo transfer.

    PubMed

    Saravelos, Sotirios H; Wong, Alice Wai Yee; Chan, Carol Pui Shan; Kong, Grace Wing Shan; Cheung, Lai Ping; Chung, Cathy Hoi Sze; Chung, Jacqueline Pui Wah; Li, Tin-Chiu

    2016-03-01

    Does the air bubble (embryo flash) position and migration as visualized with 3D ultrasound (US) within 60 min of embryo transfer correlate with clinical outcome following fresh ART transfer cycles? The location of the embryo flash and the direction of its movement at 60 min, but not at 1 or 5 min after transfer, are associated with clinical pregnancy. Studies assessing the relation between the pregnancy rate and the position of the catheter tip and/or the position of the air bubbles following embryo transfer show conflicting results to date. This was a prospective cohort study including 277 infertile women undergoing ART between July 2011 and August 2013. Good prognosis patients undergoing fresh ART cycles within a single tertiary University unit were assessed by 3D US at 1, 5 and 60 min after embryo transfer. The distance of the embryo flash from the fundus was measured at these time points, along with the direction of the embryo flash movement within 60 min of transfer. Within 60 min of embryo transfer, 76.4% (198/259) of the embryo flashes migrated towards the fundus, 12.4% (32/259) migrated towards the cervix and 11.2% (29/259) remained static. There was no significant association between the embryo position or movement and the pregnancy rate at 1 and 5 min. At 60 min, however, the pregnancy and implantation rates among subjects with embryo flashes located <15 mm from the fundus was significantly higher than those with embryo flashes located >15 mm from the fundus (46.5 and 32.8% versus 25.8 and 18.2%, respectively; P < 0.05). The pregnancy and implantation rates when the embryo flash was seen moving towards the cervix (25.0 and 15.0%) was significantly lower (P < 0.05 and P < 0.01, respectively) compared with those remaining static (55.2 and 37.7%) or moving towards the fundus (45.5 and 32.8%). Although the air bubbles seen at the time of embryo transfer are thought to represent the position of the embryo, they are in fact a surrogate marker of the embryo

  6. Estimating subthreshold tumor on MRI using a 3D-DTI growth model for GBM: An adjunct to radiation therapy planning.

    PubMed

    Hathout, Leith; Patel, Vishal

    2016-08-01

    Mathematical modeling and serial magnetic resonance imaging (MRI) used to calculate patient-specific rates of tumor diffusion, D, and proliferation, ρ, can be combined to simulate glioblastoma multiforme (GBM) growth. We showed that the proportion and distribution of tumor cells below the MRI threshold are determined by the D/ρ ratio of the tumor. As most radiation fields incorporate a 1‑3 cm margin to account for subthreshold tumor, accurate characterization of subthreshold tumor aids the design of optimal radiation fields. This study compared two models: a standard one‑dimensional (1D) isotropic model and a three‑dimensional (3D) anisotropic model using the advanced imaging method of diffusion tensor imaging (DTI) ‑ with regards to the D/ρ ratio's effect on the proportion and spatial extent of the subthreshold tumor. A validated reaction‑diffusion equation accounting for tumor diffusion and proliferation modeled tumor concentration in time and space. For the isotropic and anisotropic models, nine tumors with different D/ρ ratios were grown to a T1 radius of 1.5 cm. For each tumor, the percent and extent of tumor cells beyond the T2 radius were calculated. For both models, higher D/ρ ratios were correlated with a greater proportion and extent of subthreshold tumor. Anisotropic modeling demonstrated a higher proportion and extent of subthreshold tumor than predicted by the isotropic modeling. Because the quantity and distribution of subthreshold tumor depended on the D/ρ ratio, this ratio should influence radiation field demarcation. Furthermore, the use of DTI data to account for anisotropic tumor growth allows for more refined characterization of the subthreshold tumor based on the patient-specific D/ρ ratio.

  7. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  8. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    PubMed

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-07

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  9. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.

    PubMed

    Hu, Zhihong; Niemeijer, Meindert; Abràmoft, Michael D; Lee, Kyungmoo; Garvin, Mona K

    2010-01-01

    We present a method for automatically segmenting the blood vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes, with a focus on the ability to segment the vessels in the region near the neural canal opening (NCO). The algorithm first pre-segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets rotated around the center of the NCO are applied to extract features in a 2-D vessel-aimed projection image. Corresponding oriented NCO-based templates are utilized to help suppress the false positive tendency near the NCO boundary. The vessels are identified in a vessel-aimed projection image using a pixel classification algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-based graph search approach in the SD-OCT volume. The segmentation method is trained on 5 and is tested on 10 randomly chosen independent ONH-centered SD-OCT volumes from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel segmentation, we demonstrate an improvement over the closest previous work with an area under the curve (AUC) of 0.81 (0.72 for previously reported approach) for the region around the NCO and 0.84 for the region outside the NCO (0.81 for previously reported approach).

  10. Positional isomerism-driven two 3D pillar-layered metal-organic frameworks: Syntheses, topological structures and photoluminescence properties

    SciTech Connect

    Sun, Yayong; Zhao, Siwei; Ma, Haoran; Han, Yi; Liu, Kang; Wang, Lei

    2016-06-15

    Two novel three-dimensional (3D) pillar-layered metal-organic frameworks (MOFs), namely [Zn{sub 2}(μ{sub 2}-OH)(boaba)(1,4-bmimb)]{sub n} (1) and {[Zn_5K_2(μ_2-H_2O)_2(boaba)_4(1,2-bmimb)_2(H_2O)_2]·H_2O}{sub n} (2), were prepared by hydrothermal reactions (H{sub 3}boaba=3,5-bis-oxyacetate-benzoic acid; 1,4-bmimb=1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene; 1,2-bmimb =1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene). Notably, 1 exhibits a (3,5)-connected binodal (6{sup 3})(6{sup 9}·8)-gra net with binuclear [Zn{sub 2}(μ{sub 2}-OH)(COO)]{sup 2+} clusters, while 2 shows a novel (4,4,5,9)-connected 4-nodal net constructed from the unique Zn(II)-K(I) heterometal rod-like substructures. The results indicate that the disposition of the 2-methylimidazolyl groups of bis(imidazole) ligands have a significant effect on structural diversity. Moreover, the photoluminescence properties of 1 and 2 have been investigated. - Graphical abstract: Two novel 3D pillar-layered metal-organic coordination networks with aromatic multicarboxylate anion and bis(imidazole) ligands have been synthesized and structurally characterized. Display Omitted - Highlights: • It is rarely reported that metal-organic frameworks prepared with 3,5-bis-oxyacetate-benzoic acid. • Two metal-organic frameworks based on positional isomeric ligands were synthesized and structurally characterized. • Compond 1 displays unique (3,5)-connected binodal gra topology. • Compound 2 exhibits (4,4,5,9)-connected 4-nodal topology based on the Zn(II)-K(I) heterometal rod-like substructures. • The photoluminescence properties of compound 1 and 2 have been investigated.

  11. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained

    PubMed Central

    Zanoni, Michele; Piccinini, Filippo; Arienti, Chiara; Zamagni, Alice; Santi, Spartaco; Polico, Rolando; Bevilacqua, Alessandro; Tesei, Anna

    2016-01-01

    The potential of a spheroid tumor model composed of cells in different proliferative and metabolic states for the development of new anticancer strategies has been amply demonstrated. However, there is little or no information in the literature on the problems of reproducibility of data originating from experiments using 3D models. Our analyses, carried out using a novel open source software capable of performing an automatic image analysis of 3D tumor colonies, showed that a number of morphology parameters affect the response of large spheroids to treatment. In particular, we found that both spheroid volume and shape may be a source of variability. We also compared some commercially available viability assays specifically designed for 3D models. In conclusion, our data indicate the need for a pre-selection of tumor spheroids of homogeneous volume and shape to reduce data variability to a minimum before use in a cytotoxicity test. In addition, we identified and validated a cytotoxicity test capable of providing meaningful data on the damage induced in large tumor spheroids of up to diameter in 650 μm by different kinds of treatments. PMID:26752500

  12. Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model.

    PubMed

    Kim, Beum Jun; Hannanta-anan, Pimkhuan; Chau, Michelle; Kim, Yoon Soo; Swartz, Melody A; Wu, Mingming

    2013-01-01

    Chemokine-mediated directed tumor cell migration within a three dimensional (3D) matrix, or chemoinvasion, is an important early step in cancer metastasis. Despite its clinical importance, it is largely unknown how cytokine and growth factor gradients within the tumor microenvironment regulate chemoinvasion. We studied tumor cell chemoinvasion in well-defined and stable chemical gradients using a robust 3D microfluidic model. We used CXCL12 (also known as SDF-1α) and epidermal growth factor (EGF), two well-known extracellular signaling molecules that co-exist in the tumor microenvironment (e.g. lymph nodes or intravasation sites), and a malignant breast tumor cell line, MDA-MB-231, embedded in type I collagen. When subjected to SDF-1α gradients alone, MDA-MB-231 cells migrated up the gradient, and the measured chemosensitivity (defined as the average cell velocity along the direction of the gradient) followed the ligand - receptor (SDF-1α - CXCR4) binding kinetics. On the other hand, when subjected to EGF gradients alone, tumor cells increased their overall motility, but without statistically significant chemotactic (directed) migration, in contrast to previous reports using 2D chemotaxis assays. Interestingly, we found that the chemoinvasive behavior to SDF-1α gradients was abrogated or even reversed in the presence of uniform concentrations of EGF; however, the presence of SDF-1α and EGF together modulated tumor cell motility cooperatively. These findings demonstrate the capabilities of our microfluidic model in re-creating complex microenvironments for cells, and the importance of cooperative roles of multiple cytokine and growth factor gradients in regulating cell migration in 3D environments.

  13. Cooperative Roles of SDF-1α and EGF Gradients on Tumor Cell Migration Revealed by a Robust 3D Microfluidic Model

    PubMed Central

    Kim, Beum Jun; Hannanta-anan, Pimkhuan; Chau, Michelle; Kim, Yoon Soo; Swartz, Melody A.; Wu, Mingming

    2013-01-01

    Chemokine-mediated directed tumor cell migration within a three dimensional (3D) matrix, or chemoinvasion, is an important early step in cancer metastasis. Despite its clinical importance, it is largely unknown how cytokine and growth factor gradients within the tumor microenvironment regulate chemoinvasion. We studied tumor cell chemoinvasion in well-defined and stable chemical gradients using a robust 3D microfluidic model. We used CXCL12 (also known as SDF-1α) and epidermal growth factor (EGF), two well-known extracellular signaling molecules that co-exist in the tumor microenvironment (e.g. lymph nodes or intravasation sites), and a malignant breast tumor cell line, MDA-MB-231, embedded in type I collagen. When subjected to SDF-1α gradients alone, MDA-MB-231 cells migrated up the gradient, and the measured chemosensitivity (defined as the average cell velocity along the direction of the gradient) followed the ligand – receptor (SDF-1α – CXCR4) binding kinetics. On the other hand, when subjected to EGF gradients alone, tumor cells increased their overall motility, but without statistically significant chemotactic (directed) migration, in contrast to previous reports using 2D chemotaxis assays. Interestingly, we found that the chemoinvasive behavior to SDF-1α gradients was abrogated or even reversed in the presence of uniform concentrations of EGF; however, the presence of SDF-1α and EGF together modulated tumor cell motility cooperatively. These findings demonstrate the capabilities of our microfluidic model in re-creating complex microenvironments for cells, and the importance of cooperative roles of multiple cytokine and growth factor gradients in regulating cell migration in 3D environments. PMID:23869217

  14. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  15. Application of a fluorescence resonance energy transfer (FRET)-based biosensor for detection of drug-induced apoptosis in a 3D breast tumor model.

    PubMed

    Anand, Padmaja; Fu, Afu; Teoh, Swee H; Luo, Kathy Q

    2015-08-01

    Two-dimensional (2D) cultures are commonly used for testing drug effects largely because of their easy maintenance. But they do not represent the spatial interactions of the cells within a tumor. Three-dimensional (3D) cultures can overcome those limitations thus mimicking the architecture of solid tumor. However, it is not easy to evaluate drug effects in 3D culture for a long time. This necessitates the development of a real-time and longitudinal analysis of 3D platforms. In this study, we transfected the plasmid DNA encoding the fluorescence resonance energy transfer (FRET)-based biosensor into human breast cancer cells and generated two cell lines of MCF7-C3 and MDA-MB-231-C3 (231-C3) cells. We used them to determine the activation of caspase-3, whereby healthy cells appear green and apoptotic cells appear blue by FRET imaging. As the caspase sensors can be constantly produced within the cells and quickly respond to caspase activation, we hypothesized that these sensor cells will allow longitudinal detection of apoptosis. MCF7-C3 and 231-C3 spheroids were generated and subjected to histological examination, gene expression studies, drug treatment, and FRET analyses. Our results demonstrated that MCF7-C3 cells formed tight 3D spheroids, and mimicked in vivo tumor architecture. The mRNA level of tumorigenic markers such as MMP-9, SOX2, and OCT4A were much higher in cells cultured in 3D than in 2D. Finally, upon treatment with paclitaxel, the FRET effect was reduced at the rim of MCF7-C3 spheroids in a dose and time-dependent manner demonstrating these sensor cells can be used to determine drug-induced apoptosis in a 3D set up. This study supports the possibility of developing a biosensor-based in vitro 3D breast tumor model for determination of anti-cancer drug penetration over a long course of time in a non-invasive manner. © 2015 Wiley Periodicals, Inc.

  16. Detection of small metastatic brain tumors: comparison of 3D contrast-enhanced whole-brain black-blood imaging and MP-RAGE imaging.

    PubMed

    Park, Jaeseok; Kim, Jinna; Yoo, Eunhye; Lee, Hyunyeol; Chang, Jong-Hee; Kim, Eung Yeop

    2012-02-01

    Early and accurate diagnosis of small metastatic brain tumors may affect outcomes and treatment strategies. For this reason, 3-dimensional (3D) thin-section imaging is preferred. However, with conventional contrast-enhanced (CE) 3D imaging, such as magnetization-prepared rapid gradient echo (MP-RAGE), many visually enhanced vessels may mimic small metastatic tumors, hindering tumor detection. CE black-blood single-slab 3D turbo-spin echo imaging (BB-ssTSE) was recently developed, which uses variable refocusing flip angles and flow-sensitizing gradient schemes, to enhance metastatic brain tumors while selectively suppressing blood vessels. The purpose of this work was to investigate the efficiency of the proposed CE BB-ssTSE in detecting small metastatic brain tumors as compared with conventional MP-RAGE. Numerical comparisons of MP-RAGE and BB-ssTSE were performed by simulation studies to investigate the signal/contrast behaviors of flowing blood and stationary CE tumors. For in vivo studies, we enrolled 35 patients (18 women; mean age, 58.1 years) with breast or lung cancer who underwent brain magnetic resonance imaging. After administering a double dose of contrast medium, whole-brain 2-dimensional T1-weighted imaging followed by high-resolution isotropic 3D BB-ssTSE and MP-RAGE was performed at 3.0 T. Two reviewers independently evaluated the presence of metastatic brain tumors using: (1) MP-RAGE; (2) BB-ssTSE; and (3) MP-RAGE + BB-ssTSE sequentially in 3 review sessions, 2 weeks apart. The lesions were classified by size into 2 groups: large (≥5 mm) and small (<5 mm). Both reviewers marked all tumors detected at each session. Another reviewer combined the results of the 2 reviewers and compared the detection rates of metastatic brain tumors between BB-ssTSE and MP-RAGE by using follow-up imaging. Intraclass correlation coefficients between the 2 reviewers were measured. Numerical simulations showed that the proposed BB-ssTSE effectively attenuated the signal

  17. Computer-aided diagnosis of mass-like lesion in breast MRI: differential analysis of the 3-D morphology between benign and malignant tumors.

