Multigrid calculations of 3-D turbulent viscous flows
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1989-01-01
Convergence properties of a multigrid algorithm, developed to calculate compressible viscous flows, are analyzed by a vector sequence eigenvalue estimate. The full 3-D Reynolds-averaged Navier-Stokes equations are integrated by an implicit multigrid scheme while a k-epsilon turbulence model is solved, uncoupled from the flow equations. Estimates of the eigenvalue structure for both single and multigrid calculations are compared in an attempt to analyze the process as well as the results of the multigrid technique. The flow through an annular turbine is used to illustrate the scheme's ability to calculate complex 3-D flows.
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
3-D Flow Visualization of a Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Thurow, Brian; Williams, Steven; Lynch, Kyle
2009-11-01
A recently developed 3-D flow visualization technique is used to visualize large-scale structures in a turbulent boundary layer. The technique is based on the scanning of a laser light sheet through the flow field similar to that of Delo and Smits (1997). High-speeds are possible using a recently developed MHz rate pulse burst laser system, an ultra-high-speed camera capable of 500,000 fps and a galvanometric scanning mirror yielding a total acquisition time of 136 microseconds for a 220 x 220 x 68 voxel image. In these experiments, smoke is seeded into the boundary layer formed on the wall of a low-speed wind tunnel. The boundary layer is approximately 1.5'' thick at the imaging location with a free stream velocity of 24 ft/s yielding a Reynolds number of 18,000 based on boundary layer thickness. The 3-D image volume is approximately 4'' x 4'' x 4''. Preliminary results using 3-D iso-surface visualizations show a collection of elongated large-scale structures inclined in the streamwise direction. The spanwise width of the structures, which are located in the outer region, is on the order of 25 -- 50% of the boundary layer thickness.
Finite volume and finite element methods applied to 3D laminar and turbulent channel flows
Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel
2014-12-10
The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.
Mimicking Natural Laminar to Turbulent Flow Transition: A Systematic CFD Study Using PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
2005-01-01
For applied aerodynamic computations using a general purpose Navier-Stokes code, the common practice of treating laminar to turbulent flow transition over a non-slip surface is somewhat arbitrary by either treating the entire flow as turbulent or forcing the flow to undergo transition at given trip locations in the computational domain. In this study, the possibility of using the PAB3D code, standard k-epsilon turbulence model, and the Girimaji explicit algebraic stresses model to mimic natural laminar to turbulent flow transition was explored. The sensitivity of flow transition with respect to two limiters in the standard k-epsilon turbulence model was examined using a flat plate and a 6:1 aspect ratio prolate spheroid for our computations. For the flat plate, a systematic dependence of transition Reynolds number on background turbulence intensity was found. For the prolate spheroid, the transition patterns in the three-dimensional boundary layer at different flow conditions were sensitive to the free stream turbulence viscosity limit, the reference Reynolds number and the angle of attack, but not to background turbulence intensity below a certain threshold value. The computed results showed encouraging agreements with the experimental measurements at the corresponding geometry and flow conditions.
Implementation of Advanced Two Equation Turbulence Models in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.
2000-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flow. We have implemented two modified versions of the original Jones and Launder k-epsilon "two-equation" turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those from direct numerical simulation, empirical formulae, theoretical results, and the existing Spalart-Allmaras one-equation model.
Aspects of Turbulent Flow over 2D and 3D Bedforms
NASA Astrophysics Data System (ADS)
Venditti, J. G.; Church, M. A.
2004-05-01
Sediment transport in sand bedded alluvial channels is strongly conditioned by bedforms. Understanding the turbulent flow field over bedforms is crucial to understanding flow resistance in rivers. Most of the research on flow over bedforms has focused on straight crested, two-dimensional bedforms, and the characteristics of the turbulent flow field are fairly well understood. In contrast, few studies have examined flow over 3D bedforms, which typically have irregular heights, lengths, and crestlines. This paper reports on experiments undertaken to examine how 3D dune morphology affects the turbulent flow field and, ultimately, flow resistance. An experiment was designed to examine flow over fixed bedforms 0.45 m long and 25 mm high in a 0.5 m wide and 17 m long flume. In each experimental run, discharge and dune size were held constant, but the crest shape was varied. Flow over six bedform crest shapes was examined, including a 2D crest, a saddle shaped crest, a lobe shaped crest, a regular 3D crest alignment, an irregular 3D crest alignment and a sinuous crest. Measurements of velocity were made at a sampling rate of 50 Hz using an acoustic Doppler velocimeter at 350-500 points over a dune in each morphology. Three-dimensional bedforms significantly modify the flow field over a dune. Lobe shaped configurations cause lateral and vertical divergence of momentum and turbulent energy, thereby enhancing the level of turbulence compared to a 2D bedform. Saddle shaped crestlines cause lateral and vertical convergence of momentum and turbulent energy towards a small area in the lee, thereby reducing the level of turbulence. Other bedform morphologies (regular, irregular and sinuous crests) exhibited characteristics of both lobes and saddles, but the net effect was to reduce levels of turbulence. Total drag, calculated from spatially averaged Reynolds stress profiles, can be enhanced or reduced by as much as 50 %. These results suggest that current conceptions of bedforms
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
NASA Technical Reports Server (NTRS)
Fleming, J. L.; Simpson, R. L.
1997-01-01
Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.
3D conformation of a flexible fiber in a turbulent flow
NASA Astrophysics Data System (ADS)
Verhille, Gautier; Bartoli, Adrien
2016-07-01
A growing number of studies is devoted to anisotropic particles in turbulent flows. In most cases, the particles are assumed to be rigid and their deformations are neglected. We present an adaptation of classical computer vision tools to reconstruct from two different images the 3D conformation of a fiber distorted by the turbulent fluctuations in a von Kármán flow. This technique allows us notably to characterize the fiber deformation by computing the correlation function of the orientation of the tangent vector. This function allows us to tackle the analogy between polymers and flexible fibers proposed by Brouzet et al. (Phys Rev Lett 112(7):074501, 2014). We show that this function depends on an elastic length ℓ _e which characterizes the particle flexibility, as is the case for polymers, but also on the fiber length L, contrary to polymers.
Measuring the orientation and rotation rate of 3D printed particles in turbulent flow
NASA Astrophysics Data System (ADS)
Voth, Greg; Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Cole, Brendan
2014-11-01
The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 μm. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow. This research is supported by NSF Grant DMR-1208990.
Measuring the orientation and rotation rate of 3D printed particles in turbulent flow
NASA Astrophysics Data System (ADS)
Voth, Greg; Kramel, Stefan; Cole, Brendan
2015-03-01
The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Liao, C.; Liu, C.; Sung, C.H.; Huang, T.T.
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
Technology Transfer Automated Retrieval System (TEKTRAN)
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method Is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization Is accomplished by a cell-centered finite-volume formulation using an accurate lin- ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward- Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy In predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate linear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy in predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
Numerical solution of 2D and 3D turbulent internal flow problems
NASA Astrophysics Data System (ADS)
Chen, Naixing; Xu, Yanji
1991-08-01
The paper describes a method for solving numerically two-dimensional or axisymmetric, and three-dimensional turbulent internal flow problems. The method is based on an implicit upwinding relaxation scheme with an arbitrarily shaped conservative control volume. The compressible Reynolds-averaged Navier-Stokes equations are solved with a two-equation turbulence model. All these equations are expressed by using a nonorthogonal curvilinear coordinate system. The method is applied to study the compressible internal flow in modern power installations. It has been observed that predictions for two-dimensional and three-dimensional channels show very good agreement with experimental results.
PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa
2006-01-01
This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.
Experimental investigation of 3-D turbulent free shear flow past propellers and windmills
Kotb, M.A.
1984-01-01
An experimental investigation of the flowfield region near a 0.49 m (1.615 ft), 3 bladed, horizontal axis rotor was conducted in the VPI 2 m x 2 m (6 ft x 6 ft) wind tunnel. Two different modes of operations were studied - propeller and windmill. For each case, tests were run with a uniform approach flow as a base line condition, and the main test series was run with a variable mesh wire grid upstream to produce an approach flow with an essentially linear velocity gradient. The results are compared to elucidate the effects of the non-uniform approach flow. Several types of measurements are reported. First are gross quantities such as overall thrust and power. The second type of measurements are mean (in the turbulence sense) quantities obtained with a five port yawhead tube. All three components of mean velocity and static pressure were obtained. The third type of measurements were made with an x-wire anemometer and an r.m.s. meter. These measurements yield all components of the turbulence intensities and stresses at a point averaged over many passes of the rotor blades.
Noise and Turbulence Generate 3D Zombie Vortices in Stably Stratified Rotating Shear Flows
NASA Astrophysics Data System (ADS)
Pei, Suyang; Marcus, Philip S.; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Lecoanet, Daniel; Barranco, Joseph A.
2013-11-01
We showed previously that a linearly stable shearing, rotating, stably stratified flow has a finite-amplitude instability creating ``zombie vortices'' that self-replicate and fill the domain. Our flows were initialized with perturbations of one or two vortices. Our motivation was to determine whether ``dead zones'' in protoplanetary disks were stable, or whether they could be de-stabilized to produce vortices necessary for the final part of star formation and for planet formation. To be more relevant to astrophysics, we choose the initial conditions to be noise or turbulence with a Kolmogorov spectrum with small kinetic energy and Mach number. In a Kolmogorov spectrum, the largest eddies determine the kinetic energy and Mach number, while the smallest determine the vorticity and Rossby number Ro ≡ ω / f , where ω is the vertical vorticity and f is the Coriolis parameter. The protoplanetary disks (which have large inertial ranges due to their large Reynolds numbers), can have large Rossby numbers, but weak Mach numbers and kinetic energies. It is important to know whether the triggering of the finite-amplitude instability that creates zombie vortices depends on threshold values of Mach number, kinetic energy, or the Rossby number. Here, we show it is the latter.
Heat Transfer and Friction-Factor Methods Turbulent Flow Inside Pipes 3d Rough
1994-01-21
Three-dimensional roughened internally enhanced tubes have been shown to be one of the most energy efficient for turbulent, forced convection applications. However, there is only one prediction method presented in the open literature and that is restricted to three-dimensional sand-grain roughness. Other roughness types are being proposed: hemispherical sectors, truncated cones, and full and truncated pyramids. There are no validated heat-transfer and friction-factor prediction methods for these different roughness shapes that can be used inmore » the transition and fully rough region. This program calculates the Nusselt number and friction factor values, for a broad range of three-dimensional roughness types such as hemispherical sectors, truncated cones, and full and truncated pyramids. Users of this program are heat-exchangers designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less
Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang
2016-01-12
Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude. PMID:26646289
Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang
2016-01-12
Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Lakshmanan, B.; Carlson, John R.
1995-01-01
A three-dimensional Navier-Stokes solver was used to determine how accurately computations can predict local and average skin friction coefficients for attached and separated flows for simple experimental geometries. Algebraic and transport equation closures were used to model turbulence. To simulate anisotropic turbulence, the standard two-equation turbulence model was modified by adding nonlinear terms. The effects of both grid density and the turbulence model on the computed flow fields were also investigated and compared with available experimental data for subsonic and supersonic free-stream conditions.
Jeong, J.Y.; Ryou, H.S.
1997-03-01
Heat transfer characteristics and flow structure in turbulent flows through a flat plate three-dimensional turbulent boundary layer containing built-in vortex generators have been analyzed by means of the space marching Crank-Nicolson finite difference method. The method solves the slender flow approximation of the steady three-dimensional Navier-Stokes and energy equations. This study used the eddy diffusivity model and standard {kappa}-{epsilon} model to predict heat transfer and flow field in the turbulent flow with imbedded longitudinal vortex. The results show boundary layer distortion due to vortices, such as strong spanwise flow divergence and boundary layer thinning. The heat transfer and skin friction show relatively good results in comparison with experimental data. The vortex core moves slightly away from the wall and grows slowly; consequently, the vortex influences the flow over a very long distance downstream. The enhancement of the heat transfer in the vicinity of the wall is due to the increasing spanwise separation of the vortices as they develop in the streamwise direction.
NASA Astrophysics Data System (ADS)
Rockwood, Matthew; Green, Melissa
2012-11-01
In experimental, three-dimensional vortex-dominated flows, common particle image velocimetry (PIV) data is often collected in only the plane of interest due to equipment constraints. For flows with significant out of plane velocities or velocity gradients, this can create large discrepancies in Lagrangian analyses that require accurate particle trajectories. A Finite Time Lyapunov Exponent (FTLE) analysis is one such example, and has been shown to be very powerful at examining vortex dynamics and interactions in a variety of aperiodic flows. In this work, FTLE analysis of a turbulent channel simulation was conducted using both full three-dimensional velocity data and modified planar data extracted from the same computational domain. When the out of plane velocity component is neglected the difference in FTLE fields is non-trivial. A quantitative comparison and computation of error is presented for several planes across the width of the channel to determine the efficacy of using 2D analyses on the inherently 3D flows.
NASA Astrophysics Data System (ADS)
Huhn, F.; Schanz, D.; Gesemann, S.; Schröder, A.
2016-09-01
Pressure gradient fields in unsteady flows can be estimated through flow measurements of the material acceleration in the fluid and the assumption of the governing momentum equation. In order to derive pressure from its gradient, almost exclusively two numerical methods have been used to spatially integrate the pressure gradient until now: first, direct path integration in the spatial domain, and second, the solution of the Poisson equation for pressure. Instead, we propose an alternative third method that integrates the pressure gradient field in Fourier space. Using a FFT function, the method is fast and easy to implement in programming languages for scientific computing. We demonstrate the accuracy of the integration scheme on a synthetic pressure field and apply it to an experimental example based on time-resolved material acceleration data from high-resolution Lagrangian particle tracking with the Shake-The-Box method.
3D Flow Visualization Using Texture Advection
NASA Technical Reports Server (NTRS)
Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.
NASA Astrophysics Data System (ADS)
Gibert, Mathieu; Klein, Simon; Bodenschatz, Eberhard
2012-11-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp / η ~ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ~ 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. (http://arxiv.org/abs/1205.2181) This work was funded generously by the Max Planck Society and the Marie Curie Fellowship, Program PEOPLE - Call FP7-PEOPLE-IEF-2008 Proposal No 237521. Support from COST Action MP0806 is kindly acknowledged.
NASA Astrophysics Data System (ADS)
Klein, Simon; Gibert, Mathieu; Bérut, Antoine; Bodenschatz, Eberhard
2013-02-01
We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation and the rotation of finite-size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/η ≈ 100) than the Kolmogorov length scale η in a von Kármán swirling water flow (Rλ ≈ 400). We show, using the mixed (particle/fluid) Eulerian second-order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.
NASA Astrophysics Data System (ADS)
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
CVS Decomposition of 3D Homogeneous Turbulence Using Orthogonal Wavelets
NASA Technical Reports Server (NTRS)
Farge, Marie; Schneider, Kai; Pellegrino, Giulio; Wray, A. A.; Rogallo, R. S.
2000-01-01
This paper compares the filtering used in Coherent Vortex Simulation (CVS) decomposition with an orthogonal wavelet basis, with the Proper Orthogonal Decomposition (POD) or Fourier filtering. Both methods are applied to a field of Direct Numerical Simulation (DNS) data of 3D forced homogeneous isotropic turbulence at microscale Reynolds number R(sub lambda) = 168. We show that, with only 3%N retained modes, CVS filtering separates the coherent vortex tubes from the incoherent background flow. The latter is structureless, has an equipartition energy spectrum, and has a Gaussian velocity probability distribution function (PDF) and an exponential vorticity PDF. On the other hand, the Fourier basis does not extract the coherent vortex tubes cleanly and leaves organized structures in the residual high wavenumber modes whose PDFs are stretched exponentials for both the velocity and the vorticity.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Turbulent boundary layer over 2D and 3D large-scale wavy walls
NASA Astrophysics Data System (ADS)
Hamed, Ali M.; Kamdar, Arpeet; Castillo, Luciano; Chamorro, Leonardo P.
2015-10-01
An experimental investigation of the flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching (RIM) channel. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/λy = 0.1. The flow over these walls was characterized at Reynolds numbers of 4000 and 40 000, based on the bulk velocity and the channel half height. Flow measurements were performed in a wall-normal plane for the two cases and in wall-parallel planes at three heights for the 3D wavy wall. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels. It is shown that the 3D surface limits the dynamics of the spanwise turbulent vortical structures, leading to reduced turbulence production and turbulent stresses and, consequently, lower average drag (wall shear stress). The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D sinusoidal wall. Differences of one and two order of magnitudes are found in the turbulence levels and Reynolds shear stress at the low Reynolds number for the 2D and 3D cases. These results highlight the sensitivity of the flow to large-scale topographic modulations; in particular the levels and production of turbulent kinetic energy as well as the wall shear stress.
Turbulent boundary layer over 2D and 3D large-scale wavy walls
NASA Astrophysics Data System (ADS)
Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano
2015-11-01
In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/ λy = 0.1. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.
3D two-fluid simulations of turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin M.
The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the
Intermittent Dissipation and Heating in 3D Kinetic Plasma Turbulence.
Wan, M; Matthaeus, W H; Roytershteyn, V; Karimabadi, H; Parashar, T; Wu, P; Shay, M
2015-05-01
High resolution, fully kinetic, three dimensional (3D) simulation of collisionless plasma turbulence shows the development of turbulence characterized by sheetlike current density structures spanning a range of scales. The nonlinear evolution is initialized with a long wavelength isotropic spectrum of fluctuations having polarizations transverse to an imposed mean magnetic field. We present evidence that these current sheet structures are sites for heating and dissipation, and that stronger currents signify higher dissipation rates. The analyses focus on quantities such as J·E, electron, and proton temperatures, and conditional averages of these quantities based on local electric current density. Evidently, kinetic scale plasma, like magnetohydrodynamics, becomes intermittent due to current sheet formation, leading to the expectation that heating and dissipation in astrophysical and space plasmas may be highly nonuniform. Comparison with previous results from 2D kinetic simulations, as well as high frequency solar wind observational data, are discussed. PMID:25978241
Global stability analysis of turbulent 3D wakes
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Sipp, Denis; Juniper, Matthew
2015-11-01
At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.
Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.
Cole, Brendan C; Marcus, Guy G; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A
2016-01-01
Experimental methods are presented for measuring the rotational and translational motion of anisotropic particles in turbulent fluid flows. 3D printing technology is used to fabricate particles with slender arms connected at a common center. Shapes explored are crosses (two perpendicular rods), jacks (three perpendicular rods), triads (three rods in triangular planar symmetry), and tetrads (four arms in tetrahedral symmetry). Methods for producing on the order of 10,000 fluorescently dyed particles are described. Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four synchronized videos of their motion in a turbulent flow between oscillating grids with Rλ = 91. In this relatively low-Reynolds number flow, the advected particles are small enough that they approximate ellipsoidal tracer particles. We present results of time-resolved 3D trajectories of position and orientation of the particles as well as measurements of their rotation rates. PMID:27404898
Impulsive reconnection: 3D onset and stagnation in turbulent paradigms
Sears, Jason A; Intrator, Thomas P; Weber, Tom; Lapenta, Giovanni; Lazarian, Alexander
2010-12-14
Reconnection processes are ubiquitous in solar coronal loops, the earth's magnetotail, galactic jets, and laboratory configurations such as spheromaks and Z pinches. It is believed that reconnection dynamics are often closely linked to turbulence. In these phenomena, the bursty onset of reconnection is partly determined by a balance of macroscopic MHD forces. In a turbulent paradigm, it is reasonable to suppose that there exist many individual reconnection sites, each X-line being finite in axial extent and thus intrinsically three-dimensional (3D) in structure. The balance between MHD forces and flux pile-up continuously shifts as mutually tangled flux ropes merge or bounce. The spatial scale and thus the rate of reconnection are therefore intimately related to the turbulence statistics both in space and in time. We study intermittent 3D reconnection along spatially localized X-lines between two or more flux ropes. The threshold of MHD instability which in this case is the kink threshold is varied by modifying the line-tying boundary conditions. For fast inflow speed of approaching ropes, there is merging and magnetic reconnection which is a well known and expected consequence of the 2D coalescence instability. On the other hand, for slower inflow speed the flux ropes bounce. The threshold appears to be the Sweet Parker speed v{sub A}/S{sup 1/2}, where v{sub A} is the Alfven speed and S is the Lundquist number. Computations by collaborators at University of Wisconsin, Madison, Katholieke Universiteit Leuven, and LANL complement the experiment.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Harrid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-e two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user specified region. The latter approach is applied for the solutions obtained using other one- and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Implementation of Flow Tripping Capability in the USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Frink, Neal T.
2006-01-01
A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
Finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.
1986-01-01
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed.
Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer
NASA Astrophysics Data System (ADS)
Byrne, David; Zhang, Jun A.
2013-04-01
Here we show, from in situ aircraft measurements in the hurricane boundary layer, a height-dependent transition of the flow from 3-D to 2-D turbulence. This marks a fundamental change in the energy dynamics of the hurricane boundary layer due to the fact that in 3-D, energy flows downscale from larger to smaller scales, whereas in 2-D, it flows upscale, from smaller to larger scales. These results represent the first measurement of the 2-D upscale energy flux in the atmosphere and also the first to characterize the transition from 3-D to 2-D. It is shown that the large-scale parent vortex may gain energy directly from small scales in tropical cyclones.
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Swan, David H.
1990-01-01
The flow field of a rectangular jet with a 4:1 aspect ratio (50.4 x 12.7 mm) was studied at a Reynolds number of 100,000 (Mach number 0.09) using a 3-D laser Doppler anemometer system. Measurements were performed along the major and minor axis planes and at various downstream cross-sections of the jet. The mean velocity vector and entire Reynolds stress tensor were measured and presented in a previous publication. The present work presents the vorticity vector, turbulence production, and turbulence induced acceleration vector distributions which were calculated from the previously presented data.
Smith, P.J.
1991-12-31
The lack of a mathematical description of the interactions of fluid turbulence with other physics-chemical processes is a major obstacle in modeling many industrial program. Turbulent two-phase flow is a phenomenon that is of significant practical importance to coal combustion as well as other disciplines. The interactions of fluid turbulence with the particulate phase has yet to be accurately and efficiently modeled for these industrial applications. On 15 May 1991 work was initiated to cover four major tasks toward the development of a computational submodel for turbulent particle dispersion that would be applicable to coal combustion simulations. Those four tasks are: 1. A critical evaluation of the 2-D Lagrangian particle dispersion submodel, 2. Development of a 3-D submodel for turbulent particle dispersion, 3. Evaluation of the 3-D submodel for turbulent particle dispersion, 4. Exploration of extensions of the Lagrangian dispersion theory to other applications including chemistry-turbulence interactions.
Smith, P.J.
1991-12-31
The lack of a mathematical description of the interactions of fluid turbulence with other physics-chemical processes is a major obstacle in modeling many industrial program. Turbulent two-phase flow is a phenomenon that is of significant practical importance to coal combustion as well as other disciplines. The interactions of fluid turbulence with the particulate phase has yet to be accurately and efficiently modeled for these industrial applications. On 15 May 1991 work was initiated to cover four major tasks toward the development of a computational submodel for turbulent particle dispersion that would be applicable to coal combustion simulations. Those four tasks are: 1. A critical evaluation of the 2-D Lagrangian particle dispersion submodel, 2. Development of a 3-D submodel for turbulent particle dispersion, 3. Evaluation of the 3-D submodel for turbulent particle dispersion, 4.Exploration of extensions of the Lagrangian dispersion theory to other applications including chemistry-turbulence interactions.
NASA Astrophysics Data System (ADS)
Meng, Hui; Hussain, Fazle
1991-10-01
To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.
XML3D and Xflow: combining declarative 3D for the Web with generic data flows.
Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp
2013-01-01
Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080
Visualizing 3D Turbulence On Temporally Adaptive Wavelet Collocation Grids
NASA Astrophysics Data System (ADS)
Goldstein, D. E.; Kadlec, B. J.; Yuen, D. A.; Erlebacher, G.
2005-12-01
Today there is an explosion in data from high-resolution computations of nonlinear phenomena in many fields, including the geo- and environmental sciences. The efficient storage and subsequent visualization of these large data sets is a trade off in storage costs versus data quality. New dynamically adaptive simulation methodologies promise significant computational cost savings and have the added benefit of producing results on adapted grids that significantly reduce storage and data manipulation costs. Yet, with these adaptive simulation methodologies come new challenges in the visualization of temporally adaptive data sets. In this work turbulence data sets from Stochastic Coherent Adaptive Large Eddy Simulations (SCALES) are visualized with the open source tool ParaView, as a challenging case study. SCALES simulations use a temporally adaptive collocation grid defined by wavelet threshold filtering to resolve the most energetic coherent structures in a turbulence field. A subgrid scale model is used to account for the effect of unresolved subgrid scale modes. The results from the SCALES simulations are saved on a thresholded dyadic wavelet collocation grid, which by its nature does not include cell information. Paraview is an open source visualization package developed by KitWare(tm) that is based on the widely used VTK graphics toolkit. The efficient generation of cell information, required with current ParaView data formats, is explored using custom algorithms and VTK toolkit routines. Adaptive 3d visualizations using isosurfaces and volume visualizations are compared with non-adaptive visualizations. To explore the localized multiscale structures in the turbulent data sets the wavelet coefficients are also visualized allowing visualization of energy contained in local physical regions as well as in local wave number space.
Numerical study of elastic turbulence in a 3D curvilinear micro-channel
NASA Astrophysics Data System (ADS)
Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen
2012-11-01
Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).
The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions
NASA Technical Reports Server (NTRS)
Reddy, D. R.
1991-01-01
Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.
3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions
NASA Technical Reports Server (NTRS)
Reddy, D. R.
1991-01-01
Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.
Optical turbulence above mountains seen in 3D
NASA Astrophysics Data System (ADS)
Els, S. G.; Vogiatzis, K.; Otárola, A.; Riddle, R.; Schöck, M.; Skidmore, W.; Travouillon, T.
2010-07-01
Atmospheric optical turbulence is the main driver of wavefront distortions which affect optical telescope performance. Therefore, many techniques have been developed to measure the optical turbulence strength along the line of sight. Based on data collected with the MASS (Multi Aperture Scintillation Sensor), we show that a large sample of such measurements can be used to assess the average three dimensional turbulence distribution above ground. The use of, and a more sophisticated instrumental setup for, such turbulence tomography will be discussed.
3D flow focusing for microfluidic flow cytometry with ultrasonics
NASA Astrophysics Data System (ADS)
Gnyawali, Vaskar; Strohm, Eric M.; Daghighi, Yasaman; van de Vondervoort, Mia; Kolios, Michael C.; Tsai, Scott S. H.
2015-11-01
We are developing a flow cytometer that detects unique acoustic signature waves generated from single cells due to interactions between the cells and ultrasound waves. The generated acoustic waves depend on the size and biomechanical properties of the cells and are sufficient for identifying cells in the medium. A microfluidic system capable of focusing cells through a 10 x 10 μm ultrasound beam cross section was developed to facilitate acoustic measurements of single cells. The cells are streamlined in a hydro-dynamically 3D focused flow in a 300 x 300 μm channel made using PDMS. 3D focusing is realized by lateral sheath flows and an inlet needle (inner diameter 100 μm). The accuracy of the 3D flow focusing is measured using a dye and detecting its localization using confocal microscopy. Each flowing cell would be probed by an ultrasound pulse, which has a center frequency of 375 MHz and bandwidth of 250 MHz. The same probe would also be used for recording the scattered waves from the cells, which would be processed to distinguish the physical and biomechanical characteristics of the cells, eventually identifying them. This technique has potential applications in detecting circulating tumor cells, blood cells and blood-related diseases.
Recent Enhancements to USM3D Unstructured Flow Solver for Unsteady Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Abdol-Hamid, Khaled S.; Chung, James J.
2004-01-01
The NASA USM3D unstructured flow solver is undergoing extensions to address dynamic flow problems in support of NASA and NAVAIR efforts to study the applicability of Computational Fluid Dynamics tools for the prediction of aircraft stability and control characteristics. The initial extensions reported herein include two second-order time stepping schemes, Detached-Eddy Simulation, and grid motion. This paper reports the initial code verification and validation assessment of the dynamic flow capabilities of USM3D. The cases considered are the classic inviscid shock-tube problem, low Reynolds number wake shedding from a NACA 0012 airfoil, high Reynolds number DES-based wake shedding from a 4-to-1 length-to-diameter cylinder, and forced pitch oscillation of a NACA 0012 airfoil with inviscid and turbulent flow.
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
Slat Cove Unsteadiness Effect of 3D Flow Structures
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Khorrami, Mehdi R.
2006-01-01
Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.
Insights from a 3-D temperature sensors mooring on stratified ocean turbulence
NASA Astrophysics Data System (ADS)
Haren, Hans; Cimatoribus, Andrea A.; Cyr, Frédéric; Gostiaux, Louis
2016-05-01
A unique small-scale 3-D mooring array has been designed consisting of five parallel lines, 100 m long and 4 m apart, and holding up to 550 high-resolution temperature sensors. It is built for quantitative studies on the evolution of stratified turbulence by internal wave breaking in geophysical flows at scales which go beyond that of a laboratory. Here we present measurements from above a steep slope of Mount Josephine, NE Atlantic where internal wave breaking occurs regularly. Vertical and horizontal coherence spectra show an aspect ratio of 0.25-0.5 near the buoyancy frequency, evidencing anisotropy. At higher frequencies, the transition to isotropy (aspect ratio of 1) is found within the inertial subrange. Above the continuous turbulence spectrum in this subrange, isolated peaks are visible that locally increase the spectral width, in contrast with open ocean spectra. Their energy levels are found to be proportional to the tidal energy level.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.
Magnetosheath Flow Anomalies in 3-D
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.
Turbulent flow through screens
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1984-01-01
A detailed experimental investigation has been carried out on the effects of different types of screens on turbulent flow, in particular turbulent boundary layers. The effect of a screen on a turbulent boundary layer is to give it a 'new lease of life'. The boundary layer turbulence is reorganized and the thickness reduced, thus making it less susceptible to separation. The aerodynamic properties of plastic screens are found to differ significantly from those of the conventional metal screens, evidently because of differences in the weaving properties. The 'overshoot' in mean velocity profile near the boudnary layer edge is shown to be a result of the effect of screen inclination on pressure drop coefficient. A more accurate formulation for the deflection coefficient of a screen is also proposed.
