Science.gov

Sample records for 3d unstructured-mesh radiation

  1. 3D unstructured-mesh radiation transport codes

    SciTech Connect

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  2. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  3. The 2D and 3D hypersonic flows with unstructured meshes

    NASA Technical Reports Server (NTRS)

    Thareja, Rajiv

    1993-01-01

    Viewgraphs on 2D and 3D hypersonic flows with unstructured meshes are presented. Topics covered include: mesh generation, mesh refinement, shock-shock interaction, velocity contours, mesh movement, vehicle bottom surface, and adapted meshes.

  4. A 3-D upwind Euler solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1991-01-01

    A three-dimensional finite-volume upwind Euler solver is developed for unstructured meshes. The finite-volume scheme solves for solution variables at vertices of the mesh and satisfies the integral conservation law on nonoverlapping polyhedral control volumes surrounding vertices of the mesh. The schene achieves improved solution accuracy by assuming a piecewise linear variation of the solution in each control volume. This improved spatial accuracy hinges heavily upon the calculation of the solution gradient in each control volume given pointwise values of the solution at vertices of the mesh. Several algorithms are discussed for obtaining these gradients. Details concerning implementation procedures and data structures are discussed. Sample calculations for inviscid Euler flow about isolated aircraft wings at subsonic and transonic speeds are compared with established Euler solvers as well as experiment.

  5. 3D unstructured mesh ALE hydrodynamics with the upwind discontinuous galerkin method

    SciTech Connect

    Kershaw, D S; Milovich, J L; Prasad, M K; Shaw, M J; Shestakov, A I

    1999-05-07

    The authors describe a numerical scheme to solve 3D Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics on an unstructured mesh using a discontinuous Galerkin method (DGM) and an explicit Runge-Kutta time discretization. Upwinding is achieved through Roe's linearized Riemann solver with the Harten-Hyman entropy fix. For stabilization, a 3D quadratic programming generalization of van Leer's 1D minmod slope limiter is used along with a Lapidus type artificial viscosity. This DGM scheme has been tested on a variety of hydrodynamic test problems and appears to be robust making it the basis for the integrated 3D inertial confinement fusion modeling code (ICF3D). For efficient code development, they use C++ object oriented programming to easily separate the complexities of an unstructured mesh from the basic physics modules. ICF3D is fully parallelized using domain decomposition and the MPI message passing library. It is fully portable. It runs on uniprocessor workstations and massively parallel platforms with distributed and shared memory.

  6. Refining 3D Earth models by unifying geological and geophysical information on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Lelièvre, P. G.; Carter-McAuslan, A.; Tycholiz, C.; Farquharson, C. G.; Hurich, C. A.

    2012-04-01

    Earth models used for mineral exploration or other subsurface investigations should be consistent with all available geological and geophysical information. Geophysical inversion provides the means to integrate geological information, geophysical survey data, and physical property measurements taken on rock samples. Incorporation of geological information into inversions is always an iterative process. One begins with the geologists' best guess about the Earth (i.e. the geological model) and the models recovered from geophysical inversion may indicate that the geological model should be changed slightly prior to the next iteration of the procedure. In this way, geological and geophysical data can be combined through inversion and we can move towards the creation of a common Earth model consistent with all the available data. As more information is incorporated, the inherent non-uniqueness of the inverse problem is reduced, yielding a higher potential to resolve deeper features that are less well-constrained by the geophysical data alone. Geological ore deposit models are commonly created during delineation drilling. The accuracy of these models is crucial when used to determine if a deposit is economic. 3D geological Earth models typically comprise wireframe surfaces that represent the geological contacts between different rock units. The contacts may be known at points from down-hole intersections and surface mapping, and can be interpolated between boreholes and extrapolated outwards. Contacts may also be interpreted from seismic traces. Wireframe surfaces, comprising tessellated triangular facets, are sufficiently flexible to allow the representation of arbitrarily complicated geological structures. These surfaces can be honoured exactly within fully unstructured 3D volumetric tetrahedral meshes. In contrast, geophysical forward modelling and inversion algorithms typically work with rectilinear meshes when parameterizing the subsurface because this simplifies

  7. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  8. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  9. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  10. EM modelling of arbitrary shaped anisotropic dielectric objects using an efficient 3D leapfrog scheme on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.

    2016-09-01

    The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.

  11. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  12. Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin

    2017-02-01

    We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.