    PubMed

    Huang, Yan-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng; Wu, Tsung-Ju; Chen, Jeon-Hor; Chang, Ruey-Feng

    2013-12-01

    This study aimed to evaluate the value of using 3-D breast MRI morphologic features to differentiate benign and malignant breast lesions. The 3-D morphological features extracted from breast MRI were used to analyze the malignant likelihood of tumor from ninety-five solid breast masses (44 benign and 51 malignant) of 82 patients. Each mass-like lesion was examined with regards to three categories of morphologic features, including texture-based gray-level co-occurrence matrix (GLCM) feature, shape, and ellipsoid fitting features. For obtaining a robust combination of features from different categories, the biserial correlation coefficient (|r(pb)|)≧0.4 was used as the feature selection criterion. Receiver operating characteristic (ROC) curve was used to evaluate performance and Student's t-test to verify the classification accuracy. The combination of the selected 3-D morphological features, including conventional compactness, radius, spiculation, surface ratio, volume covering ratio, number of inside angular regions, sum of number of inside and outside angular regions, showed an accuracy of 88.42% (84/95), sensitivity of 88.24% (45/51), and specificity of 88.64% (39/44), respectively. The AZ value was 0.8926 for these seven combined morphological features. In conclusion, 3-D MR morphological features specified by GLCM, tumor shape and ellipsoid fitting were useful for differentiating benign and malignant breast masses.

  18. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking.

    PubMed

    Wiersma, Rodney D; Tomarken, S L; Grelewicz, Zachary; Belcher, Andrew H; Kang, Hyejoo

    2013-11-01

    The spatial and temporal tracking performance of a commercially available 3D optical surface imaging system is evaluated for its potential use in frameless stereotactic radiosurgery head tracking applications. Both 3D surface and infrared (IR) marker tracking were performed simultaneously on a head phantom mounted on an xyz motion stage and on four human subjects. To allow spatial and temporal comparison on human subjects, three points were simultaneously monitored, including the upper facial region (3D surface), a dental plate (IR markers), and upper forehead (IR markers). For both static and dynamic phantom studies, the 3D surface tracker was found to have a root mean squared error (RMSE) of approximately 0.30 mm for region-of-interest (ROI) surface sizes greater than 1000 vertex points. Although, the processing period (1/fps) of the 3D surface system was found to linearly increase as a function of the number of ROI vertex points, the tracking accuracy was found to be independent of ROI size provided that the ROI was sufficiently large and contained features for registration. For human subjects, the RMSE between 3D surface tracking and IR marker tracking modalities was 0.22 mm left-right (x-axis), 0.44 mm superior-inferior (y-axis), 0.27 mm anterior-posterior (z-axis), 0.29° pitch (around x-axis), 0.18° roll (around y-axis), and 0.15° yaw (around z-axis). 3D surface imaging has the potential to provide submillimeter level head motion tracking. This is provided that a highly accurate camera-to-LINAC frame of reference calibration can be performed and that the reference ROI is of sufficient size and contains suitable surface features for registration.

  19. Biofabrication of 3D Alginate-Based Hydrogel for Cancer Research: Comparison of Cell Spreading, Viability, and Adhesion Characteristics of Colorectal HCT116 Tumor Cells.

    PubMed

    Ivanovska, Jelena; Zehnder, Tobias; Lennert, Pablo; Sarker, Bapi; Boccaccini, Aldo R; Hartmann, Arndt; Schneider-Stock, Regine; Detsch, Rainer

    2016-07-01

    Hydrogels are an important class of biomaterials as they could mimic the extracellular matrix (ECM). Among the naturally occurring biopolymers, alginate and gelatin are extensively used for many biomedical applications. For developing biofabrication constructs as three-dimensional (3D) cell culture models, realistic imaging of cell spreading and proliferation inside the hydrogels represents a major challenge. Therefore, we aimed to establish a system that can mimic the structural architecture, composition, and biological functions of the ECM for cancer research approaches. For this, we compared the cell behavior of human colon cancer HCT116 cells in two biofabricated hydrogels as follows: pure alginate and cross-linked alginate-gelatin (ADA-GEL) matrixes. Our data indicate that cells from the ADA-GEL matrix showed highest proliferation and cellular networks through the material. Analyzing the mRNA expression of several integrins of cells cultured inside of the matrix, we showed that mRNA expression of integrin subunits differed based on the cell focal adhesion characteristics. Furthermore, we showed that recultured ADA-GEL immobilized cells do not differ from parental HCT116 cells regarding migration and proliferation capabilities. Comparing adhesion and other phenotypic characteristics of HCT116 tumor cells, we suggest that ADA-GEL hydrogel is a more suitable 3D system than pure alginate and seems to optimally mimic the physiological behavior of the tumor microenvironment. For the first time, we present a functional 3D hydrogel construct for colon cancer cells, which are supporting their physiological cell attachment, spreading, and viability. We strongly believe that it will be applicable as a suitable in vitro 3D tumor model to study different aspects of tumor cell behavior.

  20. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model

    PubMed Central

    Buchanan, Cara F; Verbridge, Scott S; Vlachos, Pavlos P; Rylander, Marissa Nichole

    2014-01-01

    Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature

  1. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.

    PubMed

    Das, Koushik; Mishra, Subhash C

    2015-08-01

    This article reports a numerical study pertaining to simultaneous estimation of size, radial location and angular location of a malignant tumor in a 3-D human breast. The breast skin surface temperature profile is specific to a tumor of specific size and location. The temperature profiles are always the Gaussian one, though their peak magnitudes and areas differ according to the size and location of the tumor. The temperature profiles are obtained by solving the Pennes bioheat equation using the finite element method based solver COMSOL 4.3a. With temperature profiles known, simultaneous estimation of size, radial location and angular location of the tumor is done using the curve fitting method. Effect of measurement errors is also included in the study. Estimations are accurate, and since in the inverse analysis, the curve fitting method does not require solution of the governing bioheat equation, the estimation is very fast.

  2. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  3. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.

    PubMed

    Fong, Eliza L S; Wan, Xinhai; Yang, Jun; Morgado, Micaela; Mikos, Antonios G; Harrington, Daniel A; Navone, Nora M; Farach-Carson, Mary C

    2016-01-01

    Patient-derived xenograft (PDX) models better represent human cancer than traditional cell lines. However, the complex in vivo environment makes it challenging to employ PDX models to investigate tumor-stromal interactions, such as those that mediate prostate cancer (PCa) bone metastasis. Thus, we engineered a defined three-dimensional (3D) hydrogel system capable of supporting the co-culture of PCa PDX cells and osteoblastic cells to recapitulate the PCa-osteoblast unit within the bone metastatic microenvironment in vitro. Our 3D model not only maintained cell viability but also preserved the typical osteogenic phenotype of PCa PDX cells. Additionally, co-culture cellularity was maintained over that of either cell type cultured alone, suggesting that the PCa-osteoblast cross-talk supports PCa progression in bone, as is hypothesized to occur in patients with prostatic bone metastasis. Strikingly, osteoblastic cells co-cultured with PCa PDX tumoroids organized around the tumoroids, closely mimicking the architecture of PCa metastases in bone. Finally, tumor-stromal signaling mediated by the fibroblast growth factor axis tightly paralleled that in the in vivo counterpart. Together, these findings indicate that this 3D PCa PDX model recapitulates important pathological properties of PCa bone metastasis, and validate the use of this model for controlled and systematic interrogation of complex in vivo tumor-stromal interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    SciTech Connect

    Yang, Y. X.; Van Reeth, E.; Poh, C. L.; Teo, S.-K.; Tan, C. H.; Tham, I. W. K.

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  5. Therapeutic value of 3-D printing template-assisted (125)I-seed implantation in the treatment of malignant liver tumors.

    PubMed

    Han, Tao; Yang, Xiaodan; Xu, Ying; Zheng, Zhendong; Yan, Ying; Wang, Ning

    2017-01-01

    To explore the therapeutic value of 3-D printing template-assisted (125)I-seed implantation in the treatment of malignant liver tumors. Fifteen liver cancer patients with 47 total lesions were treated with 3-D printing template-assisted radioactive seed implantation (group A), and 25 liver-tumor patients with 66 total lesions were treated with (125)I-seed implantation without a template auxiliary (group B). Operation time, in-hospital time, operation complications, dose distribution, and response rate (number) were compared between the two groups. Shorter operation times and better dose distribution were observed in group A than in group B, and the differences were statistically significant. The response rate after 2 months was 86.7% (13 of 15) in group A and 84% (21 of 25) in group B; differences between the two groups were not significant. Application of 3-D printing template-assisted radioactive seed implantation in the treatment of malignant liver tumors can help shorten operation time and optimize radiation-dose distribution, is worthy of further study, and has clinical significance.

  6. Therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors

    PubMed Central

    Han, Tao; Yang, Xiaodan; Xu, Ying; Zheng, Zhendong; Yan, Ying; Wang, Ning

    2017-01-01

    Objective To explore the therapeutic value of 3-D printing template-assisted 125I-seed implantation in the treatment of malignant liver tumors. Materials and methods Fifteen liver cancer patients with 47 total lesions were treated with 3-D printing template-assisted radioactive seed implantation (group A), and 25 liver-tumor patients with 66 total lesions were treated with 125I-seed implantation without a template auxiliary (group B). Operation time, in-hospital time, operation complications, dose distribution, and response rate (number) were compared between the two groups. Results Shorter operation times and better dose distribution were observed in group A than in group B, and the differences were statistically significant. The response rate after 2 months was 86.7% (13 of 15) in group A and 84% (21 of 25) in group B; differences between the two groups were not significant. Conclusion Application of 3-D printing template-assisted radioactive seed implantation in the treatment of malignant liver tumors can help shorten operation time and optimize radiation-dose distribution, is worthy of further study, and has clinical significance. PMID:28740402

  7. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  8. 3D discrete angiogenesis dynamic model and stochastic simulation for the assessment of blood perfusion coefficient and impact on heat transfer between nanoparticles and malignant tumors.

    PubMed

    Yifat, Jonathan; Gannot, Israel

    2015-03-01

    Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.

  9. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided

  10. 3-D individual cell based computational modeling of tumor cell–macrophage paracrine signaling mediated by EGF and CSF-1 gradients†

    PubMed Central

    Knutsdottir, Hildur; Condeelis, John S.; Palsson, Eirikur

    2016-01-01

    High density of macrophages in mammary tumors has been associated with a higher risk of metastasis and thus increased mortality in women. The EGF/CSF-1 paracrine signaling increases the number of invasive tumor cells by both recruiting tumor cells further away and manipulating the macrophages’ innate ability to open up a passage into blood vessels thus promoting intravasation and finally metastasis. A 3-D individual-cell-based model is introduced, to better understand the tumor cell–macrophage interactions, and to explore how changing parameters of the paracrine signaling system affects the number of invasive tumor cells. The simulation data and videos of the cell movements correlated well with findings from both in vitro and in vivo experimental results. The model demonstrated how paracrine signaling is necessary to achieve co-migration of tumor cells and macrophages towards a specific signaling source. We showed how the paracrine signaling enhances the number of both invasive tumor cells and macrophages. The simulations revealed that for the in vitro experiments the imposed no-flux boundary condition might be affecting the results, and that changing the setup might lead to different experimental findings. In our simulations, the 3 : 1 tumor cell/macrophage ratio, observed in vivo, was robust for many parameters but sensitive to EGF signal strength and fraction of macrophages in the tumor. The model can be used to identify new agents for targeted therapy and we suggest that a successful strategy to prevent or limit invasion of tumor cells would be to block the tumor cell–macrophage paracrine signaling. This can be achieved by either blocking the EGF or CSF-1 receptors or supressing the EGF or CSF-1 signal. PMID:26686751

  11. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    NASA Astrophysics Data System (ADS)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  12. Sensitivity of 3D Dose Verification to Multileaf Collimator Misalignments in Stereotactic Body Radiation Therapy of Spinal Tumor.

    PubMed

    Xin-Ye, Ni; Ren, Lei; Yan, Hui; Yin, Fang-Fang

    2016-12-01

    was within 1%. However, the maximum dose deviation of the spinal cord was high. In the spinal cord with a gravity of -0.25 mm, the maximum dose deviation minimally changed and increased by 6.8% than that of the original. In the largest opening of 1.00 mm, the deviation increased by 47.7% than that of the original. Moreover, the pass rate of the original determined through Delt 4 was 100% with 3 mm/3% as the statistical standard. The pass rate was 97.5% in the 0.25 mm opening and higher than 95% in the 0.5 mm opening A, 0.25 mm opening A, whole gravity series, and 0.20 mm random opening. Moreover, the pass rate was higher than 90% with 2.0 mm/2.0% as the statistical standard in the original and in the 0.25 mm gravity. The difference in the pass rates was not statistically significant among the -0.25 mm gravity, 0.25 mm opening A, 0.20 mm random opening, and original as calculated using SPSS 11.0 software with P > .05. Different analysis standards of Delt 4 were analyzed in different field sizes to improve the detection sensitivity of the multileaf collimator position on the basis of 90% throughout rate. In stereotactic body radiation therapy of spinal tumor, the 2.0 mm/2.0% standard can reveal the dosimetric differences caused by the minor multileaf collimator position compared with the 3.0 mm/3.0% statistical standard. However, some position derivations of the misalignments that caused high dose amount to the spinal cord cannot be detected. However, some misalignments were not detected when a large number of multileaf collimator were administered into the spinal cord. © The Author(s) 2015.

  13. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  14. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    SciTech Connect

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-08-15

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from

  15. Reproducibility of the interpretation of coronal 3D ultrasound view of the uterus to evaluate the position of Essure(®) 3 months after hysteroscopic procedure.

