Science.gov

Sample records for 3d ultrasound guidance

  1. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  2. Mechanically assisted 3D prostate ultrasound imaging and biopsy needle-guidance system

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Williams, Jackie; Cool, Derek; Gardi, Lori; Montreuil, Jacques; Karnik, Vaishali; Sherebrin, Shi; Romagnoli, Cesare; Fenster, Aaron

    2010-02-01

    Prostate biopsy procedures are currently limited to using 2D transrectal ultrasound (TRUS) imaging to guide the biopsy needle. Being limited to 2D causes ambiguity in needle guidance and provides an insufficient record to allow guidance to the same suspicious locations or avoid regions that are negative during previous biopsy sessions. We have developed a mechanically assisted 3D ultrasound imaging and needle tracking system, which supports a commercially available TRUS probe and integrated needle guide for prostate biopsy. The mechanical device is fixed to a cart and the mechanical tracking linkage allows its joints to be manually manipulated while fully supporting the weight of the ultrasound probe. The computer interface is provided in order to track the needle trajectory and display its path on a corresponding 3D TRUS image, allowing the physician to aim the needle-guide at predefined targets within the prostate. The system has been designed for use with several end-fired transducers that can be rotated about the longitudinal axis of the probe in order to generate 3D image for 3D navigation. Using the system, 3D TRUS prostate images can be generated in approximately 10 seconds. The system reduces most of the user variability from conventional hand-held probes, which make them unsuitable for precision biopsy, while preserving some of the user familiarity and procedural workflow. In this paper, we describe the 3D TRUS guided biopsy system and report on the initial clinical use of this system for prostate biopsy.

  3. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  4. Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation

    PubMed Central

    2011-01-01

    Purpose The goal of this study was to evaluate the use of 3D ultrasound (3DUS) breast IGRT for electron and photon lumpectomy site boost treatments. Materials and methods 20 patients with a prescribed photon or electron boost were enrolled in this study. 3DUS images were acquired both at time of simulation, to form a coregistered CT/3DUS dataset, and at the time of daily treatment delivery. Intrafractional motion between treatment and simulation 3DUS datasets were calculated to determine IGRT shifts. Photon shifts were evaluated isocentrically, while electron shifts were evaluated in the beam's-eye-view. Volume differences between simulation and first boost fraction were calculated. Further, to control for the effect of change in seroma/cavity volume due to time lapse between the 2 sets of images, interfraction IGRT shifts using the first boost fraction as reference for all subsequent treatment fractions were also calculated. Results For photon boosts, IGRT shifts were 1.1 ± 0.5 cm and 50% of fractions required a shift >1.0 cm. Volume change between simulation and boost was 49 ± 31%. Shifts when using the first boost fraction as reference were 0.8 ± 0.4 cm and 24% required a shift >1.0 cm. For electron boosts, shifts were 1.0 ± 0.5 cm and 52% fell outside the dosimetric penumbra. Interfraction analysis relative to the first fraction noted the shifts to be 0.8 ± 0.4 cm and 36% fell outside the penumbra. Conclusion The lumpectomy cavity can shift significantly during fractionated radiation therapy. 3DUS can be used to image the cavity and correct for interfractional motion. Further studies to better define the protocol for clinical application of IGRT in breast cancer is needed. PMID:21554697

  5. A fast slam approach to freehand 3-d ultrasound reconstruction for catheter ablation guidance in the left atrium.

    PubMed

    Koolwal, Aditya B; Barbagli, Federico; Carlson, Christopher R; Liang, David H

    2011-12-01

    We present a method for real-time, freehand 3D ultrasound (3D-US) reconstruction of moving anatomy, with specific application towards guiding the catheter ablation procedure in the left atrium. Using an intracardiac echo (ICE) catheter with a pose (position/orientation) sensor mounted to its tip, we continually mosaic 2D-ICE images of a left atrium phantom model to form a 3D-US volume. Our mosaicing strategy employs a probabilistic framework based on simultaneous localization and mapping (SLAM), a technique commonly used in mobile robotics for creating maps of unexplored environments. The measured ICE catheter tip pose provides an initial estimate for compounding 2D-ICE image data into the 3D-US volume. However, we simultaneously consider the overlap-consistency shared between 2D-ICE images and the 3D-US volume, computing a "corrected" tip pose if need be to ensure spatially-consistent reconstruction. This allows us to compensate for anatomic movement and sensor drift that would otherwise cause motion artifacts in the 3D-US volume. Our approach incorporates 2D-ICE data immediately after acquisition, allowing us to continuously update the registration parameters linking sensor coordinates to 3D-US coordinates. This, in turn, enables real-time localization and display of sensorized therapeutic catheters within the 3D-US volume for facilitating procedural guidance.

  6. A fast slam approach to freehand 3-d ultrasound reconstruction for catheter ablation guidance in the left atrium.

    PubMed

    Koolwal, Aditya B; Barbagli, Federico; Carlson, Christopher R; Liang, David H

    2011-12-01

    We present a method for real-time, freehand 3D ultrasound (3D-US) reconstruction of moving anatomy, with specific application towards guiding the catheter ablation procedure in the left atrium. Using an intracardiac echo (ICE) catheter with a pose (position/orientation) sensor mounted to its tip, we continually mosaic 2D-ICE images of a left atrium phantom model to form a 3D-US volume. Our mosaicing strategy employs a probabilistic framework based on simultaneous localization and mapping (SLAM), a technique commonly used in mobile robotics for creating maps of unexplored environments. The measured ICE catheter tip pose provides an initial estimate for compounding 2D-ICE image data into the 3D-US volume. However, we simultaneously consider the overlap-consistency shared between 2D-ICE images and the 3D-US volume, computing a "corrected" tip pose if need be to ensure spatially-consistent reconstruction. This allows us to compensate for anatomic movement and sensor drift that would otherwise cause motion artifacts in the 3D-US volume. Our approach incorporates 2D-ICE data immediately after acquisition, allowing us to continuously update the registration parameters linking sensor coordinates to 3D-US coordinates. This, in turn, enables real-time localization and display of sensorized therapeutic catheters within the 3D-US volume for facilitating procedural guidance. PMID:22014856

  7. 3-D statistical cancer atlas-based targeting of prostate biopsy using ultrasound image guidance

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramkrishnan; Shen, Dinggang; Davatzikos, Christos A.; Crawford, E. David; Barqawi, Albaha; Werahera, Priya; Kumar, Dinesh; Suri, Jasjit S.

    2008-03-01

    Prostate cancer is a multifocal disease and lesions are not distributed uniformly within the gland. Several biopsy protocols concerning spatially specific targeting have been reported urology literature. Recently a statistical cancer atlas of the prostate was constructed providing voxelwise probabilities of cancers in the prostate. Additionally an optimized set of biopsy sites was computed with 94 - 96% detection accuracy was reported using only 6-7 needles. Here we discuss the warping of this atlas to prostate segmented side-fire ultrasound images of the patient. A shape model was used to speed up registration. The model was trained from over 38 expert segmented subjects off-line. This training yielded as few as 15-20 degrees of freedom that were optimized to warp the atlas surface to the patient's ultrasound image followed by elastic interpolation of the 3-D atlas. As a result the atlas is completely mapped to the patient's prostate anatomy along with optimal predetermined needle locations for biopsy. These do not preclude the use of additional biopsies if desired. A color overlay of the atlas is also displayed on the ultrasound image showing high cancer zones within the prostate. Finally current biopsy locations are saved in the atlas space and may be used to update the atlas based on the pathology report. In addition to the optimal atlas plan, previous biopsy locations and alternate plans can also be stored in the atlas space and warped to the patient with no additional time overhead.

  8. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  9. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  10. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  11. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  12. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  13. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  14. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  15. Mechanically assisted 3D ultrasound guided prostate biopsy system.

    PubMed

    Bax, Jeffrey; Cool, Derek; Gardi, Lori; Knight, Kerry; Smith, David; Montreuil, Jacques; Sherebrin, Shi; Romagnoli, Cesare; Fenster, Aaron

    2008-12-01

    There are currently limitations associated with the prostate biopsy procedure, which is the most commonly used method for a definitive diagnosis of prostate cancer. With the use of two-dimensional (2D) transrectal ultrasound (TRUS) for needle-guidance in this procedure, the physician has restricted anatomical reference points for guiding the needle to target sites. Further, any motion of the physician's hand during the procedure may cause the prostate to move or deform to a prohibitive extent. These variations make it difficult to establish a consistent reference frame for guiding a needle. We have developed a 3D navigation system for prostate biopsy, which addresses these shortcomings. This system is composed of a 3D US imaging subsystem and a passive mechanical arm to minimize prostate motion. To validate our prototype, a series of experiments were performed on prostate phantoms. The 3D scan of the string phantom produced minimal geometric distortions, and the geometric error of the 3D imaging subsystem was 0.37 mm. The accuracy of 3D prostate segmentation was determined by comparing the known volume in a certified phantom to a reconstructed volume generated by our system and was shown to estimate the volume with less then 5% error. Biopsy needle guidance accuracy tests in agar prostate phantoms showed that the mean error was 2.1 mm and the 3D location of the biopsy core was recorded with a mean error of 1.8 mm. In this paper, we describe the mechanical design and validation of the prototype system using an in vitro prostate phantom. Preliminary results from an ongoing clinical trial show that prostate motion is small with an in-plane displacement of less than 1 mm during the biopsy procedure.

  16. A method for the calibration of 3D ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Mottl-Link, Sibylle; Wolf, Ivo; de Simone, Raffaele; Meinzer, Hans-Peter

    2003-05-01

    Background: Three-dimensional (3D) ultrasound has a great potential in medical diagnostics. However, there are also some limitations of 3D ultrasound, e.g., in some situations morphology cannot be imaged accurately due to acoustical shadows. Acquiring 3D datasets from multiple positions can overcome some of these limitations. Prior to that a calibration of the ultrasound probe is necessary. Most calibration methods descibed rely on two-dimensional data. We describe a calibration method that uses 3D data. Methods: We have developed a 3D calibration method based on single-point cross-wire calibration using registration techniques for automatic detection of cross centers. For the calibration a cross consisting of three orthogonal wires is imaged. A model-to-image registration method is used to determine the cross center. Results: Due to the use of 3D data less acquisitions and no special protocols are necessary. The influence of noise is reduced. By means of the registration method the time-consuming steps of image plane alignment and manual cross center determination becomes dispensable. Conclusion: A 3D calibration method for ultrasound transducers is described. The calibration method is the base to extend state-of-the-art 3D ultrasound devices, i.e., to acquire multiple 3D, either morphological or functional (Doppler), datasets.

  17. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  18. Ultrasound image guidance of cardiac interventions

    NASA Astrophysics Data System (ADS)

    Peters, Terry M.; Pace, Danielle F.; Lang, Pencilla; Guiraudon, Gérard M.; Jones, Douglas L.; Linte, Cristian A.

    2011-03-01

    Surgical procedures often have the unfortunate side-effect of causing the patient significant trauma while accessing the target site. Indeed, in some cases the trauma inflicted on the patient during access to the target greatly exceeds that caused by performing the therapy. Heart disease has traditionally been treated surgically using open chest techniques with the patient being placed "on pump" - i.e. their circulation being maintained by a cardio-pulmonary bypass or "heart-lung" machine. Recently, techniques have been developed for performing minimally invasive interventions on the heart, obviating the formerly invasive procedures. These new approaches rely on pre-operative images, combined with real-time images acquired during the procedure. Our approach is to register intra-operative images to the patient, and use a navigation system that combines intra-operative ultrasound with virtual models of instrumentation that has been introduced into the chamber through the heart wall. This paper illustrates the problems associated with traditional ultrasound guidance, and reviews the state of the art in real-time 3D cardiac ultrasound technology. In addition, it discusses the implementation of an image-guided intervention platform that integrates real-time ultrasound with a virtual reality environment, bringing together the pre-operative anatomy derived from MRI or CT, representations of tracked instrumentation inside the heart chamber, and the intra-operatively acquired ultrasound images.

  19. MMSE Reconstruction for 3D Freehand Ultrasound Imaging

    PubMed Central

    Huang, Wei; Zheng, Yibin

    2008-01-01

    The reconstruction of 3D ultrasound (US) images from mechanically registered, but otherwise irregularly positioned, B-scan slices is of great interest in image guided therapy procedures. Conventional 3D ultrasound algorithms have low computational complexity, but the reconstructed volume suffers from severe speckle contamination. Furthermore, the current method cannot reconstruct uniform high-resolution data from several low-resolution B-scans. In this paper, the minimum mean-squared error (MMSE) method is applied to 3D ultrasound reconstruction. Data redundancies due to overlapping samples as well as correlation of the target and speckle are naturally accounted for in the MMSE reconstruction algorithm. Thus, the reconstruction process unifies the interpolation and spatial compounding. Simulation results for synthetic US images are presented to demonstrate the excellent reconstruction. PMID:18382623

  20. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  1. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  2. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs. PMID:23757592

  3. Automatic 3D lesion segmentation on breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  4. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  5. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-01-01

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes. PMID:27164066

  6. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  7. Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies

    NASA Astrophysics Data System (ADS)

    Gérard, Maxime; Tang, An; Badoual, Anaïs.; Michaud, François; Bigot, Alexandre; Soulez, Gilles; Kadoury, Samuel

    2016-03-01

    Liver cancer represents the second most common cause of cancer-related mortality worldwide. The prognosis is poor with an overall mortality of 95%. Moreover, most hepatic tumors are unresectable due to their advanced stage at discovery or poor underlying liver function. Tumor embolization by intra-arterial approaches is the current standard of care for advanced cases of hepatocellular carcinoma. These therapies rely on the fact that the blood supply of primary hepatic tumors is predominantly arterial. Feedback on blood flow velocities in the hepatic arteries is crucial to ensure maximal treatment efficacy on the targeted masses. Based on these velocities, the intra-arterial injection rate is modulated for optimal infusion of the chemotherapeutic drugs into the tumorous tissue. While Doppler ultrasound is a well-documented technique for the assessment of blood flow, 3D visualization of vascular anatomy with ultrasound remains challenging. In this paper we present an image-guidance pipeline that enables the localization of the hepatic arterial branches within a 3D ultrasound image of the liver. A diagnostic Magnetic resonance angiography (MRA) is first processed to automatically segment the hepatic arteries. A non-rigid registration method is then applied on the portal phase of the MRA volume with a 3D ultrasound to enable the visualization of the 3D mesh of the hepatic arteries in the Doppler images. To evaluate the performance of the proposed workflow, we present initial results from porcine models and patient images.

  8. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  9. Development of a 3D ultrasound-guided prostate biopsy system

    NASA Astrophysics Data System (ADS)

    Cool, Derek; Sherebrin, Shi; Izawa, Jonathan; Fenster, Aaron

    2007-03-01

    Biopsy of the prostate using ultrasound guidance is the clinical gold standard for diagnosis of prostate adenocarinoma. However, because early stage tumors are rarely visible under US, the procedure carries high false-negative rates and often patients require multiple biopsies before cancer is detected. To improve cancer detection, it is imperative that throughout the biopsy procedure, physicians know where they are within the prostate and where they have sampled during prior biopsies. The current biopsy procedure is limited to using only 2D ultrasound images to find and record target biopsy core sample sites. This information leaves ambiguity as the physician tries to interpret the 2D information and apply it to their 3D workspace. We have developed a 3D ultrasound-guided prostate biopsy system that provides 3D intra-biopsy information to physicians for needle guidance and biopsy location recording. The system is designed to conform to the workflow of the current prostate biopsy procedure, making it easier for clinical integration. In this paper, we describe the system design and validate its accuracy by performing an in vitro biopsy procedure on US/CT multi-modal patient-specific prostate phantoms. A clinical sextant biopsy was performed by a urologist on the phantoms and the 3D models of the prostates were generated with volume errors less than 4% and mean boundary errors of less than 1 mm. Using the 3D biopsy system, needles were guided to within 1.36 +/- 0.83 mm of 3D targets and the position of the biopsy sites were accurately localized to 1.06 +/- 0.89 mm for the two prostates.

  10. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  11. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  12. Reduction of attenuation effects in 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Frimmel, Hans; Acosta, Oscar; Fenster, Aaron; Ourselin, Sébastien

    2007-03-01

    Ultrasound (US) is one of the most used imaging modalities today as it is cheap, reliable, safe and widely available. There are a number of issues with US images in general. Besides reflections which is the basis of ultrasonic imaging, other phenomena such as diffraction, refraction, attenuation, dispersion and scattering appear when ultrasound propagates through different tissues. The generated images are therefore corrupted by false boundaries, lack of signal for surface tangential to ultrasound propagation, large amount of noise giving rise to local properties, and anisotropic sampling space complicating image processing tasks. Although 3D Transrectal US (TRUS) probes are not yet widely available, within a few years they will likely be introduced in hospitals. Therefore, the improvement of automatic segmentation from 3D TRUS images, making the process independent of human factor is desirable. We introduce an algorithm for attenuation correction, reducing enhancement/shadowing effects and average attenuation effects in 3D US images, taking into account the physical properties of US. The parameters of acquisition such as logarithmic correction are unknown, therefore no additional information is available to restore the image. As the physical properties are related to the direction of each US ray, the 3D US data set is resampled into cylindrical coordinates using a fully automatic algorithm. Enhancement and shadowing effects, as well as average attenuation effects, are then removed with a rescaling process optimizing simultaneously in and perpendicular to the US ray direction. A set of tests using anisotropic diffusion are performed to illustrate the improvement in image quality, where well defined structures are visible. The evolution of both the entropy and the contrast show that our algorithm is a suitable pre-processing step for segmentation tasks.

  13. Double Ring Array Catheter for In Vivo Real-Time 3D Ultrasound.

    PubMed

    Smith, Stephen W; Gardea, Paul; Patel, Vivek; Douglas, Stephen J; Wolf, Patrick D

    2014-03-12

    We developed new forward-viewing matrix transducers consisting of double ring arrays of 118 total PZT elements integrated into catheters used to deploy medical interventional devices. Our goal is 3D ultrasound guidance of medical device implantation to reduce x-ray fluoroscopy exposure. The double ring arrays were fabricated on inner and outer custom polyimide flexible circuits with inter-element spacing of 0.20 mm and then wrapped around an 11 French (Fr) catheter to produce a 15 Fr catheter (outer diameter [O.D.]). We used a braided cabling technology to connect the elements to the Volumetrics Medical Imaging (VMI) real-time 3D ultrasound scanner. Transducer performance yielded an average -6 dB fractional bandwidth of 49% ± 11% centered at 4.4 MHz for 118 elements. Real-time 3D cardiac scans of the in vivo pig model yielded good image quality including en face views of the tricuspid valve and real-time 3D guidance of an endo-myocardial biopsy catheter introduced into the left ventricle. PMID:24626564

  14. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  15. Real-Time Camera Guidance for 3d Scene Reconstruction

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Förstner, W.

    2012-07-01

    We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal is to achieve full coverage of the object and sufficient overlap. Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution. We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera movements. A visual feedback system communicates the decisions to the user in an intuitive way. We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online flight planning of unmanned aerial vehicles.

  16. Virtual Ultrasound Guidance for Inexperienced Operators

    NASA Technical Reports Server (NTRS)

    Caine, Timothy; Martin, Davis

    2012-01-01

    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit, in which the time delay inherent with communication will make remote guidance impractical.

  17. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  18. Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration.

    PubMed

    Hacihaliloglu, Ilker; Rasoulian, Abtin; Rohling, Robert N; Abolmaesumi, Purang

    2014-11-01

    Most conventional spine interventions are performed under X-ray fluoroscopy guidance. In recent years, there has been a growing interest to develop nonionizing imaging alternatives to guide these procedures. Ultrasound guidance has emerged as a leading alternative. However, a challenging problem is automatic identification of the spinal anatomy in ultrasound data. In this paper, we propose a local phase-based bone feature enhancement technique that can robustly identify the spine surface in ultrasound images. The local phase information is obtained using a gradient energy tensor filter. This information is used to construct local phase tensors in ultrasound images, which highlight the spine surface. We show that our proposed approach results in a more distinct enhancement of the bone surfaces compared to recently proposed techniques based on monogenic scale-space filters and logarithmic Gabor filters. We also demonstrate that registration accuracy of a statistical shape+pose model of the spine to 3-D ultrasound images can be significantly improved, using the proposed method, compared to those obtained using monogenic scale-space filters and logarithmic Gabor filters.

  19. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  20. Detection of Curved Robots using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Vasilyev, Nikolay V; Dupont, Pierre E

    2011-09-25

    Three-dimensional ultrasound can be an effective imaging modality for image-guided interventions since it enables visualization of both the instruments and the tissue. For robotic applications, its realtime frame rates create the potential for image-based instrument tracking and servoing. These capabilities can enable improved instrument visualization, compensation for tissue motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth curve along their length, are well suited for minimally invasive procedures. Existing techniques for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms for continuum robots, this paper presents a method for detecting a robot comprised of a single constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by decomposing the six-dimensional circle estimation problem into two sequential three-dimensional estimation problems. Simulation and experiment are used to evaluate the proposed method. PMID:22229110

  1. Detection of Curved Robots using 3D Ultrasound.

    PubMed

    Ren, Hongliang; Vasilyev, Nikolay V; Dupont, Pierre E

    2011-09-25

    Three-dimensional ultrasound can be an effective imaging modality for image-guided interventions since it enables visualization of both the instruments and the tissue. For robotic applications, its realtime frame rates create the potential for image-based instrument tracking and servoing. These capabilities can enable improved instrument visualization, compensation for tissue motion as well as surgical task automation. Continuum robots, whose shape comprises a smooth curve along their length, are well suited for minimally invasive procedures. Existing techniques for ultrasound tracking, however, are limited to straight, laparoscopic-type instruments and thus are not applicable to continuum robot tracking. Toward the goal of developing tracking algorithms for continuum robots, this paper presents a method for detecting a robot comprised of a single constant curvature in a 3D ultrasound volume. Computational efficiency is achieved by decomposing the six-dimensional circle estimation problem into two sequential three-dimensional estimation problems. Simulation and experiment are used to evaluate the proposed method.

  2. Density-tapered spiral arrays for ultrasound 3-D imaging.

    PubMed

    Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero

    2015-08-01

    The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields. PMID:26285181

  3. Breast tumor angiogenesis analysis using 3D power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung

    2006-03-01

    Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.

  4. 3-D ultrasound-guided robotic needle steering in biological tissue.

    PubMed

    Adebar, Troy K; Fletcher, Ashley E; Okamura, Allison M

    2014-12-01

    Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.

  5. Compensation of log-compressed images for 3-D ultrasound.

    PubMed

    Sanches, João M; Marques, Jorge S

    2003-02-01

    In this study, a Bayesian approach was used for 3-D reconstruction in the presence of multiplicative noise and nonlinear compression of the ultrasound (US) data. Ultrasound images are often considered as being corrupted by multiplicative noise (speckle). Several statistical models have been developed to represent the US data. However, commercial US equipment performs a nonlinear image compression that reduces the dynamic range of the US signal for visualization purposes. This operation changes the distribution of the image pixels, preventing a straightforward application of the models. In this paper, the nonlinear compression is explicitly modeled and considered in the reconstruction process, where the speckle noise present in the radio frequency (RF) US data is modeled with a Rayleigh distribution. The results obtained by considering the compression of the US data are then compared with those obtained assuming no compression. It is shown that the estimation performed using the nonlinear log-compression model leads to better results than those obtained with the Rayleigh reconstruction method. The proposed algorithm is tested with synthetic and real data and the results are discussed. The results have shown an improvement in the reconstruction results when the compression operation is included in the image formation model, leading to sharper images with enhanced anatomical details.

  6. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  7. Ultrasound-based guidance of intensity-modulated radiation therapy.

    PubMed

    Fung, Albert Y C; Ayyangar, Komanduri M; Djajaputra, David; Nehru, Ramasamy M; Enke, Charles A

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  8. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  9. Virtual Ultrasound Guidance for Inexperienced Operators

    NASA Technical Reports Server (NTRS)

    Caine, Timothy; Martin, David

    2012-01-01

    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with

  10. Automated 3D whole-breast ultrasound imaging: results of a clinical pilot study

    NASA Astrophysics Data System (ADS)

    Leproux, Anaïs; van Beek, Michiel; de Vries, Ute; Wasser, Martin; Bakker, Leon; Cuisenaire, Olivier; van der Mark, Martin; Entrekin, Rob

    2010-03-01

    We present the first clinical results of a novel fully automated 3D breast ultrasound system. This system was designed to match a Philips diffuse optical mammography system to enable straightforward coregistration of optical and ultrasound images. During a measurement, three 3D transducers scan the breast at 4 different views. The resulting 12 datasets are registered together into a single volume using spatial compounding. In a pilot study, benign and malignant masses could be identified in the 3D images, however lesion visibility is less compared to conventional breast ultrasound. Clear breast shape visualization suggests that ultrasound could support the reconstruction and interpretation of diffuse optical tomography images.

  11. Experimental Evaluation of Ultrasound-Guided 3D Needle Steering in Biological Tissue

    PubMed Central

    Abayazid, Momen; Vrooijink, Gustaaf J.; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2014-01-01

    Purpose In this paper, we present a system capable of automatically steering bevel-tip flexible needles under ultrasound guidance towards stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to track the needle tip during the procedure. Methods Our system uses a fast sampling-based path planner to compute and periodically update a feasible path to the target that avoids obstacles. We then use a novel control algorithm to steer the needle along the path in a manner that reduces the number of needle rotations, thus reducing tissue damage. We present experimental results for needle insertion procedures for both stationary and moving targets and obstacles for up to 90 mm of needle insertion. Results We obtained a mean targeting error of 0.32 ± 0.10 mm and 0.38 ± 0.19 mm in gelatin-based phantom and biological tissue, respectively. Conclusions The achieved submillimeter accuracy suggests that our approach is sufficient to target the smallest lesions (ϕ2 mm) that can be detected using state-of-the-art ultrasound imaging systems. PMID:24562744

  12. PET-directed, 3D Ultrasound-guided prostate biopsy

    PubMed Central

    Fei, Baowei; Nieh, Peter T; Schuster, David M; Master, Viraj A

    2013-01-01

    Multimodatity imaging is a promising approach for improving prostate cancer detection and diagnosis. This article describes various concepts in PET-directed, ultrasound-guided biopsies and highlights a new PET/ultrasound fusion targeted biopsy system for prostate cancer detection. PMID:25392702

  13. A compact mechatronic system for 3D ultrasound guided prostate interventions

    SciTech Connect

    Bax, Jeffrey; Smith, David; Bartha, Laura; Montreuil, Jacques; Sherebrin, Shi; Gardi, Lori; Edirisinghe, Chandima; Fenster, Aaron

    2011-02-15

    Purpose: Ultrasound imaging has improved the treatment of prostate cancer by producing increasingly higher quality images and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. However, it is critical that the needles be placed accurately within the prostate to deliver the therapy to the planned location and avoid complications of damaging surrounding tissues. Methods: The authors have developed a compact mechatronic system, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This system has been designed to allow guidance of a needle obliquely in 3D space into the prostate, thereby reducing pubic arch interference. The choice of needle trajectory and location in the prostate can be adjusted manually or with computer control. Results: To validate the system, a series of experiments were performed on phantoms. The 3D scan of the string phantom produced minimal geometric error, which was less than 0.4 mm. Needle guidance accuracy tests in agar prostate phantoms showed that the mean error of bead placement was less then 1.6 mm along parallel needle paths that were within 1.2 mm of the intended target and 1 deg. from the preplanned trajectory. At oblique angles of up to 15 deg. relative to the probe axis, beads were placed to within 3.0 mm along a trajectory that were within 2.0 mm of the target with an angular error less than 2 deg. Conclusions: By combining 3D TRUS imaging system to a needle tracking linkage, this system should improve the physician's ability to target and accurately guide a needle to selected targets without the need for the computer to directly manipulate and insert the needle. This would be beneficial as the physician has complete control of the system and can safely maneuver the needle guide around obstacles such as previously placed needles.

  14. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  15. Role of 3-D ultrasound in clinical obstetric practice: evolution over 20 years.

    PubMed

    Tonni, Gabriele; Martins, Wellington P; Guimarães Filho, Hélio; Araujo Júnior, Edward

    2015-05-01

    The use of 3-D ultrasound in obstetrics has undergone dramatic development over the past 20 years. Since the first publications on this application in clinical practice, several 3-D ultrasound techniques and rendering modes have been proposed and applied to the study of fetal brain, face and cardiac anatomy. In addition, 3-D ultrasound has improved calculations of the volume of fetal organs and limbs and estimations of fetal birth weight. And furthermore, angiographic patterns of fetal organs and the placenta have been assessed using 3-D power Doppler ultrasound quantification. In this review, we aim to summarize current evidence on the clinical relevance of these methodologies and their application in obstetric practice.

  16. Monopulse radar 3-D imaging and application in terminal guidance radar

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Qin, Guodong; Zhang, Lina

    2007-11-01

    Monopulse radar 3-D imaging integrates ISAR, monopulse angle measurement and 3-D imaging processing to obtain the 3-D image which can reflect the real size of a target, which means any two of the three measurement parameters, namely azimuth difference beam elevation difference beam and radial range, can be used to form 3-D image of 3-D object. The basic principles of Monopulse radar 3-D imaging are briefly introduced, the effect of target carriage changes(including yaw, pitch, roll and movement of target itself) on 3-D imaging and 3-D moving compensation based on the chirp rate μ and Doppler frequency f d are analyzed, and the application of monopulse radar 3-D imaging to terminal guidance radars is forecasted. The computer simulation results show that monopulse radar 3-D imaging has apparent advantages in distinguishing a target from overside interference and precise assault on vital part of a target, and has great importance in terminal guidance radars.