3D outflow jets originating from turbulence in the reconnection current layer
NASA Astrophysics Data System (ADS)
Fujimoto, Keizo
2016-07-01
Satellite observations in the Earth's magnetosphere and in solar flares have suggested that the reconnection outflow jets are fully three dimensional, consisting of a series of narrow channels. The jet structure is important in evaluating the energy and flux transport in the reconnection process. Previous theoretical models based on fluid simulations have relied on patchy reconnection where reconnection takes place predominantly in patchy portions of the current layer. The problem of the previous models is that the gross reconnection rate is much smaller than that in the 2D reconnection case. The present study shows a large-scale 3D PIC simulation revealing that the 3D outflow jets are generated through the 3D flux ropes formed in the turbulent electron current layer around the x-line. Reconnection proceeds almost uniformly along the x-line, so that the gross reconnection rate is comparable to that in the 2D reconnection case. The flux ropes and resultant outflow channels have a typical current-aligned scale provided by the wavelength of an electron shear mode that is much larger than the typical kinetic scales. It is found that the structure of the 3D outflow jets obtained in the simulation is consistent with the bursty bulk flow observed in the Earth's magnetotail.
Recent Advances in Visualizing 3D Flow with LIC
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1998-01-01
Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
Terascale direct numerical simulations of turbulent combustion using S3D.
Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer
2008-08-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
2009-01-01
Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.
Characteristics of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
Three dimensional turbulent jets in crossflow at low to medium jet-to-crossflow velocity ratios are computed with a finite volume numerical procedure which utilizes a second-moment closure model to approximate the Reynolds stresses. A multigrid method is used to accelerate the convergence rate of the procedure. Comparison of the computations to measured data show good qualitative agreement. All trends are correctly predicted, though there is some uncertainty on the height of penetration of the jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.
Implementation of a kappa-epsilon turbulence model to RPLUS3D code
NASA Technical Reports Server (NTRS)
Chitsomboon, Tawit
1992-01-01
The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.
USM3D Predictions of Supersonic Nozzle Flow
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Elmiligui, Alaa A.; Campbell, Richard L.; Nayani, Sudheer N.
2014-01-01
This study focused on the NASA Tetrahedral Unstructured Software System CFD code (USM3D) capability to predict supersonic plume flow. Previous studies, published in 2004 and 2009, investigated USM3D's results versus historical experimental data. This current study continued that comparison however focusing on the use of the volume souring to capture the shear layers and internal shock structure of the plume. This study was conducted using two benchmark axisymmetric supersonic jet experimental data sets. The study showed that with the use of volume sourcing, USM3D was able to capture and model a jet plume's shear layer and internal shock structure.
Malapaka, Shiva Kumar; Mueller, Wolf-Christian
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
Turbulent supersonic channel flow
NASA Astrophysics Data System (ADS)
Lechner, Richard; Sesterhenn, Jörn; Friedrich, Rainer
2001-01-01
The effects of compressibility are studied in low Reynolds number turbulent supersonic channel flow via a direct numerical simulation. A pressure-velocity-entropy formulation of the compressible Navier-Stokes equations which is cast in a characteristic, non-conservative form and allows one to specify exact wall boundary conditions, consistent with the field equations, is integrated using a fifth-order compact upwind scheme for the Euler part, a fourth-order Padé scheme for the viscous terms and a third-order low-storage Runge-Kutta time integration method. Coleman et al fully developed supersonic channel flow at M?=?1.5 and Re?=?3000 is used to test the method. The nature of fluctuating variables is investigated in detail for the wall layer and the core region based on scatter plots. Fluctuations conditioned on sweeps and ejections in the wall layer are especially instructive, showing that positive temperature, entropy and total temperature fluctuations are mainly due to sweep events in this specific situation of wall cooling. The effect of compressibility on the turbulence structure is in many respects similar to that found in homogeneous shear turbulence and in mixing layers. The normal components of the Reynolds stress anisotropy tensor are increased due to compressibility, while the shear stress component is slightly reduced. Characteristic of the Reynolds stress transport is a suppression of the production of the longitudinal and the shear stress component, a suppression of all velocity-pressure-gradient correlations and most of the dissipation rates. Comparison with incompressible channel flow data reveals that compressibility effects manifest themselves in the wall layer only.
Interactions of Copepods with Fractal-Grid Generated Turbulence based on Tomo-PIV and 3D-PTV
NASA Astrophysics Data System (ADS)
Sun, Zhengzhong; Krizan, Daniel; Longmire, Ellen
2014-11-01
A copepod escapes from predation by sensing fluid motion caused by the predator. It is thought that the escape reaction is elicited by a threshold value of the maximum principal strain rate (MPSR) in the flow. The present experimental work attempts to investigate and quantify the MPSR threshold value. In the experiment, copepods interact with turbulence generated by a fractal grid in a recirculating channel. The turbulent flow is measured by time-resolved Tomo-PIV, while the copepod motion is tracked simultaneously through 3D-PTV. Escape reactions are detected based on copepod trajectories and velocity vectors, while the surrounding hydrodynamic information is retrieved from the corresponding location in the 3D instantaneous flow field. Measurements are performed at three locations downstream of the fractal grid, such that various turbulence levels can be achieved. Preliminary results show that the number of escape reactions decreases at locations with reduced turbulence levels, where shorter jump distances and smaller change of swimming orientation are exhibited. Detailed quantitative results of MPSR threshold values and the dynamics of copepod escape will be presented. Supported by NSF-IDBR Grant #0852875.
Simulation of a 3D unsteady flow in an axial turbine stage
NASA Astrophysics Data System (ADS)
Straka, Petr
2012-04-01
The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.
3D Printed Micro Free-Flow Electrophoresis Device.
Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T
2016-08-01
The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.
3D Printed Micro Free-Flow Electrophoresis Device.
Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T
2016-08-01
The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively. PMID:27377354
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
Joint 3d Estimation of Vehicles and Scene Flow
NASA Astrophysics Data System (ADS)
Menze, M.; Heipke, C.; Geiger, A.
2015-08-01
driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.
Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil
NASA Astrophysics Data System (ADS)
Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.
2015-01-01
At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Formation of coherent structures in 3D laminar mixing flows
NASA Astrophysics Data System (ADS)
Speetjens, Michel; Clercx, Herman
2009-11-01
Mixing under laminar flow conditions is key to a wide variety of industrial systems of size extending from microns to meters. Examples range from the traditional (and still very relevant) mixing of viscous fluids via compact processing equipment down to emerging micro-fluidics applications. Profound insight into laminar mixing mechanisms is imperative for further advancement of mixing technology (particularly for complex micro-fluidics systems) yet remains limited to date. The present study concentrates on a fundamental transport phenomenon of potential relevance to laminar mixing: the formation of coherent structures in the web of 3D fluid trajectories due to fluid inertia. Such coherent structures geometrically determine the transport properties of the flow and better understanding of their formation and characteristics may offer ways to control and manipulate the mixing properties of laminar flows. The formation of coherent structures and its impact upon 3D transport properties is demonstrated by way of examples.
Complex flow dynamics around 3D microbot prototypes.
Martínez-Aranda, Sergio; Galindo-Rosales, Francisco J; Campo-Deaño, Laura
2016-02-28
A new experimental setup for the study of the complex flow dynamics around 3D microbot prototypes in a straight microchannel has been developed and assessed. The ultimate aim of this work is focused on the analysis of the morphology of different microbot prototypes to get a better insight into their efficiency when they swim through the main conduits of the human circulatory system. The setup consists of a fused silica straight microchannel with a 3D microbot prototype fastened in the center of the channel cross-section by an extremely thin support. Four different prototypes were considered: a cube, a sphere and two ellipsoids with aspect ratios of 1 : 2 and 1 : 4, respectively. Flow visualization and micro-particle image velocimetry (μPIV) measurements were performed using Newtonian and viscoelastic blood analogue fluids. An efficiency parameter, ℑ, to discriminate the prototypes in terms of flow disturbance has been proposed.
A Volume Rendering Framework for Visualizing 3D Flow Fields
NASA Astrophysics Data System (ADS)
Hsieh, Hsien-Hsi; Li, Liya; Shen, Han-Wei; Tai, Wen-Kai
In this paper, we present a volume rendering framework for visualizing 3D flow fields. We introduce the concept of coherence field which evaluates the representativeness of a given streamline set for the underlying 3D vector field. Visualization of the coherence field can provide effective visual feedback to the user for incremental insertion of more streamline seeds. Given an initial set of streamlines, a coherence volume is constructed from a distance field to measure the similarity between the existing streamlines and those in their nearby regions based on the difference between the approximate and the actual vector directions. With the visual feedback obtained from rendering the coherence volume, new streamline seeds can be selected by the user or by a heuristic seed selection algorithm to adaptively improve the coherence volume. An improved volume rendering technique that can render user-defined appearance textures is proposed to facilitate macro-visualization of 3D vector fields.
High fidelity digital inline holographic method for 3D flow measurements.
Toloui, Mostafa; Hong, Jiarong
2015-10-19
Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm^{3}. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377
The 3D Flow Field Around an Embedded Planet
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin
2015-10-01
3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.
Magma rheology from 3D geometry of martian lava flows
NASA Astrophysics Data System (ADS)
Allemand, P.; Deschamps, A.; Lesaout, M.; Delacourt, C.; Quantin, C.; Clenet, H.
2012-04-01
Volcanism is an important geologic agent which has been recently active at the surface of Mars. The composition of individual lava flows is difficult to infer from spectroscopic data because of the absence of crystallized minerals and the possible cover of the flows by dust. The 3D geometry of lava flows provides an interesting alternative to infer the chemical composition of lavas and effusion rates. Indeed, chemical composition exerts a strong control on the viscosity and yield strength of the magma and global geometry of lava flow reflects its emplacement rate. Until recently, these studies where realized from 2D data. The third dimension, which is a key parameter, was deduced or supposed from local shadow measurements on MGS Themis IR images with an uncertainty of more than 500%. Recent CTX data (MRO mission) allow to compute Digital Elevation Model at a resolution of 1 or 2 pixels (5 to 10 m) with the help of Isis and the Ames Stereo Pipeline pipe line. The CTX images are first transformed in format readable by Isis. The external geometric parameters of the CTX camera are computed and added to the image header with Isis. During a correlation phase, the homologous pixels are searched on the pair of stereo images. Finally, the DEM is computed from the position of the homologous pixels and the geometrical parameters of the CTX camera. Twenty DEM have been computed from stereo images showing lava flows of various ages on the region of Cerberus, Elyseum, Daedalia and Amazonis planitia. The 3D parameters of the lava flows have been measured on the DEMs and tested against shadows measurement. These 3D parameters have been inverted to estimate the viscosity and the yield strength of the flow. The effusion rate has also been estimated. These parameters have been compared to those of similar lava flows of the East Pacific rise.
Organized motion in turbulent flow
NASA Astrophysics Data System (ADS)
Cantwell, B. J.
A review of organized motion in turbulent flow indicates that the transport properties of most shear flows are dominated by large-scale vortex nonrandom motions. The mean velocity profile of a turbulent boundary layer consists of a viscous sublayer, buffer layer, and a logarithmic outer layer; an empirical formula of Coles (1956) applies to various pressure gradients. The boundary layer coherent structure was isolated by the correlation methods of Townsend (1956) and flow visualization by direct observations of complex unsteady turbulent motions. The near-wall studies of Willmart and Wooldridge (1962) used the space-time correlation for pressure fluctuations at the wall under a thick turbulent boundary layer; finally, organized motion in free shear flows and transition-control of mixing demonstrated that the Reynolds number invariance of turbulence shows wide scatter.
Turbulence modeling for separated flow
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1994-01-01
Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.
NASA Astrophysics Data System (ADS)
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2016-03-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Lattice Boltzmann Simulation of a Flow over a 3D Cube in a wind Tunnel
NASA Astrophysics Data System (ADS)
Shock, Richard; Chen, Hudong; Yakhot, Victor
2001-06-01
It is argued that even a simplified version of the Boltzmann equation in a relaxation time approximation is equivalent to the hydrodynamic equations, involving infinite number of non-linear terms. Used for turbulence modelling, where the relaxation time and mean -free path are both space and field dependent, this equation is equivalent to the classic Navier-Stokes + turbulent model representations, provided the gradients are small. If, however, the non-equilibrium effects are strong, all higher non-linearities cannot be neglected. Thus, the Boltmann approximation can be extremely usefull for description of strongly non-equilibrium and time - dependent flows. This fact has been demonstrated on a wide variety of flows of both academic and industrial interest ranging from a simple 2D channel flow to 3D flows over various production cars. In this talk the quality of the approach is demonstrated on a simulation of the flow over a 3D cube in a wind tunnel. The predicted parameters of this strongly unsteady flow are compared with experimental data. The agreement is very good.
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Kinetic turbulence in 3D collisionless magnetic reconnection with a guide magnetic field
NASA Astrophysics Data System (ADS)
Alejandro Munoz Sepulveda, Patricio; Kilian, Patrick; Jain, Neeraj; Büchner, Jörg
2016-04-01
The features of kinetic plasma turbulence developed during non-relativistic 3D collisionless magnetic reconnection are still not fully understood. This is specially true under the influence of a strong magnetic guide field, a scenario common in space plasmas such as in the solar corona and also in laboratory experiments such as MRX or VINETA II. Therefore, we study the mechanisms and micro-instabilities leading to the development of turbulence during 3D magnetic reconnection with a fully kinetic PIC code, emphasizing the role of the guide field with an initial setup suitable for the aforementioned environments. We also clarify the relations between these processes and the generation of non-thermal populations and particle acceleration.
Optic flow aided navigation and 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Rollason, Malcolm
2013-10-01
An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.
Patterns of 3D flow in a rotating cylinder array
NASA Astrophysics Data System (ADS)
Craig, Anna; Dabiri, John; Koseff, Jeffrey
2015-11-01
Experimental data are presented for large arrays of rotating, finite-height cylinders, which show that the three-dimensional flows are strongly dependent on the geometric and rotational configurations of the array. Two geometric configurations of the cylinders, each with two rotational configurations, were examined for a total of four arrays. 2D PIV was conducted in multiple intersecting horizontal and vertical sheets at a location far downstream of the leading edge of the array in order to build up a picture of the 3D developed flow patterns. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders. These horizontal flow patterns, by conservation of mass, drive vertical flows through the top of the array. As the array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines, this planform flux is of particular interest as it would bring down into the array high kinetic energy fluid from above the array, thus increasing the energy resource available to turbines far downstream of the leading edge of the array.
Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment
NASA Technical Reports Server (NTRS)
Compton, William B, III
2015-01-01
Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.
PDF approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1993-01-01
The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.
Evidence of toroidally localized turbulence with applied 3D fields in the DIII-D tokamak
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.; Canik, J. M.; Paz-Soldan, C.; Nazikian, R.; Unterberg, E. A.
2016-09-21
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agreesmore » qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. In conclusion, these processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.« less
Evidence of Toroidally Localized Turbulence with Applied 3D Fields in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Shafer, M. W.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.; Canik, J. M.; Paz-Soldan, C.; Nazikian, R.; Unterberg, E. A.
2016-09-01
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.
Reference Solutions for Benchmark Turbulent Flows in Three Dimensions
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.
2016-01-01
A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.
Turbulence Effects of Axial Flow Hydrokinetic Turbines
NASA Astrophysics Data System (ADS)
Hill, C.; Chamorro, L. P.; Neary, V. S.; Morton, S.; Sotiropoulos, F.
2011-12-01
Axial flow hydrokinetic turbines provide a method for extracting the kinetic energy available in unidirectional (river), bidirectional (tidal) and marine currents; however, a deep understanding of the wake dynamics, momentum recovery, geomorphologic effects, and ecological interaction with these hydrokinetic turbines is required to guarantee their economical and environmental viability. The St. Anthony Falls Laboratory (SAFL) at the University of Minnesota (UMN) has performed physical modeling experiments using a 1:10 scale axial flow tidal turbine in the SAFL Main Channel, a 2.75m x 1.8m x 80m open channel test facility. A sophisticated control system allows synchronous measurements of turbine torque and rotational speed along with high resolution 3-D velocity measurements within the channel. Using acoustic Doppler velocimeters (ADVs), high resolution 3-D velocity profile data were collected up to 15 turbine diameters downstream of the turbine location. These data provide valuable information on the wake characteristics (turbulence, Reynolds stresses, etc.) resulting from a rotating axial flow hydrokinetic machine. Regions of high turbulence and shear zones that persist in the near wake regions are delineated along with the velocity deficit and momentum recovery within the wake downstream of the device. Synchronous ADV data shed light on the rotational and meandering characteristics of the wake and its potential impacts on the local geomorphology and hydrodynamic environment. This dataset on single hydrokinetic turbine flow characteristics is the basis for further work on the optimal arrangement and performance environment for arrays of similar hydrokinetic devices.
Unsteady 3D flow simulations in cranial arterial tree
NASA Astrophysics Data System (ADS)
Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George
2008-11-01
High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.
MPSalsa 3D Simulations of Chemically Reacting Flows
Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).
This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.
DNSLab: A gateway to turbulent flow simulation in Matlab
NASA Astrophysics Data System (ADS)
Vuorinen, V.; Keskinen, K.
2016-06-01
Computational fluid dynamics (CFD) research is increasingly much focused towards computationally intensive, eddy resolving simulation techniques of turbulent flows such as large-eddy simulation (LES) and direct numerical simulation (DNS). Here, we present a compact educational software package called DNSLab, tailored for learning partial differential equations of turbulence from the perspective of DNS in Matlab environment. Based on educational experiences and course feedback from tens of engineering post-graduate students and industrial engineers, DNSLab can offer a major gateway to turbulence simulation with minimal prerequisites. Matlab implementation of two common fractional step projection methods is considered: the 2d Fourier pseudo-spectral method, and the 3d finite difference method with 2nd order spatial accuracy. Both methods are based on vectorization in Matlab and the slow for-loops are thus avoided. DNSLab is tested on two basic problems which we have noted to be of high educational value: 2d periodic array of decaying vortices, and 3d turbulent channel flow at Reτ = 180. To the best of our knowledge, the present study is possibly the first to investigate efficiency of a 3d turbulent, wall bounded flow in Matlab. The accuracy and efficiency of DNSLab is compared with a customized OpenFOAM solver called rk4projectionFoam. Based on our experiences and course feedback, the main contribution of DNSLab consists of the following features. (i) The very compact Matlab implementation of present Navier-Stokes solvers provides a gateway to efficient learning of both, physics of turbulent flows, and simulation of turbulence. (ii) Only relatively minor prerequisites on fluid dynamics and numerical methods are required for using DNSLab. (iii) In 2d, interactive results for turbulent flow cases can be obtained. Even for a 3d channel flow, the solver is fast enough for nearly interactive educational use. (iv) DNSLab is made openly available and thus contributing to
Modeling Electric Current Flow in 3D Fractured Media
NASA Astrophysics Data System (ADS)
Demirel, S.; Roubinet, D.; Irving, J.
2014-12-01
The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on
The acoustics of turbulent flow
NASA Astrophysics Data System (ADS)
Rimskii-Korsakov, A. V.
Papers are presented on such topics as the excitation of sound by small perturbations of entropy and vorticity in spatially nonuniform flows of a compressible ideal gas; the aeroacoustic characteristics of acoustically excited jets; the noise intensity and spectrum in a turbulent boundary layer on a flat plate; sound refraction in a turbulent shear flow; and the spectrum of spatial correlations of turbulent pressure pulsations at a wall at high Reynolds numbers. Consideration is also given to a comparative study of the acoustic fields of air and helium jets at subsonic outflow speeds; the effect of external boundary layer flow on jet-noise characteristics; wing-profile noise in turbulent flow; sound emission from an unsteady boundary layer; and the sound-field characteristics of a moving source (with application to aircraft-noise analysis). The effect of a sound field on coherent structures in turbulent flow, aerodynamic forces causing fan vibration and noise, and a silencer for a jet-aircraft powerplant are also examined. For individual items see A84-28803 to A84-28820
NASA Astrophysics Data System (ADS)
Zentgraf, Florian; Baum, Elias; Böhm, Benjamin; Dreizler, Andreas; Peterson, Brian
2016-04-01
Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Braiding, Turbulent 3D Reconnection and Impulsive Heating of the Magnetically Closed Corona
NASA Astrophysics Data System (ADS)
Russell, A. J. B.; Hornig, G.; Yeates, A.
2015-12-01
Magnetic braiding is one of the leading theories for heating the magnetically closed corona, however, understanding of the central processes has changed dramatically in recent years. In particular, it is now recognized that braided fields allow impulsive heating via the formation of large numbers of turbulently forming and evolving reconnection regions, which are volume filling and inherently 3D, and it is no longer necessary to invoke topological discontinuities to dissipate stored energy. It has also become clear that turbulent reconnection produces structures that are inconsistent with a Taylor relaxation model, raising questions about how much stored energy is available for heating and particle acceleration. Here, we look at recent progress that has been made in dealing with this complex heating mechanism and present a new advance that greatly improves estimates of the magnetic energy available for heating and particle acceleration.
The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction
NASA Technical Reports Server (NTRS)
Chen, D. Y.; Reynolds, R. S.
1993-01-01
An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.
1988-01-01
An LU implicit multigrid algorithm is developed to calculate 3-D compressible viscous flows. This scheme solves the full 3-D Reynolds-Averaged Navier-Stokes equation with a two-equation kappa-epsilon model of turbulence. The flow equations are integrated by an efficient, diagonally inverted, LU implicit multigrid scheme while the kappa-epsilon equations are solved, uncoupled from the flow equations, by a block LU implicit algorithm. The flow equations are solved within the framework of the multigrid method using a four-grid level W-cycle, while the kappa-epsilon equations are iterated only on the finest grid. This treatment of the Reynolds-Averaged Navier-Stokes equations proves to be an efficient method for calculating 3-D compressible viscous flows.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
NASA Technical Reports Server (NTRS)
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory
The Microstructure of Turbulent Flow
NASA Technical Reports Server (NTRS)
Obukhoff, A M; Yaglom, A M
1953-01-01
In 1941 a general theory of locally isotropic turbulence was proposed by Kolmogoroff which permitted the prediction of a number of laws of turbulent flow for large Reynolds numbers. The most important of these laws, the dependence of the mean square of the difference in velocities at two points on their distance and the dependence of the coefficient of turbulence diffusion on the scale of the phenomenon, were obtained by both Kolmogoroff and Obukhoff in the same year. At the present time these laws have been experimentally confirmed by direct measurements carried out in aerodynamic wind tunnels in the laboratory, in the atmosphere, and also on the ocean. In recent years in the Laboratory of Atmospheric Turbulence of the Geophysics Institute of the Soviet Academy of Sciences, a number of investigations have been conducted in which this theory was further developed. The results of several of these investigations are presented.
CVS Filtering of 3D Turbulent Mixing Layers Using Orthogonal Wavelets
NASA Technical Reports Server (NTRS)
Schneider, Kai; Farge, Marie; Pellegrino, Giulio; Rogers, Michael
2000-01-01
Coherent Vortex Simulation (CVS) filtering has been applied to Direct Numerical Simulation (DNS) data of forced and unforced time-developing turbulent mixing layers. CVS filtering splits the turbulent flow into two orthogonal parts, one corresponding to coherent vortices and the other to incoherent background flow. We have shown that the coherent vortices can be represented by few wavelet modes and that these modes are sufficient to reproduce the vorticity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of CVS filtering, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.
Stabilized finite elements for 3D reactive flows
NASA Astrophysics Data System (ADS)
Braack, M.; Richter, Th.
2006-07-01
Objective of this work is the numerical solution of chemically reacting flows in three dimensions described by detailed reaction mechanism. The contemplated problems include, e.g. burners with 3D geometry. Contrary to the usual operator splitting method the equations are treated fully coupled with a Newton solver. This leads to the necessity of the solution of large linear non-symmetric, indefinite systems. Due to the complexity of the regarded problems we combine a variety of numerical methods, as there are goal-oriented adaptive mesh refinement, a parallel multigrid solver for the linear systems and economical stabilization techniques for the stiff problems.By blocking the solution components for every ansatz function and applying special matrix structures for each block of degrees of freedom, we can significantly reduce the required memory effort without worsening the convergence. Considering the Galerkin formulation of the regarded problems this is established by using lumping of the mass matrix and the chemical source terms. However, this technique is not longer feasible for standard stabilized finite elements as for instance Galerkin least squares techniques or streamline diffusion. Those stabilized schemes are well established for Navier-Stokes flows but for reactive flows, they introduce many further couplings into the system compared to Galerkin formulations. In this work, we discuss this issue in connection with combustion in more detail and propose the local projection stabilization technique for reactive flows. Beside the robustness of the arising linear systems we are able to maintain the problem-adapted matrix structures presented above. Finally, we will present numerical results for the proposed methods. In particular, we simulate a methane burner with a detailed reaction system involving 15 chemical species and 84 elementary reactions.
ICEd-ALE Treatment of 3-D Fluid Flow.
1999-09-13
Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less
Semiempirical methods for computing turbulent flows
NASA Astrophysics Data System (ADS)
Belov, I. A.; Ginzburg, I. P.
1986-01-01
Two semiempirical theories which provide a basis for determining the turbulent friction and heat exchange near a wall are presented: (1) the Prandtl-Karman theory, and (2) the theory utilizing an equation for the energy of turbulent pulsations. A comparison is made between exact numerical methods and approximate integral methods for computing the turbulent boundary layers in the presence of pressure, blowing, or suction gradients. Using the turbulent flow around a plate as an example, it is shown that, when computing turbulent flows with external turbulence, it is preferable to construct a turbulence model based on the equation for energy of turbulent pulsations.
3D RECONNECTION AND FLOW DYNAMICS IN THE SSX EXPERIMENT
Brown, M. R.; Cothran, C. D.; Cohen, D. H.; Horwitz, J.; Chaplin, V.
2009-07-26
Several new experimental results are reported from plasma merging studies at the Swarthmore Spheromak Experiment (SSX) with relevance to collisionless three-dimensional magnetic reconnection in laboratory and space plasmas. First, recent high-resolution velocity measurements of impurity ions using ion Doppler spectroscopy (IDS) show bi-directional outflow jets at 40 km/s (nearly the Alfven speed). The SSX IDS instrument measures with 1 mus or better time resolution the width and Doppler shift of the C{sub III} impurity (H plasma) 229.7 nm line to determine the temperature and line-averaged flow velocity during spheromak merging events. High flow speeds are corroborated using an in situ Mach probe. Second, ion heating to nearly 10{sup 6} K is observed after reconnection events in a low-density kinetic regime. Transient electron heating is inferred from bursts on a 4-channel soft x-ray array as well as vacuum ultraviolet spectroscopy. Third, the out-of-plane magnetic field and the in-plane Lorentz force in a reconnection volume both show a quadrupolar structure at the ion inertial scale (c/omega{sub pi}). Time resolved vector magnetic field measurements on a 3D lattice B(r, t)) enables this measurement. Earlier work at SSX has shown that formation of three-dimensional structure at the ion inertial scale is temporally and spatially correlated with the observation of superthermal, super-Alfvenic ions accelerated along the X-line normal to the local 2D plane of reconnection. Each of these measurements will be related to and compared with similar observations in a solar or space context. Keywords: spheromak, flow, heating.
Computed Turbulent Free Shear Flow Of Air
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.
1992-01-01
Standard k-epsilon model of turbulence yields fairly accurate results. Symposium paper discusses numerical simulation of turbulent free shear flow of nonreacting compressible fluid. Ability to compute such flows essential to advances in design.
Effects of Collisional Zonal Flow Damping on Turbulent Transport
P.H. Diamond; T.S. Hahm; W.M. Tang; W.W. Lee; Z. Lin
1999-10-01
Results from 3D global gyrokinetic particle simulations of ion temperature gradient driven microturbulence in a toroidal plasma show that the ion thermal transport level in the interior region exhibits significant dependence on the ion-ion collision frequency even in regimes where the instabilities are collisionless. This is identified as arising from the Coulomb collisional damping of turbulence-generated zonal flows.
Suppression of turbulent resistivity in turbulent Couette flow
NASA Astrophysics Data System (ADS)
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Resonances in the forced turbulent wake past a 3D blunt body
NASA Astrophysics Data System (ADS)
Barros, Diogo; Borée, Jacques; Noack, Bernd R.; Spohn, Andreas
2016-06-01
We study the resonances of a forced turbulent wake past a flat-based bluff body using symmetric and antisymmetric actuation modes. The natural, unforced wake flow exhibits broadband dynamics superimposed on oscillatory motions linked to the reminiscent laminar Bénard-von Kármán instability in the turbulent flow. Harmonic and subharmonic resonances can be controlled by the phase relationship of periodic forcing and are linked to the symmetry properties of vortex shedding. Symmetric forcing leads to a strong subharmonic amplification of vortex shedding in the wake, but no harmonic excitation. The robustness of the subharmonic resonance is confirmed at different Reynolds numbers. Antisymmetric actuation, however, promotes a harmonic resonance with very similar wake and drag features.
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
A 3D MHD Model of the Solar Wind Driven by Turbulence Dissipation
NASA Astrophysics Data System (ADS)
Lionello, R.; Downs, C.; Linker, J.; Mikic, Z.; Velli, M. M.; Verdini, A.
2013-12-01
The mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still actively investigated. However, it is largely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process. Verdini et al. (2010) presented a model for heating and accelerating the solar wind based on the turbulent dissipation of Alfven waves. We first use our time-dependent model of the solar wind to reproduce Verdini et al's solution; then we extend its application to the case when the energy equation includes thermal conduction and radiation losses, and the upper chromosphere is part of the computational domain. Finally, we show application of this formulation to our 3D MHD model of the solar corona and the solar wind.
NASA Astrophysics Data System (ADS)
Zhu, Liang-sheng; Yu, Long-fei
2016-10-01
Aimed at the hydrodynamic response for marine structures slamming into water, based on the mechanism analysis to the slamming process, and by combining 3D N-S equation and k- ɛ turbulent kinetic equation with structure fully 6DOF motion equation, a mathematical model for the wind-fluid-solid interaction is established in 3D marine structure slamming wave at free poses and wind-wave-flow complex environments. Compared with the results of physical model test, the numerical results from the slamming wave well correspond with the experimental results. Through the mathematical model, the wave-making issue of 3D marine structure at initial pose falls into water in different complex wind, wave and flow environments is investigated. The research results show that various kinds of natural factors and structure initial poses have different influence on the slamming wave, and there is an obvious rule in this process.
Basic studies of microstructure of combusting turbulent flows
NASA Astrophysics Data System (ADS)
Hussain, Fazle
1991-03-01
The goal is to develop a state-of-the-art measurement technique, Holographic Particle Displacement Velocimetry (HPV), which can provide instantaneous velocities everywhere in the flow field simultaneously. Another goal is to use the power of supercomputers to simulate 3D flows with heat release to study the physics of combusting turbulent flows. Computations suffer from limited flow times and Reynolds number but can provide flow properties in more detail than possible by any existing experimental techniques. Moreover, numerical simulations can provide quantities almost impossible to measure experimentally. This article discusses efforts to develop the holographic particle displacement velocimetry system and results of direct numerical numerical simulations of combusting flows.