  13. A new high-order finite volume method for 3D elastic wave simulation on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zhuang, Yuan; Zhang, Lina

    2017-07-01

    In this paper, we proposed a new efficient high-order finite volume method for 3D elastic wave simulation on unstructured tetrahedral meshes. With the relative coarse tetrahedral meshes, we make subdivision in each tetrahedron to generate a stencil for the high-order polynomial reconstruction. The subdivision algorithm guarantees the number of subelements is greater than the degrees of freedom of a complete polynomial. We perform the reconstruction on this stencil by using cell-averaged quantities based on the hierarchical orthonormal basis functions. Unlike the traditional high-order finite volume method, our new method has a very local property like DG and can be written as an inner-split computational scheme which is beneficial to reducing computational amount. Moreover, the stencil in our method is easy to generate for all tetrahedrons especially in the three-dimensional case. The resulting reconstruction matrix is invertible and remains unchanged for all tetrahedrons and thus it can be pre-computed and stored before time evolution. These special advantages facilitate the parallelization and high-order computations. We show convergence results obtained with the proposed method up to fifth order accuracy in space. The high-order accuracy in time is obtained by the Runge-Kutta method. Comparisons between numerical and analytic solutions show the proposed method can provide accurate wavefield information. Numerical simulation for a realistic model with complex topography demonstrates the effectiveness and potential applications of our method. Though the method is proposed based on the 3D elastic wave equation, it can be extended to other linear hyperbolic system.

  14. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  15. Multiphase Advection and Radiation Diffusion with Material Interfaces on Unstructured Meshes

    SciTech Connect

    Anninos, P

    2002-10-03

    A collection of numerical methods are presented for the advection or remapping of material properties on unstructured and staggered polyhedral meshes in arbitrary Lagrange-Eulerian calculations. The methods include several new procedures to track and capture sharp interface boundaries, and to partition radiation energy into multi-material thermal states. The latter is useful for extending and applying consistently single material radiation diffusion solvers to multi-material problems.

  16. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  17. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  18. The Tera Multithreaded Architecture and Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  19. Toward An Unstructured Mesh Database

    NASA Astrophysics Data System (ADS)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  20. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  1. Viscous flow modelling using unstructured meshes for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Szmelter, J.; Pagano, A.

    The novel application of viscous coupling to unstructured meshes has been proposed and developed. The method allows fro viscous flows modelling and avoids the difficulty of generating highly stretched tetrahedral in 3D or triangular in 2D elements required for Navier-Stokes solvers. The time step allowed by the explicit euler solver is limited by the size of the "Euler" mesh, resulting in faster algorithms than standard explicit Navier-Stokes solvers.

  2. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  3. Verification of Unstructured Mesh Capabilities in MCNP6 for Reactor Physics Problems

    SciTech Connect

    Burke, Timothy P.; Martz, Roger L.; Kiedrowski, Brian C.; Martin, William R.

    2012-08-22

    New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructive Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.

  4. On Convergence Acceleration Techniques for Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.

  5. Constrained and joint inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Doetsch, J.; Jordi, C.; Rieckh, V.; Guenther, T.; Schmelzbach, C.

    2015-12-01

    Unstructured meshes allow for inclusion of arbitrary surface topography, complex acquisition geometry and undulating geological interfaces in the inversion of geophysical data. This flexibility opens new opportunities for coupling different geophysical and hydrological data sets in constrained and joint inversions. For example, incorporating geological interfaces that have been derived from high-resolution geophysical data (e.g., ground penetrating radar) can add geological constraints to inversions of electrical resistivity data. These constraints can be critical for a hydrogeological interpretation of the inversion results. For time-lapse inversions of geophysical data, constraints can be derived from hydrological point measurements in boreholes, but it is difficult to include these hard constraints in the inversion of electrical resistivity monitoring data. Especially mesh density and the regularization footprint around the hydrological point measurements are important for an improved inversion compared to the unconstrained case. With the help of synthetic and field examples, we analyze how regularization and coupling operators should be chosen for time-lapse inversions constrained by point measurements and for joint inversions of geophysical data in order to take full advantage of the flexibility of unstructured meshes. For the case of constraining to point measurements, it is important to choose a regularization operator that extends beyond the neighboring cells and the uncertainty in the point measurements needs to be accounted for. For joint inversion, the choice of the regularization depends on the expected subsurface heterogeneity and the cell size of the parameter mesh.