  17. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  18. Percutaneous scaphoid pinning using ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Beek, Maarten; Abolmaesumi, Purang; Chen, Thomas; Sellens, Richard W.; Pichora, David

    2006-03-01

    A new procedure for percutaneous screw insertion in the scaphoid is proposed. The procedure involves pre-surgery planning using computed tomography imaging and intra-operative guidance using three-dimensional ultrasound. Preoperatively, the desired screw location and orientation is chosen on a three-dimensional surface model generated from computed tomography images. During the surgery, ultrasound images are captured from the targeted anatomy of the patient using an ultrasound probe that is tracked with a Certus optical camera. The tracked probe enables the registration of the surface model and the surgical plan to the patient in the operating room. The surgical drill, used by the surgeon for screw insertion, is also tracked with the optical camera. A graphical user interface has been developed to display the surface model, the surgical plan and the drill in real-time. By means of this interface, the surgeon is guided during the screw insertion procedure. Our experiments on scaphoid phantoms demonstrate that the accuracy of the proposed procedure is potentially of the same order as an open reduction and screw fixation surgery. The advantages of this new procedure are a reduced risk of infections and minimal soft tissue damage due to its percutaneous nature. The procedure also reduces the exposure to ionizing radiation for patients and operating room staff due to the employment of ultrasound imaging instead of fluoroscopy.

  19. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  20. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  1. A Molecular Image-directed, 3D Ultrasound-guided Biopsy System for the Prostate

    PubMed Central

    Fei, Baowei; Schuster, David M.; Master, Viraj; Akbari, Hamed; Fenster, Aaron; Nieh, Peter

    2012-01-01

    Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this biopsy approach uses two-dimensional (2D) ultrasound images to guide biopsy and can miss up to 30% of prostate cancers. We are developing a molecular image-directed, three-dimensional (3D) ultrasound image-guided biopsy system for improved detection of prostate cancer. The system consists of a 3D mechanical localization system and software workstation for image segmentation, registration, and biopsy planning. In order to plan biopsy in a 3D prostate, we developed an automatic segmentation method based wavelet transform. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed image registration methods to fuse TRUS and PET/CT images. The segmentation method was tested in ten patients with a DICE overlap ratio of 92.4% ± 1.1 %. The registration method has been tested in phantoms. The biopsy system was tested in prostate phantoms and 3D ultrasound images were acquired from two human patients. We are integrating the system for PET/CT directed, 3D ultrasound-guided, targeted biopsy in human patients. PMID:22708023

  2. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  3. Reproducibility of Acetabular Landmarks and a Standardized Coordinate System Obtained from 3D Hip Ultrasound.

    PubMed

    Mabee, Myles; Dulai, Sukhdeep; Thompson, Richard B; Jaremko, Jacob L

    2015-10-01

    Two-dimensional (2D) ultrasound detection of developmental dysplasia of the hip (DDH) is limited by variation in acetabular appearance and alpha angle measurements, which change with position of the ultrasound probe. Three-dimensional (3D) ultrasound captures the entire acetabular shape, and a reproducible "standard central plane" may be generated, from two landmarks located on opposite ends of the acetabulum, for measurement of alpha angle and other indices. Two users identified landmarks on 51 3D ultrasounds, with ranging severity of disease, and inter- and intra-observer reproducibility of landmark and "standard plane" locations was compared; landmarks were chosen within 2 mm, and the "standard plane" rotation was reproducible within 10° between observers. We observed no difference in variability between alpha angles measured on the "standard plane" in comparison with 2D ultrasound. Applications of the standardized 3D ultrasound central plane will be to fuse serial ultrasounds for follow-up and development of new indices of 3D deformity. PMID:25394808

  4. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-04-08

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS(start) and after (3D-iCEUS(end) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS(start) and 3D-iCEUS(end) data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  5. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    PubMed Central

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Cruz-Aceves, Ivan; Arlt, Felix; Chalopin, Claire

    2016-01-01

    In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS) data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR) data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUSstart) and after (3D-iCEUSend) tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUSstart and 3D-iCEUSend data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation). Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified. PMID:27070610

  6. Real-time cylindrical curvilinear 3-D ultrasound imaging.

    PubMed

    Pua, E C; Yen, J T; Smith, S W

    2003-07-01

    In patients who are obese or exhibit signs of pulmonary disease, standard transthoracic scanning may yield poor quality cardiac images. For these conditions, two-dimensional transesophageal echocardiography (TEE) is established as an essential diagnostic tool. Current techniques in transesophageal scanning, though, are limited by incomplete visualization of cardiac structures in close proximity to the transducer. Thus, we propose a 2D curvilinear array for 3D transesophageal echocardiography in order to widen the field of view and increase visualization close to the transducer face. In this project, a 440 channel 5 MHz two-dimensional array with a 12.6 mm aperture diameter on a flexible interconnect circuit has been molded to a 4 mm radius of curvature. A 75% element yield was achieved during fabrication and an average -6dB bandwidth of 30% was observed in pulse-echo tests. Using this transducer in conjunction with modifications to the beam former delay software and scan converter display software of the our 3D scanner, we obtained cylindrical real-time curvilinear volumetric scans of tissue phantoms, including a field of view of greater than 120 degrees in the curved, azimuth direction and 65 degrees phased array sector scans in the elevation direction. These images were achieved using a stepped subaperture across the cylindrical curvilinear direction of the transducer face and phased array sector scanning in the noncurved plane. In addition, real-time volume rendered images of a tissue mimicking phantom with holes ranging from 1 cm to less than 4 mm have been obtained. 3D color flow Doppler results have also been acquired. This configuration can theoretically achieve volumes displaying 180 degrees by 120 degrees. The transducer is also capable of obtaining images through a curvilinear stepped subaperture in azimuth in conjunction with a rectilinear stepped subaperture in elevation, further increasing the field of view close to the transducer face. Future work

  7. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  8. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  9. Intraluminal fluorescence spectroscopy catheter with ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Stephens, Douglas N.; Park, Jesung; Sun, Yang; Papaioannou, Thanassis; Marcu, Laura

    2009-05-01

    We demonstrate the feasibility of a time-resolved fluorescence spectroscopy (TRFS) technique for intraluminal investigation of arterial vessel composition under intravascular ultrasound (IVUS) guidance. A prototype 1.8-mm (5.4 Fr) catheter combining a side-viewing optical fiber (SVOF) and an IVUS catheter was constructed and tested with in vitro vessel phantoms. The prototype catheter can locate a fluorophore in the phantom vessel wall, steer the SVOF in place, perform blood flushing under flow conditions, and acquire high-quality TRFS data using 337-nm wavelength excitation. The catheter steering capability used for the coregistration of the IVUS image plane and the SVOF beam produce a guiding precision to an arterial phantom wall site location of 0.53+/-0.16 mm. This new intravascular multimodal catheter enables the potential for in vivo arterial plaque composition identification using TRFS.

  10. 3D ultrasound to stereoscopic camera registration through an air-tissue boundary.

    PubMed

    Yip, Michael C; Adebar, Troy K; Rohling, Robert N; Salcudean, Septimiu E; Nguan, Christopher Y

    2010-01-01

    A novel registration method between 3D ultrasound and stereoscopic cameras is proposed based on tracking a registration tool featuring both ultrasound fiducials and optical markers. The registration tool is pressed against an air-tissue boundary where it can be seen both in ultrasound and in the camera view. By localizing the fiducials in the ultrasound volume, knowing the registration tool geometry, and tracking the tool with the cameras, a registration is found. This method eliminates the need for external tracking, requires minimal setup, and may be suitable for a range of minimally invasive surgeries. A study of the appearance of ultrasound fiducials on an air-tissue boundary is presented, and an initial assessment of the ability to localize the fiducials in ultrasound with sub-millimeter accuracy is provided. The overall accuracy of registration (1.69 +/- 0.60 mm) is a noticeable improvement over other reported methods and warrants patient studies.

  11. Excision of nasopharyngeal angiofibroma facilitated by intra-operative 3D-image guidance.

    PubMed

    Murray, A; Falconer, M; McGarry, G W

    2000-04-01

    The latest 3D-image guidance systems to assist surgeons have greatly improved over earlier models. We describe the use of an optical infra-red system to assist in the removal of a juvenile nasopharyngeal angiofibroma. The specific advantages of this system in pre-operative assessment, intra-operative evaluation and excision of the angiofibroma are discussed.

  12. Histological Evaluation of 3D MRI-Guided Transurethral Ultrasound Therapy in the Prostate

    NASA Astrophysics Data System (ADS)

    Vedula, Siddharth; Boyes, Aaron; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous work from our group has shown that transurethral ultrasound therapy, with a single ultrasound transducer guided by temperature feedback from a single MRI plane (slice), can be used to treat a targeted region accurately in the prostate gland. We have extended this approach to a larger, 3D, targeted volume within the prostate, using a multi-element transducer controlled concurrently by temperature feedback from multiple imaging planes. Animals were placed supine in a 1.5 T clinical MRI, and the transurethral heating device was positioned with image guidance. A four-element transducer (each element was 5 mm long, operating at ˜8 MHz) was rotated to treat a targeted volume around the device. Temperature maps transverse to each element were acquired during heating and used to control the acoustic power of each element and the rate of rotation of the device. T2-weighted and contrast-enhanced (CE) MR images were obtained pre- and post-heating. Following the treatment, prostates were removed and fixed, axially sliced, stained with H&E, and digitally imaged at high-resolution to outline boundaries of cell death. Slice alignment and image registration techniques were developed to enable quantitative comparison of the axial MRI images and matching histological sections. Prostate sections showed clear regions of coagulative necrosis, extending ˜20 mm along the urethra, which correlated well with CE MRI data and transducer length. After registration, the outer border of coagulative necrosis on H&E conformed well to the target isotherm, similar to results from our previous (single element) acute studies. These results confirm that our previous analysis techniques for a single transducer can be extended to multiple elements, and that a large volumetric ablation of the prostate gland is feasible with a high degree of accuracy.

  13. Proximal femoral focal deficiency of the fetus - early 3D/4D prenatal ultrasound diagnosis.

    PubMed

    Kudla, Marek J; Beczkowska-Kielek, Aleksandra; Kutta, Katarzyna; Partyka-Lasota, Justyna

    2016-09-01

    Proximal Femoral Focal Deficiency (PFFD) is a rare congenital syndrome of unknown etiology. Additional disorders can be present up to 70% of PFFD cases. Management (including termination) depends on the severity of the malformation. We present a case of a 32-year-old woman referred for routine ultrasound examination in the 12th week of pregnancy. Detailed 3D/4D evaluation revealed asymmetry of lower limbs and diagnosis of isolated PFFD was established. Parents were fully informed and decided to continue the pregnancy. We stress here the importance of early 3D/4D ultrasound diagnosis. Our paper presents the earliest case where the diagnosis of PFFD was established with 3D/4D ultrasound. PMID:27622419

  14. 3D freehand ultrasound for medical assistance in diagnosis and treatment of breast cancer: preliminary results

    NASA Astrophysics Data System (ADS)

    Torres, Fabian; Fanti, Zian; Arambula Cosío, F.

    2013-11-01

    Image-guided interventions allow the physician to have a better planning and visualization of a procedure. 3D freehand ultrasound is a non-invasive and low-cost imaging tool that can be used to assist medical procedures. This tool can be used in the diagnosis and treatment of breast cancer. There are common medical practices that involve large needles to obtain an accurate diagnosis and treatment of breast cancer. In this study we propose the use of 3D freehand ultrasound for planning and guiding such procedures as core needle biopsy and radiofrequency ablation. The proposed system will help the physician to identify the lesion area, using image-processing techniques in the 3D freehand ultrasound images, and guide the needle to this area using the information of position and orientation of the surgical tools. We think that this system can upgrade the accuracy and efficiency of these procedures.

  15. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  16. DTI template-based estimation of cardiac fiber orientations from 3D ultrasound

    PubMed Central

    Qin, Xulei; Fei, Baowei

    2015-01-01

    Purpose: Cardiac muscle fibers directly affect the mechanical, physiological, and pathological properties of the heart. Patient-specific quantification of cardiac fiber orientations is an important but difficult problem in cardiac imaging research. In this study, the authors proposed a cardiac fiber orientation estimation method based on three-dimensional (3D) ultrasound images and a cardiac fiber template that was obtained from magnetic resonance diffusion tensor imaging (DTI). Methods: A DTI template-based framework was developed to estimate cardiac fiber orientations from 3D ultrasound images using an animal model. It estimated the cardiac fiber orientations of the target heart by deforming the fiber orientations of the template heart, based on the deformation field of the registration between the ultrasound geometry of the target heart and the MRI geometry of the template heart. In the experiments, the animal hearts were imaged by high-frequency ultrasound, T1-weighted MRI, and high-resolution DTI. Results: The proposed method was evaluated by four different parameters: Dice similarity coefficient (DSC), target errors, acute angle error (AAE), and inclination angle error (IAE). Its ability of estimating cardiac fiber orientations was first validated by a public database. Then, the performance of the proposed method on 3D ultrasound data was evaluated by an acquired database. Their average values were 95.4% ± 2.0% for the DSC of geometric registrations, 21.0° ± 0.76° for AAE, and 19.4° ± 1.2° for IAE of fiber orientation estimations. Furthermore, the feasibility of this framework was also performed on 3D ultrasound images of a beating heart. Conclusions: The proposed framework demonstrated the feasibility of using 3D ultrasound imaging to estimate cardiac fiber orientation of in vivo beating hearts and its further improvements could contribute to understanding the dynamic mechanism of the beating heart and has the potential to help diagnosis and therapy

  17. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images.

  18. A framework for human spine imaging using a freehand 3D ultrasound system.

    PubMed

    Purnama, Ketut E; Wilkinson, Michael H F; Veldhuizen, Albert G; van Ooijen, Peter M A; Lubbers, Jaap; Burgerhof, Johannes G M; Sardjono, Tri A; Verkerke, Gijbertus J

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D ultrasound imaging provides information in 3D directly in contrast to projection methods. This paper describes a feasibility study of an ultrasound system to provide a 3D image of the human spine, and presents a framework of procedures to perform this task. The framework consist of an ultrasound image acquisition procedure to image a large part of the human spine by means of a freehand 3D ultrasound system and a volume reconstruction procedure which was performed in four stages: bin-filling, hole-filling, volume segment alignment, and volume segment compounding. The overall results of the procedures in this framework show that imaging of the human spine using ultrasound is feasible. Vertebral parts such as the transverse processes, laminae, superior articular processes, and spinous process of the vertebrae appear as clouds of voxels having intensities higher than the surrounding voxels. In sagittal slices, a string of transverse processes appears representing the curvature of the spine. In the bin-filling stage the estimated mean absolute noise level of a single measurement of a single voxel was determined. Our comparative study for the hole-filling methods based on rank sum statistics proved that the pixel nearest neighbour (PNN) method with variable radius and with the proposed olympic operation is the best method. Its mean absolute grey value error was less in magnitude than the noise level of a single measurement.

  19. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  20. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  1. Intelligent speckle reducing anisotropic diffusion algorithm for automated 3-D ultrasound images.

    PubMed

    Wu, Jun; Wang, Yuanyuan; Yu, Jinhua; Shi, Xinling; Zhang, Junhua; Chen, Yue; Pang, Yun

    2015-02-01

    A novel 3-D filtering method is presented for speckle reduction and detail preservation in automated 3-D ultrasound images. First, texture features of an image are analyzed by using the improved quadtree (QT) decomposition. Then, the optimal homogeneous and the obvious heterogeneous regions are selected from QT decomposition results. Finally, diffusion parameters and diffusion process are automatically decided based on the properties of these two selected regions. The computing time needed for 2-D speckle reduction is very short. However, the computing time required for 3-D speckle reduction is often hundreds of times longer than 2-D speckle reduction. This may limit its potential application in practice. Because this new filter can adaptively adjust the time step of iteration, the computation time is reduced effectively. Both synthetic and real 3-D ultrasound images are used to evaluate the proposed filter. It is shown that this filter is superior to other methods in both practicality and efficiency. PMID:26366596

  2. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  3. 3D ultrasound imaging method to assess the true spinal deformity.

    PubMed

    Vo, Quang N; Lou, Edmond H M; Le, Lawrence H

    2015-08-01

    Spinal deformity is a three-dimensional (3D) spinal disorder with a lateral deviation and coupled with axial vertebral rotation (AVR). The current clinical practice only measures its severity on postero-anterior (PA) radiographs, which may underestimate the deformity. The actual severity should be obtained on the plane of maximal curvature (PMC), which requires a 3D spinal image. There are many approaches to reconstruct 3D spinal images; however, ultrasound is one of the promising techniques with its non-ionizing characteristic. This study proposed an image processing method using the voxel-based bilinear interpolation to reconstruct a 3D spinal image from ultrasound data, from which the AVR was measured and the spinal curvature on the PMC was determined. In-vitro and in-vivo experiments were performed to determine the accuracy of the measurements from the ultrasound method. The results showed that the 3D ultrasound spinal image could be reconstructed. The curvature angle on the PA and the PMC planes could also be determined. The tilt angle of each individual vertebra in in-vitro study showed high accuracy and correlation (MAD <; 0.9° ± 0.2° and r(2) > 0.87) when comparing the measurements from CT with ultrasound. In in-vivo study, the curvature angles measured on the PA radiographs and ultrasound images yielded a small difference (MAD 3.4° ± 1.0°) and a strong correlation (r(2) = 0.63) within a clinical accepted error of 5°. PMID:26736565

  4. OVERALL PROCEDURES PROTOCOL AND PATIENT ENROLLMENT PROTOCOL: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this study is to examine the feasibility of collecting, transmitting,

    and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant

    women. The study will also examine the reliability of measurements obtained from 3-D

    imag...

  5. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS. PMID:27083978

  6. Modeling of multi-view 3D freehand radio frequency ultrasound.

    PubMed

    Klein, T; Hansson, M; Navab, Nassir

    2012-01-01

    Nowadays ultrasound (US) examinations are typically performed with conventional machines providing two dimensional imagery. However, there exist a multitude of applications where doctors could benefit from three dimensional ultrasound providing better judgment, due to the extended spatial view. 3D freehand US allows acquisition of images by means of a tracking device attached to the ultrasound transducer. Unfortunately, view dependency makes the 3D representation of ultrasound a non-trivial task. To address this we model speckle statistics, in envelope-detected radio frequency (RF) data, using a finite mixture model (FMM), assuming a parametric representation of data, in which the multiple views are treated as components of the FMM. The proposed model is show-cased with registration, using an ultrasound specific distribution based pseudo-distance, and reconstruction tasks, performed on the manifold of Gamma model parameters. Example field of application is neurology using transcranial US, as this domain requires high accuracy and data systematically features low SNR, making intensity based registration difficult. In particular, 3D US can be specifically used to improve differential diagnosis of Parkinson's disease (PD) compared to conventional approaches and is therefore of high relevance for future application. PMID:23285579

  7. Model based assessment of vestibular jawbone thickness using high frequency 3D ultrasound micro-scanning

    NASA Astrophysics Data System (ADS)

    Habor, Daniel; Neuhaus, Sarah; Vollborn, Thorsten; Wolfart, Stefan; Radermacher, Klaus; Heger, Stefan

    2013-03-01

    Endosseous implants are well-established in modern dentistry. However, without appropriate therapeutic intervention, progressive peri-implant bone loss may lead to failing implants. Conventionally, the particularly relevant vestibular jawbone thickness is monitored using radiographic 3D imaging methods. Ionizing radiation, as well as imaging artifacts caused by metallic implants and superstructures are major drawbacks of these imaging modalities. In this study, a high frequency ultrasound (HFUS) based approach to assess the vestibular jawbone thickness is being introduced. It should be emphasized that the presented method does not require ultrasound penetration of the jawbone. An in-vitro study using two porcine specimens with inserted endosseous implants has been carried out to assess the accuracy of our approach. The implant of the first specimen was equipped with a gingiva former while a polymer superstructure was mounted onto the implant of the second specimen. Ultrasound data has been acquired using a 4 degree of freedom (DOF) high frequency (<50MHz) laboratory ultrasound scanner. The ultrasound raw data has been converted to polygon meshes including the surfaces of bone, gingiva, gingiva former (first specimen) and superstructure (second specimen). The meshes are matched with a-priori acquired 3D models of the implant, the superstructure and the gingiva former using a best-fit algorithm. Finally, the vestibular peri-implant bone thickness has been assessed in the resulting 3D models. The accuracy of this approach has been evaluated by comparing the ultrasound based thickness measurement with a reference measurement acquired with an optical extra-oral 3D scanner prior to covering the specimens with gingiva. As a final result, the bone thicknesses of the two specimens were measured yielding an error of -46+/-89μm (first specimen) and 70+/-93μm (second specimen).

  8. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble

    PubMed Central

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  9. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble.

    PubMed

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size-a few microns in diameter-and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  10. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance

    PubMed Central

    Itagaki, Michael W.

    2015-01-01

    Three-dimensional (3D) printing applications in medicine have been limited due to high cost and technical difficulty of creating 3D printed objects. It is not known whether patient-specific, hollow, small-caliber vascular models can be manufactured with 3D printing, and used for small vessel endoluminal testing of devices. Manufacture of anatomically accurate, patient-specific, small-caliber arterial models was attempted using data from a patient’s CT scan, free open-source software, and low-cost Internet 3D printing services. Prior to endovascular treatment of a patient with multiple splenic artery aneurysms, a 3D printed model was used preoperatively to test catheter equipment and practice the procedure. A second model was used intraoperatively as a reference. Full-scale plastic models were successfully produced. Testing determined the optimal puncture site for catheter positioning. A guide catheter, base catheter, and microcatheter combination selected during testing was used intraoperatively with success, and the need for repeat angiograms to optimize image orientation was minimized. A difficult and unconventional procedure was successful in treating the aneurysms while preserving splenic function. We conclude that creation of small-caliber vascular models with 3D printing is possible. Free software and low-cost printing services make creation of these models affordable and practical. Models are useful in preoperative planning and intraoperative guidance. PMID:26027767

  11. A navigation system for flexible endoscopes using abdominal 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Kaar, M.; Bathia, Amon; Bathia, Amar; Lampret, A.; Birkfellner, W.; Hummel, J.; Figl, M.

    2014-09-01

    A navigation system for flexible endoscopes equipped with ultrasound (US) scan heads is presented. In contrast to similar systems, abdominal 3D-US is used for image fusion of the pre-interventional computed tomography (CT) to the endoscopic US. A 3D-US scan, tracked with an optical tracking system (OTS), is taken pre-operatively together with the CT scan. The CT is calibrated using the OTS, providing the transformation from CT to 3D-US. Immediately before intervention a 3D-US tracked with an electromagnetic tracking system (EMTS) is acquired and registered intra-modal to the preoperative 3D-US. The endoscopic US is calibrated using the EMTS and registered to the pre-operative CT by an intra-modal 3D-US/3D-US registration. Phantom studies showed a registration error for the US to CT registration of 5.1 mm ± 2.8 mm. 3D-US/3D-US registration of patient data gave an error of 4.1 mm compared to 2.8 mm with the phantom. From this we estimate an error on patient experiments of 5.6 mm.

  12. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  13. Reconfigurable 2D cMUT-ASIC arrays for 3D ultrasound image

    NASA Astrophysics Data System (ADS)

    Song, Jongkeun; Jung, Sungjin; Kim, Youngil; Cho, Kyungil; Kim, Baehyung; Lee, Seunghun; Na, Junseok; Yang, Ikseok; Kwon, Oh-kyong; Kim, Dongwook

    2012-03-01

    This paper describes the design and implementations of the complete 2D capacitive micromachined ultrasound transducer electronics and its analog front-end module for transmitting high voltage ultrasound pulses and receiving its echo signals to realize 3D ultrasound image. In order to minimize parasitic capacitances and ultimately improve signal-to- noise ratio (SNR), cMUT has to be integrate with Tx/Rx electronics. Additionally, in order to integrate 2D cMUT array module, significant optimized high voltage pulser circuitry, low voltage analog/digital circuit design and packaging challenges are required due to high density of elements and small pitch of each element. We designed 256(16x16)- element cMUT and reconfigurable driving ASIC composed of 120V high voltage pulser, T/R switch, low noise preamplifier and digital control block to set Tx frequency of ultrasound and pulse train in each element. Designed high voltage analog ASIC was successfully bonded with 2D cMUT array by flip-chip bonding process and it connected with analog front-end board to transmit pulse-echo signals. This implementation of reconfigurable cMUT-ASIC-AFE board enables us to produce large aperture 2D transducer array and acquire high quality of 3D ultrasound image.

  14. 3D image fusion and guidance for computer-assisted bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, W. E.; Rai, L.; Merritt, S. A.; Lu, K.; Linger, N. T.; Yu, K. C.

    2005-11-01

    The standard procedure for diagnosing lung cancer involves two stages. First, the physician evaluates a high-resolution three-dimensional (3D) computed-tomography (CT) chest image to produce a procedure plan. Next, the physician performs bronchoscopy on the patient, which involves navigating the the bronchoscope through the airways to planned biopsy sites. Unfortunately, the physician has no link between the 3D CT image data and the live video stream provided during bronchoscopy. In addition, these data sources differ greatly in what they physically give, and no true 3D planning tools exist for planning and guiding procedures. This makes it difficult for the physician to translate a CT-based procedure plan to the video domain of the bronchoscope. Thus, the physician must essentially perform biopsy blindly, and the skill levels between different physicians differ greatly. We describe a system that enables direct 3D CT-based procedure planning and provides direct 3D guidance during bronchoscopy. 3D CT-based information on biopsy sites is provided interactively as the physician moves the bronchoscope. Moreover, graphical information through a live fusion of the 3D CT data and bronchoscopic video is provided during the procedure. This information is coupled with a series of computer-graphics tools to give the physician a greatly augmented reality of the patient's interior anatomy during a procedure. Through a series of controlled tests and studies with human lung-cancer patients, we have found that the system not only reduces the variation in skill level between different physicians, but also increases biopsy success rate.

  15. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters.

    PubMed

    Toonkum, Pollakrit; Suwanwela, Nijasri C; Chinrungrueng, Chedsada

    2011-02-01

    This paper presents a new three-dimensional (3D) ultrasound reconstruction algorithm for generation of 3D images from a series of two-dimensional (2D) B-scans acquired in the mechanical linear scanning framework. Unlike most existing 3D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the Cyclic Regularized Savitzky-Golay (CRSG) filter, is a new variant of the Savitzky-Golay (SG) smoothing filter. The CRSG filter has been improved upon the original SG filter in two respects: First, the cyclic indicator function has been incorporated into the least square cost function to enable the CRSG filter to approximate nonuniformly spaced data of the unobserved image intensities contained in unfilled voxels and reduce speckle noise of the observed image intensities contained in filled voxels. Second, the regularization function has been augmented to the least squares cost function as a mechanism to balance between the degree of speckle reduction and the degree of detail preservation. The CRSG filter has been evaluated and compared with the Voxel Nearest-Neighbor (VNN) interpolation post-processed by the Adaptive Speckle Reduction (ASR) filter, the VNN interpolation post-processed by the Adaptive Weighted Median (AWM) filter, the Distance-Weighted (DW) interpolation, and the Adaptive Distance-Weighted (ADW) interpolation, on reconstructing a synthetic 3D spherical image and a clinical 3D carotid artery bifurcation in the mechanical linear scanning framework. This preliminary evaluation indicates that the CRSG filter is more effective in both speckle reduction and geometric reconstruction of 3D ultrasound images than the other methods. PMID:20696448

  16. Can ultrasound guidance reduce the risk of pneumothorax following thoracentesis?*, **

    PubMed Central

    Perazzo, Alessandro; Gatto, Piergiorgio; Barlascini, Cornelius; Ferrari-Bravo, Maura; Nicolini, Antonello

    2014-01-01

    OBJECTIVE: Thoracentesis is one of the bedside procedures most commonly associated with iatrogenic complications, particularly pneumothorax. Various risk factors for complications associated with thoracentesis have recently been identified, including an inexperienced operator; an inadequate or inexperienced support team; the lack of a standardized protocol; and the lack of ultrasound guidance. We sought to determine whether ultrasound-guided thoracentesis can reduce the risk of pneumothorax and improve outcomes (fewer procedures without fluid removal and greater volumes of fluid removed during the procedures). In our comparison of thoracentesis with and without ultrasound guidance, all procedures were performed by a team of expert pulmonologists, using the same standardized protocol in both conditions. METHODS: A total of 160 participants were randomly allocated to undergo thoracentesis with or without ultrasound guidance (n = 80 per group). The primary outcome was pneumothorax following thoracentesis. Secondary outcomes included the number of procedures without fluid removal and the volume of fluid drained during the procedure. RESULTS: Pneumothorax occurred in 1 of the 80 patients who underwent ultrasound-guided thoracentesis and in 10 of the 80 patients who underwent thoracentesis without ultrasound guidance, the difference being statistically significant (p = 0.009). Fluid was removed in 79 of the 80 procedures performed with ultrasound guidance and in 72 of the 80 procedures performed without it. The mean volume of fluid drained was larger during the former than during the latter (960 ± 500 mL vs. 770 ± 480 mL), the difference being statistically significant (p = 0.03). CONCLUSIONS: Ultrasound guidance increases the yield of thoracentesis and reduces the risk of post-procedure pneumothorax. (Chinese Clinical Trial Registry identifier: ChiCTR-TRC-12002174 [http://www.chictr.org/en/]) PMID:24626264

  17. Quantification of carotid arteries atherosclerosis using 3D ultrasound images and area-preserving flattened maps

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Egger, Micaela; Spence, J. David; Parraga, Grace; Fenster, Aaron

    2008-03-01

    Quantitative measurements of the progression (or regression) of carotid plaque burden are important in monitoring patients and evaluating new treatment options. 3D ultrasound (US) has been used to monitor the progression of carotid artery plaques in symptomatic and asymptomatic patients. Different methods of measuring various ultrasound phenotypes of atherosclerosis have been developed. In this work, we extended concepts used in intima-media thickness (IMT) measurements based on 2D images and introduced a metric called 3D vessel-wall-plus-plaque thickness (3D VWT), which was obtained by computing the distance between the carotid wall and lumen surfaces on a point-by-point basis in a 3D image of the carotid arteries. The VWT measurements were then superimposed on the arterial wall to produce the VWT map. Since the progression of plaque thickness is important in monitoring patients who are at risk for stroke, we also computed the change of VWT by comparing the VWT maps obtained for a patient at two different time points. In order to facilitate the visualization and interpretation of the 3D VWT and VWT-Change maps, we proposed a technique to flatten these maps in an area-preserving manner.