Turbulent flows near flat plates
NASA Astrophysics Data System (ADS)
Kambe, R.; Imamura, T.; Doi, M.
1980-08-01
The method to study the effect of the plate moving in the homogeneous or isotropic turbulence is presented. The crucial point of this method is to solve the Orr-Sommerfeld like equation, which is satisfied by the kernel of the Wiener-Hermite expansion of the velocity field, under the inhomogeneous boundary condition. In the special case of constant mean flow, our method gives the same result as that of Hunt and Graham and succeeds in explaining the experimental results of Thomas and Hancock. The method is also applied to the case of nonuniform mean flow, where the shear effect comes up.
Confined Turbulent Swirling Recirculating Flow Predictions. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Abujelala, M. T.
1984-01-01
Turbulent swirling flow, the STARPIC computer code, turbulence modeling of turbulent flows, the k-xi turbulence model and extensions, turbulence parameters deduction from swirling confined flow measurements, extension of the k-xi to confined swirling recirculating flows, and general predictions for confined turbulent swirling flow are discussed.
PDF methods for turbulent reactive flows
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1995-01-01
Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.
NASA Astrophysics Data System (ADS)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Stochastic models for turbulent reacting flows
Kerstein, A.
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
Laminar and Turbulent Flow in Water
ERIC Educational Resources Information Center
Riveros, H. G.; Riveros-Rosas, D.
2010-01-01
There are many ways to visualize flow, either for laminar or turbulent flows. A very convincing way to show laminar and turbulent flows is by the perturbations on the surface of a beam of water coming out of a cylindrical tube. Photographs, taken with a flash, show the nature of the flow of water in pipes. They clearly show the difference between…
Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences
NASA Astrophysics Data System (ADS)
Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz
2009-02-01
In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis
2016-11-01
A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates
Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows
NASA Astrophysics Data System (ADS)
Toloui, Mostafa; Sheng, Jian
2011-11-01
Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.
Turbulent Flow Past Spinning Cylinders
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Donald; Carlucci, Pasquale; Thangam, Siva
2009-11-01
Flow past cylinders aligned along their axis where a base freely spins while attached to a non-spinning forebody is considered from a computational and experimental point of view. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. An anisotropic two-equation Reynolds-stress model that incorporates the effect of rotation-modified energy spectrum and swirl is used to perform computations for the flow past axially rotating cylinders. Both rigid cylinders as well as that of cylinders with free-spinning base are considered from a computational point of view. A subsonic wind tunnel with a forward-sting mounted spinning cylinder is used for experiments. Experiments are performed for a range of spin rates and free stream flow conditions. The experimental results of Carlucci & Thangam (2001) are used to benchmark flow over spinning cylinders. The data is extended to munitions spinning in the wake of other munitions. Applications involving the design of projectiles are discussed.
On turbulent spots in plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Henningson, Dan S.; Kim, John
1992-01-01
Turbulence characteristics inside a turbulent spot in plume Poiseuille flow are investigated by analyzing a data base obtained from a direct numerical simulation. The spot is found to consist of two distinct regions - a turbulent area and a wave area. The flow inside the turbulent area has a strong resemblance to that found in the fully developed turbulent channel. Suitably defined mean and rms fluctuations as well as the internal shear layer structures are found to be similar to the turbulent counterpart. In the wave area, the inflexional mean spanwise profiles cause a rapid growth of oblique waves, which break down to turbulence. The breakdown process of the oblique waves is reminiscent of the secondary instability observed during transition to turbulence in channel and boundary layer flows. Other detailed characteristics associated with the Poiseuille spot are presented and are compared with experimental results.
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
NASA Astrophysics Data System (ADS)
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces
ERIC Educational Resources Information Center
Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed
2012-01-01
The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…
Turbulence modeling for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1989-01-01
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
A prediction of 3-D viscous flow and performance of the NASA low-speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Moore, John; Moore, Joan G.
1989-01-01
A prediction of the 3-D turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation for high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modelling. Recommendations are made for future flow studies in the NASA impeller.
Brien, Dianne L.; Reid, Mark E.
2007-01-01
Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the
White, Diana; Coombe, Dennis; Rezania, Vahid; Tuszynski, Jack
2016-01-01
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537
Rezania, Vahid; Tuszynski, Jack
2016-01-01
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537
Approximate Model for Turbulent Stagnation Point Flow.
Dechant, Lawrence
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
Ergodic theory and experimental visualization of chaos in 3D flows
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Mezic, Igor
2000-11-01
In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.
3D topographic correction of the BSR heat flow and detection of focused fluid flow
NASA Astrophysics Data System (ADS)
He, Tao; Li, Hong-Lin; Zou, Chang-Chun
2014-06-01
The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery
2015-01-01
In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.
SSME 3-D Turnaround Duct flow analysis - CFD predictions
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Stowers, Steven T.; Mcconnaughey, Paul
1988-01-01
CFD analysis is presently employed to obtain an improved flowfield for an individual flowpath in the case of the Space Shuttle Main Engine's High Pressure Fuel Turbopump Turn-Around Duct (TAD), which conducts the flow exiting from the gas turbines into the fuel bowl. It is demonstrated that the application of CFD to TAD flow analysis, giving attention to the duct's configuration and to the number, shape, and alignment of the diffuser struts, can enhance understanding of flow physics and result in improved duct design and performance.
Transonic Turbulent Flow Predictions With Two-Equation Turbulence Models
NASA Technical Reports Server (NTRS)
Liou, William W.; Shih, Tsan-Hsing
1996-01-01
Solutions of the Favre-averaged Navier-Stokes equations for two well-documented transonic turbulent flows are compared in detail with existing experimental data. While the boundary layer in the first case remains attached, a region of extensive flow separation has been observed in the second case. Two recently developed k-epsilon, two-equation, eddy-viscosity models are used to model the turbulence field. These models satisfy the realizability constraints of the Reynolds stresses. Comparisons with the measurements are made for the wall pressure distribution, the mean streamwise velocity profiles, and turbulent quantities. Reasonably good agreement is obtained with the experimental data.
Gas flow environmental and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Geil, T.; Steinhoff, J.
1983-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
USM3D Simulations of Saturn V Plume Induced Flow Separation
NASA Technical Reports Server (NTRS)
Deere, Karen; Elmlilgui, Alaa; Abdol-Hamid, K. S.
2011-01-01
The NASA Constellation Program included the Ares V heavy lift cargo vehicle. During the design stage, engineers questioned if the Plume Induced Flow Separation (PIFS) that occurred along Saturn V rocket during moon missions at some flight conditions, would also plague the newly proposed rocket. Computational fluid dynamics (CFD) was offered as a tool for initiating the investigation of PIFS along the Ares V rocket. However, CFD best practice guidelines were not available for such an investigation. In an effort to establish a CFD process and define guidelines for Ares V powered simulations, the Saturn V vehicle was used because PIFS flight data existed. The ideal gas, computational flow solver USM3D was evaluated for its viability in computing PIFS along the Saturn V vehicle with F-1 engines firing. Solutions were computed at supersonic freestream conditions, zero degree angle of attack, zero degree sideslip, and at flight Reynolds numbers. The effects of solution sensitivity to grid refinement, turbulence models, and the engine boundary conditions on the predicted PIFS distance along the Saturn V were discussed and compared to flight data from the Apollo 11 mission AS-506.
Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.
2001-01-01
A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.
Gas flow environmental and heat transfer nonrotating 3D program
NASA Technical Reports Server (NTRS)
Crawford, R. A.
1984-01-01
The experimental contract objective is to provide a complete set of benchmark quality data for the flow within a large rectangular turning duct. The data are to be used to evaluate and verify three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
Laser direct writing 3D structures for microfluidic channels: flow meter and mixer
NASA Astrophysics Data System (ADS)
Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.
2015-03-01
The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.
Linear stability analysis of swirling turbulent flows with turbulence models
NASA Astrophysics Data System (ADS)
Gupta, Vikrant; Juniper, Matthew
2013-11-01
In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
Boundary Layer Control of Rotating Convection Systems: the Transition from 2D to 3D Turbulence
NASA Astrophysics Data System (ADS)
King, Eric; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J.
2008-09-01
Recent studies have reproduced the patterns of zonal flow and thermal emission on the Giant Planets using deep convection models. For example, it has been shown that the fundamental differences between the winds of the Ice Giants, Uranus and Neptune, and the Gas Giants, Jupiter and Saturn, may be explained by the breakdown of the influence of rotation on convection. Here, we present results from a coupled suite of laboratory experiments and numerical simulations of rotating convection which span a broad range of parameter space. We observe distinct transitions from rotationally controlled, quasi-2D dynamics to strongly 3D, non-rotating style convection. We quantify the boundary between these two regimes as a function of the Rayleigh and Ekman numbers. The transition is not determined, as long assumed, by the convective Rossby number, but instead is controlled by boundary layer dynamics. It may then be easier than previously thought for convection systems to break free from the constraints of rotation. We are presently investigating how this transition correlates with zonal flows and magnetic field generation on the Giant Planets. Funding provided by NSF Geophysics Program (EAR/IF) and NASA Planetary Atmospheres Program.
Vorticity Generation on a Flat Surface in 3D Flows
NASA Astrophysics Data System (ADS)
Casciola, C. M.; Piva, R.; Bassanini, P.
1996-12-01
Vortex methods, based on the splitting into Euler and Stokes operators, have been successfully adopted in numerical solutions of three-dimensional Navier-Stokes equations in free-space. Here we deal with their application to flows bounded by solid walls, discussing in particular the boundary conditions for vorticity and their approximation. In two dimensions this has been accomplished by introducing a vortex sheet at the wall, determined by the local slip-velocity, as an approximation of the vorticity source. For three-dimensional flows, we analyze in the context of the Stokes substep the integral equation for the vorticity source and its connection with the creation algorithm adopted in vortex methods. The present analysis leads to a formulation which shows the connection between the exact vorticity source at the wall and the discrete vorticity creation operator adopted in the Chorin-Marsden formula. In particular, the slip velocity at the wall is identified as an approximate solution of the integral equation for the vorticity source and the corresponding error estimate is also discussed. Besides showing the consistency of this approximation, we indicate a numerical procedure which provides a wall-generation of solenoidal vorticity. This is a crucial issue for an accurate application of vortex methods to three-dimensional flows.
Shock-induced turbulent flow in baffle systems
Kuhl, A.L.; Reichenbach, H.
1993-07-01
Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.
Bubbles in an isotropic homogeneous turbulent flow
NASA Astrophysics Data System (ADS)
Mancilla, F. E.; Martinez, M.; Soto, E.; Ascanio, G.; Zenit, R.
2011-11-01
Bubbly turbulent flow plays an important role in many engineering applications and natural phenomena. In this kind of flows the bubbles are dispersed in a turbulent flow and they interact with the turbulent structures. The present study focuses on the motion and hydrodynamic interaction of a single bubble in a turbulent environment. In most previous studies, the effect of bubbles on the carrier fluid was analyzed, under the assumption that the bubble size was significantly smaller that the smallest turbulence length scale. An experimental study of the effect of an isotropic and homogeneous turbulent flow on the bubble shape and motion was conducted. Experiments were performed in an isotropic turbulent chamber with nearly zero mean flow, in which a single bubble was injected. The fluid velocity was measured using the Particle Image Velocimetry (PIV) technique. The bubble deformation was determined by video processing of high-speed movies. The fluid disturbances on the bubble shape were studied for bubbles with different sizes. We will present experimental data obtained and discuss the differences among these results to try to understand the bubble - turbulence interaction mechanisms.
Swimming in turbulent flow - profitable or costly ?
NASA Astrophysics Data System (ADS)
Enders, E. C.; Roy, A. G.
2004-05-01
Fish swimming performance has long been of interest to researchers. Experiments on swimming performance are generally performed under conditions which minimise flow heterogeneity. However, fish live in environments were intense fluctuations of flow velocity and pressure occur. Only recently, studies emerged that consider the effect of turbulence on the swimming performance of fish. Research has shown that fish may benefit from turbulence. For example, rainbow trout swimming behind an obstacle which produced stable vortex shedding, profited from the energy of these vortices. Fish adjusted their swimming patterns to slalom between the vortices which resulted in a reduction in muscle activity suggesting that fish reduced energy expenditure of swimming. Similarly, sockeye salmon exploited recirculation zones during upriver spawning migration to minimise energy expenditure. In contrast to these investigations showing that fish may actually profit from turbulence, several studies suggested that turbulence increases energy expenditure of swimming. Sustained swimming speed of fish decreased with increasing turbulence intensity suggesting an increase in swimming costs. Similarly, Atlantic salmon swimming in turbulent flow have 2- to 4-fold increased energy expenditure in comparison to estimates obtained under minimised flow heterogeneity. We will give an overview of recent studies and of new experimental evidence showing how turbulence affects fish behaviour, energetics and distribution and we discuss the relevant scales at which turbulent flow structures affect fish depending on its size. These results are from special interest not only for fisheries management, habitat restoration and biodiversity conservation but also for conceptualisation and construction of migratory fish pathways.
Experimental Investigation of Material Flows Within FSWs Using 3D Tomography
Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt
2008-06-01
There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.
Turbulence characteristics inside a turbulent spot in plane Poiseuille flow
NASA Technical Reports Server (NTRS)
Henningson, D. S.; Kim, John; Alfredsson, P. Henrik
1988-01-01
In wall-bounded shear flows the transition to turbulence through localized disturbances goes through a pattern starting with a development of shear layers. The localized normal velocity fluctuations induce normal vorticity through the lift-up effect. These shear layers become unstable to secondary disturbances, and if the amplitudes of the disturbances are large enough, a turbulent spot develops. Investigations of the spot in boundary layers has shown that the turbulent part of the spot is very similar to a fully developed boundary layer. Wygnanski et al. (1976) showed that the mean profile at the center-symmetry plane has a logarithmic region and Johansson et al. (1987) showed that both the higher-order statistics and flow structures in the spot were the same as in the corresponding fully developed flow. In what respects the turbulence inside the Poiseuille spot is similar to fully developed turbulent channel flow is studied. The numerically simulated spot is used, where the characteristics inside the spot are compared to those of the wave packet in the wingtip area. A recent experimental investigation of the velocity field associated with the Poiseuille spot by Klingmann et al. is used for comparison.
Evolution of 3-D geologic framework modeling and its application to groundwater flow studies
Blome, Charles D.; Smith, David V.
2012-01-01
In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.
3D-Flow processor for a programmable Level-1 trigger (feasibility study)
Crosetto, D.
1992-10-01
A feasibility study has been made to use the 3D-Flow processor in a pipelined programmable parallel processing architecture to identify particles such as electrons, jets, muons, etc., in high-energy physics experiments.
Sensitivity of flow evolution on turbulence structure
NASA Astrophysics Data System (ADS)
Mishra, Aashwin A.; Iaccarino, Gianluca; Duraisamy, Karthik
2016-09-01
Reynolds averaged Navier-Stokes models represent the workhorse for studying turbulent flows in academia and in industry. Such single-point turbulence models have limitations in accounting for the influence of the nonlocal physics and flow history on turbulence evolution. In this context, we investigate the sensitivity inherent in such single-point models due to their characterization of the internal structure of homogeneous turbulent flows solely by the means of the Reynolds stresses. For a wide variety of mean flows under diverse conditions, we study the prediction intervals engendered due to this coarse-grained description. The nature of this variability and its dependence on parameters such as the mean flow topology, the initial Reynolds stress tensor, and the relative influence of linear contra nonlinear physics is identified, analyzed, and explicated.
Exploiting similarity in turbulent shear flows for turbulence modeling
NASA Technical Reports Server (NTRS)
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-01-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
Axisymmetric and 3D calculations of melt flow during VCz growth
NASA Astrophysics Data System (ADS)
Bänsch, E.; Davis, D.; Langmach, H.; Miller, W.; Rehse, U.; Reinhardt, G.; Uhle, M.
2004-05-01
Axisymmetric and 3D calculations of melt flow have been performed for a configuration used at the vapour-pressure-controlled Czochalski growth of GaAs single crystals. Thermal boundary conditions were adapted from a global simulation of the temperature field. The axisymmetric calculations with the code NAVIER confirmed the ones previously perfomed with FIDAP TM. The 3D calculations showed that the flow exhibits an asymmetric transient behaviour beyond a certain critical Reynolds number.
On Combustion in a Turbulent Flow
NASA Technical Reports Server (NTRS)
Shelkin, K. I.
1947-01-01
The characteristics introduced by the turbulence in the process of the flame propagation are considered. On the basis of geometrical and dimensional considerations an expression is obtained for the velocity of the flame propagation in a flow of large scale of turbulence.
Extended 3D Approach for Quantification of Abnormal Ascending Aortic Flow
Sigovan, Monica; Dyverfeldt, Petter; Wrenn, Jarrett; Tseng, Elaine E.; Saloner, David; Hope, Michael D.
2015-01-01
Background Flow displacement quantifies eccentric flow, a potential risk factor for aneurysms in the ascending aorta, but only at a single anatomic location. The aim of this study is to extend flow displacement analysis to 3D in patients with aortic and aortic valve pathologies. Methods 43 individuals were studied with 4DFlow MRI in 6 groups: healthy, tricuspid aortic valve (TAV) with aortic stenosis (AS) but no dilatation, TAV with dilatation but no AS, and TAV with both AS and dilatation, BAV without AS or dilatation, BAV without AS but with dilation. The protocol was approved by our institutional review board, and informed consent was obtained. Flow displacement was calculated for multiple planes along the ascending aorta, and 2D and 3D analyses were compared. Results Good correlation was found between 2D flow displacement and both maximum and average 3D values (r>0.8). Healthy controls had significantly lower flow displacement values with all approaches (p<0.05). The highest flow displacement was seen with stenotic TAV and aortic dilation (0.24±0.02 with maximum flow displacement). The 2D approach underestimated the maximum flow displacement by more than 20% in 13 out of 36 patients (36%). Conclusions The extended 3D flow displacement analysis offers a more comprehensive quantitative evaluation of abnormal systolic flow in the ascending aorta than 2D analysis. Differences between patient subgroups are better demonstrated, and maximum flow displacement is more reliable assessed. PMID:25721998
NASA Technical Reports Server (NTRS)
Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald
1990-01-01
A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.
BOOK REVIEW: Statistical Mechanics of Turbulent Flows
NASA Astrophysics Data System (ADS)
Cambon, C.
2004-10-01
results from both non-linearity and non-locality of Navier-Stokes equations, the latter coming from, e.g., the nonlocal relationship of velocity and pressure in the quasi-incompressible case. These two aspects are often intricately linked. It is well known that non-linearity alone is not responsible for the `problem', as evidenced by 1D turbulence without pressure (`Burgulence' from the Burgers equation) and probably 3D (cosmological gas). A local description in terms of pdf for the velocity can resolve the `non-linear' problem, which instead yields an infinite hierarchy of equations in terms of moments. On the other hand, non-locality yields a hierarchy of unclosed equations, with the single-point pdf equation for velocity derived from NS incompressible equations involving a two-point pdf, and so on. The general relationship was given by Lundgren (1967, Phys. Fluids 10 (5), 969-975), with the equation for pdf at n points involving the pdf at n+1 points. The nonlocal problem appears in various statistical models which are not discussed in the book. The simplest example is full RST or ASM models, in which the closure of pressure-strain correlations is pivotal (their counterpart ought to be identified and discussed in equations (5-21) and the following ones). The book does not address more sophisticated non-local approaches, such as two-point (or spectral) non-linear closure theories and models, `rapid distortion theory' for linear regimes, not to mention scaling and intermittency based on two-point structure functions, etc. The book sometimes mixes theoretical modelling and pure empirical relationships, the empirical character coming from the lack of a nonlocal (two-point) approach.) In short, the book is orientated more towards applications than towards turbulence theory; it is written clearly and concisely and should be useful to a large community, interested either in the underlying stochastic formalism or in CFD applications.
Determining 3D flow fields via multi-camera light field imaging.
Truscott, Tadd T; Belden, Jesse; Nielson, Joseph R; Daily, David J; Thomson, Scott L
2013-03-06
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture (1). Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet.
Determining 3D Flow Fields via Multi-camera Light Field Imaging
Truscott, Tadd T.; Belden, Jesse; Nielson, Joseph R.; Daily, David J.; Thomson, Scott L.
2013-01-01
In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet. PMID:23486112
Turbulent motion of mass flows. Mathematical modeling
NASA Astrophysics Data System (ADS)
Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana
2016-04-01
New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362
Scaling properties of turbulence driven shear flow
Yan, Z.; Tynan, G. R.; Holland, C.; Xu, M.; Muller, S. H.; Yu, J. H.
2010-01-15
The characteristics and scaling properties of the turbulence driven shear flow are investigated in a cylindrical laboratory plasma device. For a given plasma pressure, the density fluctuation amplitude and radial particle flux increase with the applied magnetic field. Strong flow shear is found to coexist at high magnetic fields (>700 G) with approx10 kHz drift wave turbulence, but not at low magnetic fields (<700 G). The absolute value of the divergence of the turbulent Reynolds stress at the shear layer is shown to increase with the magnetic field as well. For a fixed magnetic field, the shear flow is found to decrease as the discharge gas pressure is increased. The density fluctuation amplitude and divergence of the turbulent Reynolds stress also decrease with the plasma pressure. For both situations the cross phase between the radial and azimuthal components of the velocity is found to be a key factor to determine variations in the turbulent Reynolds stress at different magnetic fields and discharge pressures. The results show that the generation of the shear flow is related to the development of specific frequency components of the drift wave turbulence for a variety of plasma conditions. The linear stability analysis shows that the observed variation in the turbulence and shear flow with magnetic field is also consistent with a critical gradient behavior.
Turbulent dispersion via fan-generated flows.
Halloran, Siobhan K; Wexler, Anthony S; Ristenpart, William D
2014-05-01
Turbulent dispersion of passive scalar quantities has been extensively studied in wind tunnel settings, where the flow is carefully conditioned using flow straighteners and grids. Much less is known about turbulent dispersion in the "unconditioned" flows generated by fans that are ubiquitous in indoor environments, despite the importance of these flows to pathogen and contaminant transport. Here, we demonstrate that a point source of scalars released into an airflow generated by an axial fan yields a plume whose width is invariant with respect to the fan speed. The results point toward a useful simplification in modeling of disease and pollution spread via fan-generated flows.
Turbulent dispersion via fan-generated flows
Halloran, Siobhan K.; Wexler, Anthony S.; Ristenpart, William D.
2014-01-01
Turbulent dispersion of passive scalar quantities has been extensively studied in wind tunnel settings, where the flow is carefully conditioned using flow straighteners and grids. Much less is known about turbulent dispersion in the “unconditioned” flows generated by fans that are ubiquitous in indoor environments, despite the importance of these flows to pathogen and contaminant transport. Here, we demonstrate that a point source of scalars released into an airflow generated by an axial fan yields a plume whose width is invariant with respect to the fan speed. The results point toward a useful simplification in modeling of disease and pollution spread via fan-generated flows. PMID:24932096
Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution
NASA Technical Reports Server (NTRS)
Interrante, Victoria; Grosch, Chester
1997-01-01
This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.
Reacting Multi-Species Gas Capability for USM3D Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Schuster, David M.
2012-01-01
The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment.
NASA Astrophysics Data System (ADS)
Al-Momar, S. A.; Deierling, W.; Williams, J. K.; Hoffman, E. G.
2014-12-01
Convectively induced turbulence (CIT) is commonly listed as a cause or factor in weather-related commercial aviation accidents. In-cloud CIT is generated in part by shears between convective updrafts and downdrafts. Total lightning is also dependent on a robust updraft and the resulting storm electrification. The relationship between total lightning and turbulence could prove useful in operational aviation settings with the use of future measurements from the geostationary lightning mapper (GLM) onboard the GOES-R satellite. Providing nearly hemispheric coverage of total lightning, the GLM could help identify CIT in otherwise data-sparse locations. For a severe thunderstorm case on 7 June 2012 in northeast Colorado, in-cloud eddy dissipation rate estimates from the NCAR/NEXRAD Turbulence Detection Algorithm were compared with cloud electrification data from the Colorado Lightning Mapping Array and radar products from the Denver, Colorado WSR-88D. These comparisons showed that high concentrations of very high frequency (VHF) source densities emitted by lightning occurred near and downstream of the storm's convective core. Severe turbulence was also shown to occur near this area, extending near the melting level of the storm and spreading upward and outward. Additionally, increases/decreases in VHF sources and turbulence volumes occurred within a few minutes of each other; although, light turbulence was shown to increase near one storm's dissipation. This may be due to increased shear from the now downdraft dominate storm. The 3D wind field from this case, obtained by either a dual-Doppler or a Variational Doppler Radar Assimilation System (VDRAS) analysis, will also be examined to further study the relationships between total lightning and thunderstorm kinematics. If these results prove to be robust, lightning may serve as a strong indicator of the location of moderate or greater turbulence.
Advanced Numerical Modeling of Turbulent Atmospheric Flows
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Dörnbrack, Andreas; Gerz, Thomas
The present chapter introduces the method of computational simulation to predict and study turbulent atmospheric flows. This includes a description of the fundamental approach to computational simulation and the practical implementation using the technique of large-eddy simulation. In addition, selected contributions from IPA scientists to computational model development and various examples for applications are given. These examples include homogeneous turbulence, convective boundary layers, heated forest canopy, buoyant thermals, and large-scale flows with baroclinic wave instability.
Surface waves propagating on a turbulent flow
NASA Astrophysics Data System (ADS)
Gutiérrez, Pablo; AumaÃ®tre, Sébastien
2016-02-01
We study the propagation of monochromatic surface waves on a turbulent flow of liquid metal, when the waves are much less energetic than the background flow. Electromagnetic forcing drives quasi-two-dimensional turbulence with strong vertical vorticity. To isolate the surface-wave field, we remove the surface deformation induced by the background turbulent flow using coherent-phase averaging at the wave frequency. We observe a significant increase in wavelength, when the latter is smaller than the forcing length scale. This phenomenon has not been reported before and can be explained by multiple random wave deflections induced by the turbulent velocity gradients. The shift in wavelength thus provides an estimate of the fluctuations in deflection angle. Local measurements of the wave frequency far from the wavemaker do not reveal such systematic behavior, although a small shift is visible. Finally, we quantify the damping enhancement induced by the turbulent flow and compare it to the existing theoretical predictions. Most of them suggest that the damping increases as the square of the Froude number, whereas our experimental data show a linear increase with the Froude number. We interpret this linear relationship as a balance between the time for a wave to cross a turbulent structure and the turbulent mixing time. The larger the ratio of these two times, the more energy is extracted from the wave. We conclude with possible mechanisms for energy exchange.
Turbulent flow across a natural compound channel
NASA Astrophysics Data System (ADS)
Carling, P. A.; Cao, Zhixian; Holland, M. J.; Ervine, D. A.; Babaeyan-Koopaei, K.
2002-12-01
The measurements and primary analysis of turbulent flow across a compound channel (River Severn, England) are presented. The velocity was measured using a three-dimensional acoustic Doppler velocimeter in combination with a directional current meter. The statistical flow structure is examined against existing analytical formulations derived for single channel flows based on laboratory studies. The existence of a vertically two-layer structure around the interface between the main channel and the floodplain is demonstrated, indicating (1) a vertical shear-dominated flow zone near the bed; and (2) away from the bed a transverse shear-dominated flow zone with enhanced turbulent mixing. The temporal spectra clearly reveal the occurrence of anisotropic turbulence both in the main channel and over the floodplain. The present findings necessitate the resolution of both transverse and vertical structures for advanced modeling of compound channel flows. The measured data can be used to assess the performance of mathematical river models.
Turbulent Mixing of Multiphase Flow
NASA Technical Reports Server (NTRS)
Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.
2003-01-01
Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.
Flow topologies and turbulence scales in a jet-in-cross-flow
NASA Astrophysics Data System (ADS)
Ruiz, A. M.; Lacaze, G.; Oefelein, J. C.
2015-04-01
This paper presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of Su and Mungal ["Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets," J. Fluid Mech. 513(1), 1-45 (2004)]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.
Miles, A R; Edwards, M J; Greenough, J A
2004-11-08
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams, 9(2), 209 (1991)] are presented. Using the multi-physics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J.A. Greenough, J. Comp. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pre-transition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernova are discussed.
Linear and nonlinear instability and ligament dynamics in 3D laminar two-layer liquid/liquid flows
NASA Astrophysics Data System (ADS)
Ó Náraigh, Lennon; Valluri, Prashant; Scott, David; Bethune, Iain; Spelt, Peter
2013-11-01
We consider the linear and nonlinear stability of two-phase density-matched but viscosity contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular attention to the formation of three-dimensional waves. The Orr-Sommerfeld-Squire analysis is used along with DNS of the 3D two-phase Navier-Stokes equations using our newly launched TPLS Solver (http://edin.ac/10cRKzS). For the parameter regimes considered, we demonstrate the existence of two distinct mechanisms whereby 3D waves enter the system, and dominate at late time. There exists a direct route, whereby 3D waves are amplified by the standard linear mechanism; for certain parameter classes, such waves grow at a rate less than but comparable to that of most-dangerous two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely spanwise wave couples to a streamwise mode and grows exponentially. We demonstrate these mechanisms in isolation and in concert. Consideration is also given to the ultimate state of these waves: persistent three-dimensional nonlinear waves are stretched and distorted by the base flow, thereby producing regimes of ligaments, ``sheets,'' or ``interfacial turbulence.'' HECToR RAP/dCSE Project e174, HPC-Europa 2.
3D-printed devices for continuous-flow organic chemistry
Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J
2013-01-01
Summary We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products. PMID:23766811
Model studies of blood flow in basilar artery with 3D laser Doppler anemometer
NASA Astrophysics Data System (ADS)
Frolov, S. V.; Sindeev, S. V.; Liepsch, D.; Balasso, A.; Proskurin, S. G.; Potlov, A. Y.
2015-03-01
It is proposed an integrated approach to the study of basilar artery blood flow using 3D laser Doppler anemometer for identifying the causes of the formation and development of cerebral aneurysms. Feature of the work is the combined usage of both mathematical modeling and experimental methods. Described the experimental setup and the method of measurement of basilar artery blood flow, carried out in an interdisciplinary laboratory of Hospital Rechts der Isar of Technical University of Munich. The experimental setup used to simulate the blood flow in the basilar artery and to measure blood flow characteristics using 3D laser Doppler anemometer (3D LDA). Described a method of numerical studies carried out in Tambov State Technical University and the Bakoulev Center for Cardiovascular Surgery. Proposed an approach for sharing experimental and numerical methods of research to identify the causes of the basilar artery aneurysms.