    PubMed

    Capmas, P; Letendre, I; Levaillant, J-M; Fuchs, F; Panel, P; Chambon, G; Villefranque, V; Levy-Zauberman, Y; Fernandez, H

    2017-07-01

    Three-dimensional sonography is a good alternative method to assess the position of microinserts. Adequate position after three months allows for the interruption of other contraception. Objective is to evaluate inter-observer reproducibility of the interpretation of coronal transvaginal 3D ultrasound view of the uterus to evaluate the position of Essure(®). Inter-observer reproducibility study. Fifty women underwent successful bilateral placement of microinserts (Essure(®)) by hysteroscopy in the Department of Gynaecology of a teaching hospital and were included in the study. At three month, 3D ultrasound coronal views of the fifty uterus (accounting for one hundred microinserts) were assessed by five different observers and microinsert position was classified according to the classification described by Legendre et al. Inter-observer reproducibility in reading the 3D coronal view of the uterus was evaluated. The k-value was disparate, from 0.26 to 0.82. Inter-observer reproducibility then ranged from fair to almost perfect, depending on a prior knowledge of the position classification. Transvaginal 3D coronal view of the uterus is sufficient to assess the positioning of the microinserts when the practionner or the surgeon is familiar with the classification method. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Applications of a new In vivo tumor spheroid based shell-less chorioallantoic membrane 3-D model in bioengineering research

    PubMed Central

    De Magalhães, Nzola; Liaw, Lih-Huei L.; Berns, Michael; Cristini, Vittorio; Chen, Zhongping; Stupack, Dwayne; Lowengrub, John

    2010-01-01

    The chicken chorioallantoic membrane (CAM) is a classical in vivo biological model in studies of angiogenesis. Combined with the right tumor system and experimental configuration this classical model can offer new approaches to investigating tumor processes. The increase in development of biotechnological devices for cancer diagnosis and treatment, calls for more sophisticated tumor models that can easily adapt to the technology, and provide a more accurate, stable and consistent platform for rapid quantitative and qualitative analysis. As we discuss a variety of applications of this novel in vivo tumor spheroid based shell-less CAM model in biomedical engineering research, we will show that it is extremely versatile and easily adaptable to an array of biomedical applications. The model is particularly useful in quantitative studies of the progression of avascular tumors into vascularized tumors in the CAM. Its environment is more stable, flat and has a large working area and wider field of view excellent for imaging and longitudinal studies. Finally, rapid data acquisition, screening and validation of biomedical devices and therapeutics are possible with the short experimental window. PMID:21243108

  17. Effects of multiple-interaction photon events in a high-resolution PET system that uses 3-D positioning detectors

    PubMed Central

    Gu, Yi; Pratx, Guillem; Lau, Frances W. Y.; Levin, Craig S.

    2010-01-01

    Purpose: The authors’ laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules—units holding two 8×8 arrays of 1 mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. Methods: A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with a 22Na point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. Results: Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of >46.9% (>115

  18. Effects of multiple-interaction photon events in a high-resolution PET system that uses 3-D positioning detectors.

    PubMed

    Gu, Yi; Pratx, Guillem; Lau, Frances W Y; Levin, Craig S

    2010-10-01

    The authors' laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules-units holding two 8 x 8 arrays of 1 mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with a 22Na point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of > 46.9% (> 115.7% for coincidence) was noted

  19. Effects of multiple-interaction photon events in a high-resolution PET system that uses 3-D positioning detectors.

    PubMed

    Gu, Yi; Pratx, Guillem; Lau, Frances W Y; Levin, Craig S

    2010-10-01

    The authors' laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules-units holding two8×8 arrays of 1mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with aN22a point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of>46.9% (>115.7% for coincidence) was noted for a

  20. Novel N-(3-carboxyl-9-benzyl-beta-carboline-1-yl)ethylamino acids: synthesis, anti-tumor evaluation, intercalating determination, 3D QSAR analysis and docking investigation.

    PubMed

    Wu, Jianhui; Zhao, Ming; Qian, Keduo; Lee, Kuo-Hsiung; Morris-Natschke, Susan; Peng, Shiqi

    2009-10-01

    Sixteen novel N-(3-carboxyl-9-benzyl-beta-carboline-1-yl)ethylamino acids (6a-p) were synthesized as intercalating lead compounds. In the in vitro cytotoxic assay their IC(50) values against five human carcinoma cell lines ranged from 10.95 microM to about 400 microM. On S180 mouse model eight of them exhibited anti-tumor action, four of them showed the same anti-tumor potency as that of cytarabine. The preliminary toxicity evaluation revealed that the LD(50) values of 6a-p should be more than 500 mg/kg. With CT DNA as model system an intercalating mechanism was explored. Using 3D QSAR analysis the relationship of the in vivo anti-tumor activity and the structure was quantitatively described. By docking 6a-p onto d(CGATCG)(2) oligonucleotides the intercalation was demonstrated.

  1. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  2. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly.

    PubMed

    Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena

    2017-01-01

    To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.

  3. Posterior Vaginal Prolapse Shape and Position Changes at Maximal Valsalva Seen in 3-D MRI-Based Models

    PubMed Central

    Luo, Jiajia; Larson, Kindra A.; Fenner, Dee E.; Ashton-Miller, James A.; DeLancey, John O.L.

    2013-01-01

    Introduction and Hypothesis Two-dimensional magnetic resonance imaging (MRI) of posterior vaginal prolapse has been studied. However, the three-dimensional (3-D) mechanisms causing such prolapse remain poorly understood. This discovery project was undertaken to identify the different 3-D characteristics of models of rectocele-type posterior vaginal prolapse (PVPR) in women. Methods Ten women with (cases) and 10 without (controls) PVPR were selected from an ongoing case-control study. Supine, multi-planar MR imaging was performed at rest and maximal Valsalva. 3-D reconstructions of the posterior vaginal wall and pelvic bones were created using 3D Slicer v. 3.4.1. In each slice the posterior vaginal wall and perineal skin were outlined to the anterior margin of the external anal sphincter to include the area of the perineal body. Women with predominant enteroceles or anterior vaginal prolapse were excluded. Results The case and control groups had similar demographics. In women with PVPR two characteristics were consistently visible (10 of 10): 1) the posterior vaginal wall displayed a folding phenomenon similar to a person beginning to kneel (“Kneeling” shape); and 2) a downward displacement in the upper 2/3 of the vagina. Also seen in some, but not all of the scans were: 3) forward protrusion of the distal vagina (6 of 10); 4) perineal descent (5 of 10); and 5) distal widening in lower third of the vagina (3 of 10). Conclusions Increased folding (“Kneeling”) of the vagina and an overall downward displacement are consistently present in rectocele. Forward protrusion, perineal descent and distal widening are sometimes seen as well. PMID:22527556

  4. Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms

    NASA Astrophysics Data System (ADS)

    Shea, J. D.; Kosmas, P.; Van Veen, B. D.; Hagness, S. C.

    2010-07-01

    The detection of early-stage tumors in the breast by microwave imaging is challenged by both the moderate endogenous dielectric contrast between healthy and malignant glandular tissues and the spatial resolution available from illumination at microwave frequencies. The high endogenous dielectric contrast between adipose and fibroglandular tissue structures increases the difficulty of tumor detection due to the high dynamic range of the contrast function to be imaged and the low level of signal scattered from a tumor relative to the clutter scattered by normal tissue structures. Microwave inverse scattering techniques, used to estimate the complete spatial profile of the dielectric properties within the breast, have the potential to reconstruct both normal and cancerous tissue structures. However, the ill-posedness of the associated inverse problem often limits the frequency of microwave illumination to the UHF band within which early-stage cancers have sub-wavelength dimensions. In this computational study, we examine the reconstruction of small, compact tumors in three-dimensional numerical breast phantoms by a multiple-frequency inverse scattering solution. Computer models are also employed to investigate the use of exogenous contrast agents for enhancing tumor detection. Simulated array measurements are acquired before and after the introduction of the assumed contrast effects for two specific agents currently under consideration for breast imaging: microbubbles and carbon nanotubes. Differential images of the applied contrast demonstrate the potential of the approach for detecting the preferential uptake of contrast agents by malignant tissues.

  5. Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids.

    PubMed

    Cantisani, Marco; Guarnieri, Daniela; Biondi, Marco; Belli, Valentina; Profeta, Martina; Raiola, Luca; Netti, Paolo A

    2015-11-01

    The balance between dose-dependent tolerability, effectiveness and toxicity of systemically administered antitumor drugs is extremely delicate. This issue highlights the striking need for targeted release of chemotherapeutic drugs within tumors. In this work, a smart strategy of drug targeting to tumors relying upon biodegradable/biocompatible nanoparticles releasing cytotoxic drugs after sensing physiological variations intrinsic to the very nature of tumor tissues is exploited. Here, the well-known over-expression of matrix metallo-proteinase 2 (MMP2) enzyme in tumors has been chosen as a trigger for the release of a cytotoxic drug. Nanoparticles made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA)--block--polyethylene glycol (PEG) copolymer (namely PELGA), blended with a tumor-activated prodrug (TAP) composed of a MMP2-sensitive peptide bound to doxorubicin (Dox) and to PLGA chain have been produced. The obtained devices are able to release Dox specifically upon MMP2 cleavage of the TAP. More interestingly, they can sense the differences in the expression levels of endogenous MMP2 protein, thus modulating drug penetration within a three-dimensional (3D) tumor spheroid matrix, accordingly. Therefore, the proposed nanoparticles hold promise as a useful tool for in vivo investigations aimed at an improved therapeutic efficacy of the conjugated drug payload. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds.

    PubMed

    Göttlich, Claudia; Müller, Lena C; Kunz, Meik; Schmitt, Franziska; Walles, Heike; Walles, Thorsten; Dandekar, Thomas; Dandekar, Gudrun; Nietzer, Sarah L

    2016-04-06

    In the present study, we combined an in vitro 3D lung tumor model with an in silico model to optimize predictions of drug response based on a specific mutational background. The model is generated on a decellularized porcine scaffold that reproduces tissue-specific characteristics regarding extracellular matrix composition and architecture including the basement membrane. We standardized a protocol that allows artificial tumor tissue generation within 14 days including three days of drug treatment. Our article provides several detailed descriptions of 3D read-out screening techniques like the determination of the proliferation index Ki67 staining's, apoptosis from supernatants by M30-ELISA and assessment of epithelial to mesenchymal transition (EMT), which are helpful tools for evaluating the effectiveness of therapeutic compounds. We could show compared to 2D culture a reduction of proliferation in our 3D tumor model that is related to the clinical situation. Despite of this lower proliferation, the model predicted EGFR-targeted drug responses correctly according to the biomarker status as shown by comparison of the lung carcinoma cell lines HCC827 (EGFR -mutated, KRAS wild-type) and A549 (EGFR wild-type, KRAS-mutated) treated with the tyrosine-kinase inhibitor (TKI) gefitinib. To investigate drug responses of more advanced tumor cells, we induced EMT by long-term treatment with TGF-beta-1 as assessed by vimentin/pan-cytokeratin immunofluorescence staining. A flow-bioreactor was employed to adjust culture to physiological conditions, which improved tissue generation. Furthermore, we show the integration of drug responses upon gefitinib treatment or TGF-beta-1 stimulation - apoptosis, proliferation index and EMT - into a Boolean in silico model. Additionally, we explain how drug responses of tumor cells with a specific mutational background and counterstrategies against resistance can be predicted. We are confident that our 3D in vitro approach especially with its

  7. SU-E-J-80: Interplay Effect Between VMAT Intensity Modulation and Tumor Motion in Hypofractioned Lung Treatment, Investigated with 3D Pressage Dosimeter

    SciTech Connect

    Touch, M; Wu, Q; Oldham, M

    2014-06-01

    Purpose: To demonstrate an embedded tissue equivalent presage dosimeter for measuring 3D doses in moving tumors and to study the interplay effect between the tumor motion and intensity modulation in hypofractioned Volumetric Modulated Arc Therapy(VMAT) lung treatment. Methods: Motion experiments were performed using cylindrical Presage dosimeters (5cm diameter by 7cm length) mounted inside the lung insert of a CIRS thorax phantom. Two different VMAT treatment plans were created and delivered in three different scenarios with the same prescribed dose of 18 Gy. Plan1, containing a 2 centimeter spherical CTV with an additional 2mm setup margin, was delivered on a stationary phantom. Plan2 used the same CTV except expanded by 1 cm in the Sup-Inf direction to generate ITV and PTV respectively. The dosimeters were irradiated in static and variable motion scenarios on a Truebeam system. After irradiation, high resolution 3D dosimetry was performed using the Duke Large Field-of-view Optical-CT Scanner, and compared to the calculated dose from Eclipse. Results: In the control case (no motion), good agreement was observed between the planned and delivered dose distributions as indicated by 100% 3D Gamma (3% of maximum planned dose and 3mm DTA) passing rates in the CTV. In motion cases gamma passing rates was 99% in CTV. DVH comparisons also showed good agreement between the planned and delivered dose in CTV for both control and motion cases. However, differences of 15% and 5% in dose to PTV were observed in the motion and control cases respectively. Conclusion: With very high dose nature of a hypofraction treatment, significant effect was observed only motion is introduced to the target. This can be resulted from the motion of the moving target and the modulation of the MLC. 3D optical dosimetry can be of great advantage in hypofraction treatment dose validation studies.

  8. A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images

    NASA Astrophysics Data System (ADS)

    Hogea, Cosmina; Biros, George; Abraham, Feby; Davatzikos, Christos

    2007-12-01

    We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid—fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases.

  9. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  10. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis.

    PubMed

    Zaman, Muhammad H; Trapani, Linda M; Sieminski, Alisha L; Siemeski, Alisha; Mackellar, Drew; Gong, Haiyan; Kamm, Roger D; Wells, Alan; Lauffenburger, Douglas A; Matsudaira, Paul

    2006-07-18

    Cell migration on 2D surfaces is governed by a balance between counteracting tractile and adhesion forces. Although biochemical factors such as adhesion receptor and ligand concentration and binding, signaling through cell adhesion complexes, and cytoskeletal structure assembly/disassembly have been studied in detail in a 2D context, the critical biochemical and biophysical parameters that affect cell migration in 3D matrices have not been quantitatively investigated. We demonstrate that, in addition to adhesion and tractile forces, matrix stiffness is a key factor that influences cell movement in 3D. Cell migration assays in which Matrigel density, fibronectin concentration, and beta1 integrin binding are systematically varied show that at a specific Matrigel density the migration speed of DU-145 human prostate carcinoma cells is a balance between tractile and adhesion forces. However, when biochemical parameters such as matrix ligand and cell integrin receptor levels are held constant, maximal cell movement shifts to matrices exhibiting lesser stiffness. This behavior contradicts current 2D models but is predicted by a recent force-based computational model of cell movement in a 3D matrix. As expected, this 3D motility through an extracellular environment of pore size much smaller than cellular dimensions does depend on proteolytic activity as broad-spectrum matrix metalloproteinase (MMP) inhibitors limit the migration of DU-145 cells and also HT-1080 fibrosarcoma cells. Our experimental findings here represent, to our knowledge, discovery of a previously undescribed set of balances of cell and matrix properties that govern the ability of tumor cells to migration in 3D environments.