  18. Accurate Diagnosis of Severe Hypospadias Using 2D and 3D Ultrasounds

    PubMed Central

    López Ramón y Cajal, Carlos; Marín Ortiz, Elena; Sarmiento Carrera, Nerea

    2016-01-01

    The hypospadias is the most common urogenital anomaly of male neonates but the prenatal diagnosis of this is often missed before birth. We present the prenatal diagnosis of a severe penoscrotal hypospadias using 2D and 3D ultrasounds. 3D sonography allowed us the best evaluation of the genitals and their anatomical relations. This ample detailed study allowed us to show the findings to the parents and the pediatric surgeon and to configure the best information about the prognosis and surgical treatment. PMID:27774326

  19. Registration of Real-Time 3-D Ultrasound to Tomographic Images of the Abdominal Aorta.

    PubMed

    Brekken, Reidar; Iversen, Daniel Høyer; Tangen, Geir Arne; Dahl, Torbjørn

    2016-08-01

    The purpose of this study was to develop an image-based method for registration of real-time 3-D ultrasound to computed tomography (CT) of the abdominal aorta, targeting future use in ultrasound-guided endovascular intervention. We proposed a method in which a surface model of the aortic wall was segmented from CT, and the approximate initial location of this model relative to the ultrasound volume was manually indicated. The model was iteratively transformed to automatically optimize correspondence to the ultrasound data. Feasibility was studied using data from a silicon phantom and in vivo data from a volunteer with previously acquired CT. Through visual evaluation, the ultrasound and CT data were seen to correspond well after registration. Both aortic lumen and branching arteries were well aligned. The processing was done offline, and the registration took approximately 0.2 s per ultrasound volume. The results encourage further patient studies to investigate accuracy, robustness and clinical value of the approach. PMID:27156015

  20. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-01-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications. PMID:27660383

  1. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  2. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  3. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  4. Inter-rater reliability in the classification of supraspinatus tendon tears using 3D ultrasound – a question of experience?

    PubMed Central

    Marx, Christian; Micheroli, Raphael

    2016-01-01

    Background Three-dimensional (3D) ultrasound of the shoulder is characterized by a comparable accuracy to two-dimensional (2D) ultrasound. No studies investigating 2D versus 3D inter-rater reliability in the detection of supraspinatus tendon tears taking into account the level of experience of the raters have been carried out so far. Objectives The aim of this study was to determine the inter-rater reliability in the analysis of 3D ultrasound image sets of the supraspinatus tendon between sonographer with different levels of experience. Patients and methods Non-interventional, prospective, observational pilot study of 2309 images of 127 adult patients suffering from unilateral shoulder pain. 3D ultrasound image sets were scored by three raters independently. The intra-and interrater reliabilities were calculated. Results There was an excellent intra-rater reliability of rater A in the overall classification of supraspinatus tendon tears (2D vs 3D κ = 0.892, pairwise reliability 93.81%, 3D scoring round 1 vs 3D scoring round 2 κ = 0.875, pairwise reliability 92.857%). The inter-rater reliability was only moderate compared to rater B on 3D (κ = 0.497, pairwise reliability 70.95%) and fair compared to rater C (κ = 0.238, pairwise reliability 42.38%). Conclusions The reliability of 3D ultrasound of the supraspinatus tendon depends on the level of experience of the sonographer. Experience in 2D ultrasound does not seem to be sufficient for the analysis of 3D ultrasound imaging sets. Therefore, for a 3D ultrasound analysis new diagnostic criteria have to be established and taught even to experienced 2D sonographers to improve reproducibility. PMID:27679728

  5. Inter-rater reliability in the classification of supraspinatus tendon tears using 3D ultrasound – a question of experience?

    PubMed Central

    Marx, Christian; Micheroli, Raphael

    2016-01-01

    Background Three-dimensional (3D) ultrasound of the shoulder is characterized by a comparable accuracy to two-dimensional (2D) ultrasound. No studies investigating 2D versus 3D inter-rater reliability in the detection of supraspinatus tendon tears taking into account the level of experience of the raters have been carried out so far. Objectives The aim of this study was to determine the inter-rater reliability in the analysis of 3D ultrasound image sets of the supraspinatus tendon between sonographer with different levels of experience. Patients and methods Non-interventional, prospective, observational pilot study of 2309 images of 127 adult patients suffering from unilateral shoulder pain. 3D ultrasound image sets were scored by three raters independently. The intra-and interrater reliabilities were calculated. Results There was an excellent intra-rater reliability of rater A in the overall classification of supraspinatus tendon tears (2D vs 3D κ = 0.892, pairwise reliability 93.81%, 3D scoring round 1 vs 3D scoring round 2 κ = 0.875, pairwise reliability 92.857%). The inter-rater reliability was only moderate compared to rater B on 3D (κ = 0.497, pairwise reliability 70.95%) and fair compared to rater C (κ = 0.238, pairwise reliability 42.38%). Conclusions The reliability of 3D ultrasound of the supraspinatus tendon depends on the level of experience of the sonographer. Experience in 2D ultrasound does not seem to be sufficient for the analysis of 3D ultrasound imaging sets. Therefore, for a 3D ultrasound analysis new diagnostic criteria have to be established and taught even to experienced 2D sonographers to improve reproducibility.

  6. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    PubMed

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  7. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  8. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  9. 3D surface imaging for guidance in breast cancer radiotherapy: organs at risk

    NASA Astrophysics Data System (ADS)

    Alderliesten, Tanja; Betgen, Anja; van Vliet-Vroegindeweij, Corine; Remeijer, Peter

    2013-03-01

    Purpose: To evaluate the variability in heart position in deep-inspiration breath-hold (DIBH) radiotherapy for breast cancer when 3D surface imaging would be used for monitoring the depth of the breath hold during treatment. Materials and Methods: Ten patients who received DIBH radiotherapy after breast-conserving surgery (BCS) were included. Retrospectively, heart-based registrations were performed for cone-beam computed tomography (CBCT) to planning CT and breast surface registrations were performed for a 3D surface (two different regions of interest [ROIs]), captured concurrently with CBCT, to planning CT. The resulting setup errors were compared with linear regression analysis and receiver operating characteristic (ROC) analysis was performed to investigate the prediction quality of 3D surface imaging for 3D heart displacement. Further, the residual setup errors (systematic [Σ] and random [σ]) of the heart were estimated relative to the surface registrations. Results: When surface imaging [ROIleft-side;ROIboth-sides] would be used for monitoring, the residual errors of the heart position are in left-right: Σ=[0.360.12], σ=[0.160.14] cranio-caudal: Σ=[0.540.54], σ=[0.280.31] and in anteriorposterior: Σ=[0.180.14], σ=[0.200.19] cm. Correlations between setup errors were: R2 = [0.23;0.73], [0.67;0.65], [0.65;0.73] in left-right, cranio-caudal, and anterior-posterior direction, respectively. ROC analysis resulted in an area under the ROC curve of [0.82;0.78]. Conclusion: The use of ROIboth-sides provided promising results. However, considerable variability in the heart position, particularly in CC direction, is observed when 3D surface imaging would be used for guidance in DIBH radiotherapy after BCS. Planning organ at risk volume margins should be used to take into account the heart-position variability.

  10. Simulation of MRI-Guided Transurethral Conformal 3-D Ultrasound Therapy of the Prostate

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2007-05-01

    The capability of MRI to measure spatial heating patterns during therapy delivery with ultrasound makes adaptive thermal therapy possible. Active feedback provided by MR thermometry enables on-line adjustment of the treatment to compensate for tissue/perfusion changes during heating. The feasibility of performing 3-D conformal thermal therapy of the entire prostate gland with a multi-element transurethral ultrasound heating applicator was considered in this study. The major challenge was using MR temperature feedback to adjust simultaneously the device's rate of rotation and the power and frequency of multiple independent ultrasound transducers, to shape the region of thermal damage to the prostate gland in all spatial dimensions while sparing surrounding tissues from damage. The 3-D Bioheat Transfer Equation was used to model the ultrasound therapy using manually segmented MRI prostate geometries from 20 prostate cancer patients. Average prostate dimensions (±SD) were: length: 37.8±7.2 mm, width: 47.1±5.5 mm, height: 28.9±5.7 mm. Typical treatments of the entire prostate volume take less than 30 min. Results from various treatment strategies were compared by calculating the percentage volume of under- and over-treated tissue and the potential thermal damage incurred by important adjacent anatomical structures using "dose-effect" curves. Visualization tools were developed to investigate patient-specific prostate and periprostatic anatomy, as well as the simulated coagulated volumes in 3-D, enabling evaluation of individual patient outcomes. These simulations also enabled the investigation of the number and size of transducer segments required for accurate treatment delivery. In general, the under-treated fraction can be maintained below 1% of the prostate volume, but the over-treated fraction can range up to 15%, emphasizing the importance of accurate location of sensitive adjacent structures.

  11. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  12. Use of ultrasound guidance to remove entrapped stimulating popliteal catheters

    PubMed Central

    Hulin, James B.; Daniels, Don J.

    2016-01-01

    Peripheral nerve catheters are beneficial for continuous pain relief following surgery or trauma to an extremity. However, spring-loaded peripheral nerve catheters can become uncoiled and entrapped, resulting in difficulty in catheter removal. We present two cases where ultrasound guidance provided significant assistance in the safe removal of entrapped peripheral nerve catheters without neurologic sequelae. One of the catheters was adhered to nearby tissue, and one had become uncoiled and anchored in place by the distal tip. Guidelines for the safe management of entrapped catheters are suggested, including the use of saline injections through the catheter under ultrasound guidance to assist in the evaluation and removal of the catheters. PMID:27034548

  13. Towards real-time 3D US-CT registration on the beating heart for guidance of minimally invasive cardiac interventions

    NASA Astrophysics Data System (ADS)

    Li, Feng; Lang, Pencilla; Rajchl, Martin; Chen, Elvis C. S.; Guiraudon, Gerard; Peters, Terry M.

    2012-02-01

    Compared to conventional open-heart surgeries, minimally invasive cardiac interventions cause less trauma and sideeffects to patients. However, the direct view of surgical targets and tools is usually not available in minimally invasive procedures, which makes image-guided navigation systems essential. The choice of imaging modalities used in the navigation systems must consider the capability of imaging soft tissues, spatial and temporal resolution, compatibility and flexibility in the OR, and financial cost. In this paper, we propose a new means of guidance for minimally invasive cardiac interventions using 3D real-time ultrasound images to show the intra-operative heart motion together with preoperative CT image(s) employed to demonstrate high-quality 3D anatomical context. We also develop a method to register intra-operative ultrasound and pre-operative CT images in close to real-time. The registration method has two stages. In the first, anatomical features are segmented from the first frame of ultrasound images and the CT image(s). A feature based registration is used to align those features. The result of this is used as an initialization in the second stage, in which a mutual information based registration is used to register every ultrasound frame to the CT image(s). A GPU based implementation is used to accelerate the registration.

  14. Image guidance of intracardiac ultrasound with fusion of pre-operative images.

    PubMed

    Sun, Yiyong; Kadoury, Samuel; Li, Yong; John, Matthias; Resnick, Jeff; Plambeck, Gerry; Liao, Rui; Sauer, Frank; Xu, Chenyang

    2007-01-01

    This paper presents a method for registering 3D intracardiac echo (ICE) to pre-operative images. A magnetic tracking sensor is integrated on the ICE catheter tip to provide the 3D location and orientation. The user guides the catheter into the patient heart to acquire a series of ultrasound images covering the anatomy of the heart chambers. An automatic intensity-based registration algorithm is applied to align these ultrasound images with pre-operative images. One of the important applications is to help electrophysiology doctors to treat complicated atrial fibrillation cases. After registration, the doctor can see the position and orientation of the ICE catheter and other tracked catheters inside the heart anatomy in real time. The image guidance provided by this technique may increase the ablation accuracy and reduce the amount of time for the electrophysiology procedures. We show successful image registration results from animal experiments.

  15. Preliminary results in large bone segmentation from 3D freehand ultrasound

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando

    2013-11-01

    Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.

  16. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time. PMID:26954841

  17. METHODS FOR USING 3-D ULTRASOUND SPECKLE TRACKING IN BIAXIAL MECHANICAL TESTING OF BIOLOGICAL TISSUE SAMPLES

    PubMed Central

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2014-01-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation. PMID:25616585

  18. A PET/CT Directed, 3D Ultrasound-Guided Biopsy System for Prostate Cancer

    PubMed Central

    Master, Viraj; Nieh, Peter; Akbari, Hamed; Yang, Xiaofeng; Fenster, Aaron; Schuster, David

    2015-01-01

    Prostate cancer affects 1 in 6 men in the USA. Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this “blind” biopsy approach can miss at least 20% of prostate cancers. In this study, we are developing a PET/CT directed, 3D ultrasound image-guided biopsy system for improved detection of prostate cancer. In order to plan biopsy in three dimensions, we developed an automatic segmentation method based wavelet transform for 3D TRUS images of the prostate. The segmentation was tested in five patients with a DICE overlap ratio of more than 91%. In order to incorporate PET/CT images into ultrasound-guided biopsy, we developed a nonrigid registration algorithm for TRUS and PET/CT images. The registration method has been tested in a prostate phantom with a target registration error (TRE) of less than 0.4 mm. The segmentation and registration methods are two key components of the multimodality molecular image-guided biopsy system. PMID:26866061

  19. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  20. A compact robotic apparatus and method for 3-D ultrasound guided prostate therapy

    NASA Astrophysics Data System (ADS)

    Bax, Jeffrey; Gardi, Lori; Montreuil, Jacques; Smith, David; Fenster, Aaron

    2007-03-01

    Ultrasound imaging has revolutionized the treatment of prostate cancer by producing increasingly accurate models of the prostate and influencing sophisticated targeting procedures for the insertion of radioactive seeds during brachytherapy. Three-dimensional (3D) ultrasound imaging, which allows 3D models of the prostate to be constructed from a series of two-dimensional images, helps to accurately target and implant seeds into the prostate. We have developed a compact robotic apparatus, as well as an effective method for guiding and controlling the insertion of transperineal needles into the prostate. This device has been designed to accurately guide a needle in 3D space so that the needle can be inserted into the prostate at an angle that does not interfere with the pubic arch. The physician can adjust manually or automatically the position of the apparatus in order to place several radioactive seeds into the prostate at designated target locations. Because many physicians are wary of conducting robotic surgical procedures, the apparatus has been developed so that the physician can position the needle for manual insertion and apply a method for manually releasing the needle without damaging the apparatus or endangering the patient.

  1. Needle Trajectory and Tip Localization in Real-Time 3-D Ultrasound Using a Moving Stylus.

    PubMed

    Beigi, Parmida; Rohling, Robert; Salcudean, Tim; Lessoway, Victoria A; Ng, Gary C

    2015-07-01

    Described here is a novel approach to needle localization in 3-D ultrasound based on automatic detection of small changes in appearance on movement of the needle stylus. By stylus oscillation, including its full insertion into the cannula to the tip, the image processing techniques can localize the needle trajectory and the tip in the 3-D ultrasound volume. The 3-D needle localization task is reduced to two 2-D localizations using orthogonal projections. To evaluate our method, we tested it on three different ex vivo tissue types, and the preliminary results indicated that the method accuracy lies within clinical acceptance, with average error ranges of 0.9°-1.4° in needle trajectory and 0.8-1.1 mm in needle tip. Results also indicate that method performance is independent of the echogenicity of the tissue. This technique is a safe way of producing ultrasonic intensity changes and appears to introduce negligible risk to the patient, as the outer cannula remains fixed.

  2. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Smith, Stephen W

    2013-03-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.

  3. Pitch–Catch Phase Aberration Correction of Multiple Isoplanatic Patches for 3-D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2013-01-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° × 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke. PMID:23475914

  4. 3D visualization of strain in abdominal aortic aneurysms based on navigated ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brekken, Reidar; Kaspersen, Jon Harald; Tangen, Geir Arne; Dahl, Torbjørn; Hernes, Toril A. N.; Myhre, Hans Olav

    2007-03-01

    The criterion for recommending treatment of an abdominal aortic aneurysm is that the diameter exceeds 50-55 mm or shows a rapid increase. Our hypothesis is that a more accurate prediction of aneurysm rupture is obtained by estimating arterial wall strain from patient specific measurements. Measuring strain in specific parts of the aneurysm reveals differences in load or tissue properties. We have previously presented a method for in vivo estimation of circumferential strain by ultrasound. In the present work, a position sensor attached to the ultrasound probe was used for combining several 2D ultrasound sectors into a 3D model. The ultrasound was registered to a computed-tomography scan (CT), and the strain values were mapped onto a model segmented from these CT data. This gave an intuitive coupling between anatomy and strain, which may benefit both data acquisition and the interpretation of strain. In addition to potentially provide information relevant for assessing the rupture risk of the aneurysm in itself, this model could be used for validating simulations of fluid-structure interactions. Further, the measurements could be integrated with the simulations in order to increase the amount of patient specific information, thus producing a more reliable and accurate model of the biomechanics of the individual aneurysm. This approach makes it possible to extract several parameters potentially relevant for predicting rupture risk, and may therefore extend the basis for clinical decision making.

  5. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  6. SURGE: Smart Ultrasound Remote Guidance Experiment

    NASA Technical Reports Server (NTRS)

    Peterson, Sean

    2009-01-01

    Exploration-class missions lead to longer communication delays with mission control. May not always have communication capability to stream real-time ultrasound images. SURGE explores use of a "just-in-time" learning tool, called OPEL = On-Board Proficiency Enhancer Light as an aid to a hypothetical crew medical officer working autonomously.

  7. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  8. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes. PMID:27067418

  9. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  10. 3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.

    2011-09-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good

  11. Visualization of a newborn's hip joint using 3D ultrasound and automatic image processing

    NASA Astrophysics Data System (ADS)

    Overhoff, Heinrich M.; Lazovic, Djordje; von Jan, Ute

    1999-05-01

    Graf's method is a successful procedure for the diagnostic screening of developmental dysplasia of the hip. In a defined 2-D ultrasound (US) scan, which virtually cuts the hip joint, landmarks are interactively identified to derive congruence indicators. As the indicators do not reflect the spatial joint structure, and the femoral head is not clearly visible in the US scan, here 3-D US is used to gain insight to the hip joint in its spatial form. Hip joints of newborns were free-hand scanned using a conventional ultrasound transducer and a localizer system fixed on the scanhead. To overcome examiner- dependent findings the landmarks were detected by automatic segmentation of the image volume. The landmark image volumes and an automatically determined virtual sphere approximating the femoral head were visualized color-coded on a computer screen. The visualization was found to be intuitive and to simplify the diagnostic substantially. By the visualization of the 3-D relations between acetabulum and femoral head the reliability of diagnostics is improved by finding the entire joint geometry.

  12. Accuracy evaluation of a 3D ultrasound-guided biopsy system

    NASA Astrophysics Data System (ADS)

    Wooten, Walter J.; Nye, Jonathan A.; Schuster, David M.; Nieh, Peter T.; Master, Viraj A.; Votaw, John R.; Fei, Baowei

    2013-03-01

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  13. Surgical repair of bilateral levator ani muscles with ultrasound guidance.

    PubMed

    Rostaminia, Ghazaleh; Shobeiri, S Abbas; Quiroz, Lieschen H

    2013-07-01

    Separation of the levator ani muscles from pubic bone is a common major levator trauma that may occur in vaginal delivery and is associated with pelvic floor dysfunctions. We describe a novel ultrasound-guided technique to repair these muscles. A 33-year-old woman presented with a history of difficult vaginal delivery and complaint of numbness and weakness of the vagina. In evaluation, bilateral levator defects were diagnosed by physical examination, three-dimensional endovaginal ultrasound, and magnetic resonance imaging. With ultrasound guidance the detached ends of muscles were tagged and sutured to their insertion points at the pubic bone. The patient's normal anatomy was restored with the return to normal pelvic floor tone. A follow-up ultrasound showed restored levator anatomy at 3 months.

  14. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  15. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  16. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for

  17. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  18. Thermal analysis of the surrounding anatomy during 3-D MRI-guided transurethral ultrasound prostate therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2010-03-01

    Previous numerical simulations have shown that MRI-guided transurethral ultrasound therapy can generate highly accurate volumes of thermal coagulation conforming to 3-D human prostate geometries. The goal of this work is to simulate, quantify and evaluate the thermal impact of these treatments on the rectum, pelvic bone, neurovascular bundles (NVB) and urinary sphincters. This study used twenty 3-D anatomical models of prostate cancer patients and detailed bio-acoustic simulations incorporating an active feedback algorithm which controlled a rotating, planar ultrasound transducer (17-4×3 mm elements, 4.7/9.7 MHz, 10 Wac/cm2). Heating of the adjacent surrounding anatomy was evaluated using thermal tolerances reported in the literature. Heating of the rectum poses the most important safety concern and is influenced largely by the water temperature flowing through an endorectal cooling device; temperatures of 7-37° C are required to limit potential damage to less than 10 mm3 on the outer 1 mm layer of rectum. Significant heating of the pelvic bone was predicted in 30% of the patient models with an ultrasound frequency of 4.7 MHz; setting the frequency to 9.7 MHz when the bone is less than 10 mm away from the prostate reduced heating in all cases below the threshold for irreversible damage. Heating of the NVB was significant in 75% of the patient models in the absence of treatment planning; this proportion was reduced to 5% by using treatment margins of up to 4 mm. To avoid damaging the urinary sphincters, margins from the transducer of 2-4 mm should be used, depending on the transurethral cooling temperature. Simulations show that MRI-guided transurethral therapy can treat the entire prostate accurately. Strategies have been developed which, along with careful treatment planning, can be used to avoid causing thermal injury to the rectum, pelvic bone, NVB and urinary sphincters.

  19. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  20. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan

    2016-04-01

    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  1. Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.

    PubMed

    Passmore, Elyse; Sangeux, Morgan

    2016-03-01

    Hip rotation from gait analysis informs clinical decisions regarding correction of femoral torsional deformities. However, it is among the least repeatable due to discrepancies in determining the medial-lateral axis of the femur. Conventional or functional calibration methods may be used to define the axis but there is no benchmark to evaluate these methods. Freehand 3D ultrasound, the coupling of ultrasound with 3D motion capture, may provide such a benchmark. We measured the accuracy in vitro and repeatability in vivo of determining the femur condylar axis from freehand 3D ultrasound. The condylar axis provided the reference medial-lateral axis of the femur and was used to evaluate one conventional method and three functional calibration methods, applied to three calibration movements. Ten healthy subjects (20 limbs) underwent 3D gait analysis and freehand 3D ultrasound. The functional calibration methods were a transformation technique, a geometrical method and a method that minimises variance of knee varus-valgus kinematics (DynaKAD). The conventional method used markers over the femoral epicondyles. The condylar axis determined by 3D ultrasound showed good accuracy in vitro, 1.6° (SD: 0.3°) and good repeatability in vivo, 0.2° (RSMD: 2.3°). The DynaKAD method applied to the walking calibration movement determined the medial-lateral axis closest to the ultrasound reference. The average angular difference in the transverse plane was 3.1° (SD: 6.1°). Freehand 3D ultrasound offers an accurate, non-invasive and relatively fast method to locate the medial-lateral axis of the femur for gait analysis.

  2. MRI guidance for focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Hynynen, Kullervo

    2005-09-01

    Magnetic resonance imaging (MRI) based monitoring has been shown in recent years to enhance the effectiveness of minimally or noninvasive thermal therapy techniques, such as focused ultrasound surgery. MR imaging's unique soft tissue contrast and ability to image in three dimensions and in any orientation make it extremely useful for treatment planning and for imaging the tissue response to the therapy. The temperature sensitivity of several intrinsic parameters enables MRI to visualize and quantify the progress an ongoing thermal treatment. The most useful temperature-sensitive parameter appears to be the proton resonant frequency, which allows for precise and accurate temperature measurements in water-based tissues. By acquiring a time series of quantitative temperature images, it is possible to monitor the accumulated thermal dose delivered to the target tissue and accurately predict the areas that are thermally ablated, while at the same time ensuring nearby critical structures are not heated. The method is currently used in an FDA approved focused ultrasound device for the treatment of uterine fibroids. Our research and clinical experience with these techniques will be reviewed.

  3. Intracranial Catheter for Integrated 3D Ultrasound Imaging & Hyperthermia: Feasibility Study

    NASA Astrophysics Data System (ADS)

    Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin Frinkley; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Dixon-Tulloch, Ellen; Shih, Timothy; Hsu, Stephen J.; Smith, Stephen W.

    2009-04-01

    In this study, we investigated the feasibility of an intracranial catheter transducer capable of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. We designed and constructed a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements, on a 0.2 mm pitch, with a total aperture size of 8.4 mm×2.3 mm. This array achieved a 3.5° C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.

  4. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  5. The Effect of Ultrasound Stimulation on the Cytoskeletal Organization of Chondrocytes Seeded In 3D Matrices

    PubMed Central

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in 3D scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (~15kPa, 51-secs, 4-applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a cytosolic punctuated distribution, tubulin presented a quasi parallel organization of microtubules whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of ROCK inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly up-regulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctuated actin upon US stimulation was accompanied by the up-regulation of the RhoA/ROCK pathway. PMID:22987069

  6. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  7. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note.

    PubMed

    Abe, Yuichiro; Sato, Shigenobu; Kato, Koji; Hyakumachi, Takahiko; Yanagibashi, Yasushi; Ito, Manabu; Abumi, Kuniyoshi

    2013-10-01

    Augmented reality (AR) is an imaging technology by which virtual objects are overlaid onto images of real objects captured in real time by a tracking camera. This study aimed to introduce a novel AR guidance system called virtual protractor with augmented reality (VIPAR) to visualize a needle trajectory in 3D space during percutaneous vertebroplasty (PVP). The AR system used for this study comprised a head-mount display (HMD) with a tracking camera and a marker sheet. An augmented scene was created by overlaying the preoperatively generated needle trajectory path onto a marker detected on the patient using AR software, thereby providing the surgeon with augmented views in real time through the HMD. The accuracy of the system was evaluated by using a computer-generated simulation model in a spine phantom and also evaluated clinically in 5 patients. In the 40 spine phantom trials, the error of the insertion angle (EIA), defined as the difference between the attempted angle and the insertion angle, was evaluated using 3D CT scanning. Computed tomography analysis of the 40 spine phantom trials showed that the EIA in the axial plane significantly improved when VIPAR was used compared with when it was not used (0.96° ± 0.61° vs 4.34° ± 2.36°, respectively). The same held true for EIA in the sagittal plane (0.61° ± 0.70° vs 2.55° ± 1.93°, respectively). In the clinical evaluation of the AR system, 5 patients with osteoporotic vertebral fractures underwent VIPAR-guided PVP from October 2011 to May 2012. The postoperative EIA was evaluated using CT. The clinical results of the 5 patients showed that the EIA in all 10 needle insertions was 2.09° ± 1.3° in the axial plane and 1.98° ± 1.8° in the sagittal plane. There was no pedicle breach or leakage of polymethylmethacrylate. VIPAR was successfully used to assist in needle insertion during PVP by providing the surgeon with an ideal insertion point and needle trajectory through the HMD. The findings indicate

  8. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily. PMID:19163216

  9. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  10. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard

    2015-03-01

    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  11. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging. PMID:26412926

  12. 3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to acquire 3D ultrasound volumes of the heart of small animals in vivo for cardiac fiber wrapping is still a challenging problem. In this study, we provide an approach to acquire 3D ultrasound volumes of the rat hearts in vivo. The comparison between both in vivo and ex vivo geometries indicated 90.1% Dice similarity. In this preliminary study, the evaluations of the cardiac fiber orientation wrapping errors were 24.7° for the acute angle error and were 22.4° for the inclination angle error. This 3D ultrasound imaging and fiber orientation estimation technique have potential applications in cardiac imaging.

  13. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  14. Automated 3D ultrasound elastography of the breast: a phantom validation study.

    PubMed

    Hendriks, Gijs A G M; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H G; de Korte, Chris L

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s(-1)) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D

  15. 3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning

    PubMed Central

    Yang, Xiaofeng; Fei, Baowei

    2012-01-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 ± 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images. PMID:24027622

  16. GPCA vs. PCA in recognition and 3-D localization of ultrasound reflectors.

    PubMed

    Luna, Carlos A; Jiménez, José A; Pizarro, Daniel; Losada, Cristina; Rodriguez, José M

    2010-01-01

    In this paper, a new method of classification and localization of reflectors, using the time-of-flight (TOF) data obtained from ultrasonic transducers, is presented. The method of classification and localization is based on Generalized Principal Component Analysis (GPCA) applied to the TOF values obtained from a sensor that contains four ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of TOF, it does not take into account the spatial locality of receivers. The GPCA works with two-dimensional representations of TOF, taking into account information on the spatial position of the receivers. This report includes a detailed description of the method of classification and localization and the results of achieved tests with three types of reflectors in 3-D environments: planes, edges, and corners. The results in terms of processing time, classification and localization were very satisfactory for the reflectors located in the range of 50-350 cm.