3D vector flow using a row-column addressed CMUT array
NASA Astrophysics Data System (ADS)
Holbek, Simon; Christiansen, Thomas Lehrmann; Engholm, Mathias; Lei, Anders; Stuart, Mathias Bo; Beers, Christopher; Moesner, Lars Nordahl; Bagge, Jan Peter; Thomsen, Erik Vilain; Jensen, Jørgen Arendt
2016-04-01
This paper presents an in-house developed 2-D capacitive micromachined ultrasonic transducer (CMUT) applied for 3-D blood flow estimation. The probe breaks with conventional transducers in two ways; first, the ultrasonic pressure field is generated from thousands of small vibrating micromachined cells, and second, elements are accessed by row and/or column indices. The 62+62 2-D row-column addressed prototype CMUT probe was used for vector flow estimation by transmitting focused ultrasound into a flow-rig with a fully developed parabolic flow. The beam-to-flow angle was 90°. The received data was beamformed and processed offline. A transverse oscillation (TO) velocity estimator was used to estimate the 3-D vector flow along a line originating from the center of the transducer. The estimated velocities in the lateral and axial direction were close to zero as expected. In the transverse direction a characteristic parabolic velocity profile was estimated with a peak velocity of 0.48 m/s +/- 0.02 m/s in reference to the expected 0.54 m/s. The results presented are the first 3-D vector flow estimates obtained with a row-column CMUT probe, which demonstrates that the CMUT technology is feasible for 3-D flow estimation.
Adaptive 3D single-block grids for the computation of viscous flows around wings
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
Summary of EASM Turbulence Models in CFL3D With Validation Test Cases
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2003-01-01
This paper summarizes the Explicit Algebraic Stress Model in k-omega form (EASM-ko) and in k-epsilon form (EASM-ke) in the Reynolds-averaged Navier-Stokes code CFL3D. These models have been actively used over the last several years in CFL3D, and have undergone some minor modifications during that time. Details of the equations and method for coding the latest versions of the models are given, and numerous validation cases are presented. This paper serves as a validation archive for these models.
Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.
Li, Gang; Guo, Lei
2012-01-01
Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.
Instability, turbulence, and 3D magnetic reconnection in a line-tied, zero net current screw pinch.
Brookhart, Matthew I; Stemo, Aaron; Zuberbier, Amanda; Zweibel, Ellen; Forest, Cary B
2015-04-10
This Letter reports the first experimental investigation into a line-tied plasma with a reversed current profile. Discrete current sources create a cylindrical plasma equilibrium with an axial field and zero net current. Detailed magnetic measurements show that an internal m=1 mode with no external character grows exponentially. The nonlinear evolution of the mode drives 3D reconnection events that reorganize the plasma equilibrium. The plasma is turbulent and exhibits reconnection events on a range of scales. These data are consistent with recent simulations of coronal loops and the nanoflare coronal heating mechanism. PMID:25910129
Entrainment-Zone Restratification and Flow Structures in Stratified Shear Turbulence
NASA Technical Reports Server (NTRS)
Reif, B. Anders Pettersson; Werne, Joseph; Andreassen, Oyvind; Meyer, Christian; Davis-Mansour, Melissa
2002-01-01
Late-time dynamics and morphology of a stratified turbulent shear layer are examined using 1) Reynolds-stress and heat-flux budgets, 2) the single-point structure tensors introduced by Kassinos et al. (2001), and 3) flow visualization via 3D volume rendering. Flux reversal is observed during restratification in the edges of the turbulent layer. We present a first attempt to quantify the turbulence-mean-flow interaction and to characterize the predominant flow structures. Future work will extend this analysis to earlier times and different values of the Reynolds and Richardson numbers.
Single point modeling of rotating turbulent flows
NASA Technical Reports Server (NTRS)
Hadid, A. H.; Mansour, N. N.; Zeman, O.
1994-01-01
A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.
NASA Astrophysics Data System (ADS)
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry
NASA Astrophysics Data System (ADS)
Crua, Cyril; Heikal, Morgan R.
2014-12-01
Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the
Turbulent flow inside a solar concentrator receiver
NASA Astrophysics Data System (ADS)
Ramirez, Manuel; Ramos, Eduardo
2014-11-01
A solar concentrator receiver is a heat exchanger designed to absorb a beam of radiant heat coming from a field of heliostats. Inside the device, a slow forced flow generated bye an external pressure gradient is present, together with a natural convective a turbulent flow produced by the large temperature gradients due to intense heating. We present a model of this device based on the numerical solution of the mass, momentum and energy conservation equations. We consider heating conditions that lead to turbulence convective flow. For this season, a large eddy simulation model is incorporated. The results are potentially useful for the design of solar concentrator receivers.
Transition to turbulence in pulsating pipe flow
NASA Astrophysics Data System (ADS)
Hof, Bjorn; Warnecke, Sascha; Xu, Duo
2013-11-01
We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).
The pdf approach to turbulent flow
NASA Technical Reports Server (NTRS)
Kollmann, W.
1990-01-01
This paper provides a detailed discussion of the theory and application of probability density function (pdf) methods, which provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. The basic laws governing the flow of Newtonian fluids are set up in the Eulerian and the Lagrangian frame, and the exact and linear equations for the characteristic functionals in those frames are discussed. Pdf equations in both frames are derived as Fourier transforms of the equations of the characteristic functions. Possible formulations for the nonclosed terms in the pdf equation are discussed, their properties are assessed, and closure modes for the molecular-transport and the fluctuating pressure-gradient terms are reviewed. The application of pdf methods to turbulent combustion flows, supersonic flows, and the interaction of turbulence with shock waves is discussed.
3D Structures: Microfluidic Stamping on Sheath Flow (Small 24/2016).
Yoon, Dong Hyun; Tanaka, Daiki; Sekiguchi, Tetsushi; Shoji, Shuichi
2016-06-01
A microfluidic stamping method to form functional shapes on a cross section in fibre-shaped flow is presented by D. H. Yoon and co-workers on page 3224. Microfluidic stamping and overstamping allowed various cross sectional shapes on the three-dimensional flow. Dimension of the flows is controlled via a change in combination of 3D structures and fluidic conditions, which correspond to stamp type and stamping force. PMID:27306739
Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence
Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X
2004-08-23
Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable
Liquid infused surfaces in turbulent channel flow
NASA Astrophysics Data System (ADS)
Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus
2014-11-01
A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows
NASA Technical Reports Server (NTRS)
Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.
1999-01-01
A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
Using flow information to support 3D vessel reconstruction from rotational angiography
Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.
2008-07-15
For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute
Flow topologies and turbulence scales in a jet-in-cross-flow
Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem
2015-04-03
This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less
Flow topologies and turbulence scales in a jet-in-cross-flow
Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem
2015-04-03
This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.
Finite element solution of 3-D turbulent Navier-Stokes equations for propeller-driven slender bodies
NASA Astrophysics Data System (ADS)
Thomas, Russell Hicks
1987-12-01
Three-dimensional turbulent flow over the aft end of a slender propeller driven body with the wake from a slender, planar appendage was calculated for 4 configurations. The finite element method in the form of the weak Galerkin formulation with the penalty method was used to solve the Reynolds averaged Navier-Stokes equations. The actual code was FIDAP, modified with a propeller body force and turbulence model, used for the solution. The turbulence model included an Inner Layer Integrated TKE model, and Outer Layer mixing length model, and a Planar Wake model. No separate boundary layer method was used for the body, rather modifications to the Integrated TKE model were made to account for the primary effects of the surface boundary layer on the flow. The flow was calculated at two levels of thrust and corresponding swirl, selfpropelled and 100 percent overthrust, as well as with selfpropelled thrust but no torque simulating an ideal rotor stator combination. Also, the selfpropelled case was calculated with a simplified turbulence model using only the Inner Layer and Planar Wake model. The results compared favorably with experiments.
3-D model of a radial flow sub-watt methanol fuel processor
Holladay, J. D.; Wang, Y.
2015-10-01
A 3-D model is presented for a novel sub-watt packed bed reactor. The reactor uses an annular inlet flow combined with a radial flow packed bed reactor. The baseline reactor is compared to a reactor with multiple outlets and a reactor with 3 internal fins. Increasing the outlets from 1 to 4 did improve the flow distribution, but did not increase the performance in the simulation. However, inserting fins allowed a decrease in temperature with same inlet flow of approximately 35K. Or the inlet flow rate could be increased by a factor of 2.8x while maintaining >99% conversion.
3D-printed and CNC milled flow-cells for chemiluminescence detection.
Spilstead, Kara B; Learey, Jessica J; Doeven, Egan H; Barbante, Gregory J; Mohr, Stephan; Barnett, Neil W; Terry, Jessica M; Hall, Robynne M; Francis, Paul S
2014-08-01
Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines. PMID:24881540
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed
NASA Astrophysics Data System (ADS)
Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.
2016-03-01
Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (<0.05 m/s) and is suitable for applications involving live cells. This microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
Transition to turbulence in pulsating pipe flow
NASA Astrophysics Data System (ADS)
Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc
2014-11-01
We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.
Turbulent Convection: Is 2D a good proxy of 3D?
NASA Technical Reports Server (NTRS)
Canuto, V. M.
2000-01-01
Several authors have recently carried out 2D simulations of turbulent convection for both solar and massive stars. Fitting the 2D results with the MLT, they obtain that alpha(sub MLT) greater than 1 specifically, 1.4 less than alpha(sub MLT) less than 1.8. The authors further suggest that this methodology could be used to calibrate the MLT used in stellar evolutionary codes. We suggest the opposite viewpoint: the 2D results show that MLT is internally inconsistent because the resulting alpha(sub MLT) greater than 1 violates the MLT basic assumption that alpha(sub MLT) less than 1. When the 2D results are fitted with the CM model, alpha(sub CMT) less than 1, in accord with the basic tenet of the model. On the other hand, since both MLT and CM are local models, they should be replaced by the next generation of non-local, time dependent turbulence models which we discuss in some detail.
Richardson effects in turbulent buoyant flows
NASA Astrophysics Data System (ADS)
Biggi, Renaud; Blanquart, Guillaume
2010-11-01
Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.
Building Chondrites: SPH Simulations of a Jet Flow in a 3D Protoplanetary Disc
NASA Astrophysics Data System (ADS)
Pignatale, F. C.; Gonzalez, J.-F.; Cuello, N.; Bourdon, B.; Fitoussi, C.
2016-08-01
We present SPH simulations of jet flows in 3D discs to investigate the transport of refractory material toward the outer cold disc regions. Dust grains are captured by the disc at distances up to 40 AU, with dust aggregates mimicking chondrites.
Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow
NASA Astrophysics Data System (ADS)
Leung, K. Y. Esther; Danilouchkine, Mikhail G.; van Stralen, Marijn; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.
2009-02-01
For obtaining quantitative and objective functional parameters from three-dimensional (3D) echocardiographic sequences, automated segmentation methods may be preferable to cumbersome manual delineation of 3D borders. In this study, a novel optical-flow based tracking method is proposed for propagating 3D endocardial contours of the left ventricle throughout the cardiac cycle. To take full advantage of the time-continuous nature of cardiac motion, a statistical motion model was explicitly embedded in the optical flow solution. The cardiac motion was modeled as frame-to-frame affine transforms, which were extracted using Procrustes analysis on a set of training contours. Principal component analysis was applied to obtain a compact model of cardiac motion throughout the whole cardiac cycle. The parameters of this model were resolved in an optical flow manner, via spatial and temporal gradients in image intensity. The algorithm was tested on 36 noncontrast and 28 contrast enhanced 3D echocardiographic sequences in a leave-one-out manner. Good results were obtained using a combination of the proposed motion-guided method and a purely data-driven optical flow approach. The improvement was particularly noticeable in areas where the LV wall was obscured by image artifacts. In conclusion, the results show the applicability of the proposed method in clinical quality echocardiograms.
Turbulence modelling for unsteady separated flows
NASA Technical Reports Server (NTRS)
Bradshaw, Peter
1992-01-01
The exact transport equations for turbulent (Reynolds) stresses have left-hand sides representing the 'substantial derivatives' of the Reynolds stresses, i.e., the rates of change of stress with respect to time, as seen by an observer following the mean motion of the fluid. Here the 'mean' is a statistical average for the turbulent motion, distinguished from the ordered unsteadiness on which it is superimposed: for a turbomachine blade or a cyclically-pitching airfoil, the mean is a phase average. Written in coordinates fixed with respect to a solid surface, the substantial derivative appears partly as an Eulerian time derivative at given spatial coordinate position and partly as a spatial derivative. Separation presents two specific problems to a turbulence model: (1) prediction of the flow near separation depends critically on the 'near-wall' part of the turbulence model, and (2) downstream of separation, a boundary layer changes gradually to a mixing layer.
Comparison of Tomo-PIV and 3D-PTV for microfluidic flows
NASA Astrophysics Data System (ADS)
Kim, Hyoungsoo; Westerweel, Jerry; Elsinga, Gerrit E.
2013-02-01
Two 3D-3C velocimetry techniques for micro-scale measurements are compared: tomographic particle image velocimetry (Tomo-PIV) and 3D particle-tracking velocimetry (3D-PTV). Both methods are applied to experimental data from a confined shear-driven liquid droplet over a moving surface. The droplet has 200 μm height and 2 mm diameter. Micro 3D-PTV and Tomo-PIV are used to obtain the tracer particle distribution and the flow velocity field for the same set of images. It is shown that the reconstructed particle distributions are distinctly different, where Tomo-PIV returns a nearly uniform distribution over the height of the volume, as expected, and PTV reveals a clear peak in the particle distribution near the plane of focus. In Tomo-PIV, however, the reconstructed particle peak intensity decreases in proportion to the distance from the plane of focus. Due to the differences in particle distributions, the measured flow velocities are also different. In particular, we observe Tomo-PIV to be in closer agreement with mass conservation. Furthermore, the random noise level is found to increase with distance to the plane of focus at a higher rate for 3D-PTV as compared to Tomo-PIV. Thus, for a given noise threshold value, the latter method can measure reliably over a thicker volume.
Elastic turbulence in a curvilinear channel flow.
Jun, Yonggun; Steinberg, Victor
2011-11-01
We report detailed quantitative studies of elastic turbulence in a curvilinear channel flow in a dilute polymer solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent. Detailed studies of the average and rms velocity and velocity gradients profiles reveal the emergence of a boundary layer associated with the nonuniform distribution of the elastic stresses across the channel. The characteristic boundary width is independent of the Weissenberg number Wi and proportional to the channel width, which is consistent with the findings our early investigations of the boundary layer in elastic turbulence in different flow geometries. The nonuniform distribution of the elastic stresses across the channel and appearance of the characteristic spatial scales of the order of the boundary layer width of both velocity and velocity gradient in the correlation functions of the velocity and velocity gradient fields in a bulk flow may suggest that excessive elastic stresses, concentrated in the boundary layer, are ejected into the bulk flow similar to jets observed in passive scalar mixing in elastic turbulence observed recently. Finally, the experimental results show that one of the main predictions of the theory of elastic turbulence, namely, the saturation of the normalized rms velocity gradient in the bulk flow of elastic turbulence contradicts the experimental observations both qualitatively and quantitatively in spite of the fact that the theory explains well the observed sharp power-law decay of the velocity power spectrum. The experimental findings call for further development of theory of elastic turbulence in a bounded container, similar to what was done for a passive scalar problem.
NASA Astrophysics Data System (ADS)
Fleming, Jonathan Lee
Laser Doppler velocimetry (LDV) measurements and hydrogen-bubble flow-visualization techniques were used to examine the near-wall flow structure of 2-D and 3-D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers, (2) to observe and quantify differences between 2-D and 3-D TBL flow structures, and (3) to document Reynolds number effects for 3-D TBLs. An ultimate application of this work would be to improve turbulence modeling for 3-D flows. The LDV data have provided results detailing the turbulence structure of the 2-D and 3-D TBLs, as well as low uncertainty skin friction estimates. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3-D flow were examined when possible. Comparison to results with the same 3-D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3-D TBLs. While the 3-D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen-bubble technique was used as a flow-visualization tool to examine the near-wall flow structure of 2-D and 3-D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2-D flow. The 2-D low-speed streaky structures experienced greater interaction with the outer region high-momentum fluid than observed for the 3-D flow. The near-wall 3-D flow structures were generally more quiescent. Numerical parameters quantified the observed differences, and characterized the low-speed streak and high-speed sweep events. All observations indicated a more stable near-wall flow structure with less turbulent interactions occurring
Turbulent reacting flow computations including turbulence-chemistry interactions
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Girimaji, S. S.
1992-01-01
A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.
3-D Flow Field Diagnostics and Validation Studies using Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung Stephen; Ramachandran, Narayanan; Whitaker, Ann F. (Technical Monitor)
2002-01-01
The measurement of 3-D three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields. The effort includes diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. The advantages of STV stems from the system simplicity for building compact hardware and in software efficiency for continual near-real-time process monitoring. It also has illumination flexibility for observing volumetric flow fields from arbitrary directions. STV is based on stereoscopic CCD observations of particles seeded in a flow. Neural networks are used for data analysis. The developed diagnostic tool is tested with a simple directional solidification apparatus using Succinonitrile. The 3-D velocity field in the liquid phase is measured and compared with results from detailed numerical computations. Our theoretical, numerical, and experimental effort has shown STV to be a viable candidate for reliably quantifying the 3-D flow field in materials processing and fluids experiments.
An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows
NASA Astrophysics Data System (ADS)
Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang
2016-08-01
In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano
2016-04-01
Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion
A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows
NASA Astrophysics Data System (ADS)
Bijleveld, H. A.; Veldman, A. E. P.
2014-12-01
A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.
Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model
NASA Astrophysics Data System (ADS)
Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.
2008-11-01
Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.
Turbulent saturation and transport in global 3D two-fluid simulations of the tokamak edge
NASA Astrophysics Data System (ADS)
Rogers, Barrett; Ricci, Paolo
2012-03-01
Based on nonlinear, global, three-dimensional two-fluid simulations, we explore the physics of turbulent saturation and transport in the tokamak scape-off layer and other magnetic geometries. We find that the global simulations can produce larger relative fluctuation amplitudes and more Bohm-like (versus Gyro-Bohm-like) transport scalings than those of non-global (flux-tube) simulations. In both the global and local simulations, small-scale primary instabilities such as driftwaves or resistive ballooning modes produce radial streamers, which grow until they are broken up by secondary modes such as the Kelvin-Helmholz instability or related modes. In a local simulation with fixed, radially constant equilibrium gradients and periodic boundaries, for example, the radial elongation of these primary-mode streamers is, in principle, unlimited. In the global simulations, however, the radial extent of the primaries is truncated by the nonlocal radial variations of the equilibrium profile gradients, typically to the geometric mean of the equilibrium profile scale-length and poloidal scale-length of the primary modes. This radial truncation can have a strongly stabilizing effect on the KH mode, leading to larger primary-mode fluctuation levels and non-Gyro-Bohm transport scaling.
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
On conditional sampling for turbulent flow studies
NASA Technical Reports Server (NTRS)
Wang, F. C.
1974-01-01
The conditional sampling technique is analyzed as a weighted time average for turbulent flow. The various conditional averages are obtained by using different types of weighting functions. A second averaging relation is obtained between the conventional averages and the conditional averages. A few examples are given in which simplified expressions are used.
Instability and Turbulence of Propagating Particulate Flows
NASA Astrophysics Data System (ADS)
Balachandar, S.
2015-11-01
Propagation of particle-laden fluid into an ambient is a common fluid mechanical process that can be observed in many industrial and environmental applications. Sedimentation fronts, volcanic plumes, dust storms, powder snow avalanches, submarine turbidity currents, explosive powder dispersal and supernovae offer fascinating examples of advancing particulate fronts. The propagating interface can undergo Rayleigh-Taylor, Kelvin-Helmholtz and double-diffusive instabilities and result in the formation of lobes and clefts, spikes and bubbles, and particulate fingers. The interplay between suspended particles and turbulence is often complex due to interaction of competing mechanisms. In problems such as turbidity currents, turbulence controls sediment concentration through resuspension and settling of particles at the bed. Also, turbulent entrainment at the propagating front is observed to be influenced by the sediments. Stable stratification due to suspended sediment concentration can damp and even kill turbulence. This complex turbulence-sediment interaction offers possible explanation for massive sediment deposits observed in nature. The talk will also address challenges and recent advancements in the modeling and simulation of such particle-laden turbulent flows.
Chang, Mei-Chu; Tsai, Ya-Yi; I, Lin
2013-08-15
We experimentally demonstrate the direct observation of defect mediated wave turbulence with fluctuating defects and low amplitude hole filaments, from a 3D self-excited plane dust acoustic wave in a dusty plasma by reducing dissipation. The waveform undulation is found to be the origin for the amplitude and the phase modulations of the local dust density oscillation, the broadening of the sharp peaks in the frequency spectrum, and the fluctuating defects. The corrugated wave crest surface also causes the observed high and low density patches in the transverse (xy) plane. Low oscillation amplitude spots (holes) share the same positions with the defects. Their trajectories in the xyt space appear in the form of chaotic filaments without long term predictability, through uncertain pair generation, propagation, and pair annihilation.
Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications.
NASA Astrophysics Data System (ADS)
Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri
2013-04-01
PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Characterization of global flow and local fluctuations in 3D SPH simulations of protoplanetary discs
NASA Astrophysics Data System (ADS)
Arena, S. E.; Gonzalez, J.-F.
2013-07-01
A complete and detailed knowledge of the structure of the gaseous component in protoplanetary discs is essential to the study of dust evolution during the early phases of pre-planetesimal formation. The aim of this paper is to determine if three-dimensional accretion discs simulated by the smoothed particle hydrodynamics (SPH) method can reproduce the observational data now available and the expected turbulent nature of protoplanetary discs. The investigation is carried out by setting up a suite of diagnostic tools specifically designed to characterize both the global flow and the fluctuations of the gaseous disc. The main result concerns the role of the artificial viscosity implementation in the SPH method: in addition to the already known ability of SPH artificial viscosity to mimic a physical-like viscosity under specific conditions, we show how the same artificial viscosity prescription behaves like an implicit turbulence model. In fact, we identify a threshold for the parameters in the standard artificial viscosity above which SPH disc models present a cascade in the power spectrum of velocity fluctuations, turbulent diffusion and a mass accretion rate of the same order of magnitude as measured in observations. Furthermore, the turbulence properties observed locally in SPH disc models are accompanied by meridional circulation in the global flow of the gas, proving that the two mechanisms can coexist.
Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.
1996-01-01
This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.
Effects of 3D PIV post-processing on impulse and force analysis in vortical flows
NASA Astrophysics Data System (ADS)
Mendelson, Leah; Techet, Alexandra
2014-11-01
Vortical flows measured using 3D PIV techniques are fundamentally filtered versions of physical phenomena, with velocity information lost below the length and time scales of the measurement system. In the context of propulsive vortices, such as those generated during biological locomotion, these factors, combined with experimental noise and error, can lead to inaccuracies in analysis of the vortex momentum and net thrust. As a result, while 3D velocity measurements remove many of the assumptions required to analyze planar PIV data, they should not be considered absolute physical quantities. Our work focuses on post-processing for 3D PIV data sets to enable the extraction of accurate, quantitative 3D force measurements for unsteady vortical propulsion. In this study, we compare utilizing measurement signal processing techniques, orthogonal decomposition, and identification of coherent structures to measure the impulse of a canonical vortex ring generated by a mechanical piston. In particular, we consider the ability of these methods to confront the influences of limited spatial resolution and arbitrary geometries, and make recommendations for a general procedure for propulsion analysis from 3D PIV data, regardless of which PIV technique is used to obtain the velocity fields.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Carr, L. W.
1981-01-01
A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.
Disturbance Dynamics in Transitional and Turbulent Flows
NASA Technical Reports Server (NTRS)
Grosch, Chester E.
1999-01-01
In order to expand the predictive capability of single-point turbulence closure models to account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. First the decay of laminar disturbances and turbulence in mean shear-free flows is studied. In laminar flows, such disturbances are linear superpositions of modes governed by the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport equations for representative mean quantities. The link between a description based on a deterministic evolution equation and a probability based mean transport equation is established. Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime, a probability distribution must be defined even in the laminar case. Using this probability distribution, it is shown that the exponential decay of the linear modes in the laminar regime can be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and the dissipation rate. The evolution of these mean disturbance quantities is then described by transport equations similar to those for the corresponding turbulent decaying flow. Second, homogeneous shear flow, where disturbances can be described by rapid distortion theory (RDT), is studied. The relationship between RDT and linear stability theory is exploited in order to obtain a closed set of modeled equations. The linear disturbance equations are solved directly so that the numerical simulation yields a database from which the closure coefficients in the ensemble-averaged disturbance equations can be determined.
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater
NASA Astrophysics Data System (ADS)
Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.
2013-12-01
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater
Evaluation of the 3-D channeling flow in a fractured type of oil/gas reservoir
NASA Astrophysics Data System (ADS)
Ishibashi, T.; Watanabe, N.; Tsuchiya, N.; Tamagawa, T.
2013-12-01
An understanding of the flow and transport characteristics through rock fracture networks is of critical importance in many engineering and scientific applications. These include effective recovery of targeted fluid such as oil/gas, geothermal, or potable waters, and isolation of hazardous materials. Here, the formation of preferential flow path (i.e. channeling flow) is one of the most significant characteristics in considering fluid flow through rock fracture networks; however, the impact of channeling flow remains poorly understood. In order to deepen our understanding of channeling flow, the authors have developed a novel discrete fracture network (DFN) model simulator, GeoFlow. Different from the conventional DFN model simulators, we can characterize each fracture not by a single aperture value but by a heterogeneous aperture distribution in GeoFlow [Ishibashi et al., 2012]. As a result, the formation of 3-D preferential flow paths within fracture network can be considered by using this simulator. Therefore, we would challenge to construct the precise fracture networks whose fractures have heterogeneous aperture distributions in field scale, and to analyze fluid flows through the fracture networks by GeoFlow. In the present study, the Yufutsu oil/gas field in Hokkaido, Japan is selected as the subject area for study. This field is known as the fractured type of reservoir, and reliable DFN models can be constructed for this field based on the 3-D seismic data, well logging, in-situ stress measurement, and acoustic emission data [Tamagawa et al., 2012]. Based on these DFN models, new DFN models for 1,080 (East-West) × 1,080 (North-South) × 1,080 (Depth) m^3, where fractures are represented by squares of 44-346 m on a side, are re-constructed. In these new models, scale-dependent aperture distributions are considered for all fractures constructing the fracture networks. Note that the multi-scale modeling of fracture flow has been developed by the authors
Optical monitor for observing turbulent flow
Albrecht, Georg F.; Moore, Thomas R.
1992-01-01
The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.
NASA Technical Reports Server (NTRS)
Fletcher, Michael J.; Won, Mark J.; Cosentino, Gary B.; Te, Alexander
1993-01-01
Subsonic inlet ducts for advanced, high-performance aircraft are evolving towards complex three-dimensional shapes for reasons of overall integration and weight. These factors lead to diffuser geometries that may sacrifice inlet performance, unless careful attention to design details and boundary layer management techniques are employed. The ability of viscous computational fluid dynamic (CFD) analysis of such geometries to aid the aircraft configurator in this complex design problem is herein examined. The RANS-3D Reynolds-Averaged Navier-Stokes solver is applied to model the complex flowfield occurring in a representative diffuser geometry and the solutions are compared to experimental results from a static test of the inlet duct. The computational results are shown to compare very favorably with experimental results over a range of mass flow rates, including those involving large amounts of separation in the diffuser. In addition, a novel grid topology is presented, and two turbulence models are evaluated in this study as part of the RANS-3D code.
Experimental study of turbulent axisymmetric cavity flow
NASA Astrophysics Data System (ADS)
Lee, D. H.; Sung, H. J.
1994-08-01
An experimental study is made of turbulent axisymmetric cavity flow. The flow configuration consists of a sudden expansion and contraction pipe joint. In using the LDV system, in an effort to minimize refraction of laser beams at the curved interface, a refraction correction formula for the Reynolds shear stress is devised. Three values of the cavity length ( L = 300, 600 and 900 mm) are chosen, and the cavity height ( H) is fixed at 55 mm. Both open and closed cavities are considered. Special attention is given to the critical case L = 600 mm, where the cavity length L is nearly equal to the reattachment length of the flow. The Reynolds number, based on the inlet diameter ( D = 110 mm) is 73,000. Measurement data are presented for the static wall pressure, mean velocity profiles, vorticity thickness distributions, and turbulence quantities.
Turbulent diamagnetism in flowing liquid sodium.
Spence, E J; Nornberg, M D; Jacobson, C M; Parada, C A; Taylor, N Z; Kendrick, R D; Forest, C B
2007-04-20
The nature of Ohm's law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is also measured in an identical-scale water model of the experiment. These two fields are used to determine the terms in Ohm's law, indicating the presence of currents driven by a turbulent electromotive force. These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of the field induced by the sodium's mean flow.
Intermittent turbulence in flowing bacterial suspensions.
Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman
2016-06-01
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome. PMID:27307513
Intermittent turbulence in flowing bacterial suspensions.
Secchi, Eleonora; Rusconi, Roberto; Buzzaccaro, Stefano; Salek, M Mehdi; Smriga, Steven; Piazza, Roberto; Stocker, Roman
2016-06-01
Dense suspensions of motile bacteria, possibly including the human gut microbiome, exhibit collective dynamics akin to those observed in classic, high Reynolds number turbulence with important implications for chemical and biological transport, yet this analogy has remained primarily qualitative. Here, we present experiments in which a dense suspension of Bacillus subtilis bacteria was flowed through microchannels and the velocity statistics of the flowing suspension were quantified using a recently developed velocimetry technique coupled with vortex identification methods. Observations revealed a robust intermittency phenomenon, whereby the average velocity profile of the suspension fluctuated between a plug-like flow and a parabolic flow profile. This intermittency is a hallmark of the onset of classic turbulence and Lagrangian tracking revealed that it here originates from the presence of transient vortices in the active, collective motion of the bacteria locally reinforcing the externally imposed flow. These results link together two entirely different manifestations of turbulence and show the potential of the microfluidic approach to mimic the environment characteristic of certain niches of the human microbiome.
Modeling of Turbulent Free Shear Flows
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.