  6. Multislope MUSCL method for general unstructured meshes

    NASA Astrophysics Data System (ADS)

    Le Touze, C.; Murrone, A.; Guillard, H.

    2015-03-01

    The multislope concept has been recently introduced in the literature to deal with MUSCL reconstructions on triangular and tetrahedral unstructured meshes in the finite volume cell-centered context. Dedicated scalar slopes are used to compute the interpolations on each face of a given element, in opposition to the monoslope methods in which a unique limited gradient is used. The multislope approach reveals less expensive and potentially more accurate than the classical gradient techniques. Besides, it may also help the robustness when dealing with hyperbolic systems involving complex solutions, with large discontinuities and high density ratios. However some important limitations on the mesh topology still have to be overcome with the initial multislope formalism. In this paper, a generalized multislope MUSCL method is introduced for cell-centered finite volume discretizations. The method is freed from constraints on the mesh topology, thereby operating on completely general unstructured meshes. Moreover optimal second-order accuracy is reached at the faces centroids. The scheme can be written with nonnegative coefficients, which makes it L∞-stable. Special attention has also been paid to equip the reconstruction procedure with well-adapted dedicated limiters, potentially CFL-dependent. Numerical tests are provided to prove the ability of the method to deal with completely general meshes, while exhibiting second-order accuracy.

  7. Implicit compressible flow solvers on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Nagaoka, Makoto; Horinouchi, Nariaki

    1993-09-01

    An implicit solver for compressible flows using Bi-CGSTAB method is proposed. The Euler equations are discretized with the delta-form by the finite volume method on the cell-centered triangular unstructured meshes. The numerical flux is calculated by Roe's upwind scheme. The linearized simultaneous equations with the irregular nonsymmetric sparse matrix are solved by the Bi-CGSTAB method with the preconditioner of incomplete LU factorization. This method is also vectorized by the multi-colored ordering. Although the solver requires more computational memory, it shows faster and more robust convergence than the other conventional methods: three-stage Runge-Kutta method, point Gauss-Seidel method, and Jacobi method for two-dimensional inviscid steady flows.

  8. Hypersonic Flow Computations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bibb, K. L.; Riley, C. J.; Peraire, J.

    1997-01-01

    A method for computing inviscid hypersonic flow over complex configurations using unstructured meshes is presented. The unstructured grid solver uses an edge{based finite{volume formulation. Fluxes are computed using a flux vector splitting scheme that is capable of representing constant enthalpy solutions. Second{order accuracy in smooth flow regions is obtained by linearly reconstructing the solution, and stability near discontinuities is maintained by locally forcing the scheme to reduce to first-order accuracy. The implementation of the algorithm to parallel computers is described. Computations using the proposed method are presented for a sphere-cone configuration at Mach numbers of 5.25 and 10.6, and a complex hypersonic re-entry vehicle at Mach numbers of 4.5 and 9.8. Results are compared to experimental data and computations made with established structured grid methods. The use of the solver as a screening tool for rapid aerodynamic assessment of proposed vehicles is described.

  9. An unstructured-mesh atmospheric model for nonhydrostatic dynamics

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Wyszogrodzki, Andrzej A.

    2013-12-01

    A three-dimensional semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic anelastic equations, suitable for simulation of small-to-mesoscale atmospheric flows. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and admitting unstructured meshes with arbitrarily shaped cells. The numerical advancements are evaluated with canonical simulations of convective planetary boundary layer and strongly (stably) stratified orographic flows, epitomizing diverse aspects of highly nonlinear nonhydrostatic dynamics. The unstructured-mesh solutions are compared to equivalent results generated with an established structured-grid model and observation.

  10. Soundproof simulations of stratospheric gravity waves on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, P.; Szmelter, J.

    2012-04-01

    An edge-based unstructured-mesh semi-implicit model is presented that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model numerics employ nonoscillatory forward-in-time MPDATA methods [Smolarkiewicz, 2006, Int. J. Numer. Meth. Fl., 50, 1123-1144] using finite-volume spatial discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudo-incompressible results are quantified in reference to a recent asymptotic theory [Achatz et al., 2010, J. Fluid Mech., 663, 120-147].

  11. Robust and efficient overset grid assembly for partitioned unstructured meshes

    NASA Astrophysics Data System (ADS)

    Roget, Beatrice; Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.