  17. Constitutive Modeling of Porcine Liver in Indentation Using 3D Ultrasound Imaging

    PubMed Central

    Jordan, P.; Socrate, S.; Zickler, T.E.; Howe, R.D.

    2009-01-01

    In this work we present an inverse finite-element modeling framework for constitutive modeling and parameter estimation of soft tissues using full-field volumetric deformation data obtained from 3D ultrasound. The finite-element model is coupled to full-field visual measurements by regularization springs attached at nodal locations. The free ends of the springs are displaced according to the locally estimated tissue motion and the normalized potential energy stored in all springs serves as a measure of model-experiment agreement for material parameter optimization. We demonstrate good accuracy of estimated parameters and consistent convergence properties on synthetically generated data. We present constitutive model selection and parameter estimation for perfused porcine liver in indentation and demonstrate that a quasilinear viscoelastic model with shear modulus relaxation offers good model-experiment agreement in terms of indenter displacement (0.19 mm RMS error) and tissue displacement field (0.97 mm RMS error). PMID:19627823

  18. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  19. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  20. Catheter-Based Ultrasound for 3D Control of Thermal Therapy

    NASA Astrophysics Data System (ADS)

    Diederich, Chris; Chen, Xin; Wootton, Jeffery; Juang, Titania; Nau, Will H.; Kinsey, Adam; Hsu, I.-Chow; Rieke, Viola; Pauly, Kim Butts; Sommer, Graham; Bouley, Donna

    2009-04-01

    Catheter-based ultrasound applicators have been investigated for delivering hyperthermia and thermal ablation for the treatment of cancer and benign diseases. Technology includes an intrauterine applicator integrated with an HDR ring applicator, interstitial applicators for hyperthermia delivery during brachytherapy, interstitial applicators for tumor ablation, and transurethral devices for conformal prostate ablation. Arrays of multiple sectored tubular transducers have been fabricated for interstitial and intrauterine hyperthermia applicators. High-power interstitial versions have been evaluated for percutaneous implantation with directional or dynamic angular control of thermal ablation. Transurethral applicators include curvilinear transducers with rotational sweeping of narrow heating patterns, and multi-sectored tubular devices capable of dynamic angular control without applicator movement. Performance was evaluated in phantom, excised tissue, in vivo experiments in canine prostate under MR temperature monitoring, clinical hyperthermia, and 3D-biothermal simulations with patient anatomy. Interstitial and intrauterine devices can tailor hyperthermia to large treatment volumes, with multisectored control useful to limit exposure to rectum and bladder. Curvilinear transurethral devices with sequential rotation produce target conforming coagulation zones that can cover either the whole gland or defined focal regions. Multi-sectored transurethral applicators can dynamically control the angular heating profile and target large regions of the prostate without applicator manipulation. High-power interstitial implants with directional devices can be used to effectively ablate defined target regions while avoiding sensitive tissues. MR temperature monitoring can effectively define the extent of thermal damage and provided a means for real-time control of the applicators. In summary, these catheter-based ultrasound devices allow for dynamic control of heating profiles

  1. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used.

  2. Guidelines on the use of ultrasound guidance for vascular access.

    PubMed

    Bouaziz, Hervé; Zetlaoui, Paul J; Pierre, Sébastien; Desruennes, Eric; Fritsch, Nicolas; Jochum, Denis; Lapostolle, Frédéric; Pirotte, Thierry; Villiers, Stéphane

    2015-02-01

    Insertion of vascular access is a common procedure with potential for iatrogenic events, some of which can be serious. The spread of ultrasound scanners in operating rooms, intensive care units and emergency departments has made ultrasound-guided catheterisation possible. The first guidelines were published a decade ago but are not always followed in France. The French Society of Anaesthesia and Intensive Care has decided to adopt a position on this issue through its Guidelines Committee in order to propose a limited number of simple guidelines. The method used was the GRADE(®) method using the most recently published meta-analyses as the source of references. The level of evidence found ranged from low to high and all the positive aspects associated with ultrasound guidance, i.e. fewer traumatic complications at puncture, probably or definitely outweigh the potential adverse consequences regardless of whether an adult or child is involved and regardless of the site of insertion. PMID:25829319

  3. Active ultrasound pattern injection system (AUSPIS) for interventional tool guidance.

    PubMed

    Guo, Xiaoyu; Kang, Hyun-Jae; Etienne-Cummings, Ralph; Boctor, Emad M

    2014-01-01

    Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  4. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study.

    PubMed

    Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W

    2000-01-01

    We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284

  5. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    PubMed Central

    Bleve, Mariella; Capra, Priscilla; Pavanetto, Franca; Perugini, Paola

    2012-01-01

    Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or t0), after 1 month (t1), and at the end of the study (t2). Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment. PMID:22203840

  6. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  7. Tracking the interframe deformation of structures in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Syn, M.; Gosling, J. P.; Prager, Richard W.; Berman, Laurence; Crowley, J.

    1994-09-01

    Three dimensional ultrasound imaging with a freehand probe allows a flexible approach to medical visualization and diagnosis. Given the imperfect accuracy of proprioceptive devices used to log the position and tilt of the probe, it is important to utilize the position constraints provided by image evidence. This is also important if we wish to consider the visualization of structures which move significantly during acquisition, such as a heart of fetus. We present here an initial approach to more robust segmentation and shape recovery in a particularly noisy modality. We consider 2D segmentation based on edge evidence, using first an active contour, then finding an optimal segmentation using simulated annealing. Correspondence between contours in adjacent frames can only be solved in general cases by use of a 3D prior model. Dynamic physics-based mesh models as used by Pentland [20] and Nastar [17], allow for shape modelling, then over-constrained 3D shape recovery can be performed using the intrinsic vibration modes of the model.

  8. Automatic 3D ultrasound calibration for image guided therapy using intramodality image registration

    NASA Astrophysics Data System (ADS)

    Schlosser, Jeffrey; Kirmizibayrak, Can; Shamdasani, Vijay; Metz, Steve; Hristov, Dimitre

    2013-11-01

    Many real time ultrasound (US) guided therapies can benefit from management of motion-induced anatomical changes with respect to a previously acquired computerized anatomy model. Spatial calibration is a prerequisite to transforming US image information to the reference frame of the anatomy model. We present a new method for calibrating 3D US volumes using intramodality image registration, derived from the ‘hand-eye’ calibration technique. The method is fully automated by implementing data rejection based on sensor displacements, automatic registration over overlapping image regions, and a self-consistency error metric evaluated continuously during calibration. We also present a novel method for validating US calibrations based on measurement of physical phantom displacements within US images. Both calibration and validation can be performed on arbitrary phantoms. Results indicate that normalized mutual information and localized cross correlation produce the most accurate 3D US registrations for calibration. Volumetric image alignment is more accurate and reproducible than point selection for validating the calibrations, yielding <1.5 mm root mean square error, a significant improvement relative to previously reported hand-eye US calibration results. Comparison of two different phantoms for calibration and for validation revealed significant differences for validation (p = 0.003) but not for calibration (p = 0.795).

  9. Automated Computed Tomography-Ultrasound Cross-Modality 3-D Contouring Algorithm for Prostate.

    PubMed

    Ermacora, Denis; Pesente, Silvia; Pascoli, Francesco; Raducci, Sebastian; Mauro, Rudy; Rumeileh, Imad Abu; Verhaegen, Frank; Fontanarosa, Davide

    2015-10-01

    A novel fully automated algorithm is introduced for 3-D cross-modality image segmentation of the prostate, based on the simultaneous use of co-registered computed tomography (CT) and 3-D ultrasound (US) images. By use of a Gabor feature detector, the algorithm can outline in three dimensions and in cross-modality the prostate, and it can be trained and optimized on specific patient populations. We applied it to 16 prostate cancer patients and evaluated the conformity between the automatically segmented prostate contours and the contours manually outlined by an experienced physician, on the CT-US fusion, using the mean distance to conformity (MDC) index. When only the CT scans were used, the average MDC value was 4.5 ± 1.7 mm (maximum value = 9.0 mm). When the US scans also were considered, the mean ± standard deviation was reduced to 3.9 ± 0.7 mm (maximum value = 5.5 mm). The cross-modality approach acted on all the largest distance values, reducing them to acceptable discrepancies.

  10. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  11. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  12. 2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques

    PubMed Central

    Daher, Nadim M.; Yen, Jesse T.

    2010-01-01

    A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446

  13. Correcting for Visuo-Haptic Biases in 3D Haptic Guidance

    PubMed Central

    Kuling, Irene A.; Brenner, Eli; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2016-01-01

    Visuo-haptic biases are observed when bringing your unseen hand to a visual target. The biases are different between, but consistent within participants. We investigated the usefulness of adjusting haptic guidance to these user-specific biases in aligning haptic and visual perception. By adjusting haptic guidance according to the biases, we aimed to reduce the conflict between the modalities. We first measured the biases using an adaptive procedure. Next, we measured performance in a pointing task using three conditions: 1) visual images that were adjusted to user-specific biases, without haptic guidance, 2) veridical visual images combined with haptic guidance, and 3) shifted visual images combined with haptic guidance. Adding haptic guidance increased precision. Combining haptic guidance with user-specific visual information yielded the highest accuracy and the lowest level of conflict with the guidance at the end point. These results show the potential of correcting for user-specific perceptual biases when designing haptic guidance. PMID:27438009

  14. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular

  15. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye. PMID:26563101

  16. Transvaginal 3-d power Doppler ultrasound evaluation of the fetal brain at 10-13 weeks' gestation.

    PubMed

    Hata, Toshiyuki; Tanaka, Hirokazu; Noguchi, Junko

    2012-03-01

    The objective of this study was to measure the fetal brain volume (FBV) and vascularization and blood flow using transvaginal 3-D power Doppler (3DPD) ultrasound late in the first trimester of pregnancy. 3DPD ultrasound examinations with the VOCAL imaging analysis program were performed on 36 normal fetuses from 10-13 weeks' gestation. FBV and 3DPD indices related to the fetal brain vascularization (vascularization index [VI], flow index [FI] and vascularization flow index [VFI]) were calculated in each fetus. Intra- and interclass correlation coefficients and intra- and interobserver agreements of measurements were assessed. FBV was curvilinearly correlated well with the gestational age (R2 = 0.861, p < 0.0001). All 3-D power Doppler indices (VI, FI and VFI) showed no change at 10-13 weeks' gestation. FBV and all 3-D power Doppler indices (VI, FI and VFI) showed a correlation > 0.82, with good intra- and interobserver agreement. Our findings suggest that 3-D ultrasound is a superior means of evaluating the FBV in utero, and that 3-D power Doppler ultrasound histogram analysis may provide new information on the assessment of fetal brain perfusion.

  17. Estimation of 3D cardiac deformation using spatio-temporal elastic registration of non-scanconverted ultrasound data

    NASA Astrophysics Data System (ADS)

    Elen, An; Loeckx, Dirk; Choi, Hon Fai; Gao, Hang; Claus, Piet; Maes, Frederik; Suetens, Paul; D'hooge, Jan

    2008-03-01

    Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Spatio-temporal elastic registration of 3D cardiac ultrasound data can however be used to estimate the 3D motion and full 3D strain tensor. In this work, the spatio-temporal elastic registration method was validated for both non-scanconverted and scanconverted images. This was done using simulated 3D pyramidal ultrasound data sets based on a thick-walled deforming ellipsoid and an adapted convolution model. A B-spline based frame-to-frame elastic registration method was applied to both the scanconverted and non-scanconverded data sets and the accuracy of the resulting deformation fields was quantified. The mean accuracy of the estimated displacement was very similar for the scanconverted and non-scanconverted data sets and thus, it was shown that 3D elastic registration to estimate the cardiac deformation from ultrasound images can be performed on non-scanconverted images, but that avoiding of the scanconversion step does not significantly improve the results of the displacement estimation.

  18. In vitro in-stent restenoses evaluated by 3D ultrasound.

    PubMed

    Lécart, Myriam; Cardinal, Marie-Hélène Roy; Qin, Zhao; Soulez, Gilles; Cloutier, Guy

    2009-02-01

    The purpose of this study was to quantify in-stent restenoses with 3D B mode and power Doppler ultrasound (U.S.) imaging. In-stent restenoses were mimicked with vascular phantoms in which a nonferromagnetic prototype stent (Boston Scientific) and a ferromagnetic clinical stainless steel stent (Palmaz P295) were embedded. Each phantom had an 80% in-stent stenosis and a 75% stenosis located outside the stent. These phantoms were compared to a reference phantom reproducing both stenoses without stent. Data sets of 2D cross-sectional U.S. images were acquired in freehand scanning using a magnetic sensor attached to the U.S. probe and in mechanical linear scanning with the probe attached to a step motor device. Each 2D image was automatically segmented before 3D reconstruction of the vessel. Results indicate that the reference phantom (without stent) was accurately assessed with errors below 1.8% for the 75% stenosis and 3.2% for the 80% stenosis in both B mode and power Doppler for the two scanning methods. The 80% in-stent stenoses in Boston Scientific and Palmaz stents were, respectively, evaluated at 73.8 (+/-3.2)% and 75.8 (+/- 3)% in B mode and at 82 (+/- 2.5)% and 86.2 (+/- 6.4)% in power Doppler when freehand scans were used. For comparison, when linear scans were selected, in-stent stenoses in the Boston Scientific or Palmaz stent were, respectively, evaluated at 77.4 (+/- 2.0)% and 73.8 (+/- 2.5)% in B mode and at 87.0 (+/- 1.3)% and 85.6 (+/- 5.8)% in power Doppler. To conclude, 3D freehand U.S. is a valuable method to quantify in-stent restenoses, particularly in B mode. It is thus hoped that, in the clinical setting, noninvasive 3D U.S. may provide sufficient precision to grade in-stent restenoses. PMID:19291990

  19. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    SciTech Connect

    Presles, Benoît Rit, Simon; Sarrut, David; Fargier-Voiron, Marie; Liebgott, Hervé; Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal; Lynch, Rod

    2014-12-15

    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  20. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance.

    PubMed

    Western, Craig; Hristov, Dimitre; Schlosser, Jeffrey

    2015-06-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.

  1. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  2. Anechoic Sphere Phantoms for Estimating 3-D Resolution of Very High Frequency Ultrasound Scanners

    PubMed Central

    Madsen, Ernest L.; Frank, Gary R.; McCormick, Matthew M.; Deaner, Meagan E.; Stiles, Timothy A.

    2013-01-01

    Two phantoms have been constructed for assessing the performance of high frequency ultrasound imagers. They also allow for periodic quality assurance tests. The phantoms contain eight blocks of tissue-mimicking material where each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the backscatter coefficient of the background material in which the spheres are suspended. The mean scatterer diameter for one phantom is larger than that for the other phantom resulting in a lesser increase in backscatter coefficient for the second phantom; however, the backscatter curves cross at about 35 MHz. Since spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high frequency scanners are compared. One employs single-element (fixed focus) transducers, and the other employs variable focus linear arrays. The nominal frequency for the single element transducers were 25 and 55 MHz and for the linear array transducers were 20, 30 and 40 MHz. The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. Note that these phantoms could also be useful for training technicians in using higher frequency scanners. PMID:20889416

  3. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    PubMed

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs.

  4. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  5. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  6. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  7. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  8. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  9. Dynamic 2D ultrasound and 3D CT image registration of the beating heart.

    PubMed

    Huang, Xishi; Moore, John; Guiraudon, Gerard; Jones, Douglas L; Bainbridge, Daniel; Ren, Jing; Peters, Terry M

    2009-08-01

    Two-dimensional ultrasound (US) is widely used in minimally invasive cardiac procedures due to its convenience of use and noninvasive nature. However, the low quality of US images often limits their utility as a means for guiding procedures, since it is often difficult to relate the images to their anatomical context. To improve the interpretability of the US images while maintaining US as a flexible anatomical and functional real-time imaging modality, we describe a multimodality image navigation system that integrates 2D US images with their 3D context by registering them to high quality preoperative models based on magnetic resonance imaging (MRI) or computed tomography (CT) images. The mapping from such a model to the patient is completed using spatial and temporal registrations. Spatial registration is performed by a two-step rapid registration method that first approximately aligns the two images as a starting point to an automatic registration procedure. Temporal alignment is performed with the aid of electrocardiograph (ECG) signals and a latency compensation method. Registration accuracy is measured by calculating the TRE. Results show that the error between the US and preoperative images of a beating heart phantom is 1.7 +/-0.4 mm, with a similar performance being observed in in vivo animal experiments.

  10. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  11. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  12. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  13. Quantitative Analysis of Vascular Heterogeneity in Breast Lesions Using Contrast-Enhanced 3-D Harmonic and Subharmonic Ultrasound Imaging

    PubMed Central

    Sridharan, Anush; Eisenbrey, John R.; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F.; Wallace, Kirk; Chalek, Carl L.; Thomenius, Kai E.; Forsberg, Flemming

    2015-01-01

    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions. PMID:25935933

  14. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  15. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health. PMID:26831342

  16. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  17. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study.

    PubMed

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M

    2010-11-01

    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (< 50 μm) three-dimensional (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in < 30 s. Major anatomical landmarks on the images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  18. New fabrication techniques for ring-array transducers for real-time 3D intravascular ultrasound.

    PubMed

    Light, Edward D; Lieu, Victor; Smith, Stephen W

    2009-10-01

    We have previously described miniature 2D array transducers integrated into a Cook Medical, Inc. vena cava filter deployment device. While functional, the fabrication technique was very labor intensive and did not lend itself well to efficient fabrication of large numbers of devices. We developed two new fabrication methods that we believe can be used to efficiently manufacture these types of devices in greater than prototype numbers. One transducer consisted of 55 elements operating near 5 MHz. The interelement spacing is 0.20 mm. It was constructed on a flat piece of copper-clad polyimide and then wrapped around an 11 French catheter of a Cook Medical, Inc. inferior vena cava (IVC) filter deployment device. We used a braided wiring technology from Tyco Electronics Corp. to connect the elements to our real-time 3D ultrasound scanner. Typical measured transducer element bandwidth was 20% centered at 4.7 MHz and the 50 Omega round trip insertion loss was --82 dB. The mean of the nearest neighbor cross talk was -37.0 dB. The second method consisted of a 46-cm long single layer flex circuit from MicroConnex that terminates in an interconnect that plugs directly into our system cable. This transducer had 70 elements at 0.157 mm interelement spacing operating at 4.8 MHz. Typical measured transducer element bandwidth was 29% and the 50 Omega round trip insertion loss was -83 dB. The mean of the nearest neighbor cross talk was -33.0 dB. PMID:20458877

  19. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers

    SciTech Connect

    Meer, Skadi van der; Bloemen-van Gurp, Esther; Hermans, Jolanda; Voncken, Robert; Heuvelmans, Denys; Gubbels, Carol; Fontanarosa, Davide; Visser, Peter; Lutgens, Ludy; Gils, Francis van; Verhaegen, Frank

    2013-07-15

    Purpose: A quantitative 3D intramodality ultrasound (US) imaging system was verified for daily in-room prostate localization, and compared to prostate localization based on implanted fiducial markers (FMs).Methods: Thirteen prostate patients underwent multiple US scans during treatment. A total of 376 US-scans and 817 matches were used to determine the intra- and interoperator variability. Additionally, eight other patients underwent daily prostate localization using both US and electronic portal imaging (EPI) with FMs resulting in 244 combined US-EPI scans. Scanning was performed with minimal probe pressure and a correction for the speed of sound aberration was performed. Uncertainties of both US and FM methods were assessed. User variability of the US method was assessed.Results: The overall US user variability is 2.6 mm. The mean differences between US and FM are: 2.5 {+-} 4.0 mm (LR), 0.6 {+-} 4.9 mm (SI), and -2.3 {+-} 3.6 mm (AP). The intramodality character of this US system mitigates potential errors due to transducer pressure and speed of sound aberrations.Conclusions: The overall accuracy of US (3.0 mm) is comparable to our FM workflow (2.2 mm). Since neither US nor FM can be considered a gold standard no conclusions can be drawn on the superiority of either method. Because US imaging captures the prostate itself instead of surrogates no invasive procedure is required. It requires more effort to standardize US imaging than FM detection. Since US imaging does not involve a radiation burden, US prostate imaging offers an alternative for FM EPI positioning.

  20. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization.

    PubMed

    Martínez, José M; Jarosz, Boguslaw J

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m(-1), 115  ±  4 dB m(-1) and 175  ±  9 dB m(-1), respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m(-3) and 1545  ±  44 m s(-1), respectively. The average thermal conductivity was 0.532 W m(-1) K(-1). The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  1. 3D perfused brain phantom for interstitial ultrasound thermal therapy and imaging: design, construction and characterization

    NASA Astrophysics Data System (ADS)

    Martínez, José M.; Jarosz, Boguslaw J.

    2015-03-01

    Thermal therapy has emerged as an independent modality of treating some tumors. In many clinics the hyperthermia, one of the thermal therapy modalities, has been used adjuvant to radio- or chemotherapy to substantially improve the clinical treatment outcomes. In this work, a methodology for building a realistic brain phantom for interstitial ultrasound low dose-rate thermal therapy of the brain is proposed. A 3D brain phantom made of the tissue mimicking material (TMM) had the acoustic and thermal properties in the 20-32 °C range, which is similar to that of a brain at 37 °C. The phantom had 10-11% by mass of bovine gelatin powder dissolved in ethylene glycol. The TMM sonicated at 1 MHz, 1.6 MHz and 2.5 MHz yielded the amplitude attenuation coefficients of 62  ±  1 dB m-1, 115  ±  4 dB m-1 and 175  ±  9 dB m-1, respectively. The density and acoustic speed determination at room temperature (~24 °C) gave 1040  ±  40 kg m-3 and 1545  ±  44 m s-1, respectively. The average thermal conductivity was 0.532 W m-1 K-1. The T1 and T2 values of the TMM were 207  ±  4 and 36.2  ±  0.4 ms, respectively. We envisage the use of our phantom for treatment planning and for quality assurance in MRI based temperature determination. Our phantom preparation methodology may be readily extended to other thermal therapy technologies.

  2. GPU accelerated registration of a statistical shape model of the lumbar spine to 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Khallaghi, Siavash; Abolmaesumi, Purang; Gong, Ren Hui; Chen, Elvis; Gill, Sean; Boisvert, Jonathan; Pichora, David; Borschneck, Dan; Fichtinger, Gabor; Mousavi, Parvin

    2011-03-01

    We present a parallel implementation of a statistical shape model registration to 3D ultrasound images of the lumbar vertebrae (L2-L4). Covariance Matrix Adaptation Evolution Strategy optimization technique, along with Linear Correlation of Linear Combination similarity metric have been used, to improve the robustness and capture range of the registration approach. Instantiation and ultrasound simulation have been implemented on a graphics processing unit for a faster registration. Phantom studies show a mean target registration error of 3.2 mm, while 80% of all the cases yield target registration error of below 3.5 mm.

  3. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold. PMID:25543661

  4. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    PubMed

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  5. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  6. 4D BADA-based Trajectory Generator and 3D Guidance Algorithm

    NASA Technical Reports Server (NTRS)

    Palacios, Eduardo Sepulveda; Johnson, Marcus A.

    2013-01-01

    This paper presents a hybrid integration between aerodynamic, airline procedures and other BADA-based (Base of Aircraft Data) coefficients with a classical aircraft dynamic model. This paper also describes a three-dimensional guidance algorithm implemented in order to produce commands for the aircraft to follow a flight plan. The software chosen for this work is MATLAB.

  7. FINAL INTERIM REPORT, CANDIDATE SITES, MACHINES IN USE, DATA STORAGE AND TRANSMISSION METHODS: TESTING FEASIBILITY OF 3D ULTRASOUND DATA ACQUISITION AND RELIABILITY OF DATA RETRIEVAL FROM STORED 3D IMAGES

    EPA Science Inventory

    The purpose of this Work Assignment, 02-03, is to examine the feasibility of collecting transmitting, and analyzing 3-D ultrasound data in the context of a multi-center study of pregnant women. The study will also examine the reliability of measurements obtained from 3-D images< ...

  8. Theoretical Analysis of the Accuracy and Safety of MRI-Guided Transurethral 3-D Conformal Ultrasound Prostate Therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound therapy is a promising new approach for the treatment of localized prostate cancer. Several studies have demonstrated the feasibility of producing large regions of thermal coagulation adequate for prostate therapy; however, the quantitative assessment of shaping these regions to complex 3-D human prostate geometries has not been fully explored. This study used numerical simulations and twenty manually-segmented pelvic anatomical models derived from high-quality MR images of prostate cancer patients to evaluate the treatment accuracy and safety of 3-D conformal MRI-guided transurethral ultrasound therapy. The simulations incorporated a rotating multi-element planar dual-frequency ultrasound transducer (seventeen 4×3 mm elements) operating at 4.7/9.7 MHz and 10 W/cm2 maximum acoustic power. Results using a novel feedback control algorithm which modulated the ultrasound frequency, power and device rate of rotation showed that regions of thermal coagulation could be shaped to predefined prostate volumes within 1.0 mm across the vast majority of these glands. Treatment times were typically 30 min and remained below 60 min for large 60 cc prostates. With a rectal cooling temperature of 15° C, the rectal wall did not exceed 30EM43 in half of the twenty patient models with only a few 1 mm3 voxels above this threshold in the other cases. At 4.7 MHz, heating of the pelvic bone can become significant when it is located less than 10 mm from the prostate. Numerical simulations show that MRI-guided transurethral ultrasound therapy can thermally coagulate whole prostate glands accurately and safely in 3-D.

  9. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    PubMed Central

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-01-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases. PMID:26855466

  10. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  11. Stereovision-based 3D field recognition for automatic guidance system of off-road vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Fangming; Ying, Yibin; Shen, Chuan; Jiang, Huanyu; Zhang, Qin

    2005-11-01

    A stereovision-based disparity evaluation algorithm was developed for rice crop field recognition. The gray level intensities and the correlation relation were integrated to produce the disparities of stereo-images. The surface of ground and rice were though as two rough planes, but their disparities waved in a narrow range. The cut/uncut edges of rice crops were first detected and track through the images. We used a step model to locate those edge positions. The points besides the edges were matched respectively to get disparity values using area correlation method. The 3D camera coordinates were computed based on those disparities. The vehicle coordinates were obtained by multiplying the 3D camera coordinates with a transform formula. It has been implemented on an agricultural robot and evaluated in rice crop field with straight rows. The results indicated that the developed stereovision navigation system is capable of reconstructing the field image.

  12. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better

  13. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  14. Bonneville Powerhouse 2 3D CFD for the Behavioral Guidance System

    SciTech Connect

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2010-02-01

    In 2008 and 2009, a 700 ft long, 10-ft deep floating forebay guidance wall called a behavioral guidance structure (BGS) was deployed in the Bonneville Powerhouse 2 forebay. The US Army Corps of Engineers, Portland District (CENWP) contracted with the Pacific Northwest National Laboratory (PNNL) to develop computational tools to assess the impact of the BGS on forebay hydraulics (this study). The tools developed here to provide a characterization of forebay hydraulics to be integrated with acoustic telemetry studies designed to measure the impact on juvenile salmon guidance and survival through Bonneville Powerhouse 2. In previous work, PNNL performed computational fluid dynamics (CFD) studies for the Bonneville forebay for CENWP. In this study, the existing model was modified to include the BGS. The model included a bay-by-bay spillway, a truncated Powerhouse 1 forebay, Powerhouse 2 turbine intakes and corner collector, and the forebay bathymetry extending approximately 1.5km upstream from the tip of Cascade Island. Model validation outcomes were similar to that of past studies. Additional checks were included on the impact of the differencing scheme to flow solution. It was found that using upwind differencing was adequate and it was possible to use a truncated computational mesh of this model that included a BGS upstream of Powerhouse 2 and increased spatial resolution in the vicinity of the BGS. This model has been validated, run, and provided to CENWP to use for additional analysis of the Powerhouse 2 forebay hydraulics. The PNNL particle tracking software (PT6) was used to assess the impacts of mass and relative buoyancy on particle fate. The particle tracker was run for the Half Load case for the clean forebay and for the forebay with the BGS in place and the Corner Collector on. All tracker cases showed that the BGS moved the particles across the forebay increasing the number of particles exiting the model through the Corner Collector and (for streamlines

  15. Portable robot for autonomous venipuncture using 3D near infrared image guidance

    PubMed Central

    Chen, Alvin; Nikitczuk, Kevin; Nikitczuk, Jason; Maguire, Tim; Yarmush, Martin

    2015-01-01

    Venipuncture is pivotal to a wide range of clinical interventions and is consequently the leading cause of medical injury in the U.S. Complications associated with venipuncture are exacerbated in difficult settings, where the rate of success depends heavily on the patient's physiology and the practitioner's experience. In this paper, we describe a device that improves the accuracy and safety of the procedure by autonomously establishing a peripheral line for blood draws and IV's. The device combines a near-infrared imaging system, computer vision software, and a robotically driven needle within a portable shell. The device operates by imaging and mapping in real-time the 3D spatial coordinates of subcutaneous veins in order to direct the needle into a designated vein. We demonstrate proof of concept by assessing imaging performance in humans and cannulation accuracy on an advanced phlebotomy training model. PMID:26120592

  16. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2013-04-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.

  17. Development of a 3D patient-specific planning platform for interstitial and transurethral ultrasound thermal therapy

    NASA Astrophysics Data System (ADS)

    Prakash, Punit; Diederich, Chris J.