2013-01-01
The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.
Relaminarisation of fully turbulent flow in pipes
NASA Astrophysics Data System (ADS)
Kuehnen, Jakob; Hof, Bjoern
2014-11-01
Drag reduction still remains one of the most alluring applications of turbulence control. We will show that flattening the streamwise velocity profile in pipes can force turbulent flow to decay and become laminar. Two different experimental control schemes are presented: one with a local modification of the flow profile by means of a stationary obstacle and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. Both control schemes act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. Since, in a smooth straight pipe, the flow remains laminar from that position a reduction in skin friction by a factor of 5 can be accomplished. We will present measurements with high-speed particle image velocimetry, measurements of the pressure drop and videos of the development of the flow during relaminarisation. The guiding fundamental principle behind our approach to control the velocity profile will be explained and discussed.
On stability and turbulence of fluid flows
NASA Technical Reports Server (NTRS)
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
Some contributions to asymptotic theory for turbulent flows
NASA Astrophysics Data System (ADS)
Gersten, K.
The applicability of the asymptotic theory for the boundary layer of laminar flows to turbulent flows is discussed, with special attention given to the effect of the Reynolds number on the Blasius solution. Examples are presented on the application of the asymptotic theory for describing and predicting turbulent flows, including the Couette flow and the Couette-Poiseuille flow. Examples of other turbulent flows investigated in the past by asymptotic theory are given.
Scalewise investigation of two-phase flow turbulence in upward turbulent bubbly pipe flows
NASA Astrophysics Data System (ADS)
Lee, Jun Ho; Kim, Hyunseok; Park, Hyungmin
2015-11-01
In the present study, the two-phase flow turbulence in upward turbulent bubbly pipe flows (at the Reynolds number of 5300) is invesgitated, especially focusing on the changes in flow structures with bubbles depending on the length scales. For the scalewise investigation, we perform the wavelet multi-resolution analysis on the velocity fields at three streamwise locations, measured with high-speed two-phase particle image velocimetry technology. While we intentaionlly introduce asymmetrically distributed bubbles at the pipe inlet, the mean volume void fraction is varied from from 0.3% to 1.86% and the considered mean bubble diameter is roughly maintained at 3.8 mm. With the present condition, turbulence enhancement is achieived for most cases but the turbulent suppression is also captured near the wall for the smallest void fraction case. Comparing the scalewise energy contribution, it is understood that the flow structures with length scales between bubble radius and bubble wake size are enhanced due to bubbles, resulting in the turbulence enhancement. On the other hand, flow structure with smaller length scales (mostly existing near the wall) may decrease depending on the bubble condition, which may be one of the explanations in turbulence suppression with bubbles. Supported by the NRF grant funded by the Korea government (NRF-2012M2A8A4055647) via SNU-IAMD.
Ultrarapid Detection of Pathogenic Bacteria Using a 3D Immunomagnetic Flow Assay
Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin
2015-01-01
We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria. PMID:24856003
3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects
NASA Astrophysics Data System (ADS)
Rühaak, Wolfram; Bense, Victor F.; Sass, Ingo
2014-06-01
Pleistocene glaciation led to temporal and spatial variations of sub-surface pore fluid pressure. In basins covered by ice sheets, fluid flow and recharge rates are strongly elevated during glaciations as compared to inter-glacial periods. Present-day hydrogeological conditions across formerly glaciated areas are likely to still reflect the impact of glaciations that ended locally more than 10 thousand years before present. 3D hydro-mechanical coupled modelling of glaciation can help to improve the management of groundwater resources in formerly glaciated basins. An open source numerical code for solving linear elasticity, which is based on the finite element method (FEM) in 3D, has been developed. By coupling this code with existing 3D flow codes it is possible to enable hydro-mechanical coupled modelling. Results of two benchmark simulations are compared to existing analytical solutions to demonstrate the performance of the newly developed code. While the result for a fluid-structure coupled case is in reasonable agreement with the analytical model, the result for a classical structure-fluid coupled benchmark showed that the analytical solution only matches the numerical result when the relevant coupling parameter (loading efficiency) is known in advance. This indicates that the applicability of widely applied approaches using an extra term in the groundwater flow equation for vertical stress to simulate hydro-mechanical coupling might have to be re-evaluated. A case study with the commercial groundwater simulator FEFLOW demonstrates the newly developed solution.
Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay.
Lee, Wonjae; Kwon, Donghoon; Chung, Boram; Jung, Gyoo Yeol; Au, Anthony; Folch, Albert; Jeon, Sangmin
2014-07-01
We developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions. Nearly perfect capture of the AbMNCs and AbMNCs-Salmonella complexes was achieved under a high flow rate by stacking permanent magnets with spacers inside the cylindrical separator to maximize the magnetic force. The concentration of the bacteria in solution was determined using ATP luminescence measurements. The detection limit was better than 10 cfu/mL, and the overall assay time, including the binding, rinsing, and detection steps for a 10 mL sample took less than 3 min. To our knowledge, the 3D immunomagnetic flow assay described here provides the fastest high-sensitivity, high-capacity method for the detection of pathogenic bacteria.
NASA Astrophysics Data System (ADS)
Jamieson, E. C.; Rennie, C. D.; Jacobson, R. B.
2009-12-01
Using a boat mounted acoustic Doppler current profiler (ADCP), highly dense single transect measurements were carried out in the vicinity of a submerged wing dike located in the Lower Missouri River near Columbia, Missouri. The Lower Missouri River channel morphology has changed substantially over the last one hundred years as engineering measures such as wing dikes and revetments have been introduced to stabilize the banks and maintain a deep, narrowed and focused thalweg for barge traffic. At high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large scale three-dimensional (3-D) turbulent structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream of two different wing dikes and their adjacent scour holes. Single transect measurements were interpolated to generate detailed two-dimensional (2-D) bathymetry maps and 3-D flow fields. The principal goal of this research is to evaluate whether an ADCP can identify and measure large scale flow features such as vortex shedding that develop in the vicinity of a submerged wing dike, and whether or not moving boat (single transect) data are sufficient for resolving complex 3-D flow fields. These results have implications for improving boat mounted ADCP measurement techniques and understanding to what extent these instruments can be used for detailed mapping and analysis of complex flows in large rivers. Unlike previous studies, where multiple transects at the same location were averaged for identifying secondary flow features, these results show that spatial averaging from multiple nearby single transects may be more representative of an inherently complex 3-D flow field. Too much averaging of repeated transects could eliminate the true variability in velocity inherent to naturally
A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath
NASA Astrophysics Data System (ADS)
Matveichev, A.; Jardy, A.; Bellot, J. P.
2016-07-01
In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.
Evaluation of Turbulence-Model Performance in Jet Flows
NASA Technical Reports Server (NTRS)
Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.
2001-01-01
The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Large eddy simulation of turbulent cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, A.; Mahesh, K.
2015-12-01
Large Eddy Simulation is employed to study two turbulent cavitating flows: over a cylinder and a wedge. A homogeneous mixture model is used to treat the mixture of water and water vapor as a compressible fluid. The governing equations are solved using a novel predictor- corrector method. The subgrid terms are modeled using the Dynamic Smagorinsky model. Cavitating flow over a cylinder at Reynolds number (Re) = 3900 and cavitation number (σ) = 1.0 is simulated and the wake characteristics are compared to the single phase results at the same Reynolds number. It is observed that cavitation suppresses turbulence in the near wake and delays three dimensional breakdown of the vortices. Next, cavitating flow over a wedge at Re = 200, 000 and σ = 2.0 is presented. The mean void fraction profiles obtained are compared to experiment and good agreement is obtained. Cavity auto-oscillation is observed, where the sheet cavity breaks up into a cloud cavity periodically. The results suggest LES as an attractive approach for predicting turbulent cavitating flows.
Mathematical and Numerical Modeling of Turbulent Flows.
Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu
2015-01-01
The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan. PMID:26131642
Studies in Transition and Time Varying Turbulent Flows
NASA Technical Reports Server (NTRS)
Grosch, Chester E.
2004-01-01
The research focused on two areas: (a) the dynamics of forced turbulent flows and (b) time filtered Large Eddy Simulations (TLES). The dynamics of turbulent flows arising from external forcing of the turbulence are poorly understood. In particular, here are many unanswered questions relating the basic dynamical balances and the existence or nonexistence of statistical equilibrium of forced turbulent flows. The research used direct numerical simulations to explore these questions. The properties of the temporally filtered Navier-Stokes equations were also studied.
Generalized Wall Function for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey
2000-01-01
A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.
A modular segmented-flow platform for 3D cell cultivation.
Lemke, Karen; Förster, Tobias; Römer, Robert; Quade, Mandy; Wiedemeier, Stefan; Grodrian, Andreas; Gastrock, Gunter
2015-07-10
In vitro 3D cell cultivation is promised to equate tissue in vivo more realistically than 2D cell cultivation corresponding to cell-cell and cell-matrix interactions. Therefore, a scalable 3D cultivation platform was developed. This platform, called pipe-based bioreactors (pbb), is based on the segmented-flow technology: aqueous droplets are embedded in a water-immiscible carrier fluid. The droplet volumes range from 60 nL to 20 μL and are used as bioreactors lined up in a tubing like pearls on a string. The modular automated platform basically consists of several modules like a fluid management for a high throughput droplet generation for self-assembly or scaffold-based 3D cell cultivation, a storage module for incubation and storage, and an analysis module for monitoring cell aggregation and proliferation basing on microscopy or photometry. In this report, the self-assembly of murine embryonic stem cells (mESCs) to uniformly sized embryoid bodies (EBs), the cell proliferation, the cell viability as well as the influence on the cell differentiation to cardiomyocytes are described. The integration of a dosage module for medium exchange or agent addition will enable pbb as long-term 3D cell cultivation system for studying stem cell differentiation, e.g. cardiac myogenesis or for diagnostic and therapeutic testing in personalized medicine.
Contact Effects in thin 3D-Topological Insulators: How does the current flow?
Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau
2015-01-01
The effect of different contact configurations (semi-infinite extended-channel, normal metal and ferromagnetic metal) on quantum transport through thin Bi2Se3 three-dimensional (3D) topological insulator (TI) slab (channel) has been investigated through Non-Equilibrium Green Function. The issue of contact dependent current flow and distribution across quintuple layers of 3D-TI has been addressed in this work and applied to expound the explanation for recent experimental work on electrical detection of spin-momentum locking on topological surface for long channel device. A theoretical model is propounded to develop a microscopic understanding of transport in 3D-TI in which contact type and magnetization concur with helical surface states of the TI channel to manifest seemingly counter-intuitive current distribution across layers. The quantum transport calculations for short channel devices with magnetic source and drain contacts postulate negative surface current for anti-phase magnetization whose axis is transverse to both current and quintuple layers. For in-phase magnetization at the two terminals, it is shown that observations can change fundamentally to result in anomalous current distribution. Such results are explained to stem from the confinement of 3D-TI between ferromagnetic contacts along the transport direction. A simple mechanism to validate topological insulators via quantum transport experiments has also been suggested. PMID:25820460
Nonhydrostatic granular flow over 3-D terrain: New Boussinesq-type gravity waves?
NASA Astrophysics Data System (ADS)
Castro-Orgaz, Oscar; Hutter, Kolumban; Giraldez, Juan V.; Hager, Willi H.
2015-01-01
granular mass flow is a basic step in the prediction and control of natural or man-made disasters related to avalanches on the Earth. Savage and Hutter (1989) pioneered the mathematical modeling of these geophysical flows introducing Saint-Venant-type mass and momentum depth-averaged hydrostatic equations using the continuum mechanics approach. However, Denlinger and Iverson (2004) found that vertical accelerations in granular mass flows are of the same order as the gravity acceleration, requiring the consideration of nonhydrostatic modeling of granular mass flows. Although free surface water flow simulations based on nonhydrostatic depth-averaged models are commonly used since the works of Boussinesq (1872, 1877), they have not yet been applied to the modeling of debris flow. Can granular mass flow be described by Boussinesq-type gravity waves? This is a fundamental question to which an answer is required, given the potential to expand the successful Boussinesq-type water theory to granular flow over 3-D terrain. This issue is explored in this work by generalizing the basic Boussinesq-type theory used in civil and coastal engineering for more than a century to an arbitrary granular mass flow using the continuum mechanics approach. Using simple test cases, it is demonstrated that the above question can be answered in the affirmative way, thereby opening a new framework for the physical and mathematical modeling of granular mass flow in geophysics, whereby the effect of vertical motion is mathematically included without the need of ad hoc assumptions.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1993-01-01
New turbulence modeling options recently implemented for the 3-D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Validation test cases include the incompressible and compressible flat plate turbulent boundary layers, turbulent developing S-duct flow, and glancing shock wave/turbulent boundary layer interaction. Good agreement is obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(sup +) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. The test cases show that the highly optimized one-and two-equation turbulence models can be used in routine 3-D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.
Efficient solution of turbulent incompressible separated flows
NASA Astrophysics Data System (ADS)
Michelassi, Vittorio; Martelli, Francesco
A computational method for incompressible separated flows based on two-dimensional approximate factorization is presented. Turbulence effects are accounted for by low-Reynolds number forms of the k-epsilon model. Mass conservation is enforced by the artificial compressibility method. Decoupling and coupling of the equations of motions with the turbulence model equations are investigated. Testing of the coupled solver showed no improvement in convergence or accuracy in comparison to the classical decoupled approach. The solver was then applied to several large-recirculation flows using a modified version of the low-Reynolds-number form of the k-epsilon model proposed by Chien and a two-layer version of the k-epsilon model introduced by Rodi. Both versions gave fast convergence rates and good agreement with experiments.
Modeling Flow and Turbulence in Forest Canopies
NASA Astrophysics Data System (ADS)
Little, Brandon; McLanahan, Aric; Edburg, Steve; Stock, David; Lamb, Brian
2007-11-01
Control strategies for mountain pine beetles often include releasing trace concentrations of pheromone mimics into the forest canopy. For such a release to be effective for control, diffusivities within the canopy must be known. To compute flow within the canopy, the trees are treated as a porous medium by including sink/source terms in the momentum equations. Trees also affect turbulence within the canopy. With RANS models, sink/source terms can be added to the kinetic energy and dissipation equations to account for this change, but the best form of these added terms is not known. A one-dimensional momentum equation with a k-ɛ closure was used to study various forms of the sink/source terms for k and ɛ for a homogeneous forest with a neutrally stable flow. A new form of the sink/source terms that models the turbulent length scales in the canopy best matched the field data
Turbulent Flow Past Projectiles: A Computational Investigation
NASA Astrophysics Data System (ADS)
Mehmedagic, Igbal; Carlucci, Donald; Buckley, Liam; Carlucci, Pasquale; Thangam, Siva
2010-11-01
Projectiles with free spinning bases are often used for smart munitions to provide effective control, stability and terminal guidance. Computational investigations are performed for flow past cylinders aligned along their axis where a base freely spins while attached to and separated at various distances from a non-spinning fore-body. The energy spectrum is modified to incorporate the effects of swirl and rotation using a parametric characterization of the model coefficients. An efficient finite-volume algorithm is used to solve the time-averaged equations of motion and energy along with the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation. Computations are performed for both rigid cylinders as well as cylinders with free-spinning bases. Experimental data for a range of spin rates and free stream flow conditions obtained from subsonic wind tunnel with sting-mounted spinning cylinders is used for validating the computational findings.
Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.
3D-PTV measurement of the phototactic movement of algae in shear flow
NASA Astrophysics Data System (ADS)
Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami
2012-11-01
Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.
The Aeroacoustics of Turbulent Flows
NASA Technical Reports Server (NTRS)
Goldstein, M. E.
2008-01-01
Aerodynamic noise prediction has been an important and challenging research area since James Lighthill first introduced his Acoustic Analogy Approach over fifty years ago. This talk attempts to provide a unified framework for the subsequent theoretical developments in this field. It assumes that there is no single approach that is optimal in all situations and uses the framework as a basis for discussing the strengths weaknesses of the various approaches to this topic. But the emphasis here will be on the important problem of predicting the noise from high speed air jets. Specific results will presented for round jets in the 0.5 to 1.4 Mach number range and compared with experimental data taken on the Glenn SHAR rig. It is demonstrated that nonparallel mean flow effects play an important role in predicting the noise at the supersonic Mach numbers. The results explain the failure of previous attempts based on the parallel flow Lilley model (which has served as the foundation for most jet noise analyses during past two decades).
Incorporating preferential flow into a 3D model of a forested headwater catchment
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Jackisch, Conrad; Hopp, Luisa; Pfister, Laurent; Klaus, Julian
2016-04-01
Preferential flow plays an important role for water flow and solute transport. The inclusion of preferential flow, for example with dual porosity or dual permeability approaches, is a common feature in transport simulations at the plot scale. But at hillslope and catchment scales, incorporation of macropore and fracture flow into distributed hydrologic 3D models is rare, often due to limited data availability for model parameterisation. In this study, we incorporated preferential flow into an existing 3D integrated surface subsurface hydrologic model (HydroGeoSphere) of a headwater region (6 ha) of the forested Weierbach catchment in western Luxembourg. Our model philosophy was a strong link between measured data and the model setup. The model setup we used previously had been parameterised and validated based on various field data. But existing macropores and fractures had not been considered in this initial model setup. The multi-criteria validation revealed a good model performance but also suggested potential for further improvement by incorporating preferential flow as additional process. In order to pursue the data driven model philosophy for the implementation of preferential flow, we analysed the results of plot scale bromide sprinkling and infiltration experiments carried out in the vicinity of the Weierbach catchment. Three 1 sqm plots were sprinkled for one hour and excavated one day later for bromide depth profile sampling. We simulated these sprinkling experiments at the soil column scale, using the parameterisation of the base headwater model extended by a second permeability domain. Representing the bromide depth profiles was successful without changing this initial parameterisation. Moreover, to explain the variability between the three bromide depth profiles it was sufficient to adapt the dual permeability properties, indicating the spatial heterogeneity of preferential flow. Subsequently, we incorporated the dual permeability simulation in the
3D imaging of particle-scale rotational motion in cyclically driven granular flows
NASA Astrophysics Data System (ADS)
Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang
Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.
RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.
Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D
2003-01-01
We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220
Slip flow through a converging microchannel: experiments and 3D simulations
NASA Astrophysics Data System (ADS)
Varade, Vijay; Agrawal, Amit; Pradeep, A. M.
2015-02-01
An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.
Recent advancement of turbulent flow measurement techniques
NASA Technical Reports Server (NTRS)
Battle, T.; Wang, P.; Cheng, D. Y.
1974-01-01
Advancements of the fluctuating density gradient cross beam laser Schlieren technique, the fluctuating line-reversal temperature measurement and the development of the two-dimensional drag-sensing probe to a three-dimensional drag-sensing probe are discussed. The three-dimensionality of the instantaneous momentum vector can shed some light on the nature of turbulence especially with swirling flow. All three measured fluctuating quantities (density, temperature, and momentum) can provide valuable information for theoreticians.
Statistical theory of turbulent incompressible multimaterial flow
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.
Bulk flow scaling for turbulent channel and pipe flows
NASA Astrophysics Data System (ADS)
Chen, Xi; Hussain, Fazle; She, Zhen-Su
2016-08-01
We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel vs. circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e., m = 4 for the channel and 5 for the pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant κ≈0.45 . Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.
Feasibility study of laminar flow bodies in fully turbulent flow
Sarkar, T.; Sayer, P.G.; Fraser, S.M.
1994-12-31
One of the most important design requirements of long range autonomous underwater vehicles (AUVs) is to minimize propulsive power. An important and relatively easy way of achieving this is by careful selection of hull shape. Two main schools of thought in this respect are: if laminar flow can be maintained for a long length of the body, the effective drag can be reduced; it is not possible to maintain laminar flow for a significant length of the body and hull design should be based on turbulent flow conditions. In this paper, a feasibility study of laminar flow designs is undertaken under the assumption that flow will be turbulent over the entire length. For comparison two laminar flow designs X-35 and F-57 are selected and results are compared with those of two typical torpedo shaped bodies, namely AFTERBODY1 and AFTERBODY2 of DTNSRDC. It has been shown that laminar flow bodies have 10--15% higher drag when flow is turbulent over the entire length. Hence there is some hydrodynamic risk involved in adopting such laminar bodies without further consideration.
Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method
NASA Astrophysics Data System (ADS)
Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping
2004-09-01
The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.
Large eddy simulations of compressible turbulent flows
NASA Technical Reports Server (NTRS)
Porter-Locklear, Freda
1995-01-01
An evaluation of existing models for Large Eddy Simulations (LES) of incompressible turbulent flows has been completed. LES is a computation in which the large, energy-carrying structures to momentum and energy transfer is computed exactly, and only the effect of the smallest scales of turbulence is modeled. That is, the large eddies are computed and the smaller eddies are modeled. The dynamics of the largest eddies are believed to account for most of sound generation and transport properties in a turbulent flow. LES analysis is based on an observation that pressure, velocity, temperature, and other variables are the sum of their large-scale and small-scale parts. For instance, u(i) (velocity) can be written as the sum of bar-u(i) and u(i)-prime, where bar-u(i) is the large-scale and u(i)-prime is the subgrid-scale (SGS). The governing equations for large eddies in compressible flows are obtained after filtering the continuity, momentum, and energy equations, and recasting in terms of Favre averages. The filtering operation maintains only large scales. The effects of the small-scales are present in the governing equations through the SGS stress tensor tau(ij) and SGS heat flux q(i). The mathematical formulation of the Favre-averaged equations of motion for LES is complete.
3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion
Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio
2007-05-17
The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die.
Driver gas flow with fluctuations. [shock tube turbulent bursts
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; Jones, W. R.; Santiago, J.
1980-01-01
A shock tube's driver gas can apparently provide flow with turbulent bursts. The fluctuations are interpreted using a boundary layer model of contact surface flow and results form a kinetic theory of turbulence. With this, a lower limit of 4 on the ratio of maximum to minimum turbulent intensities in contact surface instabilities has been estimated.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Seki, K.
2006-12-01
An appearance of cold and dense plasma at the geosynchronous orbit is one of the characteristic natures after a prolonged northward IMF duration. This cold dense material can contribute to the enhancement of the ring current density, which results a further declination of Dst. Therefore investigating the origin, path and fate of the cold dense plasma is important to understand how it preconditions the magnetosphere during a quiet interval before storm [Borovsky and Steinberg, 2006]. Observational evidences have shown that the cold dense material builds up during the northward IMF intervals in the flanks of the magnetosphere [e.g., Wing and Newell, 2002] which is referred to as the low latitude boundary layer (LLBL). The entry process of the solar wind plasma into the magnetosphere during the northward IMF conditions has been controversial in contrast to the Dungey's reconnection model for the southward IMF cases. The major candidate processes are the double lobe reconnection model [Song et al., 1999], in which newly closed magnetic field lines on the dayside magnetopause capture the solar wind plasma, and the turbulent transport by the Kelvin-Helmholtz instability (KHI) driven by the fast solar wind flow. We have studied the solar wind entry process by the KHI. Matsumoto and Hoshino [2004, 2006] showed by 2- D MHD and full particle simulation studies that the strong flow turbulence is a natural consequence of the nonlinear development of the KHI through the secondary Rayleigh-Taylor instability, if there is a large density difference between the two media. The mechanism is fundamentally two-dimensional and therefore we term it the 2-D secondary instability. They also showed that the turbulent development greatly contributes to the solar wind plasma transport deep into the magnetosphere. Based on the previous 2-D studies, the 3-D nonlinear evolution of the KHI is studied by performing MHD simulation. Starting with a uniform background field configuration and a
Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.
Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J
2012-05-01
Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.
Cauchy's almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
NASA Astrophysics Data System (ADS)
Frisch, Uriel; Villone, Barbara
2014-09-01
Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy's formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy's invariants were only occasionally cited in the 19th century - besides Hankel, foremost by George Stokes and Maurice Lévy - and even less so in the 20th until they were rediscovered via Emmy Noether's theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes
NASA Astrophysics Data System (ADS)
Mustafa, Ibrahim
1998-12-01
Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.
North Cascadia heat flux and fluid flow from gas hydrates: Modeling 3-D topographic effects
NASA Astrophysics Data System (ADS)
Li, Hong-lin; He, Tao; Spence, George D.
2014-01-01
The bottom-simulating reflector (BSR) of gas hydrate is well imaged from two perpendicular seismic grids in the region of a large carbonate mound, informally called Cucumber Ridge off Vancouver Island. We use a new method to calculate 3-D heat flow map from the BSR depths, in which we incorporate 3-D topographic corrections after calibrated by the drilling results from nearby (Integrated) Ocean Drilling Program Site 889 and Site U1327. We then estimate the associated fluid flow by relating it to the topographically corrected heat flux anomalies. In the midslope region, a heat flux anomaly of 1 mW/m2 can be associated with an approximate focused fluid flow rate of 0.09 mm/yr. Around Cucumber Ridge, high rates of focused fluid flow were observed at steep slopes with values more than double the average regional diffusive fluid discharge rate of 0.56 mm/yr. As well, in some areas of relatively flat seafloor, the focused fluid flow rates still exceeded 0.5 mm/yr. On the seismic lines the regions of focused fluid flow were commonly associated with seismic blanking zones above the BSR and sometimes with strong reflectors below the BSR, indicating that the faults/fractures provide high-permeability pathways for fluids to carry methane from BSR depths to the seafloor. These high fluid flow regions cover mostly the western portion of our area with gas hydrate concentration estimations of ~6% based on empirical correlations from Hydrate Ridge in south off Oregon, significantly higher than previously recognized values of ~2.5% in the eastern portion determined from Site U1327.
Waves in Turbulent Stably Stratified Shear Flow
NASA Technical Reports Server (NTRS)
Jacobitz, F. G.; Rogers, M. M.; Ferziger, J. H.; Parks, John W. (Technical Monitor)
2002-01-01
Two approaches for the identification of internal gravity waves in sheared and unsheared homogeneous stratified turbulence are investigated. First, the phase angle between the vertical velocity and density fluctuations is considered. It was found, however, that a continuous distribution of the phase angle is present in weakly and strongly stratified flow. Second, a projection onto the solution of the linearized inviscid equations of motion of unsheared stratified flow is investigated. It was found that a solution of the fully nonlinear viscous Navier-Stokes equations can be represented by the linearized inviscid solution. The projection yields a decomposition into vertical wave modes and horizontal vortical modes.
NASA Astrophysics Data System (ADS)
Sjöholm, M.; Courtney, M. S.; Enevoldsen, K. M.; Lindelöw, P.; Mann, J.; Mikkelsen, T.
2008-12-01
anemometer has already recently provided some initial prospective results of this approach to measure the 3D wind and turbulence field.
A Baroclinic Model of turbulent dusty flows
Kuhl, A.L.
1992-04-01
The problem considered here is the numerical simulation of the turbulent dusty flow induced by explosions over soil surfaces. Some of the unresolved issues are: (1) how much dust is scoured from such surfaces; (2) where does the dust go in the boundary layer; (3) what is the dusty boundary layer height versus time; (4) what are the dusty boundary layer profiles; (5) how much of the dust mass becomes entrained into the dust stem; and (6) where does the dust go in the buoyant cloud? The author proposes a Baroclinic Model for flows with large density variations that actually calculates the turbulent mixing and transport of dust on an adaptive grid. The model is based on the following idealizations: (1) a loose dust bed; (2) an instantaneous shock fluidization of the dust layer; (3) the dust and air are in local equilibrium (so air viscosity enforces the no-slip condition); (4) the dust-air mixture is treated as a continuum dense fluid with zero viscosity; and (5) the turbulent mixing is dominated by baroclinically-generated vorticity. These assumptions lead to an inviscid set of conservation laws for the mixture, which are solved by means of a high-order Godunov algorithm for gasdynamics. Adaptive Mesh Refinement (AMR) is used to capture the turbulent mixing processes on the grid. One of the unique characteristics of these flows is that mixing occurs because vorticity is produced by an inviscid, baroclinic mechanism. A number of examples are presented to illustrate these baroclinic effects including shock interactions with dense-gas layers and dust beds, and dusty wall jets of airblast precursors. The conclusion of these studies is that dusty boundary layers grow because of mass entrainment from the fluidized bed (and not because of viscous wall drag) as proven by the Mass Integral Equation.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Numerical study on the 3-D complex characteristics of flow around the hull structure of TLP
NASA Astrophysics Data System (ADS)
Gu, Jia-yang; Zhu, Xin-yao; Yang, Jian-min; Lu, Yan-xiang; Xiao, Long-fei
2015-06-01
Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier-Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a "beating" behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.
A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows
NASA Astrophysics Data System (ADS)
Xiao, Feng
1999-11-01
A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows.
Flow control on a 3D backward facing ramp by pulsed jets
NASA Astrophysics Data System (ADS)
Joseph, Pierric; Bortolus, Dorian; Grasso, Francesco
2014-06-01
This paper presents an experimental study of flow separation control over a 3D backward facing ramp by means of pulsed jets. Such geometry has been selected to reproduce flow phenomena of interest for the automotive industry. The base flow has been characterised using PIV and pressure measurements. The results show that the classical notchback topology is correctly reproduced. A control system based on magnetic valves has been used to produce the pulsed jets whose properties have been characterised by hot wire anemometry. In order to shed some light on the role of the different parameters affecting the suppression of the slant recirculation area, a parametric study has been carried out by varying the frequency and the momentum coefficient of the jets for several Reynolds numbers. xml:lang="fr"
Reflectional symmetry breaking of the separated flow over 3D bluff bodies
NASA Astrophysics Data System (ADS)
Grandemange, Mathieu; Gohlke, Marc; Cadot, Olivier
2012-11-01
The first experimental observation of a permanent reflectional symmetry breaking (RSB) is reported for a laminar three-dimensional wake. Based on flow visualizations, a first bifurcation from the trivial steady symmetric state to a steady RSB state is characterized at Re = 340. The RSB state becomes unsteady after a second bifurcation at Re = 410. It is found that this RSB regime is persistent at large Reynolds numbers and responsible for a bi-stable turbulent wake. The authors are indebted to R. Godoy Diana, V. Raspa and B. Thiria from ESPCI (Paris, France) for lending their low speed hydrodynamics tunnel.
Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.
Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike
2016-01-01
Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.
Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme
NASA Astrophysics Data System (ADS)
Jin-Lian, Ren; Tao, Jiang
2016-02-01
In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
Phase segregation in multiphase turbulent channel flow
NASA Astrophysics Data System (ADS)
Bianco, Federico; Soldati, Alfredo
2014-11-01
The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.
Condensation of Coherent Structures in Turbulent Flows.