  11. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis

    PubMed Central

    Zaman, Muhammad H.; Trapani, Linda M.; Sieminski, Alisha; MacKellar, Drew; Gong, Haiyan; Kamm, Roger D.; Wells, Alan; Lauffenburger, Douglas A.; Matsudaira, Paul

    2006-01-01

    Cell migration on 2D surfaces is governed by a balance between counteracting tractile and adhesion forces. Although biochemical factors such as adhesion receptor and ligand concentration and binding, signaling through cell adhesion complexes, and cytoskeletal structure assembly/disassembly have been studied in detail in a 2D context, the critical biochemical and biophysical parameters that affect cell migration in 3D matrices have not been quantitatively investigated. We demonstrate that, in addition to adhesion and tractile forces, matrix stiffness is a key factor that influences cell movement in 3D. Cell migration assays in which Matrigel density, fibronectin concentration, and β1 integrin binding are systematically varied show that at a specific Matrigel density the migration speed of DU-145 human prostate carcinoma cells is a balance between tractile and adhesion forces. However, when biochemical parameters such as matrix ligand and cell integrin receptor levels are held constant, maximal cell movement shifts to matrices exhibiting lesser stiffness. This behavior contradicts current 2D models but is predicted by a recent force-based computational model of cell movement in a 3D matrix. As expected, this 3D motility through an extracellular environment of pore size much smaller than cellular dimensions does depend on proteolytic activity as broad-spectrum matrix metalloproteinase (MMP) inhibitors limit the migration of DU-145 cells and also HT-1080 fibrosarcoma cells. Our experimental findings here represent, to our knowledge, discovery of a previously undescribed set of balances of cell and matrix properties that govern the ability of tumor cells to migration in 3D environments. PMID:16832052

  12. Development of a New Rapid Isolation Device for Circulating Tumor Cells (CTCs) Using 3D Palladium Filter and Its Application for Genetic Analysis

    PubMed Central

    Yusa, Akiko; Toneri, Makoto; Masuda, Taisuke; Ito, Seiji; Yamamoto, Shuhei; Okochi, Mina; Kondo, Naoto; Iwata, Hiroji; Yatabe, Yasushi; Ichinosawa, Yoshiyuki; Kinuta, Seichin; Kondo, Eisaku; Honda, Hiroyuki; Arai, Fumihito; Nakanishi, Hayao

    2014-01-01

    Circulating tumor cells (CTCs) in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D) palladium (Pd) filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings. PMID:24523941

  13. Specific CT 3D rendering of the treatment zone after Irreversible Electroporation (IRE) in a pig liver model: the “Chebyshev Center Concept” to define the maximum treatable tumor size

    PubMed Central

    2014-01-01

    Background Size and shape of the treatment zone after Irreversible electroporation (IRE) can be difficult to depict due to the use of multiple applicators with complex spatial configuration. Exact geometrical definition of the treatment zone, however, is mandatory for acute treatment control since incomplete tumor coverage results in limited oncological outcome. In this study, the “Chebyshev Center Concept” was introduced for CT 3d rendering to assess size and position of the maximum treatable tumor at a specific safety margin. Methods In seven pig livers, three different IRE protocols were applied to create treatment zones of different size and shape: Protocol 1 (n = 5 IREs), Protocol 2 (n = 5 IREs), and Protocol 3 (n = 5 IREs). Contrast-enhanced CT was used to assess the treatment zones. Technique A consisted of a semi-automated software prototype for CT 3d rendering with the “Chebyshev Center Concept” implemented (the “Chebyshev Center” is the center of the largest inscribed sphere within the treatment zone) with automated definition of parameters for size, shape and position. Technique B consisted of standard CT 3d analysis with manual definition of the same parameters but position. Results For Protocol 1 and 2, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were not significantly different between Technique A and B. For Protocol 3, short diameter of the treatment zone and diameter of the largest inscribed sphere within the treatment zone were significantly smaller for Technique A compared with Technique B (41.1 ± 13.1 mm versus 53.8 ± 1.1 mm and 39.0 ± 8.4 mm versus 53.8 ± 1.1 mm; p < 0.05 and p < 0.01). For Protocol 1, 2 and 3, sphericity of the treatment zone was significantly larger for Technique A compared with B. Conclusions Regarding size and shape of the treatment zone after IRE, CT 3d rendering with the “Chebyshev Center Concept” implemented provides

  14. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor.

    PubMed

    Choy, Wen Jie; Mobbs, Ralph J; Wilcox, Ben; Phan, Steven; Phan, Kevin; Sutterlin, Chester E

    2017-09-01

    Neurosurgery and spine surgery have the potential to benefit from the use of 3-dimensional printing (3DP) technology due to complex anatomic considerations and the delicate nature of surrounding structures. We report a procedure that uses a 3D-printed titanium T9 vertebral body implant post T9 vertebrectomy for a primary bone tumor. A 14-year-old female presented with progressive kyphoscoliosis and a pathologic fracture of the T9 vertebra with sagittal and coronal deformity due to a destructive primary bone tumor. Surgical resection and reconstruction was performed in combination with a 3D-printed, patient-specific implant. Custom design features included porous titanium end plates, corrective angulation of the implant to restore sagittal balance, and pedicle screw holes in the 3D implant to assist with insertion of the device. In addition, attachment of the anterior column construct to the posterior pedicle screw construct was possible due to the customized features of the patient-specific implant. An advantage of 3DP is the ability to manufacture patient-specific implants, as in the current case example. Additionally, the use of 3DP has been able to reduce operative time significantly. Surgical procedures can be preplanned using 3DP patient-specific models. Surgeons can train before performing complex procedures, which enhances their presurgical planning in order to maximize patient outcomes. When considering implants and prostheses, the use of 3DP allows a superior anatomic fit for the patient, with the potential to improve restoration of anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. AlgiMatrix™-Based 3D Cell Culture System as an In Vitro Tumor Model: An Important Tool in Cancer Research.

    PubMed

    Godugu, Chandraiah; Singh, Mandip

    2016-01-01

    Routinely used two-dimensional cell culture-based models often fail while translating the observations into in vivo models. This setback is more common in cancer research, due to several reasons. The extracellular matrix and cell-to-cell interactions are not present in two-dimensional (2D) cell culture models. Diffusion of drug molecules into cancer cells is hindered by barriers of extracellular components in in vivo conditions, these barriers are absent in 2D cell culture models. To better mimic or simulate the in vivo conditions present in tumors, the current study used the alginate based three-dimensional cell culture (AlgiMatrix™) model, which resembles close to the in vivo tumor models. The current study explains the detailed protocols involved in AlgiMatrix™ based in vitro non-small-cell lung cancer (NSCLC) models. The suitability of this model was studied by evaluating, cytotoxicity, apoptosis, and penetration of nanoparticles into the in vitro tumor spheroids. This study also demonstrated the effect of EphA2 receptor targeted docetaxel-loaded nanoparticles on MDA-MB-468 TNBC cell lines. The methods section is subdivided into three subsections such as (1) preparation of AlgiMatrix™-based 3D in vitro tumor models and cytotoxicity assays, (2) free drug and nanoparticle uptake into spheroid studies, and (3) western blot, IHC, and RT-PCR studies.

  16. Evaluation of anti-HER2 scFv-conjugated PLGA-PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    NASA Astrophysics Data System (ADS)

    Thuy Duong Le, Thi; Pham, Thu Hong; Nghia Nguyen, Trong; Giang Ngo, Thi Hong; Nhung Hoang, Thi My; Huan Le, Quang

    2016-06-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv-Doc-PLGA-PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv-Doc-PLGA-PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv-Doc-PLGA-PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies.

  17. Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model

    NASA Astrophysics Data System (ADS)

    Glidden, Michael D.; Massodi, Iqbal; Rizvi, Imran; Celli, Jonathan P.; Hasan, Tayyaba

    2012-02-01

    Pancreatic ductal adenocarcinoma is a lethal disease that is often unresectable by the time of diagnosis and is typically non-responsive to chemo- and radiotherapy, resulting in a five year survival of only 3%. Tumors of the pancreas are characterized by a dense fibrous stroma rich in extracellular matrix proteins, which is implicated in poor therapeutic response, though its precise roles remain poorly understood. Indeed, while the use of therapeutics that target the stroma is an emerging paradigm in the clinical management of this disease, the primary focus of such efforts is to enhance drug penetration through dense fibrous stroma and it is unclear to what extent the characteristically rigid stroma of pancreatic tumors imparts drug resistance by acting as a complex signaling partner, or merely as a physical barrier for drug delivery. Here we use 3D in vitro co-cultures of pancreatic cancer cells and normal human fibroblasts as a model system to study heterotypic interactions between these populations. Leveraging this in vitro model along with image-based methods for quantification of growth and therapeutic endpoints, we characterize these co-cultures and examine the role of verteporfin-based photodynamic therapy (PDT) for targeting tumor-fibroblast interactions in pancreatic tumors.

  18. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer.

    PubMed

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S; Lamb, James M

    2015-01-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTVsetup were compared according to target coverage and dose. The PTVsetup was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier

  19. Positional isomerism-driven two 3D pillar-layered metal-organic frameworks: Syntheses, topological structures and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zhao, Siwei; Ma, Haoran; Han, Yi; Liu, Kang; Wang, Lei

    2016-06-01

    Two novel three-dimensional (3D) pillar-layered metal-organic frameworks (MOFs), namely [Zn2(μ2-OH)(boaba)(1,4-bmimb)]n (1) and {[Zn5K2(μ2-H2O)2(boaba)4(1,2-bmimb)2(H2O)2]·H2O}n (2), were prepared by hydrothermal reactions (H3boaba=3,5-bis-oxyacetate-benzoic acid; 1,4-bmimb=1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene; 1,2-bmimb =1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene). Notably, 1 exhibits a (3,5)-connected binodal (63)(69·8)-gra net with binuclear [Zn2(μ2-OH)(COO)]2+ clusters, while 2 shows a novel (4,4,5,9)-connected 4-nodal net constructed from the unique Zn(II)-K(I) heterometal rod-like substructures. The results indicate that the disposition of the 2-methylimidazolyl groups of bis(imidazole) ligands have a significant effect on structural diversity. Moreover, the photoluminescence properties of 1 and 2 have been investigated.

  20. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior.

    PubMed

    Roudsari, Laila C; Jeffs, Sydney E; Witt, Amber S; Gill, Bartley J; West, Jennifer L

    2016-09-06

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm(2), circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.

  1. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    PubMed Central

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-01-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933

  2. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    NASA Astrophysics Data System (ADS)

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-09-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.

  3. Anatomic ACL reconstruction: the normal central tibial footprint position and a standardised technique for measuring tibial tunnel location on 3D CT.

    PubMed

    Parkinson, B; Gogna, R; Robb, C; Thompson, P; Spalding, T

    2017-05-01

    The aim of this study was to define the normal ACL central tibial footprint position and describe a standardised technique of measuring tibial tunnel location on 3D CT for anatomic single-bundle ACL reconstruction. The central position of the ACL tibial attachment site was determined on 76 MRI scans of young individuals. The central footprint position was referenced in the anterior-posterior (A-P) and medial-lateral (M-L) planes on a grid system over the widest portion of the proximal tibia. 3D CT images of 26 young individuals had a simulated tibial tunnel centred within the bony landmarks of the ACL footprint, and the same grid system was applied over the widest portion of the proximal tibia. The MRI central footprint position was compared to the 3D CT central footprint position to validate the technique and results. The median age of the 76 MRI subjects was 24 years, with 32 females and 44 males. The ACL central footprint position was at 39 (±3 %) and 48 (±2 %), in the A-P and M-L planes, respectively. There was no significant difference in this position between sexes. The median age of the 26 CT subjects was 25.5 years, with 10 females and 16 males. The central position of the bony ACL footprint was at 38 (±2 %) and 48 (±2 %), in the A-P and M-L planes, respectively. The MRI and CT central footprint positions were not significantly different in relation to the medial position, but were different in relation to the anterior position (A-P 39 % vs. 38 %, p = 0.01). The absolute difference between the central MRI and CT reference positions was 0.45 mm. The ACL's normal central tibial footprint reference position has been defined, and the technique of measuring tibial tunnel location with a standardised grid system is described. This study will assist surgeons in evaluating tibial tunnel position in anatomic single-bundle ACL reconstruction. III.

  4. MLC positional accuracy evaluation through the Picket Fence test on EBT2 films and a 3D volumetric phantom.

    PubMed

    Antypas, Christos; Floros, Ioannis; Rouchota, Maritina; Armpilia, Christina; Lyra, Maria

    2015-03-08

    The accuracy of MLC positions during radiotherapy is important as even small positional deviations can translate into considerable dose delivery errors. This becomes crucial when radiosensitive organs are located near the treated volume and especially during IMRT, where dose gradients are steep. A test commonly conducted to measure the positional accuracy of the MLCs is the Picket Fence test. In this study two alterations of the Picket Fence test were performed and evaluated, the first one using radiochromic EBT2 films and the second one the Delta4PT diode array phantom and its software. Our results showed that EBT2 films provide a relatively fast, qualitative visual inspection of the significant leaf dispositions. When slight inaccuracies need to be revealed or precise numerical results for each leaf position are needed, Delta4PT provides the desired accuracy of 1 mm. In treatment modalities where a higher accuracy is required in the delivered dose distribution, such as in IMRT, precise numerical values of the measurements for the MLC positional inspection are required.

  5. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  6. Evaluation of similarity measures for use in the intensity-based rigid 2D-3D registration for patient positioning in radiotherapy

    SciTech Connect

    Wu Jian; Kim, Minho; Peters, Jorg; Chung, Heeteak; Samant, Sanjiv S.

    2009-12-15

    Purpose: Rigid 2D-3D registration is an alternative to 3D-3D registration for cases where largely bony anatomy can be used for patient positioning in external beam radiation therapy. In this article, the authors evaluated seven similarity measures for use in the intensity-based rigid 2D-3D registration using a variation in Skerl's similarity measure evaluation protocol. Methods: The seven similarity measures are partitioned intensity uniformity, normalized mutual information (NMI), normalized cross correlation (NCC), entropy of the difference image, pattern intensity (PI), gradient correlation (GC), and gradient difference (GD). In contrast to traditional evaluation methods that rely on visual inspection or registration outcomes, the similarity measure evaluation protocol probes the transform parameter space and computes a number of similarity measure properties, which is objective and optimization method independent. The variation in protocol offers an improved property in the quantification of the capture range. The authors used this protocol to investigate the effects of the downsampling ratio, the region of interest, and the method of the digitally reconstructed radiograph (DRR) calculation [i.e., the incremental ray-tracing method implemented on a central processing unit (CPU) or the 3D texture rendering method implemented on a graphics processing unit (GPU)] on the performance of the similarity measures. The studies were carried out using both the kilovoltage (kV) and the megavoltage (MV) images of an anthropomorphic cranial phantom and the MV images of a head-and-neck cancer patient. Results: Both the phantom and the patient studies showed the 2D-3D registration using the GPU-based DRR calculation yielded better robustness, while providing similar accuracy compared to the CPU-based calculation. The phantom study using kV imaging suggested that NCC has the best accuracy and robustness, but its slow function value change near the global maximum requires a

  7. Accessing 3D Location of Standing Pelvis: Relative Position of Sacral Plateau and Acetabular Cavities versus Pelvis.

    PubMed

    Berthonnaud, E; Hilmi, R; Dimnet, J

    2012-01-01

    The goal of this paper is to access to pelvis position and morphology in standing posture and to determine the relative locations of their articular surfaces. This is obtained from coupling biplanar radiography and bone modeling. The technique involves different successive steps. Punctual landmarks are first reconstructed, in space, from their projected images, identified on two orthogonal standing X-rays. Geometric models, of global pelvis and articular surfaces, are determined from punctual landmarks. The global pelvis is represented as a triangle of summits: the two femoral head centers and the sacral plateau center. The two acetabular cavities are modeled as hemispheres. The anterior sacral plateau edge is represented by an hemi-ellipsis. The modeled articular surfaces are projected on each X-ray. Their optimal location is obtained when the projected contours of their models best fit real outlines identified from landmark images. Linear and angular parameters characterizing the position of global pelvis and articular surfaces are calculated from the corresponding sets of axis. Relative positions of sacral plateau, and acetabular cavities, are then calculated. Two hundred standing pelvis, of subjects and scoliotic patients, have been studied. Examples are presented. They focus upon pelvis orientations, relative positions of articular surfaces, and pelvis asymmetries.