    2010-03-01

    Interstitial and transurethral catheter-based ultrasound devices are under development for treatment of prostate cancer and BPH, uterine fibroids, liver tumors and other soft tissue disease. Accurate 3D thermal modeling is essential for designing site-specific applicators, exploring treatment delivery strategies, and integration of patient-specific treatment planning of thermal ablations. We are developing a comprehensive 3D modeling and treatment planning platform for ultrasound ablation of tissue using catheter-based applicators. We explored the applicability of assessing thermal effects in tissue using critical temperature, thermal dose and Arrhenius thermal damage thresholds and performed a comparative analysis of dynamic tissue properties critical to accurate modeling. We used the model to assess the feasibility of automatic feedback control with MR thermometry, and demonstrated the utility of the modeling platform for 3D patient-specific treatment planning. We have identified critical temperature, thermal dose and thermal damage thresholds for assessing treatment endpoint. Dynamic changes in tissue attenuation/absorption and perfusion must be included for accurate prediction of temperature profiles and extents of the ablation zone. Lastly, we demonstrated use of the modeling platform for patient-specific treatment planning.

  18. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  19. Minimum anesthetic volume in regional anesthesia by using ultrasound-guidance.

    PubMed

    Di Filippo, Alessandro; Falsini, Silvia; Adembri, Chiara

    2016-01-01

    The ultrasound guidance in regional anesthesia ensures the visualization of needle placement and the spread of Local Anesthetics. Over the past few years there was a substantial interest in determining the Minimum Effective Anesthetic Volume necessary to accomplish surgical anesthesia. The precise and real-time visualization of Local Anesthetics spread under ultrasound guidance block may represent the best requisite for reducing Local Anesthetics dose and Local Anesthetics-related effects. We will report a series of studies that have demonstrated the efficacy of ultrasound guidance blocks to reduce Local Anesthetics and obtain surgical anesthesia as compared to block performed under blind or electrical nerve stimulation technique. Unfortunately, the results of studies are widely divergent and not seem to indicate a dose considered effective, for each block, in a definitive way; but it is true that, through the use of ultrasound guidance, it is possible to reduce the dose of anesthetic in the performance of anesthetic blocks. PMID:27591464

  20. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  1. In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.

    2014-03-01

    Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.

  2. Tubular structure enhancement for surgical instrument detection in 3D ultrasound.

    PubMed

    Ren, Hongliang; Dupont, Pierre E

    2011-01-01

    Three-dimensional ultrasound has been an effective imaging modality for diagnostics and is now an emerging modality for image-guided minimally-invasive interventions since it enables visualization of both instruments and tissue. Challenges to ultrasound-guided interventions arise, however, due to the low signal-to-noise ratio and the imaging artifacts created by the interventional instruments. Metallic instruments, in particular, are strong scatters and so produce a variety of artifacts. For many interventions, the manual or robotic instrument is comprised of a long curved tubular structure with specialized tooling at its tip. Toward the goal of developing a surgical navigation system, this paper proposes an image processing algorithm for enhancing the tubular structure of imaged instruments while also reducing imaging artifacts. Experiments are presented to evaluate the effectiveness of the approach in the context of robotic instruments whose shape comprises a smooth curve along their length.

  3. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  4. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  5. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  6. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  7. 3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei

    2011-03-01

    We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

  8. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  9. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    liver were 73cc, 84cc, and 140cc for 3, 4, and 5 placements, respectively. These experiments demonstrate the feasibility of combining real-time spatially tracked image guidance with directional interstitial ultrasound ablation. Interstitial ultrasound ablation delivered on multiple needles permit the size and shape of the ablation zone to be "sculpted" by modifying the angle and intensity of the active US elements in the array. This paper summarizes the design and development of the first system incorporating thermal treatment planning and integration of a novel interstitial acoustic ablation device with integrated 3D electromagnetic tracking and guidance strategy.

  10. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array.

    PubMed

    Song, Liang; Kim, Chulhong; Maslov, Konstantin; Shung, K Kirk; Wang, Lihong V

    2009-08-01

    Noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution has the potential to improve the false negative rate and eliminate the use of radioactive tracers in SLN identification. In addition, the demonstrated high spatial resolution may enable physicians to replace SLN biopsy with fine needle aspiration biopsy, and thus reduce the risk of associated morbidity. The primary goal of this study is to demonstrate the feasibility of high-speed 3D photoacoustic imaging of the uptake and clearance dynamics of Evans blue dye in SLNs. The photoacoustic imaging system was developed with a 30 MHz ultrasound array and a kHz repetition rate laser system. It acquires one 3D photoacoustic image of 166 B-scan frames in 1 s, with axial, lateral, and elevational resolutions of 25, 70, and 200 microm, respectively. With optic-fiber based light delivery, the entire system is compact and is convenient to use. Upon injection of Evans blue, a blue dye currently used in clinical SLN biopsy, SLNs in mice and rats were accurately and noninvasively mapped in vivo using our imaging system. In our experiments, the SLNs were found to be located at approximately 0.65 mm below the skin surface in mice and approximately 1.2 mm in rats. In some cases, lymph vessels and lymphatic valves were also imaged. The dye dynamics--accumulation and clearance--in SLNs were quantitatively monitored by sequential 3D imaging with temporal resolution of as high as approximately 6 s. The demonstrated capability suggests that high-speed 3D photoacoustic imaging should facilitate the understanding of the dynamics of various dyes in SLNs and potentially help identify SLNs with high accuracy. PMID:19746805

  11. Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework

    PubMed Central

    Srinivasan, Parthasarathy; Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.

    2014-01-01

    During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a

  12. Development of a 3D ultrasound system to investigate post-hemorrhagic hydrocephalus in pre-term neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Lee, D.; St. Lawrence, K.; Romano, W.; Fenster, A.; de Ribaupierre, S.

    2013-03-01

    Clinical intracranial ultrasound (US) is performed as a standard of care on neonates at risk of intraventricular hemorrhaging (IVH) and is also used after a diagnosis to monitor for potential ventricular dilation. However, it is difficult to estimate the volume of ventricles with 2D US due to their irregular shape. We developed a 3D US system to be used as an adjunct to a clinical system to investigate volumetric changes in the ventricles of neonates with IVH. Our system has been found have an error of within 1% of actual distance measurements in all three directions and volume measurements of manually segmented volumes from phantoms were not statistically significantly different from the actual values (p>0.3). Interobserver volume measurements of the lateral ventricles in a patient with grade III IVH found no significant differences between measurements. There is the potential to use this system in IVH patients to monitor the progression of ventriculomegaly over time.

  13. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  14. Multi-atlas-based automatic 3D segmentation for prostate brachytherapy in transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, S. E.; Abolmaesumi, P.

    2013-03-01

    One of the commonly used treatment methods for early-stage prostate cancer is brachytherapy. The standard of care for planning this procedure is segmentation of contours from transrectal ultrasound (TRUS) images, which closely follow the prostate boundary. This process is currently performed either manually or using semi-automatic techniques. This paper introduces a fully automatic segmentation algorithm which uses a priori knowledge of contours in a reference data set of TRUS volumes. A non-parametric deformable registration method is employed to transform the atlas prostate contours to a target image coordinates. All atlas images are sorted based on their registration results and the highest ranked registration results are selected for decision fusion. A Simultaneous Truth and Performance Level Estimation algorithm is utilized to fuse labels from registered atlases and produce a segmented target volume. In this experiment, 50 patient TRUS volumes are obtained and a leave-one-out study on TRUS volumes is reported. We also compare our results with a state-of-the-art semi-automatic prostate segmentation method that has been clinically used for planning prostate brachytherapy procedures and we show comparable accuracy and precision within clinically acceptable runtime.

  15. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  16. A Longitudinal Study of Remodeling in a Revised Peripheral Artery Bypass Graft Using 3D Ultrasound Imaging and Computational Hemodynamics

    PubMed Central

    Leotta, Daniel F.; Beach, Kirk W.; Riley, James J.; Aliseda, Alberto

    2011-01-01

    We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement. PMID:21428682

  17. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging.

    PubMed

    Gudur, Madhu Sudhan Reddy; Rao, Rameshwar R; Peterson, Alexis W; Caldwell, David J; Stegemann, Jan P; Deng, Cheri X

    2014-01-01

    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5-15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×10(4) at day 1 to 0.9±0.2×10(4) at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development.

  18. The Ultrasound Brain Helmet: New Transducers and Volume Registration for In Vivo Simultaneous Multi-Transducer 3-D Transcranial Imaging

    PubMed Central

    Lindsey, Brooks D.; Light, Edward D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2012-01-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation. PMID:21693401

  19. Accurate quantification of local changes for carotid arteries in 3D ultrasound images using convex optimization-based deformable registration

    NASA Astrophysics Data System (ADS)

    Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard

    2016-03-01

    Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.

  20. Quantitative 3-d diagnostic ultrasound imaging using a modified transducer array and an automated image tracking technique.

    PubMed

    Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S

    2002-08-01

    An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.

  1. Mapping and characterizing endometrial implants by registering 2D transvaginal ultrasound to 3D pelvic magnetic resonance images.

    PubMed

    Yavariabdi, Amir; Bartoli, Adrien; Samir, Chafik; Artigues, Maxime; Canis, Michel

    2015-10-01

    We propose a new deformable slice-to-volume registration method to register a 2D Transvaginal Ultrasound (TVUS) to a 3D Magnetic Resonance (MR) volume. Our main goal is to find a cross-section of the MR volume such that the endometrial implants and their depth of infiltration can be mapped from TVUS to MR. The proposed TVUS-MR registration method uses contour to surface correspondences through a novel variational one-step deformable Iterative Closest Point (ICP) method. Specifically, we find a smooth deformation field while establishing point correspondences automatically. We demonstrate the accuracy of the proposed method by quantitative and qualitative tests on both semi-synthetic and clinical data. To generate semi-synthetic data sets, 3D surfaces are deformed with 4-40% degrees of deformation and then various intersection curves are obtained at 0-20° cutting angles. Results show an average mean square error of 5.7934±0.4615mm, average Hausdorff distance of 2.493±0.14mm, and average Dice similarity coefficient of 0.9750±0.0030.

  2. Semi-automatic assessment of pediatric hydronephrosis severity in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Cerrolaza, Juan J.; Otero, Hansel; Yao, Peter; Biggs, Elijah; Mansoor, Awais; Ardon, Roberto; Jago, James; Peters, Craig A.; Linguraru, Marius George

    2016-03-01

    Hydronephrosis is the most common abnormal finding in pediatric urology. Thanks to its non-ionizing nature, ultrasound (US) imaging is the preferred diagnostic modality for the evaluation of the kidney and the urinary track. However, due to the lack of correlation of US with renal function, further invasive and/or ionizing studies might be required (e.g., diuretic renograms). This paper presents a computer-aided diagnosis (CAD) tool for the accurate and objective assessment of pediatric hydronephrosis based on morphological analysis of kidney from 3DUS scans. The integration of specific segmentation tools in the system, allows to delineate the relevant renal structures from 3DUS scans of the patients with minimal user interaction, and the automatic computation of 90 anatomical features. Using the washout half time (T1/2) as indicative of renal obstruction, an optimal subset of predictive features is selected to differentiate, with maximum sensitivity, those severe cases where further attention is required (e.g., in the form of diuretic renograms), from the noncritical ones. The performance of this new 3DUS-based CAD system is studied for two clinically relevant T1/2 thresholds, 20 and 30 min. Using a dataset of 20 hydronephrotic cases, pilot experiments show how the system outperforms previous 2D implementations by successfully identifying all the critical cases (100% of sensitivity), and detecting up to 100% (T1/2 = 20 min) and 67% (T1/2 = 30 min) of non-critical ones for T1/2 thresholds of 20 and 30 min, respectively.

  3. 3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.

    PubMed

    Sayed, Ahmed; Layne, Ginger; Abraham, Jame; Mukdadi, Osama M

    2014-07-01

    The goal of the study described here was to introduce new methods for the classification and visualization of human breast tumors using 3-D ultrasound elastography. A tumor's type, shape and size are key features that can help the physician to decide the sort and extent of necessary treatment. In this work, tumor type, being either benign or malignant, was classified non-invasively for nine volunteer patients. The classification was based on estimating four parameters that reflect the tumor's non-linear biomechanical behavior, under multi-compression levels. Tumor prognosis using non-linear elastography was confirmed with biopsy as a gold standard. Three tissue classification parameters were found to be statistically significant with a p-value < 0.05, whereas the fourth non-linear parameter was highly significant, having a p-value < 0.001. Furthermore, each breast tumor's shape and size were estimated in vivo using 3-D elastography, and were enhanced using interactive segmentation. Segmentation with level sets was used to isolate the stiff tumor from the surrounding soft tissue. Segmentation also provided a reliable means to estimate tumors volumes. Four volumetric strains were investigated: the traditional normal axial strain, the first principal strain, von Mises strain and maximum shear strain. It was noted that these strains can provide varying degrees of boundary enhancement to the stiff tumor in the constructed elastograms. The enhanced boundary improved the performance of the segmentation process. In summary, the proposed methods can be employed as a 3-D non-invasive tool for characterization of breast tumors, and may provide early prognosis with minimal pain, as well as diminish the risk of late-stage breast cancer.

  4. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  5. 3D Quantitative Assessment of Lesion Response to MR-guided High-Intensity Focused Ultrasound Treatment of Uterine Fibroids

    PubMed Central

    Savic, Lynn J.; Lin, MingDe; Duran, Rafael; Schernthaner, Rüdiger E.; Hamm, Bernd; Geschwind, Jean-François; Hong, Kelvin; Chapiro, Julius

    2015-01-01

    Rationale and Objectives To investigate the response after MR-guided high-intensity focused ultrasound (MRgHIFU) treatment of uterine fibroids (UF) using a 3D quantification of total and enhancing lesion volume (TLV, ELV) on contrast-enhanced MRI (ceMRI) scans. Methods and Materials In a total of 24 patients, ceMRI scans were obtained at baseline and 24 hrs, 6, 12 and 24 months after MRgHIFU treatment. The dominant lesion was assessed using a semi-automatic quantitative 3D segmentation technique. Agreement between software-assisted and manual measurements was then analyzed using a linear regression model. Patients were classified as responders (R) or non-responders (NR) based on their symptom report after 6 months. Statistical analysis included the paired t-test and Mann-Whitney-test. Results Preprocedurally, the median TLV and ELV were 263.74cm3 (30.45–689.56cm3) and 210.13cm3 (14.43–689.53cm3), respectively. The 6-month follow-up demonstrated a reduction of TLV in 21 patients (87.5%) with a median TLV of 171.7cm3 (8.5–791.2cm3) (p<.0001). TLV remained stable with significant differences compared to baseline (p<.001 and p=.047 after 12 and 24 months). A reduction of ELV was apparent in 16 patients (66.6%) with a median ELV of 158.91cm3 (8.55–779.61cm3) after 6 months (p=.065). 3D quantification and manual measurements showed strong intermethod-agreement for fibroid volumes (R2=.889 and R2=.917) but greater discrepancy for enhancement calculations (R2=.659 and R2=.419) at baseline and 6 mo. No significant differences in TLV or ELV were observed between clinical R (n=15) and NR (n=3). Conclusion The 3D assessment has proven feasible and accurate in the quantification of fibroid response to MRgHIFU. Contrary to ELV, changes in TLV may be representative of the clinical outcome. PMID:26160057

  6. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction.

    PubMed

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L

    2013-03-01

    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  7. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  8. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  9. Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation.

    PubMed

    Werner, Heron; Lopes, Jorge; Tonni, Gabriele; Araujo Júnior, Edward

    2015-04-01

    Rapid prototyping is becoming a fast-growing and valuable technique for physical models in case of congenital anomalies. Manufacturing models are generally built from three-dimensional (3D) ultrasound, computed tomography, and fetal magnetic resonance imaging (MRI) scan data. Physical prototype has demonstrated to be clinically of value in case of complex fetal malformations and may improve antenatal management especially in cases of craniosynostosis, orofacial clefts, and giant epignathus. In addition, it may enhance parental bonding in visually impaired parents and have didactic value in teaching program. Hereby, the first 3D physical model from 3D ultrasound and MRI scan data reconstruction of lumbosacral myelomeningocele in a third trimester fetus affected by Chiari II malformation is reported. PMID:25686895

  10. Physical model from 3D ultrasound and magnetic resonance imaging scan data reconstruction of lumbosacral myelomeningocele in a fetus with Chiari II malformation.

    PubMed

    Werner, Heron; Lopes, Jorge; Tonni, Gabriele; Araujo Júnior, Edward

    2015-04-01

    Rapid prototyping is becoming a fast-growing and valuable technique for physical models in case of congenital anomalies. Manufacturing models are generally built from three-dimensional (3D) ultrasound, computed tomography, and fetal magnetic resonance imaging (MRI) scan data. Physical prototype has demonstrated to be clinically of value in case of complex fetal malformations and may improve antenatal management especially in cases of craniosynostosis, orofacial clefts, and giant epignathus. In addition, it may enhance parental bonding in visually impaired parents and have didactic value in teaching program. Hereby, the first 3D physical model from 3D ultrasound and MRI scan data reconstruction of lumbosacral myelomeningocele in a third trimester fetus affected by Chiari II malformation is reported.

  11. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance

    NASA Astrophysics Data System (ADS)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey

    2016-03-01

    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  12. Pulsed Radiofrequency Ablation Under Ultrasound Guidance for Huge Neuroma

    PubMed Central

    Jung, Il; Lee, Chang Hee; Kim, Se Hun; Kim, Jin Sun; Yoo, Byoung Woo

    2014-01-01

    Amputation neuroma can cause very serious, intractable pain. Many treatment modalities are suggested for painful neuroma. Pharmacologic treatment shows a limited effect on eliminating the pain, and surgical treatment has a high recurrence rate. We applied pulsed radiofrequency treatment at the neuroma stalk under ultrasonography guidance. The long-term outcome was very successful, prompting us to report this case. PMID:25031817

  13. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    SciTech Connect

    Hakime, Antoine Deschamps, Frederic; Marques De Carvalho, Enio Garcia; Barah, Ali; Auperin, Anne; Baere, Thierry De

    2012-08-15

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid on the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to determine

  14. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-03-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined by Cone- Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (+/-1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8+/-5.5), superior-inferior (S/I) (-3.5+/-5.2), and left-right (L/R): (0.4+/-4.9). The variations were larger than the CBCT shifts. The largest inter-fractional displacement was from -2 mm to +14 mm in the AP-direction for patient 3. Thus, CBCT bone matching underestimates the uterine positional displacement due to neglecting internal uterine positional change to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match.

  15. Evaluating the Learning Curve for Percutaneous Nephrolithotomy under Total Ultrasound Guidance

    PubMed Central

    Song, Yan

    2015-01-01

    Objectives To investigate the learning curve of percutaneous nephrolithotomy under total ultrasound guidance. Methods One hundred and twenty consecutive PCNL operations under total ultrasound guidance performed by a novice surgeon in a tertiary referral center were studied. Operations were analyzed in cohorts of 15 to determine when a plateau was reached for the variables such as operation duration, ultrasound screening time, tract dilation time, stone-free rate and complication rate. Comparison was made with the results of a surgeon who had performed more than 1000 PCNLs. Fluoroscopy was not used at all during procedure. Results The mean operation time dropped from 82.5 min for the first 15 patients to a mean of 64.7 min for cases 46 through 60(P = 0.047). The ultrasound screening time was a peak of 6.4 min in the first 15 cases, whereas it dropped to a mean of 3.9 min for cases 46 through 60(P = 0.01). The tract dilation time dropped from 4.9 min for the first 15 patients to a mean of 3.8 min for cases 46 through 60(P = 0.036). The senior surgeon had a mean operating time, screening time and tract dilation time equivalent to those of the novice surgeon after 60 cases. There was no significant difference in stone free rate and complication rate. Conclusions The competence of ultrasound guided PCNL is reached after 60 cases with good stone free rate and without major complications. PMID:26271037

  16. Hemodialysis catheter implantation in the axillary vein by ultrasound guidance versus palpation or anatomical reference

    PubMed Central

    Valencia, Cesar A Restrepo; Villa, Carlos A Buitrago; Cardona, Jose A Chacon

    2013-01-01

    Background We compared the results of four different methods of hemodialysis catheter insertion in the medial segment of the axillary vein: ultrasound guidance, palpation, anatomical reference, and prior transient catheter. Methods All patients that required acute or chronic hemodialysis and for whom it was determined impossible or not recommended either to place a catheter in the internal jugular vein (for instance, those patients with a tracheostomy), or to practice arteriovenous fistula or graft; it was then essential to obtain an alternative vascular access. When the procedure of axillary vein catheter insertion was performed in the Renal Care Facility (RCF), ultrasound guidance was used, but in the intensive care unit (ICU), this resource was unavailable, so the palpation or anatomical reference technique was used. Results Two nephrologists with experience in the technique performed 83 procedures during a period lasting 15 years and 8 months (from January 1997–August 2012): 41 by ultrasound guidance; 19 by anatomical references; 15 by palpation of the contiguous axillary artery; and 8 through a temporary axillary catheter previously placed. The ultrasound-guided patients had fewer punctures than other groups, but the value was not statistically significant. Arterial punctures were infrequent in all techniques. Analyzing all the procedure-related complications, such as hematoma, pneumothorax, brachial-plexus injury, as well as the reasons for catheter removal, no differences were observed among the groups. The functioning time was longer in the ultrasound-guided and previous catheter groups. In 15 years and 8 months of surveillance, no clinical or image evidence for axillary vein stenosis was found. Conclusion The ultrasound guide makes the procedure of inserting catheters in the axillary veins easier, but knowledge of the anatomy of the midaxillary region and the ability to feel the axillary artery pulse (for the palpation method) also allow relatively easy

  17. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    PubMed

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization.

  18. Effectiveness of Stellate Ganglion Block Under Fuoroscopy or Ultrasound Guidance in Upper Extremity CRPS

    PubMed Central

    Imani, Farnad; Hemati, Karim; Kazemi, Mohamad Reza; Hejazian, Kokab

    2016-01-01

    Introduction Stellate Ganglion Block (SGB) is an effective technique which may be used to manage upper extremities pain due to Chronic Regional Pain Syndrome (CRPS), in this study we tried to evaluate the effectiveness of this procedure under two different guidance for management of this syndrome. Aim The purpose of this study was to evaluate the effectiveness of ultrsound guide SGB by comparing it with the furoscopy guided SGB in upper extermities CRPS patients in reducing pain & dysfuction of the affected link. Materials and Methods Fourteen patients with sympathetic CRPS in upper extremities in a randomized method with block randomization divided in two equal groups (with ultrasound or fluoroscopic guidance). First group was blocked under fluoroscopic guidance and second group blocked under ultrasound guidance. After correct positioning of the needle, a mixture of 5 ml bupivacaine 0.25% and 1 mL of triamcinolone was injected. Results These data represent no meaningful statistical difference between the two groups in terms of the number of pain attacks before the blocks, a borderline correlation between two groups one week and one month after the block and a significant statistical correlation between two groups three month after the block. These data represent no meaningful statistical difference between the patients of any group in terms of the pain intensity (from one week to six months after block), p-value = 0.61. These data represent a meaningful statistical difference among patients of any group and between the two groups in terms of the pain intensity (before the block until six months after block), p-values were 0.001, 0.031 respectively. Conclusion According the above mentioned data, in comparison with fluoroscopic guidance, stellate ganglion block under ultrasound guidance is a safe and effective method with lower complication and better improvement in patient’s disability indexes. PMID:26894152

  19. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  20. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications.

    PubMed

    Jenne, Jürgen W; Preusser, Tobias; Günther, Matthias

    2012-12-01

    In the past two decades, high-intensity focused ultrasound (HIFU) in combination with diagnostic ultrasound (USgFUS) or magnetic resonance imaging (MRgFUS) opened new ways of therapeutic access to a multitude of pathologic conditions. The therapeutic potential of HIFU lies in the fact that it enables the localized deposition of high-energy doses deep within the human body without harming the surrounding tissue. The addition of diagnostic ultrasound or in particular MRI with HIFU allows for planning, control and direct monitoring of the treatment process. The clinical and preclinical applications of HIFU range from the thermal treatment of benign and malign lesions, targeted drug delivery, to the treatment of thrombi (sonothrombolysis). Especially the therapy of prostate cancer under US-guidance and the ablation of benign uterine fibroids under MRI monitoring are now therapy options available to a larger number of patients. The main challenges for an abdominal application of HIFU are posed by partial or full occlusion of the target site by bones or air filled structures (e.g. colon), as well as organ motion. In non-trivial cases, the implementation of computer based modeling, simulation and optimization is desirable. This article describes the principles of HIFU, ultrasound and MRI therapy guidance, therapy planning and simulation, and gives an overview of the current and potential future applications.

  1. Evaluating the extent of cell death in 3D high frequency ultrasound by registration with whole-mount tumor histopathology

    SciTech Connect

    Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.; Czarnota, Gregory J.; Brock, Kristy K.

    2010-08-15

    Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell death surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from

  2. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model

    PubMed Central

    Huisman, Merel; Staruch, Robert M.; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A.; Burns, Dennis K.; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Purpose Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Methods Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining. Results All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Conclusion Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may

  3. Infrared thermography and ultrasound C-scan for non-destructive evaluation of 3D carbon fiber materials: a comparative study

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Genest, Marc; Robitaille, Francois; Maldague, Xavier; West, Lucas; Joncas, Simon; Leduc, Catherine

    2015-05-01

    3D Carbon fiber polymer matrix composites (3D CF PMCs) are increasingly used for aircraft construction due to their exceptional stiffness and strength-to-mass ratios. However, defects are common in the 3D combining areas and are challenging to inspect. In this paper, Stitching is used to decrease these defects, but causes some new types of defects. Infrared NDT (non-destructive testing) and ultrasound NDT are used. In particular, a micro-laser line thermography technique (micro-LLT) and a micro-laser spot thermography (micro-LST) with locked-in technique are used to detect the micro-defects. In addition, a comparative study is conducted by using pulsed thermography (PT), vibrothermography (VT). In order to confirm the types of the defects, microscopic inspection is carried out before NDT work, after sectioning and polishing a small part of the sample..

  4. Dual-projection 3D-2D registration for surgical guidance: preclinical evaluation of performance and minimum angular separation

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE <2 mm with 95% confidence, comparable or superior to that of commercial trackers. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.

  5. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast.

    PubMed

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut

    2015-02-01

    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  6. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.

    PubMed

    Burtnyk, Mathieu; N'Djin, William Apoutou; Kobelevskiy, Ilya; Bronskill, Michael; Chopra, Rajiv

    2010-11-21

    MRI-controlled transurethral ultrasound therapy uses a linear array of transducer elements and active temperature feedback to create volumes of thermal coagulation shaped to predefined prostate geometries in 3D. The specific aims of this work were to demonstrate the accuracy and repeatability of producing large volumes of thermal coagulation (>10 cc) that conform to 3D human prostate shapes in a tissue-mimicking gel phantom, and to evaluate quantitatively the accuracy with which numerical simulations predict these 3D heating volumes under carefully controlled conditions. Eleven conformal 3D experiments were performed in a tissue-mimicking phantom within a 1.5T MR imager to obtain non-invasive temperature measurements during heating. Temperature feedback was used to control the rotation rate and ultrasound power of transurethral devices with up to five 3.5 × 5 mm active transducer elements. Heating patterns shaped to human prostate geometries were generated using devices operating at 4.7 or 8.0 MHz with surface acoustic intensities of up to 10 W cm(-2). Simulations were informed by transducer surface velocity measurements acquired with a scanning laser vibrometer enabling improved calculations of the acoustic pressure distribution in a gel phantom. Temperature dynamics were determined according to a FDTD solution to Pennes' BHTE. The 3D heating patterns produced in vitro were shaped very accurately to the prostate target volumes, within the spatial resolution of the MRI thermometry images. The volume of the treatment difference falling outside ± 1 mm of the target boundary was, on average, 0.21 cc or 1.5% of the prostate volume. The numerical simulations predicted the extent and shape of the coagulation boundary produced in gel to within (mean ± stdev [min, max]): 0.5 ± 0.4 [-1.0, 2.1] and -0.05 ± 0.4 [-1.2, 1.4] mm for the treatments at 4.7 and 8.0 MHz, respectively. The temperatures across all MRI thermometry images were predicted within -0.3 ± 1.6 °C and 0

  7. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes.

  8. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles.

    PubMed

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E

    2014-12-01

    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes. PMID:24206210

  9. Surgical accuracy under virtual reality-enhanced ultrasound guidance: an in vitro epicardial dynamic study.

    PubMed

    Linte, Cristian A; Wiles, Andrew D; Moore, John; Wedlake, Chris; Peters, Terry M

    2008-01-01

    In the context of our ongoing objective to reduce morbidity associated with cardiac interventions, minimizing invasiveness has inevitably led to more limited visual access to the target tissues. To ameliorate these challenges, we provide the surgeons with a complex visualization environment that integrates interventional ultrasound imaging augmented with pre-operative anatomical models and virtual surgical instruments within a virtual reality environment. In this paper we present an in vitro study on a cardiac phantom aimed at assessing the feasibility and targeting accuracy of our surgical system in comparison to traditional ultrasound imaging for intra-operative surgical guidance. The 'therapy delivery' was modeled in the context of a blinded procedure, mimicking a closed-chest intervention. Four users navigated a tracked pointer to a target, under guidance provide by either US imaging or virtual reality-enhanced ultrasound. A 2.8 mm RMS targeting error was achieved using our novel surgical system, which is adequate from both a clinical and engineering perspective, under the inherent procedure requirements and limitations of the system. PMID:19162594

  10. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    PubMed

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis.

  11. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    PubMed

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.