  12. An edge-based unstructured mesh discretisation in geospherical framework

    NASA Astrophysics Data System (ADS)

    Szmelter, Joanna; Smolarkiewicz, Piotr K.

    2010-07-01

    An arbitrary finite-volume approach is developed for discretising partial differential equations governing fluid flows on the sphere. Unconventionally for unstructured-mesh global models, the governing equations are cast in the anholonomic geospherical framework established in computational meteorology. The resulting discretisation retains proven properties of the geospherical formulation, while it offers the flexibility of unstructured meshes in enabling irregular spatial resolution. The latter allows for a global enhancement of the spatial resolution away from the polar regions as well as for a local mesh refinement. A class of non-oscillatory forward-in-time edge-based solvers is developed and applied to numerical examples of three-dimensional hydrostatic flows, including shallow-water benchmarks, on a rotating sphere.

  13. Kull ALE: I. Unstructured Mesh Advection, Interface Capturing, and Multiphase 2T RHD with Material Interfaces

    SciTech Connect

    Anninos, P

    2002-02-11

    Several advection algorithms are presented within the remap framework for unstructured mesh ALE codes. The methods discussed include a generic advection scheme based on a finite volume approach, and three groups of algorithms for the treatment of material boundary interfaces. The interface capturing algorithms belong to the Volume of Fluid (VoF) class of methods to approximate material interfaces from the local fractional volume of fluid distribution in arbitrary unstructured polyhedral meshes appropriate for the Kull code. Also presented are several schemes for extending single material radiation diffusion solvers to account for multi-material interfaces.

  14. Unstructured mesh quality assessment and upwind Euler solution algorithm validation

    NASA Astrophysics Data System (ADS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1994-05-01

    Quality assessment procedures are described for two and three dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of the Euler equations for these meshes are obtained at low angle of attack, transonic conditions. Results for these cases, obtained as part of a validation study, investigate accuracy of an implicit upwind Euler solution algorithm.

  15. AN ALGORITHM FOR PARALLEL SN SWEEPS ON UNSTRUCTURED MESHES

    SciTech Connect

    S. D. PAUTZ

    2000-12-01

    We develop a new algorithm for performing parallel S{sub n} sweeps on unstructured meshes. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with ''normal'' mesh partitionings we have observed nearly linear speedups on up to 126 processors. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, we do not observe any severe asymptotic degradation in the parallel efficiency with modest ({le}100) levels of parallelism. This work is a fundamental step in the development of parallel S{sub n} methods.

  16. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  17. Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan

    2017-04-01

    When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh

  18. Reaction rates for reaction-diffusion kinetics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2017-02-01

    The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper, we develop a method for computing accurate reaction rates between molecules occupying the same voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing step, depending only on the mesh and not on the model parameters, and we devise an efficient numerical scheme to estimate them to high accuracy. We show in several numerical examples that as we refine the mesh, the results obtained with the reaction-diffusion master equation approach those of a more fine-grained Smoluchowski particle-tracking model.

  19. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes

    SciTech Connect

    Kothe, D.B.; Turner, J.A.; Mosso, S.J.; Ferrell, R.C.

    1997-03-01

    We discuss selected aspects of a new parallel three-dimensional (3-D) computational tool for the unstructured mesh simulation of Los Alamos National Laboratory (LANL) casting processes. This tool, known as {bold Telluride}, draws upon on robust, high resolution finite volume solutions of metal alloy mass, momentum, and enthalpy conservation equations to model the filling, cooling, and solidification of LANL castings. We briefly describe the current {bold Telluride} physical models and solution methods, then detail our parallelization strategy as implemented with Fortran 90 (F90). This strategy has yielded straightforward and efficient parallelization on distributed and shared memory architectures, aided in large part by new parallel libraries {bold JTpack9O} for Krylov-subspace iterative solution methods and {bold PGSLib} for efficient gather/scatter operations. We illustrate our methodology and current capabilities with source code examples and parallel efficiency results for a LANL casting simulation.

  20. Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Lee-Rausch, Elizabeth M.