Chong, Kai Leong; Huang, Shi-Di; Kaczorowski, Matthias; Xia, Ke-Qing
2015-12-31
Coherent structures are ubiquitous in turbulent flows and play a key role in transport. The most important coherent structures in thermal turbulence are plumes. Despite being the primary heat carriers, the potential of manipulating thermal plumes to transport more heat has been overlooked so far. Unlike some other forms of energy transport, such as electromagnetic or sound waves, heat flow in fluids is generally difficult to manipulate, as it is associated with the random motion of molecules and atoms. Here we report how a simple geometrical confinement can lead to the condensation of elementary plumes. The result is the formation of highly coherent system-sized plumes and the emergence of a new regime of convective thermal turbulence characterized by universal temperature profiles and significantly enhanced heat transfer. It is also found that the universality of the temperature profiles and heat transport originate from the geometrical properties of the coherent structures, i.e., the thermal plumes. Therefore, in contrast to the classical regime, boundary layers in this plume-controlled regime are being controlled, rather than controlling. PMID:26764994
Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.
Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva
2016-09-19
Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope. PMID:27661949
Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.
Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva
2016-09-19
Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.
Segmentation of bone structures in 3D CT images based on continuous max-flow optimization
NASA Astrophysics Data System (ADS)
Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.
2015-03-01
In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.
Rotary slanted single wire CTA - a useful tool for 3D flows investigations
NASA Astrophysics Data System (ADS)
Jonáš, P.
2013-04-01
The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA) using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.
Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations
Kuo, I W; Bastea, S; Fried, L E
2010-03-10
We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.
Line relaxation methods for the solution of 2D and 3D compressible flows
NASA Technical Reports Server (NTRS)
Hassan, O.; Probert, E. J.; Morgan, K.; Peraire, J.
1993-01-01
An implicit finite element based algorithm for the compressible Navier-Stokes equations is outlined, and the solution of the resulting equation by a line relaxation on general meshes of triangles or tetrahedra is described. The problem of generating and adapting unstructured meshes for viscous flows is reexamined, and an approach for both 2D and 3D simulations is proposed. An efficient approach appears to be the use of an implicit/explicit procedure, with the implicit treatment being restricted to those regions of the mesh where viscous effects are known to be dominant. Numerical examples demonstrating the computational performance of the proposed techniques are given.
Decay of the 3D viscous liquid-gas two-phase flow model with damping
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-08-01
We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river. Copyright 2011 by the American Geophysical Union.
Adaptive LES Methodology for Turbulent Flow Simulations
Oleg V. Vasilyev
2008-06-12
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence
NASA Technical Reports Server (NTRS)
Simonich, J. C.
1989-01-01
Prediction of helicopter main rotor noise due to ingestion of atmospheric turbulence was analyzed. The analysis combines several different models that describe the fluid mechanics of the turbulence and the ingestion process. Two models, atmospheric turbulence, and mean flow and turbulence contraction were covered. The third model, covered in a separate report, describes the rotor acoustic mode. The method incorporates the atmospheric turbulence model and a rapid distortion turbulence contraction description to determine the statistics of the anisotropic turbulence at the rotor plane. The analytical basis for a module was provided which was incorporated in NASA's ROTONET helicopter noise prediction program. The mean flow and turbulence statistics associated with the atmospheric boundary layer were modeled including effects of atmospheric stability length, wind speed, and altitude. The turbulence distortion process is modeled as a deformation of vortex filaments (which represent the turbulence field) by a mean flow field due to the rotor inflow.
Kinetic depth effect and optic flow--I. 3D shape from Fourier motion.
Dosher, B A; Landy, M S; Sperling, G
1989-01-01
Fifty-three different 3D shapes were defined by sequences of 2D views (frames) of dots on a rotating 3D surface. (1) Subjects' accuracy of shape identifications dropped from over 90% to less than 10% when either the polarity of the stimulus dots was alternated from light-on-gray to dark-on-gray on successive frames or when neutral gray interframe intervals were interposed. Both manipulations interfere with motion extraction by spatio-temporal (Fourier) and gradient first-order detectors. Second-order (non-Fourier) detectors that use full-wave rectification are unaffected by alternating-polarity but disrupted by interposed gray frames. (2) To equate the accuracy of two-alternative forced-choice (2AFC) planar direction-of-motion discrimination in standard and polarity-alternated stimuli, standard contrast was reduced. 3D shape discrimination survived contrast reduction in standard stimuli whereas it failed completely with polarity-alternation even at full contrast. (3) When individual dots were permitted to remain in the image sequence for only two frames, performance showed little loss compared to standard displays where individual dots had an expected lifetime of 20 frames, showing that 3D shape identification does not require continuity of stimulus tokens. (4) Performance in all discrimination tasks is predicted (up to a monotone transformation) by considering the quality of first-order information (as given by a simple computation on Fourier power) and the number of locations at which motion information is required. Perceptual first-order analysis of optic flow is the primary substrate for structure-from-motion computations in random dot displays because only it offers sufficient quality of perceptual motion at a sufficient number of locations.
Organized motions underlying turbulent shear flows
NASA Technical Reports Server (NTRS)
Waleffe, F.
1990-01-01
The objective of this project is to determine the nature and significance of the organized motions underlying turbulent shear flow. There is considerable experimental evidence for the existence of such motions. In particular, one consistently observes longitudinal streaks with a spacing of about 100 in wall units in the near-wall region of wall-bounded shear flows. Recently, an analysis based on the direct resonance mechanism has predicted the appearance of streaks with precisely such a spacing. Also, the minimum channel simulations of Jimenez and Moin have given a strong dynamical significance to that spanwise length scale. They have shown that turbulent-like flows can not be maintained when the spanwise wavelength of the motion is constrained to be less than about that critical number. A critical review of the direct resonance ideas and the non-linear theory of Benney and Gustavsson is presented first. It is shown how this leads to the later mean flow-first harmonic theory of Benney. Finally, we note that a different type of analysis has led to the prediction streaks with a similar spacing. This latter approach consists of looking for optimum fields and directly provides deep insights into why a particular structure or a particular scale should be preferred.
Study on 3-D simulation of flow and turbidity in an oxbow lake in tidal compartment
NASA Astrophysics Data System (ADS)
Yokoyama, H.; Momonoe, H.; Hamamoto, S.
2010-12-01
We aimed to make flow and turbidity simulation model for an oxbow lake in tidal compartment. The oxbow has two bottle-necks and inflow river from urban district. Bed topography of the oxbow is former meandering channel of large-basin river. Therefore characteristic of flow and water quality is complex. First, field observation was conducted to clarify the characteristics of flow and water quality in the oxbow. From observation results, flow and resuspension phenomena in the oxbow were affected by wind and tide, and the balance of the two factors changed longitudinally. Next, we built 3-D simulation model of flow which took account of the field observation results. In order to investigate effective water quality improvement, we set some test cases: condition of wind, inflow river were changed. From the simulation results, tide was the most important factor, however at the upper part of the oxbow, where the tidal power seemed to be weaker, flow and turbidity were clearly affected by the wind.
NASA Astrophysics Data System (ADS)
Osawa, Yasuo
New powerful parallel computational tools are developed for 3D simulation of unsteady wake flows with complex geometries and fluid-structure interactions. The base method for flow simulation is a finite element formulation for the Navier-Stokes equations. The finite element formulation is based on the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-Galerkin (PSPG) techniques. These stabilization techniques facilitate simulation of flows with high Reynolds numbers, and allow us to use equal-order interpolation functions for velocity and pressure without generating numerical oscillations. A multi-domain computational method is developed to simulate wake flow both in the near and far downstream. The formulations lead to coupled nonlinear equation systems which are solved, at every time step, with the Newton-Raphson method. The overall formulation and solution techniques are implemented on parallel platforms such as the CRAY T3E and SGI PowerChallenge. Two phases of vortex shedding for flow past a cylinder is simulated to verify the accuracy of this method. The Enhanced-Discretization Interface Capturing Technique (EDICT) is utilized to simulate wake flow accurately. Fluid-structure coupling solution method based on the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) formulation is applied to simulate a parachute behavior in the unsteady wake.
Direct numerical simulation of wall turbulent flows with microbubbles
NASA Astrophysics Data System (ADS)
Kanai, Akihiro; Miyata, Hideaki
2001-03-01
The marker-density-function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three-dimensional structure of the turbulent flow. Copyright
Incompressible Turbulent Wing-Body Junction Flow
NASA Technical Reports Server (NTRS)
Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.
1998-01-01
-stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive
Dynamic Multiscale Averaging (DMA) of Turbulent Flow
Richard W. Johnson
2012-09-01
A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical
NASA Astrophysics Data System (ADS)
Morgan, J. P.; Hasenclever, J.; Shi, C.
2009-12-01
Computational studies of mantle convection face large challenges to obtain fast and accurate solutions for variable viscosity 3d flow. Recently we have been using parallel (MPI-based) MATLAB to more thoroughly explore possible pitfalls and algorithmic improvements to current ‘best-practice’ variable viscosity Stokes and D’Arcy flow solvers. Here we focus on study of finite-element solvers based on a decomposition of the equations for incompressible Stokes flow: Ku + Gp = f and G’u = 0 (K-velocity stiffness matrix, G-discretized gradient operator, G’=transpose(G)-discretized divergence operator) into a single equation for pressure Sp==G’K^-1Gp =G’K^-1f, in which the velocity is also updated as part of each pressure iteration. The outer pressure iteration is solved with preconditioned conjugate gradients (CG) (Maday and Patera, 1989), with a multigrid-preconditioned CG solver for the z=K^-1 (Gq) step of each pressure iteration. One fairly well-known pitfall (Fortin, 1985) is that constant-pressure elements can generate a spurious non-zero flow under a constant body force within non-rectangular geometries. We found a new pitfall when using an iterative method to solve the Kz=y operation in evaluating each G’K^-1Gq product -- even if the residual of the outer pressure equation converges to zero, the discrete divergence of this equation does not correspondingly converge; the error in the incompressibility depends on roughly the square of the tolerance used to solve each Kz=y velocity-like subproblem. Our current best recipe is: (1) Use flexible CG (cf. Notay, 2001) to solve the outer pressure problem. This is analogous to GMRES for a symmetric positive definite problem. It allows use of numerically unsymmetric and/or inexact preconditioners with CG. (2) In this outer-iteration, use an ‘alpha-bar’ technique to find the appropriate magnitude alpha to change the solution in each search direction. This improvement allows a similar iterative tolerance of
3D High-Resolution Seismic Imaging of Fluid Flow Anomalies on the Norwegian Continental Shelf
NASA Astrophysics Data System (ADS)
Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Myklebust, R.; Stokke, H. H.
2015-12-01
Fluid flow anomalies are common on the Norwegian Continental Shelf. Such features are imaged by multiple P-Cable high resolution seismic 2D lines and 3D cubes in the Norwegian Barents Sea. P-Cable is a high resolution 3D seismic system consisting of multiple streamers attached to a cross cable that is towed perpendicular to the vessels steaming direction. The short offset, high frequency source and closely spaced streamers facilitates for excellent vertical and horizontal resolution that provides key information for understanding the sub-surface. Recent data have been broadband processed, and the method has proven to enhance the imaging of the sub-surface significantly. Barents Sea P-Cable surveys have targeted shallow fluid anomalies in the uppermost ca. 500 meters of the sub-surface. New data have been acquired in 2012, 2014 and 2015. The most recent data focus on the southeast part of the Norwegian Barents Sea where P-Cable data give a new insight into the subsurface not provided by conventional seismic data in the region. Geologically, the Barents Sea region is characterized by Paleozoic and Mesozoic siliciclastic successions overlaid in most areas by a thin cover of Cenozoic glacial sediments. Hydrocarbon-rich Jurassic and Triassic sequences are locally situated in the shallow sub-surface as a result of extensive late Cenozoic uplift and erosion. The unloading has been reported to reactivate and create new faults in addition to initiate further migration of fluids in the sub-surface (Chand et al., 2012). The presence of shallow hydrocarbon systems creates an optimal setting for imaging fluid flow anomalies with high resolution 3D seismic data. The Barents Sea P-Cable data image a range of fluid related features such as cross-cutting reflections and bright spots, chimney structures, acoustic masking, pockmarks and mud volcanoes.
Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems
NASA Astrophysics Data System (ADS)
Novara, Matteo; Schanz, Daniel; Reuther, Nico; Kähler, Christian J.; Schröder, Andreas
2016-08-01
The Shake-The-Box (STB) particle tracking technique, recently introduced for time-resolved 3D particle image velocimetry (PIV) images, is applied here to data from a multi-pulse investigation of a turbulent boundary layer flow with adverse pressure gradient in air at 36 m/s ( Re τ = 10,650). The multi-pulse acquisition strategy allows for the recording of four-pulse long time-resolved sequences with a time separation of a few microseconds. The experimental setup consists of a dual-imaging system and a dual-double-cavity laser emitting orthogonal polarization directions to separate the four pulses. The STB particle triangulation and tracking strategy is adapted here to cope with the limited amount of realizations available along the time sequence and to take advantage of the ghost track reduction offered by the use of two independent imaging systems. Furthermore, a correction scheme to compensate for camera vibrations is discussed, together with a method to accurately identify the position of the wall within the measurement domain. Results show that approximately 80,000 tracks can be instantaneously reconstructed within the measurement volume, enabling the evaluation of both dense velocity fields, suitable for spatial gradients evaluation, and highly spatially resolved boundary layer profiles. Turbulent boundary layer profiles obtained from ensemble averaging of the STB tracks are compared to results from 2D-PIV and long-range micro particle tracking velocimetry; the comparison shows the capability of the STB approach in delivering accurate results across a wide range of scales.
Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows
NASA Astrophysics Data System (ADS)
Gai, Jie; Xia, Zhenhua; Cai, Qingdong; Chen, Shiyi
2016-09-01
A series of direct numerical simulations of spanwise-rotating turbulent plane Couette flows at a Reynolds number of 1300 with rotation numbers Ro between 0 and 0.9 is carried out to investigate the effects of anticyclonic rotation on turbulent statistics and flow structures. Several typical turbulent statistics are presented, including the mean shear rate at the centerline, the wall-friction Reynolds number, and volume-averaged kinetic energies with respect to the secondary flow field, turbulent field, and total fluctuation field. Our results show that the rotation changes these quantities in different manners. Volume-averaged balance equations for kinetic energy are analyzed and it turns out that the interaction term acts as a kinetic energy bridge that transfers energy from the secondary flow to the turbulent fluctuations. Several typical flow regimes are identified based on the correlation functions across the whole channel and flow visualizations. The two-dimensional roll cells are observed at weak rotation Ro=0.01 , where alternant clustering of vortices appears. Three-dimensional roll cells emerge around Ro≈0.02 , where the clustering of vortices shows the meandering and bifurcating behavior. For moderate rotation 0.07 ≲Ro≲0.36 , well-organized structures are observed, where the herringbonelike vortices are clustered between streaks from the top view of three-dimensional flow visualization and form annuluses. More importantly, the vortices are rather confined to one side of the walls when Ro≤0.02 and are inclined from the bottom to upper walls when Ro≥0.07 .
Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns
NASA Astrophysics Data System (ADS)
von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet
2010-09-01
A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.
Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent
2015-01-01
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams.
MRI-based aortic blood flow model in 3D ballistocardiography.
Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F
2015-01-01
Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections. PMID:26737946
Decay of the 3D inviscid liquid-gas two-phase flow model
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-06-01
We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.
Ghalichi, Farzan; Deng, Xiaoyan
2003-01-01
The pulsatile blood flow in a partially blocked artery is significantly altered as the flow regime changes through the cardiac cycle. This paper reports on the application of a low-Reynolds turbulence model for computation of physiological pulsatile flow in a healthy and stenosed carotid artery bifurcation. The human carotid artery was chosen since it has received much attention because atherosclerotic lesions are frequently observed. The Wilcox low-Re k-omega turbulence model was used for the simulation since it has proven to be more accurate in describing transition from laminar to turbulent flow. Using the FIDAP finite element code a validation showed very good agreement between experimental and numerical results for a steady laminar to turbulent flow transition as reported in a previous publication by the same authors. Since no experimental or numerical results were available in the literature for a pulsatile and turbulent flow regime, a comparison between laminar and low-Re turbulent calculations was made to further validate the turbulence model. The results of this study showed a very good agreement for velocity profiles and wall shear stress values for this imposed pulsatile laminar flow regime. To explore further the medical aspect, the calculations showed that even in a healthy or non-stenosed artery, small instabilities could be found at least for a portion of the pulse cycle and in different sections. The 40% and 55% diameter reduction stenoses did not significantly change the turbulence characteristics. Further results showed that the presence of 75% stenoses changed the flow properties from laminar to turbulent flow for a good portion of the cardiac pulse. A full 3D simulation with this low-Re-turbulence model, coupled with Doppler ultrasound, can play a significant role in assessing the degree of stenosis for cardiac patients with mild conditions.
A 3-D implicit finite-volume model of shallow water flows
NASA Astrophysics Data System (ADS)
Wu, Weiming; Lin, Qianru
2015-09-01
A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values.
Multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Huisman, Sander G.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2014-05-01
The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov’s 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number, Re(106) (Taylor number Ta(1012)) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque- and local-velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (that is, very large Re) and questions Kolmogorov’s paradigm.
Multiple states in highly turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Huisman, Sander; van der Veen, Roeland; Sun, Chao; Lohse, Detlef
2014-11-01
The ubiquity of turbulent flows in nature and technology makes it of utmost importance to fundamentally understand turbulence. Kolmogorov's 1941 paradigm suggests that for strongly turbulent flows with many degrees of freedom and its large fluctuations, there would only be one turbulent state as the large fluctuations would explore the entire higher-dimensional phase space. Here we report the first conclusive evidence of multiple turbulent states for large Reynolds number Re = O (106) (Taylor number Ta = O (1012) Taylor-Couette flow in the regime of ultimate turbulence, by probing the phase space spanned by the rotation rates of the inner and outer cylinder. The manifestation of multiple turbulent states is exemplified by providing combined global torque and local velocity measurements. This result verifies the notion that bifurcations can occur in high-dimensional flows (i.e. very large Re) and questions Kolmogorov's paradigm.
Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2005-01-01
In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
NASA Technical Reports Server (NTRS)
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
Minimal flow units for magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Orlandi, P.
2016-08-01
We present direct numerical simulations of two minimal flow units (MFUs) to investigate the differences between inviscid and viscous simulations, and the different behavior of the evolution for conducting fluids. In these circumstances the introduction of the Lorentz force in the momentum equation produces different scenarios. The Taylor–Green vortex, in the past, was an MFU widely considered for both conducting and non-conducting fluids. The simulations were performed by pseudo-spectral numerical methods; these are repeated here by using a finite difference second-order accurate, energy-conserving scheme for ν =0. Having observed that this initial condition could be inefficient for capturing the eventual occurrence of a finite time singularity a potentially more efficient MFU consisting of two interacting Lamb dipoles was considered. It was found that the two flows have a different time evolution in the vortical dominated stage. In this stage, turbulent structures of different size are generated leading to spectra, in the inviscid conditions, with a {k}-3 range. In real conditions the viscosity produces smaller scales characteristic of fully developed turbulence with energy spectra with well defined exponential and inertial ranges. In the presence of non-conducting conditions the passive vector behaves as the vorticity. The evolution is different in the presence of conducting conditions. Although the time evolution is different, both flows lead to spectra in Kolmogorov units with the same shape at high and intermediate wave numbers.
Minimal flow units for magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Orlandi, P.
2016-08-01
We present direct numerical simulations of two minimal flow units (MFUs) to investigate the differences between inviscid and viscous simulations, and the different behavior of the evolution for conducting fluids. In these circumstances the introduction of the Lorentz force in the momentum equation produces different scenarios. The Taylor-Green vortex, in the past, was an MFU widely considered for both conducting and non-conducting fluids. The simulations were performed by pseudo-spectral numerical methods; these are repeated here by using a finite difference second-order accurate, energy-conserving scheme for ν =0. Having observed that this initial condition could be inefficient for capturing the eventual occurrence of a finite time singularity a potentially more efficient MFU consisting of two interacting Lamb dipoles was considered. It was found that the two flows have a different time evolution in the vortical dominated stage. In this stage, turbulent structures of different size are generated leading to spectra, in the inviscid conditions, with a {k}-3 range. In real conditions the viscosity produces smaller scales characteristic of fully developed turbulence with energy spectra with well defined exponential and inertial ranges. In the presence of non-conducting conditions the passive vector behaves as the vorticity. The evolution is different in the presence of conducting conditions. Although the time evolution is different, both flows lead to spectra in Kolmogorov units with the same shape at high and intermediate wave numbers.
Blade manipulators in turbulent channel flow
NASA Astrophysics Data System (ADS)
Vasudevan, B.; Prabhu, A.; Narasimha, R.
1992-01-01
We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.
Canopy-scale turbulence under oscillatory flow
NASA Astrophysics Data System (ADS)
Pujol, Dolors; Casamitjana, Xavier; Serra, Teresa; Colomer, Jordi
2013-09-01
The aim of this study is to understand the turbulent flow structure within diverse canopy models dominated by progressive waves. A set of experimental conditions were considered in a laboratory flume: three vegetation models (submerged rigid, submerged flexible and emergent rigid), three canopy densities (128, 640 and 1280 stems/m2) and three wave frequencies (f=0.8, 1 and 1.4 Hz). The canopy morphology through both the plant flexibility and height and the canopy density were the characteristic parameters that exerted a control on wave induced turbulence within the canopy bed. In the flexible canopy model, sheltering at the bed was observed and was associated with the movement of the blades. In contrast, in the rigid canopy model larger TKE was found as compared with the case without canopy. The increase of TKE was associated with the production of the stem-wake turbulence. Sheltering in the submerged rigid canopy model was found at the lower layer for the largest canopy density and highest wave frequency because of a great loss of wave velocity, confined below the top of the canopy. Sweeps and ejections were the predominant events, enhancing the transfer of momentum at the top of the canopy. Therefore, below the top of the submerged rigid canopy was characterized by a vertical energy exchange zone. Unlike the submerged model, sheltering was always found for emergent rigid vegetation, and attributed to the inhibition of the wave energy at all depths.
Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study
Gerassimenko, M.
2000-03-01
We document quick running test problems for a reactive flow model of HE initiation incorporated into ALE3D. A quarter percent change in projectile velocity changes the outcome from detonation to HE burn that dies down. We study the sensitivity of calculated HE behavior to several parameters of practical interest where modeling HE initiation with ALE3D.
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
Turbulence measurements in high-speed flows by resonant fluoresence
NASA Technical Reports Server (NTRS)
Miles, R. B.
1982-01-01
Both mean flow and turbulence measurements were investigated using the resonant Doppler velocimeter in a Mach 3.2 nitrogen flow. Data are presented showing velocity, temperature and pressure measured point by point across the flow field. This data is compared with conventional pitot and temperature surveys. Turbulence was induced by a small metal tab in the flow and observed by both hot wire and RDV techniques. Photographs of the flow field demonstrate the utility of the RDV for quantitative flow field visualization.
Some Basic Laws of Isotropic Turbulent Flow
NASA Technical Reports Server (NTRS)
Loitsianskii, L. G.
1945-01-01
An Investigation is made of the diffusion of artificially produced turbulence behind screens or other turbulence producers. The method is based on the author's concept of disturbance moment as a certain theoretically well-founded measure of turbulent disturbances.
Turbulence regeneration in pipe flow at moderate Reynolds numbers.
Hof, Björn; van Doorne, Casimir W H; Westerweel, Jerry; Nieuwstadt, Frans T M
2005-11-18
We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.
The mantle wedge's transient 3-D flow regime and thermal structure
NASA Astrophysics Data System (ADS)
Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.
2016-01-01
Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.
Incompressible Turbulent Wing-Body Junction Flow
NASA Technical Reports Server (NTRS)
Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.
1998-01-01
-stream flow. The lateral curvature of the wing/strat causes the oncoming turbulent layer to skew about am axis (x-axis) parallel to the plane (xz-plane) of the mean shear. This is the principle mechanism for the generation of secondary flow. Such skew-induced secondary flows are slow to be attenuated by Reynolds stresses. Additional contribution to the generation of secondary flow comes from anisotropies in Reynolds stresses. Upstream of the strut, the mean-vorticity is directed span wise (along the y-direction). The presence of secondary flow in the vicinity of the strut causes the vorticity to stretch around the obstacle in a horse-shoe shape, with each leg having a vorticity of the opposite sense. The blockage effect of the strut imposes a severe adverse pressure gradient on the oncoming turbulent shear layer, causing boundary layer separation ahead of the leading edge, resulting in a vortex that rolls up and flows downstream into the juncture region. The separation vortices trailing in the wake of the wing can alter the lift or drag characteristics of the surfaces downstream of the wing-body juncture. Likewise, on submarines, the wake flow behind the appendage can degrade the performance of the propeller located downstream. The complex nature of this flow is caused by the presence of all six components of Reynolds stresses. Devenport and Simpson report that in the vicinity of the horse-shoe vortex there is intense recirculation with turbulent stresses being much larger than those normally observed in turbulent flows. These features contribute to making this flow a challenge to predict numerically. Some of the past studies provide useful insights into this flow that would guide our numerical efforts. In measurements reported by Shabaka and Bradshaw, the eddy viscosity tensor is seen to be non-isotropic and has negative components in certain regions. In an effort to evaluate the closure assumptions of various turbulence models, Devenport and Simpson used their own extensive
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
Simulation of abrasive flow machining process for 2D and 3D mixture models
NASA Astrophysics Data System (ADS)
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
Simulation of 3D flows past hypersonic vehicles in FlowVision software
NASA Astrophysics Data System (ADS)
Aksenov, A. A.; Zhluktov, S. V.; Savitskiy, D. V.; Bartenev, G. Y.; Pokhilko, V. I.
2015-11-01
A new implicit velocity-pressure split method is discussed in the given presentation. The method implies using conservative velocities, obtained at the given time step, for integration of the momentum equation and other convection-diffusion equations. This enables simulation of super- and hypersonic flows with account of motion of solid boundaries. Calculations of known test cases performed in the FlowVision software are demonstrated. It is shown that the method allows one to carry out calculations at high Mach numbers with integration step essentially exceeding the explicit time step.
Rayleigh Light Scattering for Concentration Measurements in Turbulent Flows
NASA Technical Reports Server (NTRS)
Pitts, William M.
1996-01-01
Despite intensive research over a number of years, an understanding of scalar mixing in turbulent flows remains elusive. An understanding is required because turbulent mixing has a pivotal role in a wide variety of natural and technologically important processes. As an example, the mixing and transport of pollutants in the atmosphere and in bodies of water are often dependent on turbulent mixing processes. Turbulent mixing is also central to turbulent combustion which underlies most hydrocarbon energy use in modern societies as well as in unwanted fire behavior. Development of models for combusting flows is therefore crucial, however, an understanding of scalar mixing is required before useful models of turbulent mixing and, ultimately, turbulent combustion can be developed. An important subset of turbulent flows is axisymmetric turbulent jets and plumes because they are relatively simple to generate, and because the provide an appropriate test bed for the development of general theories of turbulent mixing which can be applied to more complex geometries and flows. This paper focuses on a number of experimental techniques which have been developed at the National Institute of Standards and Development for measuring concentration in binary axisymmetric turbulent jets. In order to demonstrate the value of these diagnostics, some of the more important results from earlier and on-going investigations are summarized. Topics addressed include the similarity behavior of variable density axisymmetric jets, the behavior of absolutely unstable axisymmetric helium jets, and the role of large scale structures and scalar dissipation in these flows.
NASA Astrophysics Data System (ADS)
Marcus, Guy; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg
2013-11-01
We have developed a general methodology to experimentally measure the time-resolved Lagrangian orientation and solid body rotation rate of anisotropic particles with arbitrary aspect ratio from standard stereoscopic video image data. We apply these techniques to particles advected in a Rλ ~ 110 fluid flow, where turbulence is generated by two grids oscillating in phase. We use 3D printing technology to design and fabricate neutrally buoyant rods, crosses (two perpendicular rods), and jacks (three mutually perpendicular rods) with a largest dimension of 7 times the Kolmogorov length scale, which makes them good approximations to tracer particles. We have measured the mean square rotation rate, ṗiṗi , of particles spanning the full range of aspect ratios and obtained results that agree with direct numerical simulations. By measuring the full solid-body rotation of jacks, we provide a new, extensible way to directly probe the Lagrangian vorticity of a fluid. We also present direct measurements of the alignment of crosses with the direction of their solid body rotation rate vector--in agreement with direct numerical simulations. Supported by NSF grant DMR1208990.
NASA Astrophysics Data System (ADS)
Peng, Zhangli; Pak, On Shun; Young, Yuan-Nan; Liu, Allen; Stone, Howard
2015-11-01
We investigate the gating of mechanosensing channels (Mscls) on vesicles and cell membranes under different flow conditions using a multiscale approach. At the cell level (microns), the membrane tension is calculated using a 3D two-component whole-cell membrane model based on dissipative particle dynamics (DPD), including the cortex cytoskeleton and its interactions with the lipid bilayer. At the Mscl level (nanometers), we predict the relation between channel gating and the membrane tension obtained from a cell-level model using a semi-analytical model based on the bilayer hydrophobic mismatch energy. We systematically study the gating of Mscls of vesicles and cell membranes in constricted channel flows and shear flows, and explore the dependence of the gating on flow rate, cell shape and size. The results provide guidance for future experiments in inducing Mscl opening for various purposes such as drug delivery.
A turbulence model for buoyant flows based on vorticity generation.
Domino, Stefan Paul; Nicolette, Vernon F.; O'Hern, Timothy John; Tieszen, Sheldon R.; Black, Amalia Rebecca
2005-10-01
A turbulence model for buoyant flows has been developed in the context of a k-{var_epsilon} turbulence modeling approach. A production term is added to the turbulent kinetic energy equation based on dimensional reasoning using an appropriate time scale for buoyancy-induced turbulence taken from the vorticity conservation equation. The resulting turbulence model is calibrated against far field helium-air spread rate data, and validated with near source, strongly buoyant helium plume data sets. This model is more numerically stable and gives better predictions over a much broader range of mesh densities than the standard k-{var_epsilon} model for these strongly buoyant flows.
Sound radiation in turbulent channel flows
NASA Astrophysics Data System (ADS)
Hu, Zhiwei; Morfey, Christopher L.; Sandham, Neil D.