  12. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing

    PubMed Central

    Park, Dae Woo; Sebastiani, Andrea; Yap, Choon Hwai; Simon, Marc A.; Kim, Kang

    2016-01-01

    Mechanical and structural changes of right ventricular (RV) in response to pulmonary hypertension (PH) are inadequately understood. While current standard biaxial testing provides information on the mechanical behavior of RV tissues using surface markers, it is unable to fully assess structural and mechanical properties across the full tissue thickness. In this study, the mechanical and structural properties of normotensive and pulmonary hypertension right ventricular (PHRV) myocardium through its full thickness were examined using mechanical testing combined with 3D ultrasound speckle tracking (3D-UST). RV pressure overload was induced in Sprague–Dawley rats by pulmonary artery (PA) banding. The second Piola–Kirchhoff stress tensors and Green-Lagrangian strain tensors were computed in the RV myocardium using the biaxial testing combined with 3D-UST. A previously established non-linear curve-fitting algorithm was applied to fit experimental data to a Strain Energy Function (SEF) for computation of myofiber orientation. The fiber orientations obtained by the biaxial testing with 3D-UST compared well with the fiber orientations computed from the histology. In addition, the re-orientation of myofiber in the right ventricular free wall (RVFW) along longitudinal direction (apex-to-outflow-tract direction) was noticeable in response to PH. For normotensive RVFW samples, the average fiber orientation angles obtained by 3D-UST with biaxial test spiraled from 20° at the endo-cardium to -42° at the epi-cardium (Δ = 62°). For PHRV samples, the average fiber orientation angles obtained by 3D-UST with biaxial test had much less spiral across tissue thickness: 3° at endo-cardium to -7° at epi-cardium (Δ = 10°, P<0.005 compared to normotensive). PMID:27780271

  13. Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching

    NASA Astrophysics Data System (ADS)

    Nam, Woo Hyun; Kang, Dong-Goo; Lee, Duhgoon; Lee, Jae Young; Ra, Jong Beom

    2012-01-01

    The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.

  14. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    SciTech Connect

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-06-15

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.

  15. Jugular vein catheterization for hemodialysis: correct positioning control using real-time ultrasound guidance.

    PubMed

    Santarsia, G; Casino, F G; Gaudiano, V; Mostacci, S D; Bagnato, G; Latorraca, A; Lopez, T

    2000-01-01

    The jugular vein catheterism (JVC) is adopted for blood access in patients with acute renal failure, in chronic renal failure and when patients show failure of traditional vascular access. The technique of catheter insertion in the jugular vein is quick and easy. Usually correct catheter positioning, before starting the dialytic procedure, is controlled by chest X-ray or by intra-cavitary electrocardiogram. The aim of this work is to evaluate the feasibility of the real-time ultrasound guidance to control the correct positioning of the catheter instead of the usual chest X-ray control. We have studied 158 patients with JVC insertion before the hemodialytic procedure; 54 patients have undergone both ultrasound and a chest X-ray control while 104 were only submitted to ultrasound control. The ultrasound procedure includes an under xifoid scanning, with a convex 3.5 Mhz drill to evaluate the four heart cavities. When the right atrium is identified a second operator rapidly infuses in the venous catheter 15 ml of physiological solution thus creating a blood turbolence easily observed in real time as a light jet inside the atrium. This turbolence appears to be the main evidence for good catheter positioning and we were able to show the light jet in 156 (98%) patients. All light jet positive patients were submitted to the hemodialytic procedure without any complications during and after dialysis. We concluded that the intraoperative ultrasound control technique is an alternative to the chest X-ray evaluation because it offers the possibility for safe intraoperative immediate control thus reducing the total costs of the procedure. PMID:17638227

  16. Evaluation of a prototype 3D ultrasound system for multimodality imaging of cervical nodes for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle; Fava, Palma; Cury, Fabio; Vuong, Te; Falco, Tony; Verhaegen, Frank

    2007-03-01

    Sonography has good topographic accuracy for superficial lymph node assessment in patients with head and neck cancers. It is therefore an ideal non-invasive tool for precise inter-fraction volumetric analysis of enlarged cervical nodes. In addition, when registered with computed tomography (CT) images, ultrasound information may improve target volume delineation and facilitate image-guided adaptive radiation therapy. A feasibility study was developed to evaluate the use of a prototype ultrasound system capable of three dimensional visualization and multi-modality image fusion for cervical node geometry. A ceiling-mounted optical tracking camera recorded the position and orientation of a transducer in order to synchronize the transducer's position with respect to the room's coordinate system. Tracking systems were installed in both the CT-simulator and radiation therapy treatment rooms. Serial images were collected at the time of treatment planning and at subsequent treatment fractions. Volume reconstruction was performed by generating surfaces around contours. The quality of the spatial reconstruction and semi-automatic segmentation was highly dependent on the system's ability to track the transducer throughout each scan procedure. The ultrasound information provided enhanced soft tissue contrast and facilitated node delineation. Manual segmentation was the preferred method to contour structures due to their sonographic topography.

  17. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  18. NOTE: Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy

    NASA Astrophysics Data System (ADS)

    Narayanan, R.; Werahera, P. N.; Barqawi, A.; Crawford, E. D.; Shinohara, K.; Simoneau, A. R.; Suri, J. S.

    2008-10-01

    Due to lack of imaging modalities to identify prostate cancer in vivo, current TRUS guided prostate biopsies are taken randomly. Consequently, many important cancers are missed during initial biopsies. The purpose of this study was to determine the potential clinical utility of a high-speed registration algorithm for a 3D prostate cancer atlas. This 3D prostate cancer atlas provides voxel-level likelihood of cancer and optimized biopsy locations on a template space (Zhan et al 2007). The atlas was constructed from 158 expert annotated, 3D reconstructed radical prostatectomy specimens outlined for cancers (Shen et al 2004). For successful clinical implementation, the prostate atlas needs to be registered to each patient's TRUS image with high registration accuracy in a time-efficient manner. This is implemented in a two-step procedure, the segmentation of the prostate gland from a patient's TRUS image followed by the registration of the prostate atlas. We have developed a fast registration algorithm suitable for clinical applications of this prostate cancer atlas. The registration algorithm was implemented on a graphical processing unit (GPU) to meet the critical processing speed requirements for atlas guided biopsy. A color overlay of the atlas superposed on the TRUS image was presented to help pick statistically likely regions known to harbor cancer. We validated our fast registration algorithm using computer simulations of two optimized 7- and 12-core biopsy protocols to maximize the overall detection rate. Using a GPU, patient's TRUS image segmentation and atlas registration took less than 12 s. The prostate cancer atlas guided 7- and 12-core biopsy protocols had cancer detection rates of 84.81% and 89.87% respectively when validated on the same set of data. Whereas the sextant biopsy approach without the utility of 3D cancer atlas detected only 70.5% of the cancers using the same histology data. We estimate 10-20% increase in prostate cancer detection rates

  19. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    PubMed Central

    2014-01-01

    Background Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). Methods A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. Results The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. Conclusion The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction. PMID:24495815

  20. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  1. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    SciTech Connect

    Kuo, Nathanael Prince, Jerry L.; Dehghan, Ehsan; Deguet, Anton; Mian, Omar Y.; Le, Yi; Song, Danny Y.; Burdette, E. Clif; Fichtinger, Gabor; Lee, Junghoon

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  2. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  3. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    PubMed Central

    Verhey, Janko F; Wisser, Josef; Warfield, Simon K; Rexilius, Jan; Kikinis, Ron

    2005-01-01

    Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies. PMID:15777475

  4. Multimodality image guidance system integrating X-ray fluoroscopy and ultrasound image streams with electromagnetic tracking

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Luis F.; Shechter, Guy; Stanton, Douglas; Dalal, Sandeep; Elgort, Daniel; Manzke, Robert; Chan, Raymond C.; Zagorchev, Lyubomir

    2007-03-01

    This work presents an integrated system for multimodality image guidance of minimally invasive medical procedures. This software and hardware system offers real-time integration and registration of multiple image streams with localization data from navigation systems. All system components communicate over a local area Ethernet network, enabling rapid and flexible deployment configurations. As a representative configuration, we use X-ray fluoroscopy (XF) and ultrasound (US) imaging. The XF imaging system serves as the world coordinate system, with gantry geometry derived from the imaging system, and patient table position tracked with a custom-built measurement device using linear encoders. An electromagnetic (EM) tracking system is registered to the XF space using a custom imaging phantom that is also tracked by the EM system. The RMS fiducial registration error for the EM to X-ray registration was 2.19 mm, and the RMS target registration error measured with an EM-tracked catheter was 8.81 mm. The US image stream is subsequently registered to the XF coordinate system using EM tracking of the probe, following a calibration of the US image within the EM coordinate system. We present qualitative results of the system in operation, demonstrating the integration of live ultrasound imaging spatially registered to X-ray fluoroscopy with catheter localization using electromagnetic tracking.

  5. Prostate ultrasound image segmentation using level set-based region flow with shape guidance

    NASA Astrophysics Data System (ADS)

    Gong, Lixin; Ng, Lydia; Pathak, Sayan D.; Tutar, Ismail; Cho, Paul S.; Haynor, David R.; Kim, Yongmin

    2005-04-01

    Prostate segmentation in ultrasound images is a clinically important and technically challenging task. Despite several research attempts, few effective methods are available. One problem is the limited algorithmic robustness to common artifacts in clinical data sets. To improve the robustness, we have developed a hybrid level set method, which incorporates shape constraints into a region-based curve evolution process. The online segmentation method alternates between two steps, namely, shape model estimation (ME) and curve evolution (CE). The prior shape information is encoded in an implicit parametric model derived offline from manually outlined training data. Utilizing this prior shape information, the ME step tries to compute the maximum a posteriori estimate of the model parameters. The estimated shape is then used to guide the CE step, which in turn provides a new model initialization for the ME step. The process stops automatically when the curve locks onto the specific prostate shape. The ME and the CE steps complement each other to capture both global and local shape details. With shape guidance, this algorithm is less sensitive to initial contour placement and more robust even in the presence of large boundary gaps and strong clutter. Promising results are demonstrated on both synthetic and real prostate ultrasound images.

  6. Intravascular Ultrasound Guidance for Transjugular Intrahepatic Portosystemic Shunt Procedure in a Swine Model

    SciTech Connect

    Kew, Jacqueline; Davies, Roger P.

    2004-01-15

    A new method is described for guiding hepato-portalvenous puncture using a longitudinal side-view intravascular ultrasound(L-IVUS) transducer to assist in the performance of transjugularintrahepatic portosystemic shunt (TIPS) in three Australian swine.Simultaneous L-IVUS with an AcuNav (registered) 5-10 MHz 10 Fr transducer(Acuson Corporation, Mountain View, CA, USA) and fluoroscopy guidance was used to image and monitor the hepatic to portal venous puncture,dilatation of the tract, and deployment of the TIPS stent. Flow through the shunt could be demonstrated with both L-IVUS and angiography. TIPS was successful in all swine. The time for portal vein puncture once the target portal vein was identified was reduced at each attempt. The number of portal vein puncture attempts was 2, 1, and 1. No post-procedural complication was evident. L-IVUS-guided TIPS is practical and has the potential to improve safety by permitting simultaneous ultrasound and fluoroscopic imaging of the needle and target vascular structures. This technique allows for a more streamlined approach to TIPS, decreasing the fluoroscopic time (hence,decreasing the radiation exposure to the staff and patient) and anesthetic time. In addition, there are improved safety benefits obviating the need for wedged portography, facilitating avoidance of bile duct and hepatic arterial puncture, and minimizing hepatic injury by decreasing liver capsular puncture and the attendant risks.

  7. Endovascular Repair of Complex Aortic Aneurysms: Intravascular Ultrasound Guidance with an Intracardiac Probe

    SciTech Connect

    Zanchetta, Mario Rigatelli, Gianluca; Pedon, Luigi; Zennaro, Marco; Ronsivalle, Salvatore; Maiolino, Pietro

    2003-09-15

    To assess the accuracy and efficacy of intravascular ultrasound guidance obtained by an intracardiac ultrasound probe during complex aortic endografting. Between November 1999 and July 2002, 19 patients (5 female, 14 male; mean age 73.5 {+-} 2.1 years) underwent endovascular repair of thoracic (n = 10), complex abdominal (n = 6) and concomitant thoraco-abdominal (n = 3) aortic aneurysm. The most suitable size and configuration of the stent-graft were chosen on the basis of preoperative computed tomographic angiography (CTA) or magnetic resonance angiography (MRA). Intraoperative intravascular ultrasound imaging was obtained using a 9 Fr, 9 MHz intracardiac echocardiography (ICE) probe, 110 cm in length, inserted through a 10 Fr precurved long sheath. The endografts were deployed as planned by CTA or MRA. Before stent-graft deployment, the ICE probe allowed us to view the posterior aortic arch and descending thoraco-abdominal aorta without position-related artifacts, and to identify both sites of stent-graft positioning. After stent-graft deployment, the ICE probe allowed us to detect the need for additional modular components to internally reline the aorta in 11 patients, and to discover 2 incomplete graft expansions subsequently treated with adjunctive balloon angioplasty. In 1 patient, the ICE probe supported the decision that the patient was ineligible for the endovascular exclusion procedure. The ICE probe provides accurate information on the anatomy of the posterior aortic arch and thoracic and abdominal aortic aneurysms and a rapid identification of attachment sites and stent-graft pathology, allowing refinement and improvement of the endovascular strategy.

  8. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Li, Lin; Zhu, Ying

    2014-11-01

    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  9. A 3-D finite-element model for computation of temperature profiles and regions of thermal damage during focused ultrasound surgery exposures.

    PubMed

    Meaney, P M; Clarke, R L; ter Haar, G R; Rivens, I H

    1998-11-01

    Although there have been numerous models implemented for modeling thermal diffusion effects during focused ultrasound surgery (FUS), most have limited themselves to representing simple situations for which analytical solutions and the use of cylindrical geometries sufficed. For modeling single lesion formation and the heating patterns from a single exposure, good results were achieved in comparison with experimental results for predicting lesion size, shape and location. However, these types of approaches are insufficient when considering the heating of multiple sites with FUS exposures when the time interval between exposures is short. In such cases, the heat dissipation patterns from initial exposures in the lesion array formation can play a significant role in the heating patterns for later exposures. Understanding the effects of adjacent lesion formation, such as this, requires a three-dimensional (3-D) representation of the bioheat equation. Thus, we have developed a 3-D finite-element representation for modeling the thermal diffusion effects during FUS exposures in clinically relevant tissue volumes. The strength of this approach over past methods is its ability to represent arbitrarily shaped 3-D situations. Initial simulations have allowed calculation of the temperature distribution as a function of time for adjacent FUS exposures in excised bovine liver, with the individually computed point temperatures comparing favorably with published measurements. In addition to modeling these temperature distributions, the model was implemented in conjunction with an algorithm for calculating the thermal dose as a way of predicting lesion shape. Although used extensively in conventional hyperthermia applications, this thermal dose criterion has only been applied in a limited number of simulations in FUS for comparison with experimental measurements. In this study, simulations were run for focal depths 2 and 3 cm below the surface of pig's liver, using multiple

  10. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  11. A needle guidance system for biopsy and therapy using two-dimensional ultrasound

    SciTech Connect

    Bluvol, Nathan; Sheikh, Allison; Kornecki, Anat; Del Rey Fernandez, David; Downey, Donal; Fenster, Aaron

    2008-02-15

    Image-guided needle biopsies are currently used to provide a definitive diagnosis of breast cancer; however, difficulties in tumor targeting exist as the ultrasound (United States) scan plane and biopsy needle must remain coplanar throughout the procedure to display the actual needle tip position. The additional time associated with aligning and maintaining this coplanar relationship results in increased patient discomfort. Biopsy procedural efficiency is further hindered since needle pathway interpretation is often difficult, especially for needle insertions at large depths that usually require multiple reinsertions. The authors developed a system that would increase the speed and accuracy of current breast biopsy procedures using readily available two-dimensional (2D) US technology. This system is composed of a passive articulated mechanical arm that attaches to a 2D US transducer. The arm is connected to a computer through custom electronics and software, which were developed as an interface for tracking the positioning of the mechanical components in real time. The arm couples to the biopsy needle and provides visual guidance for the physician performing the procedure in the form of a real-time projected needle pathway overlay on an US image of the breast. An agar test phantom, with stainless steel targets interspersed randomly throughout, was used to validate needle trajectory positioning accuracy. The biopsy needle was guided by both the software and hardware components to the targets. The phantom, with the needle inserted and device decoupled, was placed in an x-ray stereotactic mammography (SM) machine. The needle trajectory and bead target locations were determined in three dimensions from the SM images. Results indicated a mean needle trajectory accuracy error of 0.75{+-}0.42 mm. This is adequate to sample lesions that are <2 mm in diameter. Chicken tissue test phantoms were used to compare core needle biopsy procedure times between experienced

  12. Catheter-based endomyocardial delivery of mesenchymal precursor cells using 3D echo guidance improves cardiac function in a chronic myocardial injury ovine model.

    PubMed

    Cheng, Yanping; Yi, Genghua; Conditt, Gerard B; Sheehy, Alexander; Kolodgie, Frank D; Tellez, Armando; Polyakov, Igor; Gu, Anguo; Aboodi, Michael S; Wallace-Bradley, David; Schuster, Michael; Martens, Timothy; Itescu, Silviu; Kaluza, Greg L; Basu, Shubhayu; Virmani, Renu; Granada, Juan F; Sherman, Warren

    2013-01-01

    The administration of bone marrow-derived stem cells may provide a new treatment option for patients with heart failure. Transcatheter cell injection may require multi-imaging modalities to optimize delivery. This study sought to evaluate whether endomyocardial injection of mesenchymal precursor cells (MPCs) could be guided by real-time 3D echocardiography (RT3DE) in treating chronic, postinfarction (MI) left ventricular (LV) dysfunction in sheep. Four weeks after induction of an anterior wall myocardial infarction in 39 sheep, allogeneic MPCs in doses of either 25 × 10(6) (n = 10), 75 × 10(6) (n = 9), or 225 × 10(6) (n = 10) cells or nonconditioned control media (n = 10) were administered intramyocardially into infarct and border zone areas using a catheter designed for combined fluoroscopic and RT3DE-guided injections. LV function was assessed before and after injection. Infarct dimension and vascular density were evaluated histologically. RT3DE-guided injection procedures were safe. Compared to controls, the highest dose MPC treatment led to increments in ejection fraction (3 ventricula 3% in 225M MPCs vs. -5 ± 4% in the control group, p < 0.01) and wall thickening in both infarct (4 ± 4% in 225M MPCs vs. -3 ± 6% in the control group, p = 0.02) and border zones (4 ± 6% in 225M MPCs vs. -8 ± 9% in the control group, p = 0.01). Histology analysis demonstrated significantly higher arteriole density in the infarct and border zones in the highest dose MPC-treated animals compared to the lower dose or control groups. Endomyocardial implantation of MPCs under RT3DE guidance was safe and without observed logistical obstacles. Significant increases in LV performance (ejection fraction and wall thickening) and neovascularization resulted from this technique, and so this technique has important implications for treating patients with postischemic LV dysfunction.

  13. Feasibility of Using Volumetric Contrast-Enhanced Ultrasound with a 3-D Transducer to Evaluate Therapeutic Response after Targeted Therapy in Rabbit Hepatic VX2 Carcinoma.

    PubMed

    Kim, Jeehyun; Kim, Jung Hoon; Yoon, Soon Ho; Choi, Won Seok; Kim, Young Jae; Han, Joon Koo; Choi, Byung-Ihn

    2015-12-01

    The aim of this study was to assess the feasibility of using dynamic contrast-enhanced ultrasound (DCE-US) with a 3-D transducer to evaluate therapeutic responses to targeted therapy. Rabbits with hepatic VX2 carcinomas, divided into a treatment group (n = 22, 30 mg/kg/d sorafenib) and a control group (n = 13), were evaluated with DCE-US using 2-D and 3-D transducers and computed tomography (CT) perfusion imaging at baseline and 1 d after the first treatment. Perfusion parameters were collected, and correlations between parameters were analyzed. In the treatment group, both volumetric and 2-D DCE-US perfusion parameters, including peak intensity (33.2 ± 19.9 vs. 16.6 ± 10.7, 63.7 ± 20.0 vs. 30.1 ± 19.8), slope (15.3 ± 12.4 vs. 5.7 ± 4.5, 37.3 ± 20.4 vs. 15.7 ± 13.0) and area under the curve (AUC; 1004.1 ± 560.3 vs. 611.4 ± 421.1, 1332.2 ± 708.3 vs. 670.4 ± 388.3), had significantly decreased 1 d after the first treatment (p = 0.00). In the control group, 2-D DCE-US revealed that peak intensity, time to peak and slope had significantly changed (p < 0.05); however, volumetric DCE-US revealed that peak intensity, time-intensity AUC, AUC during wash-in and AUC during wash-out had significantly changed (p = 0.00). CT perfusion imaging parameters, including blood flow, blood volume and permeability of the capillary vessel surface, had significantly decreased in the treatment group (p = 0.00); however, in the control group, peak intensity and blood volume had significantly increased (p = 0.00). It is feasible to use DCE-US with a 3-D transducer to predict early therapeutic response after targeted therapy because perfusion parameters, including peak intensity, slope and AUC, significantly decreased, which is similar to the trend observed for 2-D DCE-US and CT perfusion imaging parameters. PMID:26365926

  14. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field.

    PubMed

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P < 0.05) was obtained after 15 min of RUF exposure. We further demonstrated that the enhanced CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery. PMID:26267789

  15. Enhancing Macrophage Drug Delivery Efficiency via Co-Localization of Cells and Drug-Loaded Microcarriers in 3D Resonant Ultrasound Field

    PubMed Central

    Lee, Yu-Hsiang; Wu, Zhen-Yu

    2015-01-01

    In this study, a novel synthetic 3D molecular transfer system which involved the use of model drug calcein-AM-encapsulated poly(lactic-co-glycolic acid) microspheres (CAPMs) and resonant ultrasound field (RUF) with frequency of 1 MHz and output intensity of 0.5 W/cm2 for macrophage drug delivery was explored. We hypothesized that the efficiency of CAPMs-mediated drug delivery aided by RUF can be promoted by increasing the contact opportunities between cells and the micrometer-sized drug carriers due to effects of acoustic radiation forces generated by RUF. Through the fluoromicroscopic and flow cytometric analyses, our results showed that both DH82 macrophages and CAPMs can be quickly brought to acoustic pressure nodes within 20 sec under RUF exposure, and were consequently aggregated throughout the time course. The efficacy of cellular uptake of CAPMs was enhanced with increased RUF exposure time where a 3-fold augmentation (P < 0.05) was obtained after 15 min of RUF exposure. We further demonstrated that the enhanced CAPM delivery efficiency was mainly contributed by the co-localization of cells and CAPMs resulting from the application of the RUF, rather than from sonoporation. In summary, the developed molecular delivery approach provides a feasible means for macrophage drug delivery. PMID:26267789

  16. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  17. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    PubMed

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  18. Advantages of percutaneous abdominal biopsy under PET-CT/ultrasound fusion imaging guidance: a pictorial essay.

    PubMed

    Paparo, Francesco; Piccazzo, Riccardo; Cevasco, Luca; Piccardo, Arnoldo; Pinna, Francesco; Belli, Fiorenza; Bacigalupo, Lorenzo; Biscaldi, Ennio; De Caro, Giovanni; Rollandi, Gian Andrea

    2014-10-01

    Positron emission tomography (PET) is a functional imaging technique that can investigate the metabolic characteristics of tissues. Currently, PET images are acquired and co-registered with a computed tomography (CT) scan (PET-CT), which is employed for correction of attenuation and anatomical localization. In spite of the high negative predictive value of PET, false-positive results may occur; indeed, Fluorine 18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) uptake is not specific to cancer. As (18)F-FDG uptake may also be seen in non-malignant infectious or inflammatory processes, FDG-avid lesions may necessitate biopsy to confirm or rule out malignancy. However, some PET-positive lesions may have little or no correlative ultrasound (US) and/or CT findings (i.e., low conspicuity on morphological imaging). Since it is not possible to perform biopsy under PET guidance alone, owing to intrinsic technical limitations, PET information has to be integrated into a CT- or US-guided biopsy procedure (multimodal US/PET-CT fusion imaging). The purpose of this pictorial essay is to describe the technique of multimodal imaging fusion between real-time US and PET/CT, and to provide an overview of the clinical settings in which this multimodal integration may be useful in guiding biopsy procedures in PET-positive abdominal lesions.

  19. Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests.

    PubMed

    Kettenbach, Joachim; Kronreif, Gernot; Figl, Michael; Fürst, Martin; Birkfellner, Wolfgang; Hanel, Rudolf; Bergmann, Helmar

    2005-04-01

    The purpose of this study was to develop a robotic system for ultrasound (US)-guided biopsy and to validate the feasibility, accuracy and efficacy using phantom tests. Twenty peas (mean diameter 9.3+/-0.1 mm) embedded within a gel-phantom were selected for biopsy. Once the best access was defined, the position of the US transducer was recorded by an optical tracking system. Positional data of the transducer and the corresponding US image were transferred to the roboter planning system (LINUX-based industrial PC equipped with video capture card). Once the appropriate position, angulation and pitch were calculated, the robotic arm moved automatically with seven degrees-of-freedom to the planned insertion path, aiming the needle-positioning unit at the center of the target. Then, the biopsy was performed manually using a coaxial technique. The length of all harvested specimens was measured, and the deviation of the actual needle tract from the center of the target was evaluated sonographically. In all targets, the biopsy specimen (mean length 5+/-1.2 mm) was harvested with only one needle pass required The mean deviation of the needle tip from the center of the target was 1.1+/-0.8 mm. Robotic assisted biopsies in-vitro using US-guidance were feasible and provided high accuracy.

  20. Feasibility study on photoacoustic guidance for high-intensity focused ultrasound-induced hemostasis

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Phuc; Kim, Jeehyun; Ha, Kang-lyeol; Oh, Junghwan; Kang, Hyun Wook

    2014-10-01

    The feasibility of photoacoustic imaging (PAI) application was evaluated to map punctured blood vessels thermally treated by high-intensity focused ultrasound (HIFU) for hemostasis. A single-element HIFU transducer with a central frequency of 2.0 MHz, was used to induce thermal hemostasis on the punctured arteries. The HIFU-treated lesion was imaged and localized by high-contrast PAI guidance. The results showed that complete hemostasis was achieved after treatment of the damaged blood vessels within 25 to 52 s at the acoustic intensity of 3600 W/cm2. The coagulation time for the animal artery was ˜20% longer than that of the phantom possibly due to a lower Young's modulus. The reconstructed PA images were able to distinguish the treated area from the surrounding tissue in terms of augmented signal amplitudes (up to three times). Spectroscopic studies demonstrated that the optimal imaging wavelength was found to be 700 nm in order to reconstruct high-contrast photoacoustic images on HIFU-treated lesions. The proposed PAI integrated with HIFU treatment can be a feasible application to obtain safe and rapid hemostasis for acute arterial bleeding.

  1. Fast and Accurate Data Extraction for Near Real-Time Registration of 3-D Ultrasound and Computed Tomography in Orthopedic Surgery.

    PubMed

    Brounstein, Anna; Hacihaliloglu, Ilker; Guy, Pierre; Hodgson, Antony; Abugharbieh, Rafeef

    2015-12-01

    Automatic, accurate and real-time registration is an important step in providing effective guidance and successful anatomic restoration in ultrasound (US)-based computer assisted orthopedic surgery. We propose a method in which local phase-based bone surfaces, extracted from intra-operative US data, are registered to pre-operatively segmented computed tomography data. Extracted bone surfaces are downsampled and reinforced with high curvature features. A novel hierarchical simplification algorithm is used to further optimize the point clouds. The final point clouds are represented as Gaussian mixture models and iteratively matched by minimizing the dissimilarity between them using an L2 metric. For 44 clinical data sets from 25 pelvic fracture patients and 49 phantom data sets, we report mean surface registration accuracies of 0.31 and 0.77 mm, respectively, with an average registration time of 1.41 s. Our results suggest the viability and potential of the chosen method for real-time intra-operative registration in orthopedic surgery.

  2. Fast and Accurate Data Extraction for Near Real-Time Registration of 3-D Ultrasound and Computed Tomography in Orthopedic Surgery.

    PubMed

    Brounstein, Anna; Hacihaliloglu, Ilker; Guy, Pierre; Hodgson, Antony; Abugharbieh, Rafeef

    2015-12-01

    Automatic, accurate and real-time registration is an important step in providing effective guidance and successful anatomic restoration in ultrasound (US)-based computer assisted orthopedic surgery. We propose a method in which local phase-based bone surfaces, extracted from intra-operative US data, are registered to pre-operatively segmented computed tomography data. Extracted bone surfaces are downsampled and reinforced with high curvature features. A novel hierarchical simplification algorithm is used to further optimize the point clouds. The final point clouds are represented as Gaussian mixture models and iteratively matched by minimizing the dissimilarity between them using an L2 metric. For 44 clinical data sets from 25 pelvic fracture patients and 49 phantom data sets, we report mean surface registration accuracies of 0.31 and 0.77 mm, respectively, with an average registration time of 1.41 s. Our results suggest the viability and potential of the chosen method for real-time intra-operative registration in orthopedic surgery. PMID:26365924

  3. Needle placement for piriformis injection using 3-D imaging.

    PubMed

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M

    2013-01-01

    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure. PMID:23703429

  4. Monte Carlo investigation of the dosimetric effect of the Autoscan ultrasound probe for guidance in radiotherapy

    NASA Astrophysics Data System (ADS)

    Martyn, Michael; O'Shea, Tuathan; Harris, Emma; Bamber, Jeffrey; Gilroy, Stephen; Foley, Mark J.