  8. Highly localized positive contrast of small paramagnetic objects using 3D center-out radial sampling with off-resonance reception.

    PubMed

    Seevinck, Peter R; de Leeuw, Hendrik; Bos, Clemens; Bakker, Chris J G

    2011-01-01

    In this article, we present a 3D imaging technique, applying center-out RAdial Sampling with Off-Resonance reception, to accurately depict and localize small paramagnetic objects with high positive contrast while suppressing long T(2) (*) components. The center-out RAdial Sampling with Off-Resonance reception imaging technique is a fully frequency-encoded 3D ultrashort echo time acquisition method, which uses a large excitation bandwidth and off-resonance reception. By manually introducing an offset, Δf(0), to the central reception frequency (f(0)), the typical radial signal pileup observed in 3D center-out sampling caused by a dipolar magnetic field disturbance can be shifted toward the source of the field disturbance, resulting in a hyperintense signal at the magnetic center of the small paramagnetic object. This was demonstrated both theoretically and using 1D time domain simulations. Experimental verification was done in a gel phantom and in inhomogeneous porcine tissue containing various objects with very different geometry and susceptibility, namely, subvoxel stainless steel spheres, a puncture needle, and paramagnetic brachytherapy seeds. In all cases, center-out RAdial Sampling with Off-Resonance reception was shown to generate high positive contrast exactly at the location of the paramagnetic object, as was confirmed by X-ray computed tomography. © 2010 Wiley-Liss, Inc.

  9. Axonemal Positioning and Orientation in 3-D Space for Primary Cilia: What is Known, What is Assumed, and What Needs Clarification

    PubMed Central

    Farnum, Cornelia E.; Wilsman, Norman J.

    2012-01-01

    Two positional characteristics of the ciliary axoneme – its location on the plasma membrane as it emerges from the cell, and its orientation in three-dimensional space – are known to be critical for optimal function of actively motile cilia (including nodal cilia), as well as for modified cilia associated with special senses. However, these positional characteristics have not been analyzed to any significant extent for primary cilia. This review briefly summarizes the history of knowledge of these two positional characteristics across a wide spectrum of cilia, emphasizing their importance for proper function. Then the review focuses what is known about these same positional characteristics for primary cilia in all major tissue types where they have been reported. The review emphasizes major areas that would be productive for future research for understanding how positioning and 3-D orientation of primary cilia may be related to their hypothesized signaling roles within different cellular populations. PMID:22012592

  10. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians.

    PubMed

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.

  11. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    PubMed Central

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  12. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-01

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 101 to 107 cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers.

  13. Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Yiping; Hao, Yongqiang; Wang, Liao

    2016-03-01

    Nowadays, the diagnosis and treatment of pelvic sarcoma pose a major surgical challenge for reconstruction in orthopedics. With the development of manufacturing technology, the metal 3D-printed customized implants have brought revolution for the limb-salvage resection and reconstruction surgery. However, the tumor resection is not without risk and the precise implant placement is very difficult due to the anatomic intricacies of the pelvis. In this study, a surgical navigation system including the implant calibration algorithm has been developed, so that the surgical instruments and the 3D-printed customized implant can be tracked and rendered on the computer screen in real time, minimizing the risks and improving the precision of the surgery. Both the phantom experiment and the pilot clinical case study presented the feasibility of our computer-aided surgical navigation system. According to the accuracy evaluation experiment, the precision of customized implant installation can be improved three to five times (TRE: 0.75±0.18 mm) compared with the non-navigated implant installation after the guided osteotomy (TRE: 3.13±1.28 mm), which means it is sufficient to meet the clinical requirements of the pelvic reconstruction. However, more clinical trials will be conducted in the future work for the validation of the reliability and efficiency of our navigation system.

  14. A Human 3D In Vitro Model to Assess the Relationship Between Osteoporosis and Dissemination to Bone of Breast Cancer Tumor Cells.

    PubMed

    Salamanna, Francesca; Borsari, Veronica; Brogini, Silvia; Torricelli, Paola; Cepollaro, Simona; Cadossi, Matteo; Fini, Milena

    2017-07-01

    Despite consistent improvements in diagnostic and therapeutic strategies for breast cancer, up to 40% of patients will develop bone metastases. To reduce the morbidity and complications related with bone metastases, it is imperative to reduce their etiological factors. Osteoporosis, being characterized by a sudden estrogen deficiency, may provide a favorable condition for bone metastasis. This work, using a humanized 3D in vitro model, aims at evaluating the relationship between osteoporosis and breast cancer-derived bone metastases. Bone tissue discarded from total hip replacement surgery of healthy and osteoporotic patients was cultured in a rolling apparatus system in hypoxic environment. Protein levels (i.e., vascular endothelial growth factor (VEGF), VEGF receptor 1, VEGF receptor 2, interleukin (IL)-6, IL-1β, IL-8 IL-10, tumor necrosis factor α (TNF-α), osteoprotegerin (OPG), receptor activator for nuclear factor KB ligand (RANKL)) and histological and immunohistochemical (i.e., cytokeratin 8 and 18) analyses showed a noticeable specificity of breast cancer cells for the colonization of osteoporotic bone. These data are the first to demonstrate that using humanized 3D in vitro systems, which individually model the pre- and postmenopausal bone microenvironment, it is possible to recognize major differences in tumor growth and colonization between healthy and osteoporotic status. Thus, this system might help to develop a shared system between basic and clinical sciences where a personalized diagnosis is associated to a therapeutic strategy designed for a single patient: a model able to achieve a translational research approach in the clinical setting, which may lead to the application and dissemination of personalized medicine. J. Cell. Physiol. 232: 1826-1834, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Overcoming therapeutic resistance in pancreatic cancer is not a simple mix of PDT and chemotherapy: Evaluation of PDT-chemotherapy combinations in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Petrovic, Ljubica; Massdodi, Iqbal; Rizvi, Imran; Hasan, Tayyaba

    2013-03-01

    The dismal survival statistics for pancreatic cancer are due in large part to the notoriously poor response of these tumors to conventional therapies. Here we examine the ability of photodynamic therapy (PDT), using the photosensitizer verteporfin to enhance of the efficacy of traditional chemotherapy agents and/or eradicate populations that are nonresponsive to these agents. Using an in vitro 3D tumor model of pancreatic cancer combined with an imaging-based methodology for quantifying therapeutic response, we specifically examine PDT combination treatments with gemcitabine and oxaliplatin. We show that our 3D cell culture model recapitulates a more clinically-relevant dose response to gemcitabine, with minimal cytotoxic response even at high doses. The same cultures exhibit modest response to PDT treatments, but are also less responsive to this modality relative to our previous reports of monolayer dose response in the same cells. In combination we found no evidence of any enhancement in efficacy of either PDT or gemcitabine treatment regardless of dose or sequence (PDT before gemcitabine, or gemcitabine before PDT). However, when oxaliplatin chemotherapy was administered immediately after treatment with 2.5J/cm2 verteporfin PDT, there was an observable enhancement in response that appears to exceed the additive combination of either treatment alone and suggesting there may be a synergistic interaction. This observation is consistent with previous reports of enhanced efficacy in combinations of PDT with platinum-based chemotherapy. The contrast in results between the combinations examined here underscores the need for rational design of mechanism-based PDT combinations.

  16. Image-based 3D modeling study of the influence of vessel density and blood hemoglobin concentration on tumor oxygenation and response to irradiation.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Cortez, Eliane; Pietras, Kristian; Bernhardt, Peter

    2013-02-01

    Hypoxia is one of the most important factors influencing clinical outcome after radiotherapy. Improved knowledge of factors affecting the levels and distribution of oxygen within a tumor is needed. The authors constructed a theoretical 3D model based on histological images to analyze the influence of vessel density and hemoglobin (Hb) concentration on the response to irradiation. The pancreases of a Rip-Tag2 mouse, a model of malignant insulinoma, were excised, cryosectioned, immunostained, and photographed. Vessels were identified by image thresholding and a 3D vessel matrix assembled. The matrix was reduced to functional vessel segments and enlarged by replication. The steady-state oxygen tension field of the tumor was calculated by iteratively employing Green's function method for diffusion and the Michaelis-Menten model for consumption. The impact of vessel density on the radiation response was studied by removing a number of randomly selected vessels. The impact of Hb concentration was studied by independently changing vessel oxygen partial pressure (pO(2)). For each oxygen distribution, the oxygen enhancement ratio (OER) was calculated and the mean absorbed dose at which the tumor control probability (TCP) was 0.99 (D(99)) was determined using the linear-quadratic cell survival model (LQ model). Decreased pO(2) shifted the oxygen distribution to lower values, whereas decreased vessel density caused the distribution to widen and shift to lower values. Combined scenarios caused lower-shifted distributions, emphasising log-normal characteristics. Vessel reduction combined with increased blood pO(2) caused the distribution to widen due to a lack of vessels. The most pronounced radiation effect of increased pO(2) occurred with tumor tissue with 50% of the maximum vessel density used in the simulations. A 51% decrease in D(99), from 123 to 60 Gy, was found between the lowest and highest pO(2) concentrations. Our results indicate that an intermediate vascular

  17. Development of Gamma-Ray Compton Imager Using Room-Temperature 3-D Position Sensitive Semiconductor Detectors

    SciTech Connect

    Zhong He; David Whe; Glenn Knoll

    2003-05-14

    During the three years of this project, two 3-dimensional position sensitive CdZnTe spectrometers were upgraded in collaboration with Johns Hopkins University Applied Physics Laboratory. A prototype Compton-scattering gamma-ray imager was assembled using the two upgraded CdZnTe detectors. The performance of both gamma-ray spectrometers were individually tested. The angular resolution and detection sensitivity of the imaging system were measured using both a point and a line-shaped 137 Cs radiation source. The measurement results are consistent with that obtained from Monte-Carlo simulations performed during the early phase of the project.

  18. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    NASA Astrophysics Data System (ADS)

    Khmelinskaia, Alena; Franquelim, Henri G.; Petrov, Eugene P.; Schwille, Petra

    2016-05-01

    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding.

  19. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  20. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  1. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system].

    PubMed

    Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène

    2005-02-01

    Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine.

  2. 3D CT analysis of femoral and tibial tunnel positions after modified transtibial single bundle ACL reconstruction with varus and internal rotation of the tibia.

    PubMed

    Youm, Yoon-Seok; Cho, Sung-Do; Eo, Jin; Lee, Ki-Jae; Jung, Kwang-Hwan; Cha, Jae-Ryong

    2013-08-01

    We analyzed the location of femoral and tibial tunnels by three-dimensional (3D) CT reconstruction images after modified transtibial single bundle (SB) anterior cruciate ligament (ACL) reconstruction, creating a femoral tunnel with varus and internal rotation of the tibia. Data from 50 patients (50 knees) analyzed by 3D CT after modified transtibial SB ACL reconstructions were evaluated. 3D CT images were analyzed according to the quadrant method by Bernard at the femur and the technique of Forsythe at the tibia. The mean distance of the femoral tunnel center locations parallel to the Blumensaat's line was 29.6%±1.9% along line t measured from the posterior condylar surface. The mean distances perpendicular to the Blumensaat's line were 37.9%±2.5% along line h measured from the Blumensaat's line. At the tibia, the mean anterior-to-posterior distance for the tunnel center location was 37.8%±1.2% and the mean medial-to-lateral distance was 50.4%±0.9%. The femoral and tibial tunnels after modified transtibial SB ACL reconstruction creating a femoral tunnel with varus and internal rotation of the tibia (figure-of-4 position) were located between the anatomical anteromedial and posterolateral footprints. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Isotropic photon drag: Analytic expressions for velocity (3D) and position (1D) with applications to blackbody friction

    NASA Astrophysics Data System (ADS)

    West, Joseph

    2014-03-01

    The motion of objects traveling at relativistic speeds and subject only to isotropic photon drag (blackbody friction as a special case) is modeled. The objects are assumed to be perfectly absorbing. Analytic expressions for velocity and position as a function of time for objects subject to photon drag are obtained for the case in which the photons are constrained to one-dimensional motion. If the object is also assumed to be a perfect emitter of energy, analytic expressions are found for time as a function of velocity of the body for photons constrained to one-dimensional motion, and for a full three-dimensional isotropic photon background. The derivations are carried out entirely from the point of view of a reference frame at rest relative to the isotropic photon field, so that no changes of reference frame are involved. The results for the three-dimensional model do not agree with work by previous authors, and this discrepancy is discussed. The derivations are suitable for use in the undergraduate classroom. Example cases for a light sail and a micron-sized sand grain are examined for interactions with the cosmic background radiation, assuming a temperature of 3000 K, the temperature at the time the universe became transparent, and it is found that relativistic speeds would decay on a time scale of years.

  4. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.

    PubMed

    Stocke, Nathanael A; Sethi, Pallavi; Jyoti, Amar; Chan, Ryan; Arnold, Susanne M; Hilt, J Zach; Upreti, Meenakshi

    2017-03-01

    Magnetic hyperthermia as a treatment modality is acquiring increased recognition for loco-regional therapy of primary and metastatic lung malignancies by pulmonary delivery of magnetic nanoparticles (MNP). The unique characteristic of magnetic nanoparticles to induce localized hyperthermia in the presence of an alternating magnetic field (AMF) allows for preferential killing of cells at the tumor site. In this study we demonstrate the effect of hyperthermia induced by low and high dose of MNP under the influence of an AMF using 3D tumor tissue analogs (TTA) representing the micrometastatic, perfusion independent stage of triple negative breast cancer (TNBC) that infiltrates the lungs. While application of inhalable magnetic nanocomposite microparticles or magnetic nanocomposites (MnMs) to the micrometastatic TNBC model comprised of TTA generated from cancer and stromal cells, showed no measureable adverse effects in the absence of AMF-exposure, magnetic hyperthermia generated under the influence of an AMF in TTA incubated in a high concentration of MNP (1 mg/mL) caused significant increase in cellular death/damage with mechanical disintegration and release of cell debris indicating the potential of these inhalable composites as a promising approach for thermal treatment of diseased lungs. The novelty and significance of this study lies in the development of methods to evaluate in vitro the application of inhalable composites containing MNPs in thermal therapy using a physiologically relevant metastatic TNBC model representative of the microenvironmental characteristics in secondary lung malignancies.