    2008-01-01

    The FUN3D unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been modified to allow prediction of trimmed rotorcraft airloads. The trim of the rotorcraft and the aeroelastic deformation of the rotor blades are accounted for via loose coupling with the CAMRAD II rotorcraft computational structural dynamics code. The set of codes is used to analyze the HART-II Baseline, Minimum Noise and Minimum Vibration test conditions. The loose coupling approach is found to be stable and convergent for the cases considered. Comparison of the resulting airloads and structural deformations with experimentally measured data is presented. The effect of grid resolution and temporal accuracy is examined. Rotorcraft airloads prediction presents a very substantial challenge for Computational Fluid Dynamics (CFD). Not only must the unsteady nature of the flow be accurately modeled, but since most rotorcraft blades are not structurally stiff, an accurate simulation must account for the blade structural dynamics. In addition, trim of the rotorcraft to desired thrust and moment targets depends on both aerodynamic loads and structural deformation, and vice versa. Further, interaction of the fuselage with the rotor flow field can be important, so that relative motion between the blades and the fuselage must be accommodated. Thus a complete simulation requires coupled aerodynamics, structures and trim, with the ability to model geometrically complex configurations. NASA has recently initiated a Subsonic Rotary Wing (SRW) Project under the overall Fundamental Aeronautics Program. Within the context of SRW are efforts aimed at furthering the state of the art of high-fidelity rotorcraft flow simulations, using both structured and unstructured meshes. Structured-mesh solvers have an advantage in computation speed, but even though remarkably complex configurations may be accommodated using the overset grid approach, generation of complex structured-mesh systems can require

  1. Euler Flow Computations on Non-Matching Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Gumaste, Udayan

    1999-01-01

    Advanced fluid solvers to predict aerodynamic performance-coupled treatment of multiple fields are described. The interaction between the fluid and structural components in the bladed regions of the engine is investigated with respect to known blade failures caused by either flutter or forced vibrations. Methods are developed to describe aeroelastic phenomena for internal flows in turbomachinery by accounting for the increased geometric complexity, mutual interaction between adjacent structural components and presence of thermal and geometric loading. The computer code developed solves the full three dimensional aeroelastic problem of-stage. The results obtained show that flow computations can be performed on non-matching finite-volume unstructured meshes with second order spatial accuracy.

  2. Robust and efficient overset grid assembly for partitioned unstructured meshes

    SciTech Connect

    Roget, Beatrice Sitaraman, Jayanarayanan

    2014-03-01

    This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning. Another challenge arises because of the large variation in the type of mesh-block overlap and the resulting large load imbalance on multiple processors. Desirable traits for the grid assembly method are efficiency (requiring only a small fraction of the solver time), robustness (correct identification of all point types), and full automation (no user input required other than the mesh system). Additionally, the method should be scalable, which is an important challenge due to the inherent load imbalance. This paper describes a fully-automated grid assembly method, which can use two different donor search algorithms. One is based on the use of auxiliary grids and Exact Inverse Maps (EIM), and the other is based on the use of Alternating Digital Trees (ADT). The EIM method is demonstrated to be more efficient than the ADT method, while retaining robustness. An adaptive load re-balance algorithm is also designed and implemented, which considerably improves the scalability of the method.

  3. Unstructured Mesh Methods for the Simulation of Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime; Bibb, K. L. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of hypersonic viscous flows about re-entry vehicles. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use, of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the, code which incorporates real gas effects, has been produced. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. In figures I and 2, we show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although these initial results were encouraging, it became apparent that in order to develop a fully functional capability for viscous flows, several advances in gridding, solution accuracy, robustness and efficiency were required. As part of this research we have developed: 1) automatic meshing techniques and the corresponding computer codes have been delivered to NASA and implemented into the GridEx system, 2) a finite

  4. Out-of-Core Streamline Visualization on Large Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Ueng, Shyh-Kuang; Sikorski, K.; Ma, Kwan-Liu

    1997-01-01

    It's advantageous for computational scientists to have the capability to perform interactive visualization on their desktop workstations. For data on large unstructured meshes, this capability is not generally available. In particular, particle tracing on unstructured grids can result in a high percentage of non-contiguous memory accesses and therefore may perform very poorly with virtual memory paging schemes. The alternative of visualizing a lower resolution of the data degrades the original high-resolution calculations. This paper presents an out-of-core approach for interactive streamline construction on large unstructured tetrahedral meshes containing millions of elements. The out-of-core algorithm uses an octree to partition and restructure the raw data into subsets stored into disk files for fast data retrieval. A memory management policy tailored to the streamline calculations is used such that during the streamline construction only a very small amount of data are brought into the main memory on demand. By carefully scheduling computation and data fetching, the overhead of reading data from the disk is significantly reduced and good memory performance results. This out-of-core algorithm makes possible interactive streamline visualization of large unstructured-grid data sets on a single mid-range workstation with relatively low main-memory capacity: 5-20 megabytes. Our test results also show that this approach is much more efficient than relying on virtual memory and operating system's paging algorithms.