2003-01-01
Lighthill’s acoustic analogy is formulated for turbulent channel flow with pressure as the acoustic variable, and integrated over the channel width to produce a two-dimensional inhomogeneous wave equation. The equivalent sources consist of a dipole distribution related to the sum of the viscous shear stresses on the two walls, together with monopole and quadrupole distributions related to the unsteady turbulent dissipation and Reynolds stresses respectively. Using a rigid-boundary Green function, an expression is found for the power spectrum of the far-field pressure radiated per unit channel area. Direct numerical simulations (DNS) of turbulent plane Poiseuille and Couette flow have been performed in large computational domains in order to obtain good resolution of the low-wavenumber source behaviour. Analysis of the DNS databases for all sound radiation sources shows that their wavenumber frequency spectra have non-zero limits at low wavenumber. The sound power per unit channel area radiated by the dipole distribution is proportional to Mach number squared, while the monopole and quadrupole contributions are proportional to the fourth power of Mach number. Below a particular Mach number determined by the frequency and radiation direction, the dipole radiation due to the wall shear stress dominates the far field. The quadrupole takes over at Mach numbers above about 0.1, while the monopole is always the smallest term. The resultant acoustic field at any point in the channel consists of a statistically diffuse assembly of plane waves, with spectrum limited by damping to a value that is independent of Mach number in the low-M limit.
NASA Astrophysics Data System (ADS)
Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos
2012-08-01
Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the
The role of freestream turbulence scale in subsonic flow separation
NASA Technical Reports Server (NTRS)
Potter, J. L.; Seebaugh, W. R.; Fisher, C. E.; Barnett, R. J.; Gokhale, R. B.
1985-01-01
The clarification of the role of freestream turbulence scale in determining the location of boundary layer separation is discussed. Modifications to the test facility were completed. Wind tunnel flow characteristics, including turbulence parameters, were determined with two turbulence generating grids, as well as no grid. These results are summarized. Initial results on the role of scale on turbulent boundary layer separation on the upper surface of an airfoil model are also discussed.
Improved engineering models for turbulent wall flows
NASA Astrophysics Data System (ADS)
She, Zhen-Su; Chen, Xi; Zou, Hong-Yue; Hussain, Fazle
2015-11-01
We propose a new approach, called structural ensemble dynamics (SED), involving new concepts to describe the mean quantities in wall-bounded flows, and its application to improving the existing engineering turbulence models, as well as its physical interpretation. First, a revised k - ω model for pipe flows is obtained, which accurately predicts, for the first time, both mean velocity and (streamwise) kinetic energy for a wide range of the Reynolds number (Re), validated by Princeton experimental data. In particular, a multiplicative factor is introduced in the dissipation term to model an anomaly in the energy cascade in a meso-layer, predicting the outer peak of agreeing with data. Secondly, a new one-equation model is obtained for compressible turbulent boundary layers (CTBL), building on a multi-layer formula of the stress length function and a generalized temperature-velocity relation. The former refines the multi-layer description - viscous sublayer, buffer layer, logarithmic layer and a newly defined bulk zone - while the latter characterizes a parabolic relation between the mean velocity and temperature. DNS data show our predictions to have a 99% accuracy for several Mach numbers Ma = 2.25, 4.5, improving, up to 10%, a previous similar one-equation model (Baldwin & Lomax, 1978). Our results promise notable improvements in engineering models.
Drag reduction in turbulent MHD pipe flows
NASA Technical Reports Server (NTRS)
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Agglomeration multigrid for viscous turbulent flows
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Venkatakrishnan, V.
1994-01-01
Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.
VALIDATION OF CFD PREDICTIONS OF FLOW IN A 3D ALVEOLATED BEND WITH EXPERIMENTAL DATA
VAN ERTBRUGGEN, C.; CORIERI, P.; THEUNISSEN, R.; RIETHMULLER, M.L.; DARQUENNE, C.
2008-01-01
Verifying numerical predictions with experimental data is an important aspect of any modeling studies. In the case of the lung, the absence of direct in-vivo flow measurements makes such verification almost impossible. We performed computational fluid dynamics (CFD) simulations in a 3D scaled-up model of an alveolated bend with rigid walls that incorporated essential geometrical characteristics of human alveolar structures and compared numerical predictions with experimental flow measurements made in the same model by Particle Image Velocimetry (PIV). Flow in both models was representative of acinar flow during normal breathing (0.82 ml/s). The experimental model was built in silicone and silicone oil was used as the carrier fluid. Flow measurements were obtained by an ensemble averaging procedure. CFD simulation was performed with STAR-CCM+ (CD-Adapco) using a polyhedral unstructured mesh. Velocity profiles in the central duct were parabolic and no bulk convection existed between the central duct and the alveoli. Velocities inside the alveoli were ∼2 orders of magnitude smaller than the mean velocity in the central duct. CFD data agreed well with those obtained by PIV. In the central duct, data agreed within 1%. The maximum simulated velocity along the centerline of the model was 0.5% larger than measured experimentally. In the alveolar cavities, data agreed within 15% on average. This suggests that CFD techniques can satisfactorily predict acinar-type flow. Such a validation ensure a great degree of confidence in the accuracy of predictions made in more complex models of the alveolar region of the lung using similar CFD techniques. PMID:17915225
Assessing GPR Signal Polarization for 3D Imaging of Fracture Flow Channels
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Baker, M.; Becker, M. W.
2011-12-01
Ground penetrating radar (GPR) is an effective geophysical method for imaging fractures. Recent studies have employed GPR to image flow paths in fractured aquifers and have demonstrated the potential for relating radar signal attributes to tracer concentration and fracture hydraulic properties. Flow in natural fractures is highly heterogeneous and occurs through channeled paths of varying direction, width and aperture. Therefore, radar imaging of channeled flow may exhibit polarization effects analogous to imaging pipes in the subsurface. Electromagnetic wave polarization properties have been recognized for their significance in imaging buried pipes and rebar, as well as heterogeneous geologic environments including dipping layers and faults. In this study we explore EM wavefield polarization effects for 3D imaging of flow channels along a sub-horizontal water-saturated fracture in bedrock. Three-dimensional 50 and 100 MHz GPR reflection data were acquired using broadside and cross-polarized dipole antenna pairs oriented at 0, 45, 90 and 135 degrees to the survey grid lines. Although the sub-horizontal fracture surface was imaged by all surveys, significant differences in spatial variability of reflector amplitude strength is observed among the data grids suggesting strong signal polarization dependence. One approach for compensating dipole source radiation effects is to sum orthogonal orientation components to simulate circular source radiation. Comparison of summed orthogonal component grids shows very good agreement in imaging high amplitude features of the fracture reflector, delineating the position of channels along the fracture. We conclude that GPR polarization properties are important for accurate imaging of flow channeling along fractures. Acquisition of two orthogonal orientation broadside data using dipole source-receiver pairs is shown to be adequate for imaging flow channeling.
Symmetries in Turbulent Boundary Layer Flows
NASA Technical Reports Server (NTRS)
Oberlack, M.
1996-01-01
The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Electroosmotic flow through a microparallel channel with 3D wall roughness.
Chang, Long; Jian, Yongjun; Buren, Mandula; Sun, Yanjun
2016-02-01
In this paper, a perturbation method is introduced to study the EOF in a microparallel channel with 3D wall roughness. The corrugations of the two walls are periodic sinusoidal waves of small amplitude in two directions either in phase or half-period out of phase. Based on linearized Poisson-Boltzmann equation, Laplace equation, and the Navier-Stokes equations, the perturbation solutions of velocity, electrical potential, and volume flow rate are obtained. By using numerical computation, the influences of the wall corrugations on the mean velocity are analyzed. The variations of electrical potential, velocity profile, mean velocity, and their dependences on the wave number α and β of wall corrugations in two directions, the nondimensional electrokinetic width K, and the zeta potential ratio between the lower wall and the upper wall ς are analyzed graphically. PMID:26333852
Compound cooling flow turbulator for turbine component
Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J
2014-11-25
Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model
NASA Astrophysics Data System (ADS)
Schwarz, J.-O.; Enzmann, F.
2012-04-01
Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of
An implicit finite-difference code for a two-equation turbulence model for three-dimensional flows
NASA Technical Reports Server (NTRS)
Kaul, U. K.
1985-01-01
An implicit finite difference code was developed which solves the transport equations for the turbulence kinetic energy and its dissipation rate in generalized coordinates in three dimensions. The finite difference equations are solved using the Beam-Warming algorithm. The kinetic energy-dissipation code, KEM, provides the closure; i.e., the turbulent viscosity for calculation of either compressible or incompressible flows. Turbulent internal flow over a backward-facing step has been calculated using the present code in conjunction with the Incompressible Navier-Stokes Code, INS3D. The results are in good agreement with experiments and two dimensional computations of other researchers.
Development of seismic anisotropy during subduction-induced 3D mantle flow
NASA Astrophysics Data System (ADS)
Faccenda, M.; capitanio, F. A.
2012-12-01
Subduction zones are convergent margins where the rigid lithosphere sinks into the Earth's mantle inducing complex 3D flow patterns. Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. As the development of seismic anisotropy due to upper and lower plate motions occurs at depths and timescales such that it is not directly observable, numerical modelling provides a useful tool to investigate these processes. We computed the seismic anisotropy of dry olivine-enstatite aggregates due to strain-induced LPO in 3D mechanical models of dynamic subduction by using, respectively, D-Rex and Underworld. Subsequently, FSTRACK was used to compute seismogram synthetics and SKS splitting patterns. We found that for relatively narrow subducting plates, retreat motions are maximized producing strong subslab trench-parallel anisotropy. Here, synthetic data reproduce quite well the observations in analogous subduction systems like Calabria and South Sandwich, where the fast azimuths orients parallel to the trench in the forearc and follow the toroidal flow patterns on the slab edges. Furthermore, we found that the amount of anisotropy is proportional to the amount of subduction, while it does not depend on the rate at which the plate subducts. On the other hand, larger subducting plates subducts mainly by plate advance, favoring poloidal motions and trench-perpendicular anisotropy. Additional Earth-like plate geometries involving along-trench variation of the subducting plate age that induces differential slab retreat motions are considered. We also tested different olivine fabrics (A, B, C, E type), yielding distinct SKS splitting patterns that may help to constrain the composition of the upper mantle. Although more sophisticated numerical modelling taking into account temperature-dependent mantle rock rheologies and P
Smith, P.J.
1994-09-01
Many practical combustion processes which use solid particles, liquid droplets, or slurries as fuels introduce these fuels into turbulent environments. Examples include spray combustion, pulverized coal and coal slurry combustion, fluidized beds, sorbent injection, and hazardous waste incineration. The interactions of the condensed phases with turbulent environments have not been well described. Such a description is complicated by the difficulty of describing turbulence in general, even in the absence of particles or droplets. But the complications in describing the dispersion and reaction of the condensed phases in turbulent environments do not stem entirely or even primarily from the uncertainties in the description of the turbulence. Theoretical descriptions of the turbulent dispersion of particles and droplets are not well established, even when the characteristics of the turbulence are known. Several new theoretical descriptions of the turbulent dispersion of particles an droplets have proposed over the past five years. It is the purpose of this project to explore the potential of two of these theories for coupling with the other aspects of three-dimensional, reacting, turbulent, particle-laden systems to proved computational simulations that could be useful for addressing industrial problems.
Turbulence modeling for high speed compressible flows
NASA Technical Reports Server (NTRS)
Chandra, Suresh
1993-01-01
The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.
Turbulence modeling for high speed compressible flows
NASA Astrophysics Data System (ADS)
Chandra, Suresh
1993-08-01
The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.
Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow
Bassem F. Armaly
2007-10-31
The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.
Effect of Turbulence Models on Two Massively-Separated Benchmark Flow Cases
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
2003-01-01
Two massively-separated flow cases (the 2-D hill and the 3-D Ahmed body) were computed with several different turbulence models in the Reynolds-averaged Navier-Stokes code CFL3D as part of participation in a turbulence modeling workshop held in Poitiers, France in October, 2002. Overall, results were disappointing, but were consistent with results from other RANS codes and other turbulence models at the workshop. For the 2-D hill case, those turbulence models that predicted separation location accurately ended up yielding a too-long separation extent downstream. The one model that predicted a shorter separation extent in better agreement with LES data did so only by coincidence: its prediction of earlier reattachment was due to a too-late prediction of the separation location. For the Ahmed body, two slant angles were computed, and CFD performed fairly well for one of the cases (the larger slant angle). Both turbulence models tested in this case were very similar to each other. For the smaller slant angle, CFD predicted massive separation, whereas the experiment showed reattachment about half-way down the center of the face. These test cases serve as reminders that state- of-the-art CFD is currently not a reliable predictor of massively-separated flow physics, and that further validation studies in this area would be beneficial.
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
Toroidal Flow Shear Driven turbulence and Transport
NASA Astrophysics Data System (ADS)
Wang, Weixing; Ethier, S.; Hinton, F. L.; Hahm, T. S.; Tang, W. M.
2012-10-01
New results from global nonlinear gyrokinetic simulations with the GTS code show that strong flow shear can drive a negative compressibility mode [1-3] unstable in tokamak geometry in some experimentally relevant parameter regimes. The modes reside in a low-k range, similar to that of ITG mode, with smaller but almost constant growth rate over a wider kθ range, while the mode frequency increases strongly with kθ. More interestingly, the flow shear modes show significantly finite k//, unlike ITG and TEM. The nonlinear energy transfer to longer wavelength via toroidal mode coupling and corresponding strong zonal flow and geodestic acoustic mode (GAM) generation are shown to play a critical role in the nonlinear saturation of the instability. The associated turbulence fluctuations can produce significant momentum and energy transport, including an intrinsic torque in the co-current direction. Remarkably, strong ``resonance'' in the fluctuations and associated transport peaks at the lowest order rational surfaces with integer q-number (rather than fractional), consistent with theoretical calculation. As a consequence, local ``corrugations'' are generated in all plasma profiles (temperatures, density and toroidal rotation), potentially impacting transport barrier formation near the rational surface. Discussions on flow optimization for minimizing plasma transport will be reported.[4pt] [1] N. Mattor and P. H. Diamond, Phys. Fluids 31, 1180 (1988).[0pt] [2] P. J. Catto et al., Phys. Fluids 16, 1719 (1973).[0pt] [3] M. Artun and W. M. Tang, Phys. Fluids B4, 1102 (1992).
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of
A PDF closure model for compressible turbulent chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1992-01-01
The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.
Free turbulent shear flows. Volume 2: Summary of data
NASA Technical Reports Server (NTRS)
Birch, S. F.
1973-01-01
The proceedings of a conference on free turbulent shear flows are presented. Objectives of the conference are as follows: (1) collect and process data for a variety of free mixing problems, (2) assess present theoretical capability for predicting mean velocity, concentration, and temperature distributions in free turbulent flows, (3) identify and recommend experimental studies to advance knowledge of free shear flows, and (4) increase understanding of basic turbulent mixing process for application to free shear flows. Examples of specific cases of jet flow are included.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of
Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Gatski, Thomas B.
2000-01-01
Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise
NASA Technical Reports Server (NTRS)
Nallasamy, N.
1999-01-01
The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.
Mitchell, Jonathan; Lyons, Kyle; Howe, Andrew M; Clarke, Andrew
2016-01-14
Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery. PMID:26477403
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.
Mitchell, Jonathan; Lyons, Kyle; Howe, Andrew M; Clarke, Andrew
2016-01-14
Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery.
CFD Simulation of 3D Flow field in a Gas Centrifuge
Dongjun Jiang; Shi Zeng
2006-07-01
A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)
3D Markov Process for Traffic Flow Prediction in Real-Time
Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi
2016-01-01
Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025
A digital holography set-up for 3D vortex flow dynamics
NASA Astrophysics Data System (ADS)
Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme
2016-06-01
In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.
A universal transition to turbulence in channel flow
NASA Astrophysics Data System (ADS)
Sano, Masaki; Tamai, Keiichi
2016-03-01
Transition from laminar to turbulent flow drastically changes the mixing, transport, and drag properties of fluids, yet when and how turbulence emerges is elusive even for simple flow within pipes and rectangular channels. Unlike the onset of temporal disorder, which is identified as the universal route to chaos in confined flows, characterization of the onset of spatiotemporal disorder has been an outstanding challenge because turbulent domains irregularly decay or spread as they propagate downstream. Here, through extensive experimental investigation of channel flow, we identify a distinctive transition with critical behaviour. Turbulent domains continuously injected from an inlet ultimately decayed, or in contrast, spread depending on flow rates. Near a transition point, critical behaviour was observed. We investigate both spatial and temporal dynamics of turbulent clusters, measuring four critical exponents, a universal scaling function and a scaling relation, all in agreement with the (2 + 1)-dimensional directed percolation universality class.
Flow effects of blood constitutive equations in 3D models of vascular anomalies
NASA Astrophysics Data System (ADS)
Neofytou, Panagiotis; Tsangaris, Sokrates
2006-06-01
The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.
Simulation of bacteria transport processes in a river with Flow3D
NASA Astrophysics Data System (ADS)
Schwarzwälder, Kordula; Bui, Minh Duc; Rutschmann, Peter
2014-05-01
Water quality aspects are getting more and more important due to the European water Framework directive (WFD). One problem related to this topic is the inflow of untreated wastewater due to combined sewer overflows into a river. The wastewater mixture contains even bacteria like E. coli and Enterococci which are markers for water quality. In our work we investigated the transport of these bacteria in river Isar by using a large-scale flume in the outside area of our lab (Oskar von Miller Institute). Therefor we could collect basic data and knowledge about the processes which occur during bacteria sedimentation and remobilisation. In our flume we could use the real grain with the exact size distribution curve as in the river Isar which we want to simulate and we had the chance to nurture a biofilm which is realistic for the analysed situation. This biofilm plays an important role in the remobilisation processes, because the bacteria are hindered to be washed out back into the bulk phase as fast and in such an amount as this would happen without biofilm. The results of our experiments are now used for a module in the 3D software Flow3D to simulate the effects of a point source inlet of raw wastewater on the water quality. Therefor we have to implement the bacteria not as a problem of concentration with advection and diffusion but as single particles which can be inactivated during the process of settling and need to be hindered from remobilisation by the biofilm. This biofilm has special characteristic, it is slippery and has a special thickness which influences the chance of bacteria being removed. To achieve realistic results we have to include the biofilm with more than a probabilistic-tool to make sure that our module is transferable. The module should be as flexible as possible to be improved step by step with increasing quality of dataset.
Plankton blooms induced by turbulent flows.
Reigada, R; Hillary, R M; Bees, M A; Sancho, J M; Sagués, F
2003-01-01
Plankton play an important role in the ecology of the ocean and the climate because of their participation in the global carbon cycle at the base of the food chain. However, damaging plankton blooms can sometimes occur and are initially characterized by sudden transient increases in the phytoplankton population. They are thought to be driven by several effects, such as seasonal variations in temperature and salinity, and nutrient mixing. Furthermore, phytoplankton and zooplankton have different buoyancy properties, leading to a differential response in turbulent environments. In this paper, we investigate this effect in a model of advected plankton dynamics. We find that, over a range of parameter values, flows of marine species subjected to inertial/viscous forces naturally lead to patchiness and, in turn, periodically sustained plankton blooms. PMID:12737667
Kelley, N.D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
NASA Astrophysics Data System (ADS)
Kelley, N. D.
1992-11-01
We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.
Turbulent transport modelling of separating and reattaching shear flows
NASA Technical Reports Server (NTRS)
Launder, B. E.
1982-01-01
The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries.
Quantitative imaging of turbulent and reacting flows
Paul, P.H.
1993-12-01
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
Turbulence generation in homogeneous dilute particle- laden flows
NASA Astrophysics Data System (ADS)
Chen, Jeng-Horng
Homogeneous turbulence generated by the motion of particles in dispersed multiphase flows was studied both theoretically and experimentally, motivated by applications to sprays, particle-laden jets, bubble plumes and rainstorms, among others. The experiments involved uniform fluxes of monodisperse spherical particles falling through a slow upflow of air. Particle fluxes and phase velocities were measured by sampling and phase-discriminating laser Doppler velocimetry (LDV), respectively. Measured particle velocities included mean and fluctuating streamwise and cross-stream velocities and probability density functions (PDF's). Measured continuous-phase velocities included mean and fluctuating streamwise and cross-stream velocities, PDF's and the higher moments of velocity fluctuations such as skewness and kurtosis, energy spectra of velocity fluctuations and integral length scales based on streamwise velocity fluctuations. Continuous-phase velocity measurements included conditional averages for particle wake disturbances and the turbulent inter-wake region surrounding these disturbances as well as overall flow properties. Present and earlier results in the literature provided particle Reynolds numbers of 38-990, particle volume fractions less than 0.01% and turbulence intensities (normalized by mean particle relative velocities) of 0.1-10.0%. Theory included characterization of particle wake disturbances as laminar-like turbulent wakes observed for intermediate particle Reynolds numbers in turbulent environments, characterization of the turbulent inter-wake region by analogy to grid-generated isotropic turbulence, and estimation of overall flow properties by conditional averaging of the properties of the wake disturbances and the turbulent inter-wake region. Present measurements showed that particle wake disturbances during turbulence generation were properly characterized by the properties of laminar-like turbulent wakes. The turbulent inter-wake region was
NASA Technical Reports Server (NTRS)
Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.
2001-01-01
Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.
Mignot, E; Bonakdari, H; Knothe, P; Lipeme Kouyi, G; Bessette, A; Rivière, N; Bertrand-Krajewski, J-L
2012-01-01
Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction. PMID:22828313
Heat Flow Partitioning Between Continents and Oceans - from 2D to 3D
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Cooper, C. M.; Lenardic, A.
2010-12-01
Scalings derived from thermal network theory explain how the presence of continents can influence the Earth’s overall heat loss. Intuitively, it may seem that increasing the proportion of a planet’s surface area covered by continents would decrease the efficiency of heat transfer given that continents do not participate in convective overturn. However, this ignores the potential feedback between the insulating effect of continents and the temperature-dependent viscosity of the mantle (Lenardic et al, 2005, Cooper et al, 2007). When this feedback is considered, a clear regime exists in which the partial stagnation and insulation of the surface by buoyant continental crust can lead to an increase in heat flow compared to the uninsulated case. The numerical results used to verify the scalings have mostly been conducted in two dimensions in order to cover a very wide range of Rayleigh number, fraction of continental coverage, and continental thickness. However as more recent results show that the configuration of the crust also plays a role in determining the heat flow partitioning and global heat flow (See Lenardic et al, “Continents, Super-Continents, Mantle Thermal Mixing, and Mantle Thermal Isolation” in this session), we have begun to repeat this exhaustive and exhausting 2D study in 3D. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006. Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci. Lett., 234 ,317-333, 2005.
Smith, P.J.
1994-09-01
Many practical combustion processes which use solid particles, liquid droplets, or slurries as fuels introduce these fuels into turbulent environments. Examples include spray combustion, pulverized coal and coal slurry combustion, fluidized beds, sorbent injection, and hazardous waste incineration. The interactions of the condensed phases with turbulent environments have not been well described. Such a description is complicated by the difficulty of describing turbulence in general, even in the absence of particles or droplets. But the complications in describing the dispersion and reaction of the condensed phases in turbulent environments do not stem entirely or even primarily from the uncertainties in the description of the turbulence. Theoretical descriptions of the turbulent dispersion of particles and droplets are not well established, even when the characteristics of the turbulence are known. It is the purpose of this project to develop two different particle dispersion submodels (one each for dilute and dense phases), and couple them with existing fluid-dynamic heat transfer and reaction chemistry models to provide computational simulations capable of addressing industrial problems.
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1990-01-01
A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.
Homogeneous turbulence subjected to mean flow with elliptic streamlines
NASA Technical Reports Server (NTRS)
Blaisdell, G. A.; Shariff, K.
1994-01-01
Direct numerical simulations are performed for homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. Qualitative comparisons are made with linear theory for cases with high Rossby number. The nonlinear transfer process is monitored using a generalized skewness. In general, rotation turns off the nonlinear cascade; however, for moderate ellipticities and rotation rates the nonlinear cascade is turned off and then reestablished. Turbulence statistics of interest in turbulence modeling are calculated, including full Reynolds stress budgets.
PDF methods for combustion in high-speed turbulent flows
NASA Technical Reports Server (NTRS)
Pope, Stephen B.
1995-01-01
This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.
The spatio-temporal spectrum of turbulent flows.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2015-12-01
Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711
The spatio-temporal spectrum of turbulent flows.
Clark di Leoni, P; Cobelli, P J; Mininni, P D
2015-12-01
Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased.
Prediction of hemolysis in turbulent shear orifice flow.
Tamagawa, M; Akamatsu, T; Saitoh, K
1996-06-01
This study proposes a method of predicting hemolysis induced by turbulent shear stress (Reynolds stress) in a simplified orifice pipe flow. In developing centrifugal blood pumps, there has been a serious problem with hemolysis at the impeller or casing edge; because of flow separation and turbulence in these regions. In the present study, hemolysis caused by turbulent shear stress must occur at high shear stress levels in regions near the edge of an orifice pipe flow. We have computed turbulent shear flow using the low-Reynolds number k-epsilon model. We found that the computed turbulent shear stress near the edge was several hundreds times that of the laminar shear stress (molecular shear stress). The peak turbulent shear stress is much greater than that obtained in conventional hemolysis testing using a viscometer apparatus. Thus, these high turbulent shear stresses should not be ignored in estimating hemolysis in this blood flow. Using an integrated power by shear force, it is optimal to determine the threshold of the turbulent shear stress by comparing computed stress levels with those of hemolysis experiments or pipe orifice blood flow.
Subcritical Transition and Spiral Turbulence in Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Burin, M. J.; Czarnocki, C. J.; Dapron, T.; McDonald, K. R.
2010-11-01
We present measurements characterizing the transition to turbulence in Taylor-Couette flow for a fully cyclonic regime, i.e. with only the outer cylinder rotating. Under this arrangement the flow is linearly-stable and the shear-driven transition to turbulence is understood to be both `catastrophic' and spatiotemporally intermittent. En route to a fully turbulent state, we observe a regime featuring co-extant laminar/turbulent domains known as spiral turbulence. To better understand this regime, and the transition in general, we have obtained velocimetry data (via LDV) and angular momentum transport estimates (via torque), in addition to flow visualization. These observations are discussed with respect to similar transition phenomena in planar and counter-rotating Couette flows. By utilizing three different inner cylinder radii within the apparatus, we also demonstrate the sensitivity of the subcritical transition scenario to annular gap width.
A numerical investigation of the 3-D flow in shell and tube heat exchangers
Prithiviraj, M.; Andrews, M.J.
1996-12-31
A three-dimensional computer program for simulation of the flow and heat transfer inside Shell and Tube Heat Exchangers has been developed. The simulation of shell and tube heat exchangers is based on a distributed resistance method that uses a modified two equation {kappa}-{epsilon} turbulence model along with non-equilibrium wall functions. Volume porosities and non-homogeneous surface permeabilities account for the obstructions due to the tubes and arbitrary arrangement of baffles. Sub-models are described for baffle-shell and baffle-tube leakage, shellside and tubeside heat transfer, with geometry generators for tubes, baffles, and nozzle inlets and outlets. The sub-models in HEATX use parameters that have not been altered from their published values. Computed heat transfer and pressure drop are compared with experimental data from the Delaware project (Bell, 1963). Numerically computed pressure drops are also compared for different baffle cuts, and different number of baffles with the experiments of Halle et al. (1984) which were performed in an industrial sized heat exchanger at Argonne National Labs. Discussion of the results is given with particular reference to global and local properties such as pressure drop, temperature variation, and heat transfer coefficients. Good agreement is obtained between the experiments and HEATX computations for the shellside pressure drop and outlet temperatures for the shellside and tubeside streams.
NASA Astrophysics Data System (ADS)
Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A.
2014-09-01
Flow sensing is an essential technique required for a wide range of application environments ranging from liquid dispensing to utility monitoring. A number of different methodologies and deployment strategies have been devised to cover the diverse range of potential application areas. The ability to easily create new bespoke sensors for new applications is therefore of natural interest. Fused deposition modelling is a 3D printing technology based upon the fabrication of 3D structures in a layer-by-layer fashion using extruded strands of molten thermoplastic. The technology was developed in the late 1980s but has only recently come to more wide-scale attention outside of specialist applications and rapid prototyping due to the advent of low-cost 3D printing platforms such as the RepRap. Due to the relatively low-cost of the printers and feedstock materials, these printers are ideal candidates for wide-scale installation as localized manufacturing platforms to quickly produce replacement parts when components fail. One of the current limitations with the technology is the availability of functional printing materials to facilitate production of complex functional 3D objects and devices beyond mere concept prototypes. This paper presents the formulation of a simple magnetite nanoparticle-loaded thermoplastic composite and its incorporation into a 3D printed flow-sensor in order to mimic the function of a commercially available flow-sensing device. Using the multi-material printing capability of the 3D printer allows a much smaller amount of functional material to be used in comparison to the commercial flow sensor by only placing the material where it is specifically required. Analysis of the printed sensor also revealed a much more linear response to increasing flow rate of water showing that 3D printed devices have the potential to at least perform as well as a conventionally produced sensor.
Laminar/turbulent oscillating flow in circular pipes
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.; Ibrahim, Mounir B.
1992-01-01
A two-dimensional oscillating flow analysis was conducted simulating the gas flow inside Stirling engine heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10,800 (Va = 272), 19,300 (Va = 272), and 60,800 (Va = 126). The results are compared with experimental results of previous investigators. Predictions of the flow regime are also checked by comparing velocity amplitudes and phase difference with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, the performance of the k-epsilon model was evaluated to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.
Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study
NASA Astrophysics Data System (ADS)
Alhendal, Yousuf; Turan, A.; Al-mazidi, M.
2015-12-01
The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.
A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0
STRICKLAND, JAMES H.; HOMICZ, GREGORY F.; PORTER, VICKI L.; GOSSLER, ALBERT A.
2002-07-01
This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.
Effects of flow control over a 3D turret -- Part II
NASA Astrophysics Data System (ADS)
Wallace, Ryan; Andino, Marlyn; Schmit, Ryan; Camphouse, Chris; Myatt, James; Glauser, Mark
2007-11-01
Building upon the 3D turret work done at Syracuse University an extended study was conducted in the Air Force Research Laboratory's Subsonic Aerodynamic Research Laboratory (SARL) wind tunnel at Wright-Patterson Air Force Base. The SARL experiments were performed at higher Reynolds and Mach numbers and therefore present a more complex, more challenging flow. Synthetic jets mounted upstream of the aperture were used to generate multiple actuation cases in order to provide a rich ensemble for plant model development based on the split POD method of Camphouse (2007). PIV velocity data was acquired along with simultaneous surface pressure data at various planes across the turret with and without open-loop control. In addition, a simple proportional closed-loop control was performed using the bandpass filtered first POD mode coefficient of the surface pressure as the feedback signal. The amplitude of the feedback signal was calibrated using the open-loop results which were the most effective in reducing the separation zone of the turret.