  5. Miniaturizing 3D assay for high-throughput drug and genetic screens for small patient-derived tumor samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rotem, Asaf; Garraway, Levi; Su, Mei-Ju; Basu, Anindita; Regev, Aviv; Struhl, Kevin

    2017-02-01

    Three-dimensional growth conditions reflect the natural environment of cancer cells and are crucial to be performed at drug screens. We developed a 3D assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the 50-year old benchmark assay-soft agar. Using GILA, we performed high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. This phenotypic approach is complementary to our genetic approach that utilizes single-cell RNA-sequencing of a patient sample to identify putative oncogenes that confer sensitivity to drugs designed to specifically inhibit the identified oncoprotein. Currently, we are dealing with a big challenge in our field- the limited number of cells that might be extracted from a biopsy. Small patient-derived samples are hard to test in the traditional multiwell plate and it will be helpful to minimize the culture area and the experimental system. We managed to design a suitable microfluidic device for limited number of cells and perform the assay using image analysis. We aim to test drugs on tumor cells, outside of the patient body- and recommend on the ideal treatment that is tailored to the individual. This device will help to minimize biopsy-sampling volumes and minimize interventions in the patient's tumor.

  6. New-generation taxoid SB-T-1214 inhibits stem cell-related gene expression in 3D cancer spheroids induced by purified colon tumor-initiating cells

    PubMed Central

    2010-01-01

    Background Growing evidence suggests that the majority of tumors are organized hierarchically, comprising a population of tumor-initiating, or cancer stem cells (CSCs) responsible for tumor development, maintenance and resistance to drugs. Previously we have shown that the CD133high/CD44high fraction of colon cancer cells is different from their bulk counterparts at the functional, morphological and genomic levels. In contrast to the majority of colon cancer cells expressing moderate levels of CD133, CD44 and CD166, cells with a high combined expression of CD133 and CD44 possessed several characteristic stem cell features, including profound self-renewal capacity in vivo and in vitro, and the ability to give rise to different cell phenotypes. The present study was undertaken for two aims: a) to determine stem cell-related genomic characteristics of floating 3D multicellular spheroids induced by CD133high/CD44high colon cancer cells; and b) to evaluate CSC-specific alterations induced by new-generation taxoid SB-T-1214. Results Selected CSC phenotype was isolated from three independent invasive colon cancer cell lines, HCT116, HT29 and DLD-1. A stem cell-specific PCR array assay (SABiosciences) revealed that colonospheres induced by purified CD133high/CD44high expressing cells display profound up-regulation of stem cell-related genes in comparison with their bulk counterparts. The FACS analysis has shown that the 3D colonospheres contained some minority cell populations with high levels of expression of Oct4, Sox2, Nanog and c-Myc, which are essential for stem cell pluripotency and self-renewal. Single administration of the SB-T-1214 at concentration 100 nM-1 μM for 48 hr not only induced growth inhibition and apoptotic cell death in these three types of colon cancer spheroids in 3D culture, but also mediated massive inhibition of the stem cell-related genes and significant down-regulation of the pluripotency gene expression. PCR array and FACS data were confirmed

  7. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  8. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

    PubMed

    Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F

    2017-06-15

    High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl(-)- and Ca(2+)-imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Comparison of stereotactic radiosurgery and fractionated stereotactic radiotherapy of acoustic neurinomas according to 3-D tumor volume shrinkage and quality of life.

    PubMed

    Henzel, Martin; Hamm, Klaus; Sitter, Helmut; Gross, Markus W; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2009-09-01

    Stereotactic radiosurgery (SRS) and also fractionated stereotactic radiotherapy (SRT) offer high local control (LC) rates (> 90%). This study aimed to evaluate three-dimensional (3-D) tumor volume (TV) shrinkage and to assess quality of life (QoL) after SRS/SRT. From 1999 to 2005, 35/74 patients were treated with SRS, and 39/74 with SRT. Median age was 60 years. Treatment was delivered by a linear accelerator. Median single dose was 13 Gy (SRS) or 54 Gy (SRT). Patients were followed up > or = 12 months after SRS/SRT. LC and toxicity were evaluated by clinical examinations and magnetic resonance imaging. 3-D TV shrinkage was evaluated with the planning system. QoL was assessed using the questionnaire Short Form-36. Median follow-up was 50/36 months (SRS/SRT). Actuarial 5-year freedom from progression/overall survival was 88.1%/100% (SRS), and 87.5%/87.2% (SRT). TV shrinkage was 15.1%/40.7% (SRS/SRT; p = 0.01). Single dose (< 13 Gy) was the only determinant factor for TV shrinkage after SRS (p = 0.001). Age, gender, initial TV, and previous operations did not affect TV shrinkage. Acute or late toxicity (> or = grade 3) was never seen. Concerning QoL, no significant differences were observed after SRS/SRT. Previous operations and gender did not affect QoL (p > 0.05). Compared with the German normal population, patients had worse values for all domains except for mental health. TV shrinkage was significantly higher after SRT than after SRS. Main symptoms were not affected by SRS/SRT. Retrospectively, QoL was neither affected by SRS nor by SRT.

  10. SU-E-T-300: Dosimetric Comparision of 4D Radiation Therapy and 3D Radiation Therapy for the Liver Tumor Based On 4D Medical Image

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receiving 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.

  11. In Vitro Optimization of EtNBS-PDT against Hypoxic Tumor Environments with a Tiered, High-Content, 3D Model Optical Screening Platform

    PubMed Central

    Klein, Oliver J.; Bhayana, Brijesh; Park, Yong Jin; Evans, Conor L.

    2012-01-01

    Hypoxia and acidosis are widely recognized as major contributors to the development of treatment resistant cancer. For patients with disseminated metastatic lesions, such as most women with ovarian cancer (OvCa), the progression to treatment resistant disease is almost always fatal. Numerous therapeutic approaches have been developed to eliminate treatment resistant carcinoma, including novel biologic, chemo, radiation, and photodynamic therapy (PDT) regimens. Recently, PDT using the cationic photosensitizer EtNBS was found to be highly effective against therapeutically unresponsive hypoxic and acidic OvCa cellular populations in vitro. To optimize this treatment regimen, we developed a tiered, high-content, image-based screening approach utilizing a biologically relevant OvCa 3D culture model to investigate a small library of side-chain modified EtNBS derivatives. The uptake, localization, and photocytotoxicity of these compounds on both the cellular and nodular levels were observed to be largely mediated by their respective ethyl side chain chemical alterations. In particular, EtNBS and its hydroxyl-terminated derivative (EtNBS-OH) were found to have similar pharmacological parameters, such as their nodular localization patterns and uptake kinetics. Interestingly, these two molecules were found to induce dramatically different therapeutic outcomes: EtNBS was found to be more effective in killing the hypoxic, nodule core cells with superior selectivity, while EtNBS-OH was observed to trigger widespread structural degradation of nodules. This breakdown of the tumor architecture can improve the therapeutic outcome and is known to synergistically enhance the antitumor effects of front-line chemotherapeutic regimens. These results, which would not have been predicted or observed using traditional monolayer or in vivo animal screening techniques, demonstrate the powerful capabilities of 3D in vitro screening approaches for the selection and optimization of therapeutic

  12. 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse.

    PubMed

    Vuksic, Mario; Del Turco, Domenico; Bas Orth, Carlos; Burbach, Guido J; Feng, Guoping; Müller, Christian M; Schwarzacher, Stephan W; Deller, Thomas

    2008-01-01

    Granule cells of the mouse fascia dentata are widely used in studies on neuronal development and plasticity. In contrast to the rat, however, high-resolution morphometric data on these cells are scarce. Thus, we have analyzed granule cells in the fascia dentata of the adult Thy1-GFP mouse (C57BL/6 background). In this mouse line, single neurons in the granule cell layer are GFP-labeled, making them amenable to high-resolution 3D-reconstruction. First, calbindin or parvalbumin-immunofluorescence was used to identify GFP-positive cells as granule cells. Second, the dorsal-ventral distribution of GFP-positive granule cells was studied: In the dorsal part of the fascia dentata 11% and in the ventral part 15% of all granule cells were GFP-positive. Third, GFP-positive and GFP-negative granule cells were compared using intracellular dye-filling (fixed slice technique) and patch-clamp recordings; no differences were observed between the cells. Finally, GFP-positive granule cells (dorsal and ventral fascia dentata) were imaged at high resolution with a confocal microscope, 3D-reconstructed in their entirety and analyzed for soma size, total dendritic length, number of segments, total number of spines and spine density. Sholl analysis revealed that dendritic complexity of granule cells is maximal 150-200 mum from the soma. Granule cells located in the ventral part of the hippocampus revealed a greater degree of dendritic complexity compared to cells in the dorsal part. Taken together, this study provides morphometric data on granule cells of mice bred on a C57BL/6 background and establishes the Thy1-GFP mouse as a tool to study granule cell neurobiology. (c) 2008 Wiley-Liss, Inc.

  13. Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D camera.

    PubMed

    van Dam, Peter M; Gordon, Jeffrey P; Laks, Michael

    2014-01-01

    electrode was positioned to the actual PVC origin. Slight changes in the virtual positions of the V1-6 precordial electrodes produce marked, non-linear and unpredictable shifts in the CIPS-computed PVC origin. Thus, any variation in the physical ECG electrode placement on a patient can result in significant error within the CIPS model. These large errors would make CIPS useless and underscore the need for accurate, patient specific measurement of electrode position relative to the patient specific torso geometries. A potential solution to this problem could be the introduction of a 3D camera to incorporate accurate measurement of physical electrode placement into the CIPS model. Since the 3D camera software integrates the 3D imaged position of the electrode with the MRI derived torso model, it is conveniently incorporated in the next generation CIPS software to decrease the errors in modeled location of the electrodes. Thus, the 3D camera will be the III(rd) component of the CIPS to increase its accuracy in PVC, VT, and WPW localization. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    PubMed

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  15. Feature-location binding in 3D: Feature judgments are biased by 2D location but not position-in-depth.

    PubMed

    Finlayson, Nonie J; Golomb, Julie D

    2016-10-01

    A fundamental aspect of human visual perception is the ability to recognize and locate objects in the environment. Importantly, our environment is predominantly three-dimensional (3D), but while there is considerable research exploring the binding of object features and location, it is unknown how depth information interacts with features in the object binding process. A recent paradigm called the spatial congruency bias demonstrated that 2D location is fundamentally bound to object features, such that irrelevant location information biases judgments of object features, but irrelevant feature information does not bias judgments of location or other features. Here, using the spatial congruency bias paradigm, we asked whether depth is processed as another type of location, or more like other features. We initially found that depth cued by binocular disparity biased judgments of object color. However, this result seemed to be driven more by the disparity differences than the depth percept: Depth cued by occlusion and size did not bias color judgments, whereas vertical disparity information (with no depth percept) did bias color judgments. Our results suggest that despite the 3D nature of our visual environment, only 2D location information - not position-in-depth - seems to be automatically bound to object features, with depth information processed more similarly to other features than to 2D location. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature.

    PubMed

    Seaman, Steven; Zhu, Zhongyu; Saha, Saurabh; Zhang, Xiaoyan M; Yang, Mi Young; Hilton, Mary Beth; Morris, Karen; Szot, Christopher; Morris, Holly; Swing, Deborah A; Tessarollo, Lino; Smith, Sean W; Degrado, Sylvia; Borkin, Dmitry; Jain, Nareshkumar; Scheiermann, Julia; Feng, Yang; Wang, Yanping; Li, Jinyu; Welsch, Dean; DeCrescenzo, Gary; Chaudhary, Amit; Zudaire, Enrique; Klarmann, Kimberly D; Keller, Jonathan R; Dimitrov, Dimiter S; St Croix, Brad

    2017-04-10

    Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies. Published by Elsevier Inc.

  17. Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position.

    PubMed

    Samoudi, Amine M; Kampusch, Stefan; Tanghe, Emmeric; Széles, Jozsef C; Martens, Luc; Kaniusas, Eugenijus; Joseph, Wout

    2017-02-13

    Percutaneous stimulation of the auricular branch of the vagus nerve (pVNS) by miniaturized needle electrodes in the auricle gained importance as a treatment for acute and chronic pain. The objective is to establish a realistic numerical model of pVNS and investigate the effects of stimulation waveform, electrodes' depth, and electrodes' position on nerve excitation threshold and the percentage of stimulated nerves. Simulations were performed with Sim4Life. An electrostatic solver and neural tissue models were combined for electromagnetic and neural simulation. The numerical model consisted of a realistic high-resolution model of a human ear, blood vessels, nerves, and three needle electrodes. A novel 3D ear model was established, including blood vessels and nerves. The electric field distribution was extracted and evaluated. Maximum sensitivity to needles' depth and displacement was evaluated to be 9.8 and 15.5% per 0.1 mm, respectively. Stimulation was most effective using biphasic compared to mono-phasic pulses. The established model allows easy and quantitative evaluation of various stimulation setups, enabling optimization of pVNS in experimental settings. Results suggest a high sensitivity of pVNS to the electrodes' position and depth, implying the need for precise electrode positioning. Validation of the model needs to be performed.

  18. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  19. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    NASA Astrophysics Data System (ADS)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a

  20. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models.

    PubMed

    Sarisozen, Can; Dhokai, Shekhar; Tsikudo, Edcar G; Luther, Ed; Rachman, Ilya M; Torchilin, Vladimir P

    2016-11-01

    NF-κB is strongly associated with poor prognosis of different cancer types and an important factor responsible for the malignant phenotype of glioblastoma. Overcoming chemotherapy-induced resistance caused by activation of PI3K/Akt and NF-κB pathways is crucial for successful glioblastoma therapy. We developed an all-in-one nanomedicine formulation for co-delivery of a chemotherapeutic agent (topoisomerase II inhibitor, doxorubicin) and a multidrug resistance modulator (NF-κB inhibitor, curcumin) for treatment of glioblastoma due to their synergism. Both agents were incorporated into PEG-PE-based polymeric micelles. The glucose transporter-1 (GLUT1) is overexpressed in many tumors including glioblastoma. The micellar system was decorated with GLUT1 antibody single chain fragment variable (scFv) as the ligand to promote blood brain barrier transport and glioblastoma targeting. The combination treatment was synergistic (combination index, CI of 0.73) against U87MG glioblastoma cells. This synergism was improved by micellar encapsulation (CI: 0.63) and further so with GLUT1 targeting (CI: 0.46). Compared to non-targeted micelles, GLUT1 scFv surface modification increased the association of micelles (>20%, P<0.01) and the nuclear localization of doxorubicin (∼3-fold) in U87MGcells, which also translated into enhanced cytotoxicity. The increased caspase 3/7 activation by targeted micelles indicates successful apoptosis enhancement by combinatory treatment. Moreover, GLUT1 targeted micelles resulted in deeper penetration into the 3D spheroid model. The increased efficacy of combination nanoformulations on the spheroids compared to a single agent loaded, or to non-targeted formulations, reinforces the rationale for selection of this combination and successful utilization of GLUT1 scFv as a targeting agent for glioblastoma treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. SU-E-T-346: Effect of Jaw Position On Dose to Critical Structures in 3-D Conformal Radiotherapy Treatment of Pancreatic Cancer

    SciTech Connect

    Paudel, N; Han, E; Liang, X; Morrill, S; Zhang, X; Hardee, M; Penagaricano, J; Ratanatharathorn, V

    2015-06-15

    Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequently moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.

  2. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  3. Advanced human carotid plaque progression correlates positively with flow shear stress using follow-up scan data: an in vivo MRI multi-patient 3D FSI study.