    2016-04-01

    The aim of this study was to quantify the dosimetric effect of the Autoscan™ ultrasound probe, which is a 3D transperineal probe used for real-time tissue tracking during the delivery of radiotherapy. CT images of an anthropomorphic phantom, with and without the probe placed in contact with its surface, were obtained (0.75 mm slice width, 140 kVp). CT datasets were used for relative dose calculation in Monte Carlo simulations of a 7-field plan delivered to the phantom. The Monte Carlo software packages BEAMnrc and DOSXYZnrc were used for this purpose. A number of simulations, which varied the distance of the radiation field edge from the probe face (0 mm to 5 mm), were performed. Perineal surface doses as a function of distance from the radiation field edge, with and without the probe in place, were compared. The presence of the probe was found to result in an increase in perineal surface dose, relative to the maximum dose. The maximum increase in surface dose was 18.15%, at a probe face to field edge distance of 0 mm. However increases in surface dose fall-off rapidly as this distance increases, agreeing within Monte Carlo simulation uncertainty at distances >= 5 mm. Using data from three patient volunteers, a typical probe face to field edge distance was calculated to be ≍20 mm. Our results therefore indicate that the presence of the probe is unlikely to adversely affect a typical patient treatment, since the dosimetric effect of the probe is minimal at these distances.

  5. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  6. Ultrasound

    MedlinePlus

    Ultrasound is a useful procedure for monitoring the baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two- ... sound waves and appear dark or black. An ultrasound can supply vital information about a mother's pregnancy ...

  7. Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management

    NASA Astrophysics Data System (ADS)

    Fontanarosa, Davide; van der Meer, Skadi; Bamber, Jeffrey; Harris, Emma; O'Shea, Tuathan; Verhaegen, Frank

    2015-02-01

    In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information. This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O’Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.

  8. Active Breathing Control in Combination With Ultrasound Imaging: A Feasibility Study of Image Guidance in Stereotactic Body Radiation Therapy of Liver Lesions

    SciTech Connect

    Bloemen-van Gurp, Esther; Meer, Skadi van der; Hendry, Janet; Buijsen, Jeroen; Visser, Peter; Fontanarosa, Davide; Lachaine, Martin; Lammering, Guido; Verhaegen, Frank

    2013-03-15

    Purpose: Accurate tumor positioning in stereotactic body radiation therapy (SBRT) of liver lesions is often hampered by motion and setup errors. We combined 3-dimensional ultrasound imaging (3DUS) and active breathing control (ABC) as an image guidance tool. Methods and Materials: We tested 3DUS image guidance in the SBRT treatment of liver lesions for 11 patients with 88 treatment fractions. In 5 patients, 3DUS imaging was combined with ABC. The uncertainties of US scanning and US image segmentation in liver lesions were determined with and without ABC. Results: In free breathing, the intraobserver variations were 1.4 mm in left-right (L-R), 1.6 mm in superior-inferior (S-I), and 1.3 mm anterior-posterior (A-P). and the interobserver variations were 1.6 mm (L-R), 2.8 mm (S-I), and 1.2 mm (A-P). The combined uncertainty of US scanning and matching (inter- and intraobserver) was 4 mm (1 SD). The combined uncertainty when ABC was used reduced by 1.7 mm in the S-I direction. For the L-R and A-P directions, no significant difference was observed. Conclusion: 3DUS imaging for IGRT of liver lesions is feasible, although using anatomic surrogates in the close vicinity of the lesion may be needed. ABC-based breath-hold in midventilation during 3DUS imaging can reduce the uncertainty of US-based 3D table shift correction.

  9. Real-time needle guidance with photoacoustic and laser-generated ultrasound probes

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-03-01

    Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.

  10. 76 FR 43332 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ...; Class II Special Controls Guidance Document: Focused Ultrasound Stimulator System for Aesthetic Use... Guidance Document: Focused Ultrasound Stimulator System for Aesthetic Use.'' This guidance document... ``Class II Special Controls Guidance Document: Focused Ultrasound Stimulator System for Aesthetic Use''...

  11. The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound are strongly correlated, but 2D overestimates thyroid volume in the presence of nodules.

    PubMed

    Rago, T; Bencivelli, W; Scutari, M; Di Cosmo, C; Rizzo, C; Berti, P; Miccoli, P; Pinchera, A; Vitti, P

    2006-05-01

    The newly developed three-dimensional (3D) and two-dimensional (2D) thyroid ultrasound (US) were compared in assessing thyroid volume (TV) in 104 patients: 53 had an isolated thyroid nodule, 32 toxic diffuse goiter, 17 non-toxic multinodular goiter, 1 toxic multinodular goiter and 1 a toxic adenoma. A real-time Technos apparatus (Esaote SpA, Italy) with a 7,5 MHz linear transducer was used. The volume of thyroid lobes by 2D was calculated according to the ellipsoid formula. In the same session, TV by 3D US was calculated using a probe tracking system (in vivo ScanNT Esaote 3.4 MedCom. Darmasdt) and software to reconstruct 3D images, directly giving the lobe volume. There was a very good agreement between 2D and 3D, but in 94/208 lobes with nodular lesions 2D showed a 10% systematic overestimation compared to 3D, the percentage error being higher in lobes with lower volumes. A possible explanation for this result is the inadequacy of the ellipsoid formula in forecasting the correct lobe profile in the presence of nodules. This intrinsic defect of 2D US should be taken into account when evaluating TV in patients with nodular goiter.

  12. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    PubMed Central

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  13. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    PubMed

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  14. Fast Conformal Thermal Ablation in the Prostate with Transurethral Multi-Sectored Ultrasound Devices and MR Guidance

    NASA Astrophysics Data System (ADS)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Pauly, Kim Butts; Rieke, Viola; Sommer, Graham

    2007-05-01

    Transurethral ultrasound applicators incorporating an array of multisectored tubular transducers were evaluated in theoretical simulations and in vivo canine prostates under MR guidance as a method for fast, conformal thermal therapy of the prostate. Comprehensive simulations with a biothermal model investigated the effect on lesion creation of sector size, perfusion, treatment time, rectal cooling, prostate target dimensions, and feedback controller parameters (maximum temperature, pilot points at boundary, update times). In vivo canine prostates (n = 4) were treated with trisectored ultrasound transducers (3 mm OD) under MR temperature monitoring to contour the ablation zone (>52 C for 1-2 min) to the boundary of the prostate. Contiguous thermal lesions extended 2 cm in radius from the urethra in less than 15 min and independent sector control simultaneously allowed for conformal treatment in the angular dimension. Experiments investigated sequential translation of the transducer assembly within the catheter for tailoring heat treatments to different partitions in the prostate (base, apex) without changing the initial setup. This treatment method offered greater lesion shape control in three dimensions and slightly lengthened the overall treatment time. The MR temperature images correlated with post-treatment histology and accurately controlled the heating to the target boundary. MR-based control of transurethral ultrasound devices appeared more practical with multisectored transducers compared to rotating curvilinear and planar applicators due to less stringent requirements on spatial and temporal MR parameters. This study demonstrated the applicability of these devices in the prostate for anterior-lateral BPH treatment, and whole gland or quadrant target volumes for cancer treatment.

  15. Virtual reality-enhanced ultrasound guidance for atrial ablation: in vitro epicardial study.

    PubMed

    Linte, Cristian A; Wiles, Andrew; Moore, John; Wedlake, Chris; Peters, Terry M

    2008-01-01

    In an effort to reduce morbidity of cardiac interventions, minimizing invasiveness inevitably leads to limited visual access to the surgical targets. To address these limitations, we provide the surgeons with a robust visualization environment that integrates interventional ultrasound imaging augmented with pre-operative anatomical models and virtual surgical instruments within a virtual reality environment. Here we present an in vitro study on a cardiac phantom that mimics an ablation therapy procedure, which allows us to assess the feasibility of our surgical system in comparison to traditional intra-operative ultrasound imaging. Following surgical target identification via an electro-anatomical model, the "ablation procedure" is performed blindly. A 2.8 mm RMS targeting error is achieved using our novel surgical system. This level of accuracy is adequate from both a clinical and engineering perspective, under the inherent procedure requirements and limitations of the system. PMID:18982659

  16. Pulsed radiofrequency under ultrasound guidance for the tarsal tunnel syndrome: two case reports.

    PubMed

    Chon, Jin Young; Hahn, Yun Jin; Sung, Choon Ho; Jung, Sung Hoon; Moon, Ho Sik

    2014-12-01

    Tarsal tunnel syndrome (TTS) is a compression neuropathy that results from entrapment of the posterior tibial nerve or its branches. TTS may be treated either by conservative measures, including physical therapy, medications, and steroid injections, or by surgical decompression. Despite a variety of treatments, a few cases of TTS will relapse, and many cases of recurrent TTS will require re-operation. Pulsed radiofrequency (PRF) is known to have a number of advantages for pain management, particularly as this technique does not cause neural compromise such as motor weakness. Here, we report a new application of ultrasound-guided PRF in two cases of intractable TTS. Both patients had a long duration of severe foot pain and had been treated with various therapeutic modalities without lasting relief. We applied ultrasound-guided PRF to the affected posterior tibial nerve in each patient, and both had significantly reduced pain intensity scores and analgesic requirements without any complications. Ultrasound-guided PRF for intractable TTS relieved severe foot pain. It may supersede surgery as a reliable treatment for intractable TTS.

  17. Percutaneous transhepatic duodenostomy for a gastrectomy case with CT guidance and real-time visualization by an ultrasound and endoscopy.

    PubMed

    Moriwaki, Yoshihiro; Otani, Jun; Sawada, Yoshiyuki; Okuda, Junzo; Niwano, Toshiyuki; Ntta, Tachiko; Ohshima, Chiaki

    2015-09-01

    After gastrectomy, the remnant stomach, a small stomach behind the lateral segment of the liver, is thought to be a relative contraindication to receiving a percutaneous endoscopy-guided gastrostomy (PEG). We successfully performed a percutaneous duodenostomy in a case with remnant stomach. We used a transhepatic pull method with computed tomography (CT) guidance and real-time visualization by using ultrasound (US) and an endoscopy. The procedure was as follows: 1. Full stretching of the remnant stomach; 2. Insertion of a fine injection needle into the duodenal lumen through the lateral segment of the liver without an intrahepatic vascular and biliary injury using real-time visualization through US; 3. Confirmation of the location of the fine needle using abdominal CT, which showed the fine needle penetrating through the lateral segment and the duodenal lumen; 4. Insertion of the thick needle of the PEG kit just laterally of the fine needle; 5. Confirmation of the location of the thick needle using a repeated CT; 6. Endoscopic confirmation of the location of the two needles; 7. Changing the direction of the thick needle using guidance with endoscopy, inserting the thick needle into the duodenal lumen, and removing the fine needle; 8. Insertion of the guide wire through the thick needle; and 9. Placement of the PEG tube using the pull method. Using a real-time US scan, we detected the puncture of the anterior wall of the duodenum or stomach and avoided intrahepatic major vascular and biliary injuries.

  18. Phantom study of an ultrasound guidance system for transcatheter aortic valve implantation.

    PubMed

    McLeod, A Jonathan; Currie, Maria E; Moore, John T; Bainbridge, Daniel; Kiaii, Bob B; Chu, Michael W A; Peters, Terry M

    2016-06-01

    A guidance system using transesophageal echocardiography and magnetic tracking is presented which avoids the use of nephrotoxic contrast agents and ionizing radiation required for traditional fluoroscopically guided procedures. The aortic valve is identified in tracked biplane transesophageal echocardiography and used to guide stent deployment in a mixed reality environment. Additionally, a transapical delivery tool with intracardiac echocardiography capable of monitoring stent deployment was created. This system resulted in a deployment depth error of 3.4mm in a phantom. This was further improved to 2.3mm with the custom-made delivery tool. In comparison, the variability in deployment depth for traditional fluoroscopic guidance was estimated at 3.4mm.

  19. Zero Contrast Coronary Intervention Using Intravascular Ultrasound Guidance in a Patient with Allergy to Contrast Medium.

    PubMed

    Nagaoka, Masakazu; Tsumuraya, Naoko; Nie, Masaki; Ikari, Yuji

    2016-01-01

    The occurrence of allergy to iodinated contrast in certain patients may prevent the use of percutaneous coronary intervention (PCI) in such cases. We present a 53-year-old male with a history of allergic reaction to iodinated contrast who successfully underwent intravascular ultrasound (IVUS) guided PCI. Stent size was determined based on IVUS. After PCI, stent expansion and a lack of edge dissection or incomplete apposition were confirmed by IVUS. Thus, PCI without contrast injection under IVUS may be feasible in selected patients with allergy to iodinated contrast. PMID:27628609

  20. Accuracy of Ultrasound-Based Image Guidance for Daily Positioning of the Upper Abdomen: An Online Comparison With Cone Beam CT

    SciTech Connect

    Boda-Heggemann, Judit Mennemeyer, Philipp; Wertz, Hansjoerg; Riesenacker, Nadja; Kuepper, Beate; Lohr, Frank; Wenz, Frederik

    2009-07-01

    Purpose: Image-guided intensity-modulated radiotherapy can improve protection of organs at risk when large abdominal target volumes are irradiated. We estimated the daily positioning accuracy of ultrasound-based image guidance for abdominal target volumes by a direct comparison of daily imaging obtained with cone beam computed tomography (CBCT). Methods and Materials: Daily positioning (n = 83 positionings) of 15 patients was completed by using ultrasound guidance after an initial CBCT was obtained. Residual error after ultrasound was estimated by comparison with a second CBCT. Ultrasound image quality was visually rated using a scale of 1 to 4. Results: Of 15 patients, 7 patients had good sonographic imaging quality, 5 patients had satisfactory sonographic quality, and 3 patients were excluded because of unsatisfactory sonographic quality. When image quality was good, residual errors after ultrasound were -0.1 {+-} 3.11 mm in the x direction (left-right; group systematic error M = -0.09 mm; standard deviation [SD] of systematic error, {sigma} = 1.37 mm; SD of the random error, {sigma} = 2.99 mm), 0.93 {+-} 4.31 mm in the y direction (superior-inferior, M = 1.12 mm; {sigma} = 2.96 mm; {sigma} = 3.39 mm), and 0.71 {+-} 3.15 mm in the z direction (anteroposterior; M = 1.01 mm; {sigma} = 2.46 mm; {sigma} = 2.24 mm). For patients with satisfactory image quality, residual error after ultrasound was -0.6 {+-} 5.26 mm in the x (M = 0.07 mm; {sigma} = 5.67 mm; {sigma} = 4.86 mm), 1.76 {+-} 4.92 mm in the y (M = 3.54 mm; {sigma} = 4.1 mm; {sigma} = 5.29 mm), and 1.19 {+-} 4.75 mm in the z (M = 0.82 mm; {sigma} = 2.86 mm; {sigma} = 3.05 mm) directions. Conclusions: In patients from whom good sonographic image quality could be obtained, ultrasound improved daily positioning accuracy. In the case of satisfactory image quality, ultrasound guidance improved accuracy compared to that of skin marks only minimally. If sonographic image quality was unsatisfactory, daily CBCT

  1. Catheter-Based Ultrasound Applicators for Selective Prostate Ablation With MR-Guidance

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Ross, Anthony B.; Nau, Will H.; Butts, Kim; Rieke, Viola; Sommer, Graham

    2005-03-01

    The purpose of this study was to develop catheter-based ultrasound devices and techniques specifically for treating prostate cancer in conjunction with MRI thermal imaging to monitor and control treatment progression. Directional transurethral applicators have been designed with arrays of sectored tubular (90° active acoustic sector) or narrow planar transducer segments integrated with a flexible delivery catheter with a cooling balloon. Interstitial applicators (2.4 mm catheter diameter, 1.5 mm OD tubular transducers) with 180° active acoustic sectors have been developed specifically for transperineal implantation to treat the posterior portion of the prostate. Both heating strategies were evaluated via in vivo experiments within canine prostate. Both transurethral and interstitial treatment strategies demonstrated significant potential for selective thermal ablation of localized regions of the prostate, particularly when MRI thermal imaging is used to guide and assess treatment.

  2. Ultrasound guidance for central vascular access in the pediatric emergency department.

    PubMed

    Skippen, Peter; Kissoon, Niranjan

    2007-03-01

    Central vascular access is sometimes required for hemodynamic monitoring and infusion of fluids and medications in the pediatric emergency department. In many cases, it is attempted after failed peripheral venous and intraosseous access. Some evidence exists demonstrating benefits of ultrasound (US)-guided central vascular cannulation in adults in emergency departments. With appropriate education in its use, US-guided cannulation of central veins in children is likely to be associated with less complications and greater success. In the pediatric emergency department, the femoral vein is the most practical central venous cannulation site. A sound educational and quality assurance program is necessary for US-guided cannulation in the pediatric emergency department. PMID:17413442

  3. An In Vivo Validation of the Application of Acoustic Radiation Force to Enhance the Diagnostic Utility of Molecular Imaging Using 3D Ultrasound

    PubMed Central

    Gessner, Ryan C.; Streeter, Jason E.; Kothadia, Roshni; Feingold, Steven; Dayton, Paul A.

    2012-01-01

    For over a decade, the application of acoustic radiation force (ARF) has been proposed as a mechanism to increase ultrasonic molecular imaging (MI) sensitivity in vivo. Presented herein is the first noninvasive in vivo validation of ARF-enhanced MI with an unmodified clinical system. First, an in vitro optical-acoustical setup was used to optimize system parameters and ensure sufficient microbubble translation when exposed to ARF. 3D ARF-enhanced MI was then performed on 7 rat fibrosarcoma tumors using microbubbles targeted to αvβ3 and non-targeted microbubbles. Low-amplitude (< 25 kPa) 3D ARF pulse sequences were tested and compared to passive targeting studies in the same animal. Our results demonstrate that a 78% increase in image intensity from targeted microbubbles can be achieved when using ARF relative to the passive targeting studies. Furthermore, ARF did not significantly increase image contrast when applied to non-targeted agents, suggesting that ARF did not increase non-specific adhesion. PMID:22341052

  4. Ultrasound

    MedlinePlus

    ... reflect off body structures. A computer receives the waves and uses them to create a picture. Unlike with an x-ray or CT scan, this test does not use ionizing radiation. The test is done in the ultrasound ...

  5. Comparison of prostate MRI-3D transrectal ultrasound fusion biopsy for first-time and repeat biopsy patients with previous atypical small acinar proliferation

    PubMed Central

    Cool, Derek W.; Romagnoli, Cesare; Izawa, Jonathan I.; Chin, Joseph; Gardi, Lori; Tessier, David; Mercado, Ashley; Mandel, Jonathan; Ward, Aaron D.; Fenster, Aaron

    2016-01-01

    Introduction: This study evaluates the clinical benefit of magnetic resonance-transrectal ultrasound (MR-TRUS) fusion biopsy over systematic biopsy between first-time and repeat prostate biopsy patients with prior atypical small acinar proliferation (ASAP). Materials: 100 patients were enrolled in a single-centre prospective cohort study: 50 for first biopsy, 50 for repeat biopsy with prior ASAP. Multiparameteric magnetic resonance imaging (MP-MRI) and standard 12-core ultrasound biopsy (Std-Bx) were performed on all patients. Targeted biopsy using MRI-TRUS fusion (Fn-Bx) was performed f suspicious lesions were identified on the pre-biopsy MP-MRI. Classification of clinically significant disease was assessed independently for the Std-Bx vs. Fn-Bx cores to compare the two approaches. Results: Adenocarcinoma was detected in 49/100 patients (26 first biopsy, 23 ASAP biopsy), with 25 having significant disease (17 first, 8 ASAP). Fn-Bx demonstrated significantly higher per-core cancer detection rates, cancer involvement, and Gleason scores for first-time and ASAP patients. However, Fn-Bx was significantly more likely to detect significant cancer missed on Std-Bx for ASAP patients than first-time biopsy patients. The addition of Fn-Bx to Std-Bx for ASAP patients had a 166.7% relative risk reduction for missing Gleason ≥ 3 + 4 disease (number needed to image with MP-MRI=10 patients) compared to 6.3% for first biopsy (number to image=50 patients). Negative predictive value of MP-MRI for negative biopsy was 79% for first-time and 100% for ASAP patients, with median followup of 32.1 ± 15.5 months. Conclusions: MR-TRUS Fn-Bx has a greater clinical impact for repeat biopsy patients with prior ASAP than biopsy-naïve patients by detecting more significant cancers that are missed on Std-Bx. PMID:27800057

  6. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    SciTech Connect

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J; Dehghan, E; Burdette, E; Fichtinger, G

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  7. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: In vivo evaluation under MR guidance

    SciTech Connect

    Kinsey, Adam M.; Diederich, Chris J.; Rieke, Viola; Nau, William H.; Pauly, Kim Butts; Bouley, Donna; Sommer, Graham

    2008-05-15

    The purpose of this study was to explore the feasibility and performance of a multi-sectored tubular array transurethral ultrasound applicator for prostate thermal therapy, with potential to provide dynamic angular and length control of heating under MR guidance without mechanical movement of the applicator. Test configurations were fabricated, incorporating a linear array of two multi-sectored tubular transducers (7.8-8.4 MHz, 3 mm OD, 6 mm length), with three 120 deg. independent active sectors per tube. A flexible delivery catheter facilitated water cooling (100 ml min{sup -1}) within an expandable urethral balloon (35 mm longx10 mm diameter). An integrated positioning hub allows for rotating and translating the transducer assembly within the urethral balloon for final targeting prior to therapy delivery. Rotational beam plots indicate {approx}90 deg. - 100 deg. acoustic output patterns from each 120 deg. transducer sector, negligible coupling between sectors, and acoustic efficiencies between 41% and 53%. Experiments were performed within in vivo canine prostate (n=3), with real-time MR temperature monitoring in either the axial or coronal planes to facilitate control of the heating profiles and provide thermal dosimetry for performance assessment. Gross inspection of serial sections of treated prostate, exposed to TTC (triphenyl tetrazolium chloride) tissue viability stain, allowed for direct assessment of the extent of thermal coagulation. These devices created large contiguous thermal lesions (defined by 52 deg. C maximum temperature, t{sub 43}=240 min thermal dose contours, and TTC tissue sections) that extended radially from the applicator toward the border of the prostate ({approx}15 mm) during a short power application ({approx}8-16 W per active sector, 8-15 min), with {approx}200 deg. or 360 deg. sector coagulation demonstrated depending upon the activation scheme. Analysis of transient temperature profiles indicated progression of lethal temperature

  8. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  9. The use of trigger point "dry" needling under ultrasound guidance for the treatment of myofascial pain (technological innovation and literature review).

    PubMed

    Bubnov, Rostyslav V

    2010-01-01

    The aim of the study was to examine the use of trigger point dry needling under ultrasound guidance and myofascial release for the treatment of myofascial pain and to increase the provability of the puncture treatment by visual verification. A review of modern and traditional approaches to myofascial pain treatment is presented in the article. For the first time the trigger point was visualized by ultrasound (US) in this study and ultrasound guided needling therapy of muscles was performed as well. The group of 91 patients, suffered from myofascial pain of different location was included in the study. The patients were treated during last year by patented method (UA patent A 2010 06283). The pain relief effect was registered in 93.3% patients.

  10. The use of trigger point "dry" needling under ultrasound guidance for the treatment of myofascial pain (technological innovation and literature review).

    PubMed

    Bubnov, Rostyslav V

    2010-01-01

    The aim of the study was to examine the use of trigger point dry needling under ultrasound guidance and myofascial release for the treatment of myofascial pain and to increase the provability of the puncture treatment by visual verification. A review of modern and traditional approaches to myofascial pain treatment is presented in the article. For the first time the trigger point was visualized by ultrasound (US) in this study and ultrasound guided needling therapy of muscles was performed as well. The group of 91 patients, suffered from myofascial pain of different location was included in the study. The patients were treated during last year by patented method (UA patent A 2010 06283). The pain relief effect was registered in 93.3% patients. PMID:21485754

  11. A prospective audit of complications in 100 consecutive pediatric percutaneous renal biopsies done under real-time ultrasound guidance

    PubMed Central

    Sinha, R.; Maji, B.; Sarkar, B.; Meur, S.

    2016-01-01

    Despite being a common procedure, percutaneous renal biopsy (PRB) carries the potential for complications. The British Association of Paediatric Nephrologist (BAPN) has published standards for pediatric PRB. As Indian data are scarce, we conducted a prospective audit of 100 consecutive pediatric renal biopsies (60% males) under real-time ultrasound guidance. Nephrotic syndrome was the most common indication for PRB (68%) with minimal change disease (30%) and focal segmental glomerulosclerosis (25%) being the most common histopathological lesions. Gross hematuria was observed in six cases. Major complications was noted in one case, who needed longer hospital stay. The result of the audit demonstrated achievability of BAPN standards. In addition, we also show the usefulness of 16 gauge biopsy needle over 18 gauge biopsy needles (median number of glomeruli 25, range 3–90 vs 13, range 6–46, P = 0.001) without any increase in complications. Being a single center study, we do hope that our results will encourage a wider survey on the current state of pediatric PRB. PMID:27795625

  12. Ultrasound-assisted synthesis of nano-structured 3D zinc(II) metal-organic polymer: precursor for the fabrication of ZnO nano-structure.

    PubMed

    Karizi, Farnoosh Zare; Safarifard, Vahid; Khani, Sarah Karbalaei; Morsali, Ali

    2015-03-01

    Nanorods of a three-dimensional Zn(II) metal-organic framework, [Zn₂(btec)(DMF)₂]n (1) (btec=1,2,4,5-benzenetetracarboxylate, DMF=N,N-dimethylformamide), have been synthesized by a sonochemical process and characterized by field emission scanning electron microscopy (FE-SEM), powder XRD and FT-IR spectroscopy. Structural determination of compound 1 was determined by single crystal X-ray diffraction. The thermal stability of compound 1 has been studied by thermal gravimetric analysis (TGA), too. The role of initial reagent concentrations and power ultrasound irradiation and also time, on size and morphology of nano-structured compound 1 have been studied. ZnO nano-structures also were simply synthesized by direct calcination of the single crystals and nano-sized compound 1 at 600 °C. The size and morphology of the ZnO nano-structures are dependent upon the particles size of compound 1. A decrease in the particles size of compound 1 leads to a decrease in the particles size of the ZnO.

  13. Automatic multimodal 2D/3D image fusion of ultrasound computer tomography and x-ray mammography for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Hopp, Torsten; Duric, Neb; Ruiter, Nicole V.

    2012-03-01

    Breast cancer is the most common cancer among women. The established screening method to detect breast cancer in an early state is X-ray mammography. However, X-ray frequently provides limited contrast of tumors located within glandular tissue. A new imaging approach is Ultrasound Computer Tomography generating threedimensional volumes of the breast. Three different images are available: reflectivity, attenuation and speed of sound. The correlation of USCT volumes with X-ray mammograms is of interest for evaluation of the new imaging modality as well as for a multimodal diagnosis. Yet, both modalities differ in image dimensionality, patient positioning and deformation state of the breast. In earlier work we proposed a methodology based on Finite Element Method to register speed of sound images with the according mammogram. In this work, we enhanced the methodology to register all three image types provided by USCT. Furthermore, the methodology is now completely automated using image similarity measures to estimate rotations in datasets. A fusion methodology is proposed which combines the information of the three USCT image types with the X-ray mammogram via semitransparent overlay images. The evaluation was done using 13 datasets from a clinical study. The registration accuracy was measured by the displacement of the center of a lesion marked in both modalities. Using the automated rotation estimation, a mean displacement of 10.4 mm was achieved. Due to the clinically relevant registration accuracy, the methodology provides a basis for evaluation of the new imaging device USCT as well as for multimodal diagnosis.

  14. MRI-3D ultrasound-X-ray image fusion with electromagnetic tracking for transendocardial therapeutic injections: in-vitro validation and in-vivo feasibility.

    PubMed

    Hatt, Charles R; Jain, Ameet K; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N

    2013-03-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart.

  15. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report

    NASA Astrophysics Data System (ADS)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen

    2015-10-01

    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  16. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    SciTech Connect

    Surry, K. J. M.; Mills, G. R.; Bevan, K.; Downey, D. B.; Fenster, A.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM and US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target localization

  17. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications.

    PubMed

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-21

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  18. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications

    NASA Astrophysics Data System (ADS)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma

    2016-04-01

    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  19. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide.

    PubMed

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent

    2010-02-01

    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.

  20. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  1. In vivo cytological observation of liver and spleen by using high-resolution microendoscopy system under endoscopic ultrasound guidance: A preliminary study using a swine model

    PubMed Central

    Suzuki, Rei; Shin, Dongsuk; Richards-Kortum, Rebecca; Coghlan, Lezlee; Bhutani, Manoop S.

    2016-01-01

    Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) is useful to obtain specimens from lesions underlying deep parts of the liver and spleen. However, the development of novel ancillary techniques must be explored to reduce the number of needle passes and potential adverse effects during this procedure. We conducted an animal study using a swine to demonstrate technical feasibility of in vivo cytological observation of liver and spleen using the high-resolution microendoscopy (HRME) system under EUS guidance. We successfully performed the study. No significant acute adverse events occurred during the procedure. The HRME system could obtain clear images representing cytology-level morphology of spleen and liver. Hence, it is found out that in vivo cytological observation of liver and spleen using the HRME system under EUS guidance is technically feasible. PMID:27503155

  2. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  4. 3D simulation of parametric ultrasound fields

    NASA Astrophysics Data System (ADS)

    Prieur, Fabrice

    2012-09-01

    Parametric sonar is widely used for seafloor characterization, sub-bottom object detection, or underwater communication. It takes advantage of the interaction between two primary beams transmitted at slightly different frequencies. Due to nonlinear propagation, two secondary beams at the sum and difference frequency are generated. The signal at the difference frequency combines sub-bottom penetration due to low attenuation, and high resolution due to an acoustic beam with a narrow mainlobe and negligible sidelobes. A method is presented that provides a full three dimensional estimate for the amplitude of the secondary fields at any depth without the need for stepwise propagation. The method applies to two dimensional transducers of arbitrary geometry and distribution transmitting wideband pulses. The method is limited by the assumption of a quasi-linear propagation in a homogeneous medium. The obtained results in the case of a flat piston transducer compare favorably to previous measurements and numerical estimates from proved methods.