A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, W. R.; Jones, M. G.; Parrott, T. L.
2005-01-01
A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.
Advanced Combustion Modeling for Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Ham, Frank Stanford
2005-01-01
The next generation of aircraft engines will need to pass stricter efficiency and emission tests. NASA's Ultra-Efficient Engine Technology (UEET) program has set an ambitious goal of 70% reduction of NO(x) emissions and a 15% increase in fuel efficiency of aircraft engines. We will demonstrate the state-of-the-art combustion tools developed a t Stanford's Center for Turbulence Research (CTR) as part of this program. In the last decade, CTR has spear-headed a multi-physics-based combustion modeling program. Key technologies have been transferred to the aerospace industry and are currently being used for engine simulations. In this demo, we will showcase the next-generation combustion modeling tools that integrate a very high level of detailed physics into advanced flow simulation codes. Combustor flows involve multi-phase physics with liquid fuel jet breakup, evaporation, and eventual combustion. Individual components of the simulation are verified against complex test cases and show excellent agreement with experimental data.
Transition to turbulence in plane channel flow
NASA Technical Reports Server (NTRS)
Biringen, S.; Goglia, G. L.
1983-01-01
A numerical simulation of the final stages of transition to turbulence in plane channel flow is reported. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time-evolution of two and three dimensional finite amplitude disturbances. Computations are performed on the CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction-blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Turbulence Measurements of Separate Flow Nozzles with Mixing Enhancement Features
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2002-01-01
Comparison of turbulence data taken in three separate flow nozzles, two with mixing enhancement features on their core nozzle, shows how the mixing enhancement features modify turbulence to reduce jet noise. The three nozzles measured were the baseline axisymmetric nozzle 3BB, the alternating chevron nozzle, 3A12B, with 6-fold symmetry, and the flipper tab nozzle 3T24B also with 6-fold symmetry. The data presented show the differences in turbulence characteristics produced by the geometric differences in the nozzles, with emphasis on those characteristics of interest in jet noise. Among the significant findings: the enhanced mixing devices reduce turbulence in the jet mixing region while increasing it in the fan/core shear layer, the ratios of turbulence components are significantly altered by the mixing devices, and the integral lengthscales do not conform to any turbulence model yet proposed. These findings should provide guidance for modeling the statistical properties of turbulence to improve jet noise prediction.
THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS
Gazol, Adriana; Kim, Jongsoo E-mail: jskim@kasi.re.kr
2013-03-01
We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.
Particle-Generated Turbulence in Dispersed Homogeneous Flows
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Faeth, G. M.; Wu, J.-S.
1998-11-01
Homogeneous turbulence generated by uniform fluxes of monodisperse spherical particles moving through a uniform flowing gas was studied, motivated by the importance of this turbulence production mechanism for dense sprays, bubbly flows, rainstorms and the like. Measurements of phase velocities, moments, probability density functions, temporal power spectra, spatial integral scales and particle fluxes were obtained using phase-discriminating laser velocimetry and particle sampling in a counterflowing particle/air wind tunnel. Instantaneous velocity records showed that particle wake disturbances were the same as the properties of laminar-like turbulent wakes that have been observed for particle wakes at intermediate Reynolds numbers in turbulent environments. Relative turbulence intensities are proportional to the square-root of particle kinetic energy dissipation rates, in accord with simple stochastic theory. Other properties, however, exhibit complex behavior due to contributions from both particle wakes and interwake turbulence.
Calculation of the virtual current in an electromagnetic flow meter with one bubble using 3D model.
Zhang, Xiao-Zhang; Li, Yantao
2004-04-01
Based on the theory of electromagnetic induction flow measurement, the Laplace equation in a complicated three-dimensional (3D) domain is solved by an alternating method. Virtual current potentials are obtained for an electromagnetic flow meter with one spherical bubble inside. The solutions are used to investigate the effects of bubble size and bubble position on the virtual current. Comparisons are done among the cases of 2D and 3D models, and of point electrode and large electrode. The results show that the 2D model overestimates the effect, while large electrodes are least sensitive to the bubble. This paper offers fundamentals for the study of the behavior of an electromagnetic flow meter in multiphase flow. For application, the results provide a possible way to estimate errors of the flow meter caused by multiphase flow.
A compressible Navier-Stokes code for turbulent flow modeling
NASA Technical Reports Server (NTRS)
Coakley, T. J.
1984-01-01
An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.
A one-equation turbulence model for recirculating flows
NASA Astrophysics Data System (ADS)
Zhang, Yang; Bai, JunQiang; Xu, JingLei; Li, Yi
2016-06-01
A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a 1 = 0.31 is recalibrated to a function based on a set of direct numerical simulation (DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
Turbulent flow in smooth and rough pipes.
Allen, J J; Shockling, M A; Kunkel, G J; Smits, A J
2007-03-15
Recent experiments at Princeton University have revealed aspects of smooth pipe flow behaviour that suggest a more complex scaling than previously noted. In particular, the pressure gradient results yield a new friction factor relationship for smooth pipes, and the velocity profiles indicate the presence of a power-law region near the wall and, for Reynolds numbers greater than about 400x103 (R+>9x103), a logarithmic region further out. New experiments on a rough pipe with a honed surface finish with krms/D=19.4x10-6, over a Reynolds number range of 57x103-21x106, show that in the transitionally rough regime this surface follows an inflectional friction factor relationship rather than the monotonic relationship given in the Moody diagram. Outer-layer scaling of the mean velocity data and streamwise turbulence intensities for the rough pipe show excellent collapse and provide strong support for Townsend's outer-layer similarity hypothesis for rough-walled flows. The streamwise rough-wall spectra also agree well with the corresponding smooth-wall data. The pipe exhibited smooth behaviour for ks+ < or =3.5, which supports the suggestion that the original smooth pipe was indeed hydraulically smooth for ReD< or =24x106. The relationship between the velocity shift, DeltaU/utau, and the roughness Reynolds number, ks+, has been used to generalize the form of the transition from smooth to fully rough flow for an arbitrary relative roughness krms/D. These predictions apply for honed pipes when the separation of pipe diameter to roughness height is large, and they differ significantly from the traditional Moody curves.
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.
Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P
2016-01-01
3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5
Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.
Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P
2016-02-27
3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5
Numerical simulation of wall-bounded turbulent shear flows
NASA Technical Reports Server (NTRS)
Moin, P.
1982-01-01
Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included.
Direct simulations of turbulent flow using finite-difference schemes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Moin, Parviz
1989-01-01
A high-order accurate finite-difference approach is presented for calculating incompressible turbulent flow. The methods used include a kinetic energy conserving central difference scheme and an upwind difference scheme. The methods are evaluated in test cases for the evolution of small-amplitude disturbances and fully developed turbulent channel flow. It is suggested that the finite-difference approach can be applied to complex geometries more easilty than highly accurate spectral methods. It is concluded that the upwind scheme is a good candidate for direct simulations of turbulent flows over complex geometries.
Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields
Rivera, M.; Vorobieff, P.; Ecke, R.E.
1998-08-01
We report experimental measurements of the velocity, vorticity, and thickness fields of turbulent flowing soap films using a modified particle-image velocimetry technique. These data yield the turbulent energy and enstrophy of the two-dimensional flows with microscale Reynolds numbers of about 100 and demonstrate the effects of compressibility arising from variations in film thickness. Despite the compressibility of the flow, real-space correlations of velocity, vorticity, and enstrophy flux are consistent with theoretical predictions for two-dimensional turbulence. {copyright} {ital 1998} {ital The American Physical Society }
Marginal turbulent magnetohydrodynamic flow in a square duct
NASA Astrophysics Data System (ADS)
Shatrov, Victor; Gerbeth, Gunter
2010-08-01
Direct numerical simulations using a high-order finite-difference method were performed of the turbulent flow in a straight square duct in a transverse magnetic field. Without magnetic field the turbulence can be maintained for values of the bulk Reynolds number above approximately Re=1077 [M. Uhlmann et al., "Marginally turbulent flow in a square duct," J. Fluid Mech. 588, 153 (2007)]. In the magnetohydrodynamic case this minimal value of the bulk Reynolds number increases with the Hartmann number. The flow is laminar at Re=3000 when the Hartmann number is larger than Ha=12.5 and the flow is turbulent for Ha≦12.0. The secondary mean flow structure at Re=3000 consists of eight vortices located mainly at the Hartmann walls.
A review of Reynolds stress models for turbulent shear flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1995-01-01
A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.
Advances in the analysis and prediction of turbulent viscoelastic flows
NASA Astrophysics Data System (ADS)
Gatski, T. B.; Thais, L.; Mompean, G.
2014-08-01
It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
NASA Technical Reports Server (NTRS)
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
NASA Astrophysics Data System (ADS)
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
Roughness-induced critical phenomena in a turbulent flow.
Goldenfeld, Nigel
2006-02-01
I present empirical evidence that turbulent flows are closely analogous to critical phenomena, from a reanalysis of friction factor measurements in rough pipes. The data collapse found here corresponds to Widom scaling near critical points, and implies that a full understanding of turbulence requires explicit accounting for boundary roughness.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
Field observations of swash zone flow patterns and 3D morphodynamics
Puelo, Jack A.; Holland, K. Todd; Kooney, Timothy N.; Sallenger,, Asbury H.; Edge, Billy L.
2001-01-01
Rapid video measurements of foreshore morphology and velocity were collected at Duck, NC in 1997 to investigate sediment transport processes in the swash zone. Estimates of foreshore evolution over a roughly 30 m cross-shore by 80 m alongshore study area were determined using a stereogrammetric technique. During the passage of a small storm (offshore wave heights increased from 1.4 to 2.5 m), the foreshore eroded nearly 40 cm in less than 4 hours. Dense, horizontal surface velocities were measured over a sub-region (roughly 30 m by 40 m) of the study area using a new particle image velocimetry technique. This technique was able to quantify velocities across the bore front approaching 5 m s–1 as well as the rapid velocities in the very shallow backwash flows. The velocity and foreshore topography measurements were used to test a three-dimensional energetics-based sediment transport model. Even though these data represent the most extensive and highly resolved swash measurements to date, the results showed that while the model could predict some of the qualitative trends in the observed foreshore change, it was a poor predictor of the observed magnitudes of foreshore change. Model — data comparisons differed by roughly an order of magnitude with observed foreshore changes on the order of 10's of centimeters and model predictions on the order of meters. This poor comparison suggests that future models of swash-zone sediment transport may require the inclusion of other physical processes such as bore turbulence, fluid accelerations and skewness, infiltration/exfiltration, water depth variations, and variable friction factors (to name a few).
Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.
2011-01-01
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Yoon, H.; Martinez, M. J.
2015-12-01
Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
Gilmore, Mark A.
2013-06-27
Final Report for grant DE-FG02-06ER54898. The dynamics and generation of intermittent plasma turbulent structures, widely known as "blobs" have been studied in the presence of sheared plasma flows in a controlled laboratory experiment.
Flow visualization of turbulent boundary layer structure
NASA Astrophysics Data System (ADS)
Head, M. R.; Bandyopadhyay, P.
1980-01-01
The results from flow visualization experiments performed using an argon-ion laser to illuminate longitudinal and transverse sections of the smoke filled boundary layer in zero pressure gradient are discussed. Most of the experiments were confined to the range 600 Re sub theta 10,000. Results indicate that the boundary layer consists almost exclusively of vortex loops or hairpins, some of which may extend through the complete boundary layer thickness and all of which are inclined at a more or less constant characteristic angle of approximately 45 deg to the wall. Since the cross-stream dimensions of the hairpins appear to scale roughly with the wall variables U sub tau and nu, while their length is limited only by the boundary layer thickness, there are very large scale effects on the turbulence structure. At high Reynolds numbers (Re sub theta = 10,000) there is little evidence of large-scale coherent motions, other than a slow overturning of random agglomerations of the hairpins just mentioned.
Crossing turbulent boundaries: interfacial flux in environmental flows.
Grant, Stanley B; Marusic, Ivan
2011-09-01
Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems. PMID:21793569
Toward a Turbulence Constitutive Relation for Rotating Flows
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1996-01-01
In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.
NASA Astrophysics Data System (ADS)
Strelnikov, B.; Lubken, F.-J.; Rapp, M.; Krein, G.; Henkel, H.; Heckl, H.-J.
2015-09-01
Leibniz Institute of Atmospheric Physics (TAP) at the Rostock University in Kuhlungsborn, Germany together with the company von Hoerner and Sulger GmbH (vH&S) in Schwetzingen, Germany develop a new instrumental setup for 3-dimensional in-situ turbulence and temperature measurements in the mesosphere and lower thermosphere (MLT) region. The setup consists of a mother payload carrying a new generation CONE instrument and three identical daughter payloads that will be ejected from the main payload at a predefined altitude. When ejected, all the payloads measure densities of neutral air and one of the plasma species, either electrons or ions. Each payload has its own telemetry and positioning system and sends all the data directly down to the ground. The new measurements will thereby yield four simultaneously measured profiles of neutral and plasma densities, neutral air temperature, and turbulence energy dissipation rate, separated by up to some hundreds of meters. Important for turbulence studies, these measurements will infer spectra information that cover a wide range of spatial scale characteristics for MLT turbulence in both horizontal and vertical directions.
Connecting exact coherent states to turbulent dynamics in channel flow
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Graham, Michael D.
2015-11-01
The discovery of nonlinear traveling wave solutions to the Navier-Stokes equations or exact coherent states has greatly advanced the understanding of the nature of turbulent shear flows. These solutions are unstable saddle points in state space, while the time evolution of a turbulent flow is a dynamical trajectory wandering around them. In this regard, it is of interest to investigate how closely the turbulent trajectories approach these invariant states. Here, we present connections between turbulent trajectories and one intriguing solution family in channel flow. A state space visualization of turbulent trajectories is presented in a three-dimensional space. The lifetime of the trajectories is well represented by closeness to two distinct solutions resembling in many ways the active and hibernating phases of minimal channel turbulence (Xi & Graham PRL 2010). The connections are then examined by comparing mean profiles and flow structures. More importantly, the connections are confirmed by calculating the L2 distance between the trajectories and the traveling waves. Lastly, paths of an intermittent bursting phenomenon are identified in state space and the relationship between bursting paths and the traveling waves or hibernating turbulence is further discussed. This work was supported by the Air Force Office of Scientific Research through grant FA9550-15-1-0062 (Flow Interactions and Control Program).
MODELING STRATEGIES FOR UNSTEADY TURBULENT FLOWS IN THE LOWER PLENUM OF THE VHTR
Richard W. Johnson
2006-09-01
Validation simulations are presented for turbulent flow in a staggered tube bank, geometry similar to that in the lower plenum of a block very high temperature reactor. Steady 2D RANS predictions are compared to unsteady 2D RANS results and experiment. The unsteady calculations account for the fact that nonturbulent fluctuations (due to vortex-shedding) are present in the flow. The unsteady computations are shown to predict the mean variables and the total shear stress quite well. Previous workers have presented results that indicated that 3D simulations were necessary to obtain reasonable results. Best practices are based on requirements for the ASME Journal of Fluids Engineering.
Stochastic estimation of conditional eddies in turbulent channel flow
NASA Technical Reports Server (NTRS)
Adrian, R. J.; Moin, P.; Moser, R. D.
1987-01-01
Several long-standing issues regarding linear estimation and coherent structures are addressed, and some questions that were addressed partially, but never with the benefit of full, three-dimensional information are answered. The objectives were to: determine how well linear estimates approximate the field obtained by true conditional averaging, using events such as those in quadrant analysis; determine the extent to which the three-dimensional linearly estimated fields correspond to coherent structures, and the degree and manner in which they differ; evaluate the type and nature of the structural information gained by employing several different types of events; and learn more about the 3-D structure of important coherent motions that occur in wall turbulence. The results indicate that linear stochastic estimation can be used effectively in the study of numerical data bases consisting of three-dimensional vector fields, both velocity and vorticity. Two-point stochastic estimation yields more structural information and more detail than single-point estimation. The structures observed occurred repeatedly within the flow, but much can not be said about their dominance or the probability of their occurrence without further systematic studies of their frequency.
Numerical simulation of cavitating turbulent flow through a Francis turbine
NASA Astrophysics Data System (ADS)
Zhang, L.; Liu, J. T.; Wu, Y. L.; Liu, S. H.
2012-11-01
The unsteady cavitating turbulent flow in a Francis turbine is simulated based on governing equations of the mixture model for cavity-liquid two-phase flows with the RNG k-epsilon turbulence model in the present paper. An improved mass transfer expression in the mixture model is obtained based on evaporation and condensation mechanics with considering the effects of the non-dissolved gas, the turbulence, the tension of interface at cavity and the effect of phase change rate and so on. The governing equations of the mixture model for the unsteady cavitating-liquid flow is solved by a direct coupling method numerically with the finite volume method (FVM) using the unstructured tetrahedron grid and the structured hexahedral grid system. This direct coupling simulation was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine. The simulated external results agreed well with the experimental results.
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.
Programmable real-time applications with the 3D-Flow for input data rate systems of hundreds of MHz
Crosetto, D.
1996-02-01
The applicability of the 3D-Flow system to different experimental setups for real-time applications in the range of hundreds of nanoseconds is described. The results of the simulation of several real-time applications using the 3D-Flow demonstrate the advantages of a simple architecture that carries out operations in a balanced manner using regular connections and exceptionally few replicated components compared to conventional microprocessors. Diverse applications can be found that will benefit from this approach: High Energy Physics (HEP), which typically requires discerning patterns from thousands of accelerator particle collision signals up to 40 Mhz input data rate; Medical Imaging, that requires interactive tools for studying fast occurring biological processes; processing output from high-rate CCD cameras in commercial applications, such as quality control in manufacturing; data compression; speech and character recognition; automatic automobile guidance, and other applications. The 3D-Flow system was conceived for experiments at the Superconducting Super Collider (SSC). It was adopted by the Gamma Electron and Muon (GEM) experiment that was to be used for particle identification. The target of the 3D-Flow system was real-time pattern recognition at 100 million frames/sec.
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Hussain, F.
1991-03-04
The authors goal is to develop a state-of-the-art measurement technique--Holographic Particle Displacement Velocimetry (HPV)--which can provide instantaneous velocities everywhere in the flow field simultaneously. Another goal is to use the power of supercomputers to simulate 3D flows with heat release to study the physics of combusting turbulent flows. Computations suffer from limited flow times and Reynolds number but can provide flow properties in more detail than possible by any existing experimental techniques. Moreover, numerical simulations can provide quantities almost impossible to measure experimentally. This article discusses efforts to develop the holographic particle displacement velocimetry system and results of direct numerical simulations of combusting flows.
Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Fogwell, T.W.
1994-09-01
This paper discusses the numerical simulation of groundwater flow through heterogeneous porous media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to compute the hydraulic pressure head. The numerical investigation considers the effects of enlarging the domain, increasing the grid resolution, and varying the geostatistical parameters used to define the subsurface realization. The results were obtained using the PARFLOW groundwater flow simulator on the Cray T3D massively parallel computer.
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Haas, J. E.; Katsanis, T.
1984-01-01
A method for calculating turbine stage performance is described. The usefulness of the method is demonstrated by comparing measured and predicted efficiencies for nine different stages. Comparisons are made over a range of turbine pressure ratios and rotor speeds. A quasi-3D flow analysis is used to account for complex passage geometries. Boundary layer analyses are done to account for losses due to friction. Empirical loss models are used to account for incidence, secondary flow, disc windage, and clearance losses.
Turbulence-chemistry interactions in reacting flows
Barlow, R.S.; Carter, C.D.
1993-12-01
Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.
Fully developed turbulence in slugs of pipe flows
NASA Astrophysics Data System (ADS)
Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.
Direct numerical simulation of turbulent channel flow with permeable walls
NASA Astrophysics Data System (ADS)
Hahn, Seonghyeon; Je, Jongdoo; Choi, Haecheon
2002-01-01
The main objectives of this study are to suggest a proper boundary condition at the interface between a permeable block and turbulent channel flow and to investigate the characteristics of turbulent channel flow with permeable walls. The boundary condition suggested is an extended version of that applied to laminar channel flow by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the streamwise and spanwise directions at the interface between the permeable block and turbulent channel flow. With the proposed boundary condition, direct numerical simulations of turbulent channel flow that is bounded by the permeable wall are performed and significant skin-friction reductions at the permeable wall are obtained with modification of overall flow structures. The viscous sublayer thickness is decreased and the near-wall vortical structures are significantly weakened by the permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds shear stress, and pressure and vorticity fluctuations throughout the channel except very near the wall. The increase of some turbulence quantities there is due to the slip-velocity fluctuations at the wall. The boundary condition proposed for the permeable wall is validated by comparing solutions with those obtained from a separate direct numerical simulation using both the Brinkman equation for the interior of a permeable block and the Navier Stokes equation for the main channel bounded by a permeable block.
Visualization studies of turbulent transition flows in a porous medium
NASA Technical Reports Server (NTRS)
Bilardo, V. J.
1983-01-01
Results are reported for flow-visualization studies of the flow regimes of water passing through a porous medium consisting of cylindrical glass and plexiglas rods arranged in a complex and fixed three-dimensional geometry. The Reynolds number (Re) varied from 50 to 700; the flow was visualized by injecting a 5% potassium permanganate dye solution into the pores and photographing the resulting dye streaklines with both a still camera and a movie camera. The results indicate that four distinct flow regimes exist in the porous medium: (1) Darcy or creeping flow up to Re = 3; (2) steady inertia-dominated laminar flow for Re = 3-150; (3) unsteady transitional laminar flow for Re = 150-250; and (4) fully turbulent flow for Re greater than 250. It is concluded that a laminar wake instability mechanism typical of the external flow about bluff bodies may be responsible for the overall transition from laminar to turbulent flow in porous media.
Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks
Wang, W. X.; Diamond, P. H.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.
2010-07-07
Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E × B shear. The ITG turbulence driven “intrinsic” torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by “intrinsic” torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a “flow pinch” in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.
Strongly coupled turbulent gas-particle flows in vertical channels
NASA Astrophysics Data System (ADS)
Fox, Rodney O.; Capecelatro, Jesse; Desjardins, Olivier
2015-11-01
Eulerian-Lagrangian (EL) simulations of strongly coupled (high mass loading) gas-particle flows in vertical channels are performed with the purpose of exploring the fundamental physics of fully developed, wall-bounded multiphase turbulence. An adaptive spatial filter is developed that accurately decomposes the total granular energy of the particles into correlated and uncorrelated components at each location in the wall-normal direction of the flow. In this manner, Reynolds- and phase-averaged (PA) two-phase turbulence statistics up to second order are reported for both phases and for three values of the PA mean fluid velocity. As expected due to the high mass loading, in all cases the turbulence production due to mean drag dominates production due to mean shear. A multiphase LRR-IP Reynolds-stress turbulence model is developed to predict the turbulent flow statistics as a function of the wall-normal distance. Using a correlation for the vertical drift velocity developed from the EL data, the turbulence model predictions agree satisfactorily with all of one-point EL statistics for the vertical channel flows, as well as for the homogeneous cluster-induced turbulence (CIT) statistics reported previously. Funded by U.S. National Science Foundation (CBET-1437865).
Zonal flow generation and its feedback on turbulence production in drift wave turbulence
Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.
2013-04-15
Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.
Zonal flow generation and its feedback on turbulence production in drift wave turbulence
NASA Astrophysics Data System (ADS)
Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.
2013-04-01
Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allows to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research
George McMechan; Rucsandra Corbeanu; Craig Forster; Kristian Soegaard; Xiaoxian Zeng; Carlos Aiken; Robert Szerbiak; Janok Bhattacharya; Michael Wizevich; Xueming Xu; Stephen Snelgrove; Karen Roche; Siang Joo Lim; Djuro Navakovic; Christopher White; Laura Crossey; Deming Wang; John Thurmond; William Hammon III; Mamadou BAlde; Ari Menitove
2001-08-31
OAK-B135 (IPLD Cleared) Existing reservoir models are based on 2-D outcrop studies; 3-D aspects are inferred from correlation between wells, and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah. The study was conducted at two sites (Corbula Gulch and Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground-penetrating radar (GPR) images extend these reservoir characteristics into 3-D, to allow development of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentological features and boundaries.The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of the project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulations through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs.
3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries
NASA Astrophysics Data System (ADS)
Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman
2015-10-01
Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not
MRI Based Diagnostics for Temperature Measurements in Turbulent Flows
NASA Astrophysics Data System (ADS)
Burton, Lauren Sascha; Elkins, Christopher J.; Eaton, John K.
2014-11-01
Accurate modeling of the thermal diffusion in the complex turbulent flows related to cooling high temperature gas turbine blades is critical to optimize the performance and predict the lifetime of the blades. Magnetic Resonance Imaging (MRI) techniques for temperature measurement in simple but related flows are being developed in an effort to obtain full field thermal measurements to better understand diffusion processes and support the development of more accurate computational models in these flows. Magnetic Resonance Thermometry (MRT) utilizes the temperature dependence of the hydrogen proton resonant frequency (PRF) in water. MRT is now routinely used to measure tissue temperatures during medical procedures, and a few previous studies have made velocity and temperature measurements in turbulent pipe flows. In this study, MRT is applied to the flow of a heated single hole film cooling jet (Reynolds number 3000) inclined at 30 degrees injected into a cold developing turbulent channel flow (Reynolds number 25,000 based on bulk velocity and channel height.) The jet fluid temperature is 30 degrees Celsius above the temperature in the channel. The temperature measurements compare well to previously published results for measured passive scalar concentration in the same flow although the temperature measurements show higher uncertainties of 5--10 % of the temperature difference. Techniques for reducing this uncertainty will be presented as well as procedures for applying MRT to quantify the turbulent heat transfer coefficient in turbulent internal flows.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Zheng, X.; Liu, C.; Sung, C.H.
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
HEMP 3D -- a finite difference program for calculating elastic-plastic flow
Wilkins, M.L.
1993-05-26
The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time. Presented here is an update of the 1975 report on the HEMP 3D numerical technique. The present report includes the sliding surface routines programmed by Robert Gulliford.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
NASA Astrophysics Data System (ADS)
Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun
2016-06-01
Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.
A model for reaction rates in turbulent reacting flows
NASA Technical Reports Server (NTRS)
Chinitz, W.; Evans, J. S.
1984-01-01
To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.
A new energy transfer model for turbulent free shear flow
NASA Technical Reports Server (NTRS)
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Intensity fluctuations of ultrasonic scattering in a highly turbulent flow.
Shen, C; Lemmin, U
2000-05-01
Aspects of ultrasound intensity fluctuations backscattered from additive microstructures in a turbulent flow have been investigated theoretically and experimentally for the conditions of a small insonified volume, a high sound frequency and strong turbulence. These conditions are typically found in high resolution Doppler sonar applications. An easily applicable expression for the auto-correlation of scattering intensity fluctuations is obtained by introducing open-channel turbulence theory, a semi-empirical scalar spectrum (including a Batchelor spectrum) and a Gaussian window function. Experiments carried out in a laboratory-clear water, open-channel flow for different turbulence levels verify the underlying assumptions. A good agreement is found with the predictions made with the above-derived expression. The feasibility of extracting flow information from the backscattered intensity fluctuations is discussed.
Studies of compressible shear flows and turbulent drag reduction
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Compressible shear flows and drag reduction were examined and three methods are addressed: (1) the analytical and numerical aspects of conformal mapping were summarized and a new method for computation of these maps is presented; (2) the computer code SPECFD for solution of the three dimensional time dependent Navier-Stokes equations for compressible flow on the CYBER 203 computer is described; (3) results of two equation turbulence modeling of turbulent flow over wavy walls are presented. A modified Jones-Launder model is used in two dimensional spectral code for flow in general wavy geometries.
Turbulent shear-flow over fractal arrays of surface-mounted cubes
NASA Astrophysics Data System (ADS)
Wise, Daniel J.; Brevis, Wernher; Sheffield Fluid Mechanics Group Team
2015-11-01
The turbulent shear-flow over a bottom-wall fully covered by periodic multi-scale arrangements of obstacles is examined via Particle Image Velocimetry (PIV), Volumetric 3D Velocimetry (V3V) and Acoustic Doppler Velocimetry (ADV) measurements. Three obstacle patterns are utilised, all based on different numbers of iterations of the Sierpinski carpet fractal. In each case 2D/3D velocity fields of the flow formed within the porous channels, namely the flow beneath the mean obstacle height, are presented and analysed with respect to standard statistics such as the mean, rms velocity profiles, and the Reynolds stresses. Point-wise measurements within the obstacle arrays reveal that the presence of the obstacles, and in particular their injection of energy at the associated wavelengths, has unexpected effects on the slope of the energy spectra within the turbulent porous flow. The region dominated by these spectral characteristics is defined. It is also shown that this behaviour is not observed in the outer flow.
Transition to turbulence in Taylor-Couette ferrofluidic flow.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-06-12
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.
Transition to turbulence in Taylor-Couette ferrofluidic flow
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572
Transition to turbulence in Taylor-Couette ferrofluidic flow.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control. PMID:26065572
Experimental study of a turbulent flow under transient conditions
NASA Astrophysics Data System (ADS)
He, Shuisheng; Gorji, Sam; Seddighi, Mehdi; O'Donoghue, Tom; Pokrajac, Dubravka; Vardy, Alan
2014-11-01
Particle Image Velocimetry (PIV) is applied to investigate the behaviour of transient turbulent channel flows. During the experiments, the flowrate is accelerated from a lower Re turbulent flow to one at a higher Re. The investigations reveal novel insights into turbulence behaviour in the transient process. It is shown that the unsteady flows behave strikingly similar to the so-called boundary layer bypass transition due to free-stream-turbulence. Consistent with the DNS of He and Seddighi (J. Fluid Mech. 715, 60), the process begins with the elongation of streaks much similar to the Klebanoff modes in the buffeted laminar boundary layer in a bypass transition. During the second stage, the formation and propagation of isolated turbulent spots eventually lead to a complete breakdown of the organised streaky structures resulting in a new turbulent flow corresponding to the final Reynolds number. The present investigation covers a range of initial and final Reynolds numbers to elucidate the underlying mechanisms involved in transient flows.
NASA Technical Reports Server (NTRS)
Simonich, J. C.; Caplin, B.
1989-01-01
A users manual for a computer program for predicting atmospheric turbulence and mean flow and turbulence contraction as part of a noise prediction scheme for nonisotropic turbulence ingestion noise in helicopters is described. Included are descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.