    PubMed

    Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S; Tang, Dalin

    2010-09-17

    Although it has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS), increasing evidence suggests mechanisms governing advanced plaque progression are not well understood. Fourteen patients were scanned 2-4 times at 18 month intervals using a histologically validated multi-contrast magnetic resonance imaging (MRI) protocol to acquire carotid plaque progression data. Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. 3D fluid-structure interaction (FSI) models were constructed and plaque wall stress (PWS) and flow shear stress (FSS) were obtained from all matching lumen data points (400-1000 per plaque; 100 points per matched slice) to quantify correlations with plaque progression measured by vessel wall thickness increase (WTI). Using FSS and PWS data from follow-up scan, 21 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance ratio=21/8/3), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (positive/negative/no significance ratio=2/26/4). The mean FSS value of lipid core nodes (n=5294) from all 47 plaque models was 63.5dyn/cm(2), which was 45% higher than that from all normal vessel nodes (n=27553, p<0.00001). The results from this intensive FSI study indicate that flow shear stress from follow-up scan correlates positively with advanced plaque progression which is different from what has been observed in plaque initiation and early-stage progression. It should be noted that the correlation results do not automatically lead to any causality conclusions.

  4. Advanced Human Carotid Plaque Progression Correlates Positively with Flow Shear Stress Using Follow-Up Scan Data: An In Vivo MRI Multi-Patient 3D FSI Study

    PubMed Central

    Yang, Chun; Canton, Gador; Yuan, Chun; Ferguson, Marina; Hatsukami, Thomas S.; Tang, Dalin

    2010-01-01

    Although it has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS), increasing evidence suggests mechanisms governing advanced plaque progression are not well understood. Fourteen patients were scanned 2–4 times at 18 month intervals using a histologically validated multi-contrast magnetic resonance imaging (MRI) protocol to acquire carotid plaque progression data. Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. 3D fluid-structure interaction (FSI) models were constructed and plaque wall stress (PWS) and flow shear stress (FSS) were obtained from all matching lumen data points (400–1000 per plaque; 100 points per matched slice) to quantify correlations with plaque progression measured by vessel wall thickness increase (WTI). Using FSS and PWS data from follow-up scan, 21 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance ratio = 21/8/3), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (positive/negative/no significance ratio = 2/26/4). The mean FSS value of lipid core nodes (n=5294) from all 47 plaque models was 63.5 dyn/cm2, which was 45% higher than that from all normal vessel nodes (n=27553, p<0.00001)). The results from this intensive FSI study indicate that flow shear stress from follow-up scan correlates positively with advanced plaque progression which is different from what has been observed in plaque initiation and early-stage progression. It should be noted that the correlation results do not automatically lead to any causality conclusions. PMID:20570268

  5. Anti-metastatic effects of RAPTA-C conjugated polymeric micelles on two-dimensional (2D) breast tumor cells and three-dimensional (3D) multicellular tumor spheroids.

    PubMed

    Lu, Hongxu; Blunden, Bianca M; Scarano, Wei; Lu, Mingxia; Stenzel, Martina H

    2016-03-01

    Macromolecular ruthenium (Ru) complexes are a promising avenue to better, and more selective, chemotherapeutics to treat metastatic cancers. In our previous research, amphiphilic block copolymeric micelles carrying RAPTA-C (RuCl2(p-cymene)(PTA)) were demonstrated to improve the cellular uptake and cytotoxicity of RAPTA-C (Blunden et al., 2013). However, the anti-metastatic effect of RAPTA-C conjugated polymeric micelles is yet to be established. In this work, we investigated the anti-metastatic effects of RAPTA-C conjugated micelles in both 2D and 3D in vitro breast tumor cell models in comparison with free RAPTA-C. RAPTA-C conjugated micelles showed an improved anti-metastatic effect compared with RAPTA-C for 2D cultured breast tumor cells. RAPTA-C micelles selectively targeted the metastatic tumor cells over the nontumorigenic CHO cells. 3D MCTS assays showed that RAPTA-C conjugated micelles showed a cell growth inhibition similar to that of ten times of the free drug. Further improvement of the RAPTA-C delivery vehicle may provide useful tools to harness ruthenium compounds for metastatic cancer therapy. The interest in ruthenium drugs stem from their anti-metastatic effect. In contrast to other metal-based drugs that inhibit the growth of tumor cells, ruthenium drugs seem less toxic, but have a pronounce effect on the migration of cancer cells. The ruthenium drug chosen here, RAPTA-C, is capable of inhibiting migration as shown in various assays here. In this publication, we could show for the first time that this effect is enhanced when the drug is delivered using micelles. Important in particular is that the effect is more pronounced in cancerous breast cancer cells while RAPTA-C delivered in micelles does not seem to show any effect on healthy cells. We believe that the presented micelles are suitable carriers for this anti-metastatic drug. The design of the micelle would also allow the encapsulation of other drugs in future studies creating a potentially

  6. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces.

    PubMed

    Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F

    2014-04-01

    A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured.

  8. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system.

    PubMed

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D; Levin, Craig S

    2016-09-21

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve [Formula: see text] mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel's comparators, were performed. (68)Ge and (137)Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be [Formula: see text]% FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  9. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  10. Comparison of 2D Radiographic Images and 3D Cone Beam Computed Tomography for Positioning Head-and-Neck Radiotherapy Patients

    SciTech Connect

    Li Heng; Zhu, X. Ronald Zhang Lifei; Dong Lei; Tung, Sam; Ahamad, Anesa M.D.; Chao, K. S. Clifford; Morrison, William H.; Rosenthal, David I.; Schwartz, David L.; Mohan, Radhe; Garden, Adam S.

    2008-07-01

    Purpose: To assess the positioning accuracy using two-dimensional kilovoltage (2DkV) imaging and three-dimensional cone beam CT (CBCT) in patients with head and neck (H and N) cancer receiving radiation therapy. To assess the benefit of patient-specific headrest. Materials and Methods: All 21 patients studied were immobilized using thermoplastic masks with either a patient-specific vacuum bag (11 of 21, IMA) or standard clear plastic (10 of 21, IMB) headrests. Each patient was imaged with a pair of orthogonal 2DkV images in treatment position using onboard imaging before the CBCT procedure. The 2DkV and CBCT images were acquired weekly during the same session. The 2DkV images were reviewed by oncologists and also analyzed by a software tool based on mutual information (MI). Results: Ninety-eight pairs of assessable 2DkV-CBCT alignment sets were obtained. Systematic and random errors were <1.6 mm for both 2DkV and CBCT alignments. When we compared shifts determined by CBCT and 2DkV for the same patient setup, statistically significant correlations were observed in all three major directions. Among all CBCT couch shifts, 4.1% {>=} 0.5 cm and 18.7% {>=} 0.3 cm, whereas among all 2DkV (MI) shifts, 1.7% {>=} 0.5 cm and 11.2% {>=} 0.3 cm. Statistically significant difference was found on anteroposterior direction between IMA and IMB with the CBCT alignment only. Conclusions: The differences between 2D and 3D alignments were mainly caused by the relative flexibility of certain H and N structures and possibly by rotation. Better immobilization of the flexible neck is required to further reduce the setup errors for H and N patients receiving radiotherapy.

  11. HER2-Positive Circulating Tumor Cells in Breast Cancer

    PubMed Central

    Ignatiadis, Michail; Rothé, Françoise; Chaboteaux, Carole; Durbecq, Virginie; Rouas, Ghizlane; Criscitiello, Carmen; Metallo, Jessica; Kheddoumi, Naima; Singhal, Sandeep K.; Michiels, Stefan; Veys, Isabelle; Rossari, José; Larsimont, Denis; Carly, Birgit; Pestrin, Marta; Bessi, Silvia; Buxant, Frédéric; Liebens, Fabienne; Piccart, Martine; Sotiriou, Christos

    2011-01-01

    Purpose Circulating Tumor Cells (CTCs) detection and phenotyping are currently evaluated in Breast Cancer (BC). Tumor cell dissemination has been suggested to occur early in BC progression. To interrogate dissemination in BC, we studied CTCs and HER2 expression on CTCs across the spectrum of BC staging. Methods Spiking experiments with 6 BC cell lines were performed and blood samples from healthy women and women with BC were analyzed for HER2-positive CTCs using the CellSearch®. Results Based on BC cell lines experiments, HER2-positive CTCs were defined as CTCs with HER2 immunofluoresence intensity that was at least 2.5 times higher than the background. No HER2-positive CTC was detected in 42 women without BC (95% confidence interval (CI) 0–8.4%) whereas 4.1% (95%CI 1.4–11.4%) of 73 patients with ductal/lobular carcinoma in situ (DCIS/LCIS) had 1 HER2-positive CTC/22.5 mL, 7.9%, (95%CI 4.1–14.9%) of 101 women with non metastatic (M0) BC had ≥1 HER2-positive CTC/22.5 mL (median 1 cell, range 1–3 cells) and 35.9% (95%CI 22.7–51.9%) of 39 patients with metastatic BC had ≥1 HER2-positive CTC/7.5 mL (median 1.5 cells, range 1–42 cells). In CTC-positive women with DCIS/LCIS or M0 BC, HER2-positive CTCs were more commonly detected in HER2-positive (5 of 5 women) than HER2-negative BC (5 of 12 women) (p = 0.03). Conclusion HER2-positive CTCs were detected in DCIS/LCIS or M0 BC irrespective of the primary tumor HER2 status. Nevertheless, their presence was more common in women with HER2-positive disease. Monitoring of HER2 expression on CTCs might be useful in trials with anti-HER2 therapies. PMID:21264346

  12. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  13. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  14. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  15. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.

  16. A surface displacement analysis for Volcan Pacaya from October 2001 through March 2013 by means of 3-D modeling of precise position GPS data

    NASA Astrophysics Data System (ADS)

    Hetland, Brianna R.

    Volcan Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a

  17. Intensity-Modulated and 3D-Conformal Radiotherapy for Whole-Ventricular Irradiation as Compared With Conventional Whole-Brain Irradiation in the Management of Localized Central Nervous System Germ Cell Tumors

    SciTech Connect

    Chen, Michael Jenwei; Silva Santos, Adriana da; Sakuraba, Roberto Kenji; Lopes, Cleverson Perceu; Goncalves, Vinicius Demanboro; Weltman, Eduardo; Ferrigno, Robson; Cruz, Jose Carlos

    2010-02-01

    Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.

  18. Expression of CD44 isoforms in renal cell tumors. Positive correlation to tumor differentiation.

    PubMed Central

    Terpe, H. J.; Störkel, S.; Zimmer, U.; Anquez, V.; Fischer, C.; Pantel, K.; Günthert, U.

    1996-01-01

    CD44 isoforms have been implicated in tumor progression and embryogenesis. Primary renal cell tumors (n = 100) of various histopathological differentiation and grading stages were analyzed for expression of CD44 isoforms in comparison with nonmalignant adult and fetal renal tissues. Evaluations were performed by immunohistochemistry using CD44 isoform-specific monoclonal antibodies and by reverse transcriptase polymerase chain reactions (RT-PCR). In the nonmalignant kidney no CD44 variant isoforms were detected. There was a significant increase in expression of CD44 standard (CD44s) and several variant isoforms (CD44v) in the course of tumor differentiation in clear cell carcinomas (n = 68) from stages G1 to G3 (P < 0.0001 for CD44s and isoforms containing CD44-6v, and P < 0.007 for those containing CD44-9v). Also, in chromophilic cell carcinomas (n = 13), CD44 isoform expression correlated with grading; ie, no CD44 expression was detected in G1 tumors, whereas in approximately 50% of the G2 tumors, CD44s, CD44-6v, and CD44-9v isoforms were present. Oncocytomas (n = 8), which are benign renal cell tumors, did not express CD44 isoforms, whereas invasive chromophobe cell carcinomas (n = 11) were positive for CD44s and CD44v isoforms. Transcript analyses by RT-PCR revealed that the upregulated isoforms in the carcinoma cells contained exons 8 to 10 and 3, 8 to 10 in combination from the variant region. In conclusion, expression of variant CD44 isoforms was strongly correlated with grading and appears to mediate a more aggressive phenotype to renal cell tumors. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8579108

  19. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  20. Cardiothoracic Applications of 3D Printing

    PubMed Central

    Giannopoulos, Andreas A.; Steigner, Michael L.; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R.; Rybicki, Frank J.; Mitsouras, Dimitris

    2016-01-01

    Summary Medical 3D printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as CT, MRI, echocardiography and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D printed models can improve diagnosis and allow for advanced pre-operative planning. The majority of applications reported involve congenital heart diseases, valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing peri-operative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  1. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  2. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  3. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  4. 3D "spectracoustic" system: a modular, tomographic, spectroscopic mapping imaging, non-invasive, diagnostic system for detection of small starting developing tumors like melanoma

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios

    2017-03-01

    This work led to a new method named 3D spectracoustic tomographic mapping imaging. The current and the future work is related to the fabrication of a combined acoustic microscopy transducer and infrared illumination probe permitting the simultaneous acquisition of the spectroscopic and the tomographic information. This probe provides with the capability of high fidelity and precision registered information from the combined modalities named spectracoustic information.

  5. Tumor consistency of pituitary macroadenomas: predictive analysis on the basis of imaging features with contrast-enhanced 3D FIESTA at 3T.

    PubMed

    Yamamoto, J; Kakeda, S; Shimajiri, S; Takahashi, M; Watanabe, K; Kai, Y; Moriya, J; Korogi, Y; Nishizawa, S

    2014-02-01

    Preoperative evaluation of pituitary macroadenoma tumor consistency is important for neurosurgery. Thus, we aimed to retrospectively assess the role of contrast-enhanced FIESTA in predicting the tumor consistency of pituitary macroadenomas. Twenty-nine patients with pituitary macroadenomas underwent conventional MR imaging sequences and contrast-enhanced FIESTA before surgery. Two neuroradiologists assessed the contrast-enhanced FIESTA, contrast-enhanced T1WI, and T2WI. On the basis of surgical findings, the macroadenomas were classified by the neurosurgeons as either soft or hard. Finally, Fisher exact probability tests and unpaired t tests were used to compare predictions on the basis of the MR imaging findings with the tumor consistency, collagen content, and postoperative tumor size. The 29 pituitary macroadenomas were classified as either solid or mosaic types. Solid type was characterized by a homogeneous pattern of tumor signal intensity without intratumoral hyperintense dots, whereas the mosaic type was characterized by many intratumoral hyperintense dots on each MR image. Statistical analyses revealed a significant correlation between tumor consistency and contrast-enhanced FIESTA findings. Sensitivity and specificity were higher for contrast-enhanced FIESTA (1.00 and 0.88-0.92, respectively) than for contrast-enhanced T1WI (0.80 and 0.25-0.33, respectively) and T2WI (0.60 and 0.38-0.54, respectively). Compared with mosaic-type adenomas, solid-type adenomas tended to have a hard tumor consistency as well as a significantly higher collagen content and lower postoperative tumor size. Contrast-enhanced FIESTA may provide preoperative information regarding the consistency of macroadenomas that appears to be related to the tumor collagen content.