  5. Electromagnetically navigated laparoscopic ultrasound.

    PubMed

    Wilheim, Dirk; Feussner, Hubertus; Schneider, Armin; Harms, Jens

    2003-01-01

    A three-dimensional (3D) representation of laparoscopic ultrasound examinations could be helpful in diagnostic and therapeutic laparoscopy, but has not yet been realised with flexible laparoscopic ultrasound probes. Therefore, an electromagnetic navigation system was integrated into the tip of a conventional laparoscopic ultrasound probe. Navigated 3D laparoscopic ultrasound was compared with the imaging data of 3D navigated transcutaneous ultrasound and 3D computed tomography (CT) scan. The 3D CT scan served as the "gold standard". Clinical applicability in standardized operating room (OR) settings, imaging quality, diagnostic potential, and accuracy in volumetric assessment of various well-defined hepatic lesions were analyzed. Navigated 3D laparoscopic ultrasound facilitates exact definition of tumor location and margins. As compared with the "gold standard" of the 3D CT scans, 3D laparoscopic ultrasound has a tendency to underestimate the volume of the region of interest (ROI) (Delta3.1%). A comparison of 3D laparoscopy and transcutaneous 3D ultrasonography demonstrated clearly that the former is more accurate for volumetric assessment of the ROI and facilitates a more detailed display of the lesions. 3D laparoscopic ultrasound imaging with a navigated probe is technically feasible. The technique facilitates detailed ultrasound evaluation of laparoscopic procedures that involve visual, in-depth, and volumetric perception of complex liver pathologies. Navigated 3D laparoscopic ultrasound may have the potential to promote the practical role of laparoscopic ultrasonography, and become a valuable tool for local ablative therapy. In this article, our clinical experiences with a certified prototype of a 3D laparoscopic ultrasound probe, as well as its in vitro and in vivo evaluation, is reported.

  6. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  7. Novel 3D ultrasound image-based biomarkers based on a feature selection from a 2D standardized vessel wall thickness map: a tool for sensitive assessment of therapies for carotid atherosclerosis

    NASA Astrophysics Data System (ADS)

    Chiu, Bernard; Li, Bing; Chow, Tommy W. S.

    2013-09-01

    With the advent of new therapies and management strategies for carotid atherosclerosis, there is a parallel need for measurement tools or biomarkers to evaluate the efficacy of these new strategies. 3D ultrasound has been shown to provide reproducible measurements of plaque area/volume and vessel wall volume. However, since carotid atherosclerosis is a focal disease that predominantly occurs at bifurcations, biomarkers based on local plaque change may be more sensitive than global volumetric measurements in demonstrating efficacy of new therapies. The ultimate goal of this paper is to develop a biomarker that is based on the local distribution of vessel-wall-plus-plaque thickness change (VWT-Change) that has occurred during the course of a clinical study. To allow comparison between different treatment groups, the VWT-Change distribution of each subject must first be mapped to a standardized domain. In this study, we developed a technique to map the 3D VWT-Change distribution to a 2D standardized template. We then applied a feature selection technique to identify regions on the 2D standardized map on which subjects in different treatment groups exhibit greater difference in VWT-Change. The proposed algorithm was applied to analyse the VWT-Change of 20 subjects in a placebo-controlled study of the effect of atorvastatin (Lipitor). The average VWT-Change for each subject was computed (i) over all points in the 2D map and (ii) over feature points only. For the average computed over all points, 97 subjects per group would be required to detect an effect size of 25% that of atorvastatin in a six-month study. The sample size is reduced to 25 subjects if the average were computed over feature points only. The introduction of this sensitive quantification technique for carotid atherosclerosis progression/regression would allow many proof-of-principle studies to be performed before a more costly and longer study involving a larger population is held to confirm the treatment

  8. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device.

    PubMed

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J

    2013-01-01

    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients. PMID:24024032

  9. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  10. Clinical value of minimally invasive percutaneous nephrolithotomy in the supine position under the guidance of real-time ultrasound: report of 92 cases.

    PubMed

    Zhou, Xiangfu; Gao, Xin; Wen, Jiling; Xiao, Cuilan

    2008-05-01

    To determine the clinical value of the real-time-ultrasound-guided minimally invasive percutaneous nephrolithotomy (m-PCNL) technique in the supine position, 92 patients suffering from renal or upper ureteral stones were treated by m-PCNL with a nephroscope/ureteroscope in the supine position. The ipsilateral flanks of the patients with different body sizes were elevated with a 1,000 or 3,000-ml water bag. Under cystoscopy, a ureteral catheter was inserted into the kidney. Normal saline was infused into the kidney via the ureteral catheter to dilate the entire urinary system. Under the guidance of real-time ultrasound, the needle was inserted into the urinary system to dilate the tract and establish the 16F mini-tract for percutaneous nephrolithotomy. All 92 (100%) m-PCNL procedures were successfully performed in the supine position. Primary stone clearance was achieved in 64 cases (69.6%). Residual stones occurred in 28 cases (30.4%). M-PCNL was performed for a second time in 16 cases to clear the residual stones. In 4 cases, stones remained after the second m-PCNL. Two of them were treated further by extracorporeal shockwave lithotripsy (ESWL). The total stone clearance rate of m-PCNL was 82.6%. Only one case required blood transfusion. No other serious complications occurred. The supine position is a favorable position for the patients, the surgeons and the anesthesiologists during the m-PCNL procedure. Real-time ultrasound is a valuable technique for guiding of the m-PCNL.

  11. Free-hand ultrasound guidance permits safe and efficient minimally invasive intrathymic injections in both young and aged mice

    PubMed Central

    Tuckett, Andrea Z.; Zakrzewski, Johannes L.; Li, Duan; van den Brink, Marcel R.M.; Thornton, Raymond H.

    2014-01-01

    The goal of this study was to evaluate whether using an aseptic free-hand approach for ultrasound-guided injection facilitates injection into the thymic gland in mice. We used this interventional radiology technique in young, aged, and immunodeficient mice and found that the thymus was visible in all cases. The mean injection period was 8 s in young mice and 19 s in aged or immunodeficient mice. Injection accuracy was confirmed by intrathymic location of an injected dye, or by in vivo bioluminescence imaging of injected luciferase-expressing cells. Accurate intrathymic injection was confirmed in 97% of cases. No major complications were observed. We conclude that an aseptic free-hand technique for ultrasound-guided intrathymic injection is safe, accurate, and reduces the time required for intrathymic injections. This method facilitates large-scale experiments, injection of individual thymic lobes, and is clinically relevant. PMID:25701534

  12. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance.

    PubMed

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A

    2011-01-01

    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  13. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  14. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  15. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  16. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  17. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  18. Registration of 3D fetal neurosonography and MRI☆

    PubMed Central

    Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.

    2013-01-01

    We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169

  19. Ultrasound-directed robotic system for thermal ablation of liver tumors: a preliminary report

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Tian, Jie; Dai, Yakang; Zhang, Xing; Dong, Di; Xu, Min

    2010-03-01

    Thermal ablation has been proved safe and effective as the treatment for liver tumors that are not suitable for resection. Currently, manually performed thermal ablation is greatly dependent on the surgeon's acupuncture manipulation against hand tremor. Besides that, inaccurate or inappropriate placement of the applicator will also directly decrease the final treatment effect. In order to reduce the influence of hand tremor, and provide an accurate and appropriate guidance for a better treatment, we develop an ultrasound-directed robotic system for thermal ablation of liver tumors. In this paper, we will give a brief preliminary report of our system. Especially, three innovative techniques are proposed to solve the critical problems in our system: accurate ultrasound calibration when met with artifacts, realtime reconstruction with visualization using Graphic Processing Unit (GPU) acceleration and 2D-3D ultrasound image registration. To reduce the error of point extraction with artifacts, we propose a novel point extraction method by minimizing an error function which is defined based on the geometric property of our N-fiducial phantom. Then realtime reconstruction with visualization using GPU acceleration is provided for fast 3D ultrasound volume acquisition with dynamic display of reconstruction progress. After that, coarse 2D-3D ultrasound image registration is performed based on landmark points correspondences, followed by accurate 2D-3D ultrasound image registration based on Euclidean distance transform (EDT). The effectiveness of our proposed techniques is demonstrated in phantom experiments.

  20. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  1. Toward 3D-guided prostate biopsy target optimization: an estimation of tumor sampling probabilities

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the ~23% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still yields false negatives. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. We obtained multiparametric MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy. Given an RMS needle delivery error of 3.5 mm for a contemporary fusion biopsy system, P >= 95% for 21 out of 81 tumors when the point of optimal sampling probability was targeted. Therefore, more than one biopsy core must be taken from 74% of the tumors to achieve P >= 95% for a biopsy system with an error of 3.5 mm. Our experiments indicated that the effect of error along the needle axis on the percentage of core involvement (and thus the measured tumor burden) was mitigated by the 18 mm core length.

  2. Effectiveness of ultrasound-guided radiofrequency ablation in the treatment of 36 renal cell carcinoma tumours compared with published results of using computed tomography guidance.

    PubMed

    Davis, Kellie; Kielar, Ania; Jafari, Katayoun

    2012-08-01

    This study aimed to analyse the outcomes of ultrasound (US) guided radiofrequency ablation (RFA) in patients with renal lesions and to compare our outcomes with published results of ablations carried out when using computed tomography (CT) guidance. This retrospective study evaluated RFA of 36 renal tumours in 32 patients (M = 21, F = 11). The mean patient age was 70 years (range, 39-89 years). Ablations were performed by using either multi-tined applicators or cooled and/or cluster applicators under US guidance. Applicator size varied from 2-5 cm, depending on the size of the index tumour. Conscious sedation was administered by an anesthetist. Follow-up imaging by using contrast-enhanced CT was performed 1, 3, 6, and 12 months after RFA, and yearly thereafter. The mean tumour follow-up time was 12 months (range, 1-35 months). The mean tumour size was 2.7 cm (range, 1-5 cm). Primary effectiveness was achieved in 31 cases (86.1%), with patients in 5 cases (11.1%) demonstrating residual disease. Three patients had repeated sessions, which were technically successful. The remaining 2 patients were not re-treated because of patient comorbidities. As a result, secondary effectiveness was achieved in 34 patients (94.4%). In 1 patient, a new lesion developed in the same kidney but remote from the 2 prior areas of treatment. Hydrodissection was performed in 3 patients (8.3%), manipulation or electrode repositioning in 11 patients (30.6%), and ureteric cooling in 1 patient (2.8%). Minor and major complications occurred in 3 (8.3%) and 3 (8.3%) patients, respectively. Correlation coefficients were calculated for distance from skin to tumour and risk of complication as well as compared with primary and secondary effectiveness. This study demonstrates that US-guided RFA is an effective treatment for renal lesions, with rates of effectiveness and complication rates comparable with published CT-guided RFA results.

  3. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  4. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  5. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple ...

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  8. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  10. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  13. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  14. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  17. 3D sensing for machine guidance in meat cutting applications

    NASA Astrophysics Data System (ADS)

    Daley, Wayne; Britton, Doug; Usher, Colin; Diao, Mamadou; Ruffin, Kevin

    2005-11-01

    Most cutting and deboning operations in meat processing require accurate cuts be made to obtain maximum yield and ensure food safety. This is a significant concern for purveyors of deboned product. This task is made more difficult by the variability that is present in most natural products. The specific application of interest in this paper is the production of deboned poultry breast. This is typically obtained from a cut of the broiler called a 'front half' that includes the breast and the wings. The deboning operation typically consists of a cut that starts at the shoulder joint and then continues along the scapula. Attentive humans with training do a very good job of making this cut. The breast meat is then removed by pulling on the wings. Inaccurate cuts lead to poor yield (amount of boneless meat obtained relative to the weight of the whole carcass) and increase the probability that bone fragments might end up in the product. As equipment designers seek to automate the deboning operation, the cutting task has been a significant obstacle to developing automation that maximizes yield without generating unacceptable levels of bone fragments. The current solution is to sort the bone-in product into different weight ranges and then to adjust the deboning machines to the average of these weight ranges. We propose an approach for obtaining key cut points by extrapolation from external reference points based on the anatomy of the bird. We show that this approach can be implemented using a stereo imaging system, and the accuracy in locating the cut points of interest is significantly improved. This should result in more accurate cuts and with this concomitantly improved yield while reducing the incidence of bones. We also believe the approach could be extended to the processing of other species.

  18. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  19. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  20. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  2. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    PubMed

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  3. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    PubMed Central

    Chae, Michael P.; Rozen, Warren M.; McMenamin, Paul G.; Findlay, Michael W.; Spychal, Robert T.; Hunter-Smith, David J.

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  4. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  5. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  6. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  7. Computer‐assisted surgical planning and intraoperative guidance in fetal surgery: a systematic review†

    PubMed Central

    Deprest, Jan; Vercauteren, Tom; Ourselin, Sebastien; David, Anna L.

    2015-01-01

    Abstract Fetal surgery has become a clinical reality, with interventions for twin‐to‐twin transfusion syndrome (TTTS) and spina bifida demonstrated to improve outcome. Fetal imaging is evolving, with the use of 3D ultrasound and fetal MRI becoming more common in clinical practise. Medical imaging analysis is also changing, with technology being developed to assist surgeons by creating 3D virtual models that improve understanding of complex anatomy, and prove powerful tools in surgical planning and intraoperative guidance. We introduce the concept of computer‐assisted surgical planning, and present the results of a systematic review of image reconstruction for fetal surgical planning that identified six articles using such technology. Indications from other specialities suggest a benefit of surgical planning and guidance to improve outcomes. There is therefore an urgent need to develop fetal‐specific technology in order to improve fetal surgical outcome. © 2015 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd. PMID:26235960

  8. New platform for evaluating ultrasound-guided interventional technologies

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.

    2016-04-01

    Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.

  9. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures

    PubMed Central

    Rahrig, Ryan R.; Petrov, Anton I.; Leontis, Neocles B.; Zirbel, Craig L.

    2013-01-01

    The R3D Align web server provides online access to ‘RNA 3D Align’ (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/. PMID:23716643

  10. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  11. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  12. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  13. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  14. An integrated model-based neurosurgical guidance system

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Fan, Xiaoyao; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2010-02-01

    Maximal tumor resection without damaging healthy tissue in open cranial surgeries is critical to the prognosis for patients with brain cancers. Preoperative images (e.g., preoperative magnetic resonance images (pMR)) are typically used for surgical planning as well as for intraoperative image-guidance. However, brain shift even at the start of surgery significantly compromises the accuracy of neuronavigation, if the deformation is not compensated for. Compensating for brain shift during surgical operation is, therefore, critical for improving the accuracy of image-guidance and ultimately, the accuracy of surgery. To this end, we have developed an integrated neurosurgical guidance system that incorporates intraoperative three-dimensional (3D) tracking, acquisition of volumetric true 3D ultrasound (iUS), stereovision (iSV) and computational modeling to efficiently generate model-updated MR image volumes for neurosurgical guidance. The system is implemented with real-time Labview to provide high efficiency in data acquisition as well as with Matlab to offer computational convenience in data processing and development of graphical user interfaces related to computational modeling. In a typical patient case, the patient in the operating room (OR) is first registered to pMR image volume. Sparse displacement data extracted from coregistered intraoperative US and/or stereovision images are employed to guide a computational model that is based on consolidation theory. Computed whole-brain deformation is then used to generate a model-updated MR image volume for subsequent surgical guidance. In this paper, we present the key modular components of our integrated, model-based neurosurgical guidance system.

  15. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  16. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  17. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  18. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  19. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  20. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  1. A novel MR-guided interventional device for 3D circumferential access to breast tissue

    PubMed Central

    Smith, Matthew; Zhai, Xu; Harter, Ray; Sisney, Gale; Elezaby, Mai; Fain, Sean

    2008-01-01

    MRI is rapidly growing as a tool for image-guided procedures in the breast such as needle localizations, biopsy, and cryotherapy. The ability of MRI to resolve small (<1 cm) lesions allows earlier detection and diagnosis than with ultrasound. Most MR-guidance methods perform a two-dimensional compression of the breast that distorts tissue anatomy and limits medial access. This work presents a system for localizing breast lesions with 360° access to breast tissue. A novel system has been developed to perform breast lesion localization using MR guidance that uses a 3D radial coordinate system with four degrees of freedom. The device is combined with a novel breast RF coil for improved signal to noise and rotates 360° around the breast to allow medial, lateral, superior, and inferior access minimizing insertion depth to the target. Coil performance was evaluated using a human volunteer by comparing signal to noise from both the developed breast RF coil and a commercial seven-channel breast coil. The system was tested with a breast-shaped gel phantom containing randomly distributed MR-visible targets. MR-compatible localization needles were used to demonstrate the accuracy and feasibility of the concept for breast biopsy. Localization results were classified based on the relationship between the final needle tip position and the lesion. A 3D bladder concept was also tested using animal tissue to evaluate the device’s ability to immobilize deformable breast tissue during a needle insertion. The RF breast coil provided signal to noise values comparable to a seven-channel breast coil. The needle tip was in contact with the targeted lesion in 89% (25∕28) of all the trials and 100% (6∕6) of the trials with targeted lesions >6 mm. Target lesions were 3–4 mm in diameter for 47% (13∕28), 5–6 mm in diameter for 32% (9∕28), and over 6 mm in diameter for 21% (6∕28) of the trials, respectively. The 3D bladder concept was shown to immobilize a deformable animal

  2. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  3. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  4. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  5. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  6. 3D flow focusing for microfluidic flow cytometry with ultrasonics

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Daghighi, Yasaman; van de Vondervoort, Mia; Kolios, Michael C.; Tsai, Scott S. H.

    2015-11-01

    We are developing a flow cytometer that detects unique acoustic signature waves generated from single cells due to interactions between the cells and ultrasound waves. The generated acoustic waves depend on the size and biomechanical properties of the cells and are sufficient for identifying cells in the medium. A microfluidic system capable of focusing cells through a 10 x 10 μm ultrasound beam cross section was developed to facilitate acoustic measurements of single cells. The cells are streamlined in a hydro-dynamically 3D focused flow in a 300 x 300 μm channel made using PDMS. 3D focusing is realized by lateral sheath flows and an inlet needle (inner diameter 100 μm). The accuracy of the 3D flow focusing is measured using a dye and detecting its localization using confocal microscopy. Each flowing cell would be probed by an ultrasound pulse, which has a center frequency of 375 MHz and bandwidth of 250 MHz. The same probe would also be used for recording the scattered waves from the cells, which would be processed to distinguish the physical and biomechanical characteristics of the cells, eventually identifying them. This technique has potential applications in detecting circulating tumor cells, blood cells and blood-related diseases.

  7. 3D curvature of muscle fascicles in triceps surae

    PubMed Central

    Hamarneh, Ghassan; Wakeling, James M.

    2014-01-01

    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (−15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus. PMID:25324510

  8. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  9. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  10. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  11. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  12. EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance.

    PubMed

    Higgins, Ailish; Glover, Matthew; Yang, Yaling; Bayliss, Susan; Meads, Catherine; Lord, Joanne

    2014-10-01

    A routine part of the process for developing National Institute for Health and Care Excellence (NICE) medical technologies guidance is a submission of clinical and economic evidence by the technology manufacturer. The Birmingham and Brunel Consortium External Assessment Centre (EAC; a consortium of the University of Birmingham and Brunel University) independently appraised the submission on the EXOGEN bone healing system for long bone fractures with non-union or delayed healing. This article is an overview of the original evidence submitted, the EAC's findings, and the final NICE guidance issued.

  13. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  14. GPU-based 3D SAFT reconstruction including attenuation correction

    NASA Astrophysics Data System (ADS)

    Kretzek, E.; Hopp, T.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (3D USCT) promises reproducible high-resolution images for early detection of breast tumors. The KIT prototype provides three different modalities: reflectivity, speed of sound, and attenuation. The reflectivity images are reconstructed using a Synthetic Aperture Focusing Technique (SAFT) algorithm. For high-resolution re ectivity images, with spatially homogeneous reflectivity, attenuation correction is necessary. In this paper we present a GPU accelerated attenuation correction for 3D USCT and evaluate the method by means of image quality metrics; i.e. absolute error, contrast and spatially homogeneous reflectivity. A threshold for attenuation correction was introduced to preserve a high contrast. Simulated and in-vivo data were used for analysis of the image quality. Attenuation correction increases the image quality by improving spatially homogeneous reflectivity by 25 %. This leads to a factor 2.8 higher contrast for in-vivo data.

  15. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  16. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  17. Augmented Reality Image Guidance in Minimally Invasive Prostatectomy

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel; Mayer, Erik; Chen, Dongbin; Anstee, Ann; Vale, Justin; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip'eddie'

    This paper presents our work aimed at providing augmented reality (AR) guidance of robot-assisted laparoscopic surgery (RALP) using the da Vinci system. There is a good clinical case for guidance due to the significant rate of complications and steep learning curve for this procedure. Patients who were due to undergo robotic prostatectomy for organ-confined prostate cancer underwent preoperative 3T MRI scans of the pelvis. These were segmented and reconstructed to form 3D images of pelvic anatomy. The reconstructed image was successfully overlaid onto screenshots of the recorded surgery post-procedure. Surgeons who perform minimally-invasive prostatectomy took part in a user-needs analysis to determine the potential benefits of an image guidance system after viewing the overlaid images. All surgeons stated that the development would be useful at key stages of the surgery and could help to improve the learning curve of the procedure and improve functional and oncological outcomes. Establishing the clinical need in this way is a vital early step in development of an AR guidance system. We have also identified relevant anatomy from preoperative MRI. Further work will be aimed at automated registration to account for tissue deformation during the procedure, using a combination of transrectal ultrasound and stereoendoscopic video.

  18. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  19. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  20. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  1. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  2. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  3. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  4. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  5. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  6. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  7. Case study: The Avengers 3D: cinematic techniques and digitally created 3D

    NASA Astrophysics Data System (ADS)

    Clark, Graham D.

    2013-03-01

    Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.

  8. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  9. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or research…

  10. Micropuncture needles combined with ultrasound guidance for unusual central venous cannulation: desperate times call for desperate measures--a new trick for old anesthesiologists.

    PubMed

    Castillo, Daniel; McEwen, Dan S; Young, Lyle; Kirkpatrick, John

    2012-03-01

    Central vascular access can be a very challenging task in patients with skeletal deformities such as ankylosing spondylitis, kyphosis, and chin-on-chest deformity. The use of traditional methods of accessing the central venous circulation in these patients can require multiple attempts and may lead to significant complications such as bleeding, pneumothorax, and vascular injury. Ultrasound-guided central venous access has become a very common procedure in the United States and Europe; its efficacy and safety have been demonstrated, and together with the use of micropuncture needles, the technique can facilitate central venous access in complicated cases.

  11. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  12. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  13. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  14. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  15. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  16. Automated RNA 3D Structure Prediction with RNAComposer.

    PubMed

    Biesiada, Marcin; Purzycka, Katarzyna J; Szachniuk, Marta; Blazewicz, Jacek; Adamiak, Ryszard W

    2016-01-01

    RNAs adopt specific structures to perform their activities and these are critical to virtually all RNA-mediated processes. Because of difficulties in experimentally assessing structures of large RNAs using NMR, X-ray crystallography, or cryo-microscopy, there is currently great demand for new high-resolution 3D structure prediction methods. Recently we reported on RNAComposer, a knowledge-based method for the fully automated RNA 3D structure prediction from a user-defined secondary structure. RNAComposer method is especially suited for structural biology users. Since our initial report in 2012, both servers, freely available at http://rnacomposer.ibch.poznan.pl and http://rnacomposer.cs.put.poznan.pl have been often visited. Therefore this chapter provides guidance for using RNAComposer and discusses points that should be considered when predicting 3D RNA structure. An application example presents current scope and limitations of RNAComposer. PMID:27665601

  17. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  18. Three-dimensional assessment of scoliosis based on ultrasound data

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Li, Hongjian; Yu, Bo

    2015-12-01

    In this study, an approach was proposed to assess the 3D scoliotic deformity based on ultrasound data. The 3D spine model was reconstructed by using a freehand 3D ultrasound imaging system. The geometric torsion was then calculated from the reconstructed spine model. A thoracic spine phantom set at a given pose was used in the experiment. The geometric torsion of the spine phantom calculated from the freehand ultrasound imaging system was 0.041 mm-1 which was close to that calculated from the biplanar radiographs (0.025 mm-1). Therefore, ultrasound is a promising technique for the 3D assessment of scoliosis.

  19. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  20. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  1. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  2. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  3. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  4. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  5. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  6. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  7. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  8. Analysis of a vibrating interventional device to improve 3-D colormark tracking.

    PubMed

    Fronheiser, Matthew P; Smith, Stephen W

    2007-08-01

    Ultrasound guidance of interventional devices during minimally invasive surgical procedures has been investigated by many researchers. Previously, we extended the methods used by the Colormark tracking system to several interventional devices using a real-time, three-dimensional (3-D) ultrasound system. These results showed that we needed to improve the efficiency and reliability of the tracking. In this paper, we describe an analytical model to predict the transverse vibrations along the length of an atrial septal puncture needle to enable design improvements of the tracking system. We assume the needle can be modeled as a hollow bar with a circular cross section with a fixed proximal end and a free distal end that is suspended vertically to ignore gravity effects. The initial results show an ability to predict the natural nodes and antinodes along the needle using the characteristic equation for free vibrations. Simulations show that applying a forcing function to the device at a natural antinode yields an order of magnitude larger vibration than when driving the device at a node. Pulsed wave spectral Doppler data was acquired along the distal portion of the needle in a water tank using a 2-D matrix array transesophageal echocardiography probe. This data was compared to simulations of forced vibrations from the model. These initial results suggest that the model is a good first order approximation of the vibrating device in a water tank. It is our belief that knowing the location of the natural nodes and antinodes will improve our ability to drive the device to ensure the vibrations at the proximal end will reach the tip of the device, which in turn should improve our ability to track the device in vivo. PMID:17703675

  9. 3D multimodality roadmapping in neuroangiography

    NASA Astrophysics Data System (ADS)

    Ruijters, Daniel; Babic, Drazenko; Homan, Robert; Mielekamp, Peter; ter Haar Romeny, Bart M.; Suetens, Paul

    2007-03-01

    In this paper we describe a novel approach to using morphological datasets (such as CT or MR) in the minimally invasive image guidance of intra-arterial and intra-venous endovascular devices in neuroangiography interventions. Minimally invasive X-ray angiography procedures rely on the navigation of endovascular devices, such as guide wires and catheters, through human vessels, using C-arm fluoroscopy. While the bone structure may be visible, and the injection of iodine contrast medium allows to guide endovascular devices through the vasculature, the soft-tissue structures remain invisible in the fluoroscopic images. We intend to present a method for the combined visualization of morphological data, a 3D rotational angiography (3DRA) reconstruction and the live fluoroscopy data stream in a single image. The combination of the fluoroscopic image with the 3DRA vessel tree offers the advantage that endovascular devices can be located with respect to the vasculature, without additional contrast injection, while the position of the C-arm geometry can be altered freely. The additional visualization of the morphological data, adds contextual information to the position of endovascular devices. This article addresses the clinical applications, the real-time aspects of the registration algorithms and fast fused visualization of the proposed method.

  10. Different optical spectral characteristics in a necrotic transmissible venereal tumor and a cystic lesion in the same canine prostate observed by triple-band trans-rectal optical tomography under trans-rectal ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Holyoak, G. Reed; Ritchey, Jerry W.; Bartels, Kenneth E.; Rock, Kendra; Ownby, Charlotte L.; Slobodov, Gennady; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    Different optical spectral characteristics were observed in a necrotic transmissible venereal tumor (TVT) and a cystic lesion in the same canine prostate by triple-wavelength trans-rectal optical tomography under trans-rectal ultrasound (TRUS) guidance. The NIR imager acquiring at 705nm, 785nm and 808nm was used to quantify both the total hemoglobin concentration (HbT) and oxygen saturation (StO2) in the prostate. The TVT tumor in the canine prostate as a model of prostate cancer was induced in a 7-year old, 27 kg dog. A 2 mL suspension of 2.5x106 cells/mL of homogenized TVT cells recovered from an in vivo subcutaneously propagated TVT tumor in an NOD/SCID mouse were injected in the cranial aspect of the right lobe of the canine prostate. The left lobe of the prostate had a cystic lesion present before TVT inoculation. After the TVT homogenate injection, the prostate was monitored weekly over a 9-week period, using trans-rectal NIR and TRUS in grey-scale and Doppler. A TVT mass within the right lobe developed a necrotic center during the later stages of this study, as the mass presented with substantially increased [HbT] in the periphery, with an area of reduced StO2 less than the area of the mass itself shown on ultrasonography. Conversely, the cystic lesion presented with slightly increased [HbT] in the periphery of the lesion shown on ultrasound with oxygen-reduction inside and in the periphery of the lesion. There was no detectable change of blood flow on Doppler US in the periphery of the cystic lesion. The slightly increased [HbT] in the periphery of the cystic lesion was correlated with intra-lesional hemorrhage upon histopathologic examination.

  11. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  12. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  13. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  14. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  15. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  16. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface sp