  6. Efficacy of a Cell-Cycle Decoying Killer Adenovirus on 3-D Gelfoam®-Histoculture and Tumor-Sphere Models of Chemo-Resistant Stomach Carcinomatosis Visualized by FUCCI Imaging

    PubMed Central

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2016-01-01

    Stomach cancer carcinomatosis peritonitis (SCCP) is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI). FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP), or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301. PMID:27673332

  7. Efficacy of a Cell-Cycle Decoying Killer Adenovirus on 3-D Gelfoam®-Histoculture and Tumor-Sphere Models of Chemo-Resistant Stomach Carcinomatosis Visualized by FUCCI Imaging.

    PubMed

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    Stomach cancer carcinomatosis peritonitis (SCCP) is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI). FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP), or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301.

  8. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    SciTech Connect

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods: Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic

  9. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging

  10. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound

    PubMed Central

    Lin, Fanglue; Shelton, Sarah E.; Espíndola, David; Rojas, Juan D.; Pinton, Gianmarco; Dayton, Paul A.

    2017-01-01

    Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself. PMID:28042327

  11. Doubly-excited {sup 1,3}D{sup e} resonance states of two-electron positive ions Li{sup +} and Be{sup 2+} in Debye plasmas

    SciTech Connect

    Kar, Sabyasachi; Wang, Yang; Jiang, Zishi; Li, Shuxia; Ratnavelu, K.

    2014-01-15

    We investigate the bound {sup 1,3}D states and the doubly-excited {sup 1,3}D{sup e} resonance states of two-electron positive ions Li{sup +} and Be{sup 2+} by employing correlated exponential wave functions. In the framework of the stabilization method, we are able to extract three series (2pnp, 2snd, 2pnf) of {sup 1}D{sup e} resonances and two series (2pnp, 2snd) of {sup 3}D{sup e} resonances below the N = 2 threshold. The {sup 1,3}D{sup e} resonance parameters (resonance energies and widths) for Li{sup +} and Be{sup 2+} along with the bound-excited 1s3d {sup 1,3}D state energies are reported for the first time as functions of the screening parameter. Accurate resonance energies and widths are also reported for Li{sup +} and Be{sup 2+} in vacuum. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time.

  12. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  13. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  14. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  15. Application of the CAL 3-D CVS program to evaluate the equilibrium position of an Euler-jointed Alderson Part572

    NASA Astrophysics Data System (ADS)

    Shaibani, S. J.

    1982-08-01

    The adaptation of the Cal 3-D crash victim simulation program in its version 20A form to a Vax 11/780 computer is described. The effectiveness of the modifications is demonstrated by using the program to seat a Euler-jointed Alderson Part 572 dummy with the equilibrium subroutine. The resulting segment linear acceleration values of .09 g or better indicate that the dummy can be considered to be in equilibrium.

  16. A 3D QSAR study of betulinic acid derivatives as anti-tumor agents using topomer CoMFA: model building studies and experimental verification.

    PubMed

    Ding, Weimin; Sun, Miao; Luo, Shaman; Xu, Tao; Cao, Yibo; Yan, Xiufeng; Wang, Yang

    2013-08-22

    Betulinic acid (BA) is a natural product that exerts its cytotoxicity against various malignant carcinomas without side effects by triggering the mitochondrial pathway to apoptosis. Betulin (BE), the 28-hydroxyl analog of BA, is present in large amounts (up to 30% dry weight) in the outer bark of birch trees, and shares the same pentacyclic triterpenoid core as BA, yet exhibits no significant cytotoxicity. Topomer CoMFA studies were performed on 37 BA and BE derivatives and their in vitro anti-cancer activity results (reported as IC₅₀ values) against HT29 human colon cancer cells in the present study. All derivatives share a common pentacyclic triterpenoid core and the molecules were split into three pieces by cutting at the C-3 and C-28 sites with a consideration toward structural diversity. The analysis gave a leave-one-out cross-validation q² value of 0.722 and a non-cross-validation r² value of 0.974, which suggested that the model has good predictive ability (q² > 0.2). The contour maps illustrated that bulky and electron-donating groups would be favorable for activity at the C-28 site, and a moderately bulky and electron-withdrawing group near the C-3 site would improve this activity. BE derivatives were designed and synthesized according to the modeling result, whereby bulky electronegative groups (maleyl, phthalyl, and hexahydrophthalyl groups) were directly introduced at the C-28 position of BE. The in vitro cytotoxicity values of the given analogs against HT29 cells were consistent with the predicted values, proving that the present topomer CoMFA model is successful and that it could potentially guide the synthesis of new betulinic acid derivatives with high anti-cancer activity. The IC₅₀ values of these three new compounds were also assayed in five other tumor cell lines. 28-O-hexahydrophthalyl BE exhibited the greatest anti-cancer activities and its IC₅₀ values were lower than those of BA in all cell lines, excluding DU145 cells.

  17. Optical laser scanning of a leucodye micelle gel: preliminary results of a 3D dose verification of an IMRT treatment for a brain tumor

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; De Deene, Y.

    2013-06-01

    In the present study an in-house developed leucodye micelle gel was used in combination with an in-house developed optical laser scanner for the 3D dose verification of an IMRT treatment of a pituitary adenoma. In an initial prospective study, a gel measured depth dose distribution of a square 6 MV photon beam was compared with an ion chamber measurement. In a second experiment, the gel and scanner were used to verify a clinical dose distribution on a recently installed linear accelerator. The calibration procedure is identified as the major source of dose deviations.

  18. Computer-based vertebral tumor cryoablation planning and procedure simulation involving two cases using MRI-visible 3D printing and advanced visualization

    PubMed Central

    Guenette, Jeffrey P.; Himes, Nathan; Giannopoulos, Andreas A.; Kelil, Tatiana; Mitsouras, Dimitris; Lee, Thomas C.

    2016-01-01

    We report the development and use of MRI-compatible and MRI-visible 3D printed models in conjunction with advanced visualization software models to plan and simulate safe access routes to achieve a theoretical zone of cryoablation for percutaneous image-guided treatment of a C7 pedicle osteoid osteoma and an L1 lamina osteoblastoma. Both models altered procedural planning and patient care. Patient-specific MRI-visible models can be helpful in planning complex percutaneous image-guided cryoablation procedures. PMID:27505064

  19. Computer-Based Vertebral Tumor Cryoablation Planning and Procedure Simulation Involving Two Cases Using MRI-Visible 3D Printing and Advanced Visualization.

    PubMed

    Guenette, Jeffrey P; Himes, Nathan; Giannopoulos, Andreas A; Kelil, Tatiana; Mitsouras, Dimitris; Lee, Thomas C

    2016-11-01

    We report the development and use of MRI-compatible and MRI-visible 3D printed models in conjunction with advanced visualization software models to plan and simulate safe access routes to achieve a theoretic zone of cryoablation for percutaneous image-guided treatment of a C7 pedicle osteoid osteoma and an L1 lamina osteoblastoma. Both models altered procedural planning and patient care. Patient-specific MRI-visible models can be helpful in planning complex percutaneous image-guided cryoablation procedures.

  20. Opportunity Stretches Out 3-D

    NASA Image and Video Library

    2004-02-02

    This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.

  1. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly.

    PubMed

    Akasov, Roman; Haq, Sabah; Haxho, Fiona; Samuel, Vanessa; Burov, Sergey V; Markvicheva, Elena; Neufeld, Ronald J; Szewczuk, Myron R

    2016-10-04

    Multicellular tumor spheroids (MTS) have been at the forefront of cancer research, designed to mimic tumor-like developmental patterns in vitro. Tumor growth in vivo is highly influenced by aberrant cell surface-specific sialoglycan structures on glycoproteins. Aberrant sialoglycan patterns that facilitate MTS formation are not well defined. Matrix-free spheroids from breast MCF-7 and pancreatic PANC1 cancer cell lines and their respective tamoxifen (TMX) and gemcitabine (Gem) resistant variants were generated using the RGD platform of cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK (TPP)). MCF-7 and MCF-7 TMX cells formed tight spheroids both in the classical agarose-and RGD-based platforms while all PANC1 cells formed loose aggregates. Using lectin histochemistry staining, sialidase assay, neuraminidase (Vibrio cholerae) and oseltamivir phosphate (OP) neuraminidase inhibitor treatments, MCF-7 and PANC1 cells and their drug-resistant variants expressed different sialic acid (SA) content on their cell surfaces. α-2,3- and α-2,6-sialic acid surface residues facilitated spheroid formation under cyclo-RGDfK(TPP)-induced self-assembly. Pretreatment with α-2,3- SA specific Maackia amurensis (MAL-II) lectin, α-2,6-SA specific Sambucus nigra (SNA) lectin, and exogenous α-2,6-SA specific neuraminidase (Vibrio cholerae) dose-dependently reduced spheroid volume. OP enhanced cell aggregation and compaction forming spheroids. PANC1 and MDA-MB231 xenograft tumors from untreated and OP-treated RAGxCγ double mutant mice expressed significantly higher levels of α-2,3- SA over α-2,6-SA. MCF-7 spheroids also expressed a high α-2,3-SA to α-2,6-SA ratio. These results suggest that the relative levels of specific sialoglycan structures on the cell surface correlate with the ability of cancer cells to form avascular multicellular tumor spheroids and in vivo xenograft tumors.

  2. Positive and negative functions of B lymphocytes in tumors

    PubMed Central

    Shen, Meng; Sun, Qian; Wang, Jian; Pan, Wei; Ren, Xiubao

    2016-01-01

    Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer. PMID:27331871

  3. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors

    PubMed Central

    Sarisozen, Can; Abouzeid, Abraham H.; Torchilin, Vladimir P.

    2014-01-01

    Multicellular 3D cancer cell culture (spheroids) resemble to in vivo tumors in terms of shape, cell morphology, growth kinetics, gene expression and drug response. However, these characteristics cause very limited drug penetration into deeper parts of the spheroids. In this study, we used multi drug resistant (MDR) ovarian cancer cell spheroid and in vivo tumor models to evaluate the co-delivery of paclitaxel (PCL) and a potent NF-κB inhibitor curcumin (CUR). PCL and CUR were co-loaded into the polyethylene glycol-phosphatidyl ethanolamine (PEG-PE) based polymeric micelles modified with Transferrin (TF) as the targeting ligand. Cytotoxicity, cellular association and accumulation into the deeper layers were investigated in the spheroids and compared with the monolayer cell culture. Comparing to non-targeted micelles, flow cytometry and confocal imaging proved significantly deeper and higher micelle penetration into the spheroids with TF-targeting. Both in monolayers and spheroids, PCL cytotoxicity was significantly increased when co-delivered with CUR in non-targeted micelles or as single agent in TF-targeted micelles, whereas TF-modification of co-loaded micelles did not further enhance the cytotoxicity. In vivo tumor inhibition studies showed good correlation with the 3D cell culture experiments, which suggests the current spheroid model can be used as an intermediate model for evaluation of co-delivery of anticancer compounds in targeted micelles. PMID:25016976

  4. SU-E-J-94: Positioning Errors Resulting From Using Bony Anatomy Alignment for Treating SBRT Lung Tumor

    SciTech Connect

    Frame, C; Ding, G

    2014-06-01

    Purpose: To quantify patient setups errors based on bony anatomy registration rather than 3D tumor alignment for SBRT lung treatments. Method: A retrospective study was performed for patients treated with lung SBRT and imaged with kV cone beam computed tomography (kV-CBCT) image-guidance. Daily CBCT images were registered to treatment planning CTs based on bony anatomy alignment and then inter-fraction tumor movement was evaluated by comparing shift in the tumor center in the medial-lateral, anterior-posterior, and superior-inferior directions. The PTV V100% was evaluated for each patient based on the average daily tumor displacement to assess the impact of the positioning error on the target coverage when the registrations were based on bony anatomy. Of the 35 patients studied, 15 were free-breathing treatments, 10 used abdominal compression with a stereotactic body frame, and the remaining 10 were performed with BodyFIX vacuum bags. Results: For free-breathing treatments, the range of tumor displacement error is between 1–6 mm in the medial-lateral, 1–13 mm in the anterior-posterior, and 1–7 mm in the superior-inferior directions. These positioning errors lead to 6–22% underdose coverage for PTV - V100% . Patients treated with abdominal compression immobilization showed positional errors of 0–4mm mediallaterally, 0–3mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% underdose ranging between 6–17%. For patients immobilized with the vacuum bags, the positional errors were found to be 0–1 mm medial-laterally, 0–1mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% under dose ranging between 5–6% only. Conclusion: It is necessary to align the tumor target by using 3D image guidance to ensure adequate tumor coverage before performing SBRT lung treatments. The BodyFIX vacuum bag immobilization method has the least positioning errors among the three methods studied when bony anatomy is used for

  5. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  6. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  7. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  8. A novel 3D graph cut based co-segmentation of lung tumor on PET-CT images with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Chen, Xinjian; Shi, Fei; Zhu, Weifang; Zhang, Bin; Xiang, Dehui

    2016-03-01

    Positron Emission Tomography (PET) and Computed Tomography (CT) have been widely used in clinical practice for radiation therapy. Most existing methods only used one image modality, either PET or CT, which suffers from the low spatial resolution in PET or low contrast in CT. In this paper, a novel 3D graph cut method is proposed, which integrated Gaussian Mixture Models (GMMs) into the graph cut method. We also employed the random walk method as an initialization step to provide object seeds for the improvement of the graph cut based segmentation on PET and CT images. The constructed graph consists of two sub-graphs and a special link between the sub-graphs which penalize the difference segmentation between the two modalities. Finally, the segmentation problem is solved by the max-flow/min-cut method. The proposed method was tested on 20 patients' PET-CT images, and the experimental results demonstrated the accuracy and efficiency of the proposed algorithm.

  9. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  10. Sialylation transmogrifies human breast and pancreatic cancer cells into 3D multicellular tumor spheroids using cyclic RGD-peptide induced self-assembly

    PubMed Central

    Akasov, Roman; Haq, Sabah; Haxho, Fiona; Samuel, Vanessa; Burov, Sergey V.; Markvicheva, Elena; Neufeld, Ronald J.; Szewczuk, Myron R.

    2016-01-01

    Multicellular tumor spheroids (MTS) have been at the forefront of cancer research, designed to mimic tumor-like developmental patterns in vitro. Tumor growth in vivo is highly influenced by aberrant cell surface-specific sialoglycan structures on glycoproteins. Aberrant sialoglycan patterns that facilitate MTS formation are not well defined. Matrix-free spheroids from breast MCF-7 and pancreatic PANC1 cancer cell lines and their respective tamoxifen (TMX) and gemcitabine (Gem) resistant variants were generated using the RGD platform of cyclic Arg-Gly-Asp-D-Phe-Lys peptide modified with 4-carboxybutyl-triphenylphosphonium bromide (cyclo-RGDfK (TPP)). MCF-7 and MCF-7 TMX cells formed tight spheroids both in the classical agarose-and RGD-based platforms while all PANC1 cells formed loose aggregates. Using lectin histochemistry staining, sialidase assay, neuraminidase (Vibrio cholerae) and oseltamivir phosphate (OP) neuraminidase inhibitor treatments, MCF-7 and PANC1 cells and their drug-resistant variants expressed different sialic acid (SA) content on their cell sur