  5. Parallel performance optimizations on unstructured mesh-based simulations

    DOE PAGES

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...

    2015-06-01

    This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  6. Sharpening diffuse interfaces with compressible fluids on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Chiapolino, Alexandre; Saurel, Richard; Nkonga, Boniface

    2017-07-01

    Diffuse interface methods with compressible fluids, considered through hyperbolic multiphase flow models, have demonstrated their capability to solve a wide range of complex flow situations in severe conditions (both high and low speeds). These formulations can deal with the presence of shock waves, chemical and physical transformations, such as cavitation and detonation. Compared to existing approaches able to consider compressible materials and interfaces, these methods are conservative with respect to mixture mass, momentum, energy and are entropy preserving. Thanks to these properties they are very robust. However, in many situations, typically in low transient conditions, numerical diffusion at material interfaces is excessive. Several approaches have been developed to lower this weakness. In the present contribution, a specific flux limiter is proposed and inserted into conventional MUSCL type schemes, in the frame of the diffuse interface formulation of Saurel et al. (2009). With this limiter, interfaces are captured with 3 ± 1 mesh points depending on the test problem, showing significant improvement in interface representation compared to conventional limiters, such as for example Superbee. The method works on both structured and unstructured meshes and its implementation in existing codes is simple. Computational examples showing method capabilities and accuracy are presented.

  7. Optimal Compressed Sensing and Reconstruction of Unstructured Mesh Datasets

    DOE PAGES

    Salloum, Maher; Fabian, Nathan D.; Hensinger, David M.; ...

    2017-08-09

    Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to be able to analyze and visualize the results. We investigate compressed sensing (CS) as an in situ method to reduce the size of the data as it is being generated during a large-scale simulation. CS works by sampling the data on the computational cluster within an alternative function space such as wavelet bases and then reconstructing back to the original space on visualization platforms. While much work has gone into exploring CS on structured datasets, such as image data, we investigate itsmore » usefulness for point clouds such as unstructured mesh datasets often found in finite element simulations. We sample using a technique that exhibits low coherence with tree wavelets found to be suitable for point clouds. We reconstruct using the stagewise orthogonal matching pursuit algorithm that we improved to facilitate automated use in batch jobs. We analyze the achievable compression ratios and the quality and accuracy of reconstructed results at each compression ratio. In the considered case studies, we are able to achieve compression ratios up to two orders of magnitude with reasonable reconstruction accuracy and minimal visual deterioration in the data. Finally, our results suggest that, compared to other compression techniques, CS is attractive in cases where the compression overhead has to be minimized and where the reconstruction cost is not a significant concern.« less

  8. Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Movriplis, Dimitri J.

    1998-01-01

    Unstructured multigrid techniques for relieving the stiffness associated with high-Reynolds number viscous flow simulations on extremely stretched grids are investigated. One approach consists of employing a semi-coarsening or directional-coarsening technique, based on the directions of strong coupling within the mesh, in order to construct more optimal coarse grid levels. An alternate approach is developed which employs directional implicit smoothing with regular fully coarsened multigrid levels. The directional implicit smoothing is obtained by constructing implicit lines in the unstructured mesh based on the directions of strong coupling. Both approaches yield large increases in convergence rates over the traditional explicit full-coarsening multigrid algorithm. However, maximum benefits are achieved by combining the two approaches in a coupled manner into a single algorithm. An order of magnitude increase in convergence rate over the traditional explicit full-coarsening algorithm is demonstrated, and convergence rates for high-Reynolds number viscous flows which are independent of the grid aspect ratio are obtained. Further acceleration is provided by incorporating low-Mach-number preconditioning techniques, and a Newton-GMRES strategy which employs the multigrid scheme as a preconditioner. The compounding effects of these various techniques on speed of convergence is documented through several example test cases.

  9. Numerical study of Taylor bubbles with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  10. Development and acceleration of unstructured mesh-based cfd solver

    NASA Astrophysics Data System (ADS)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  11. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine

    SciTech Connect

    Ferenbaugh, Charles R

    2010-01-01

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  12. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)

    SciTech Connect

    Ferenbaugh, Charles R

    2010-12-14

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  13. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  14. Simulation of all-scale atmospheric dynamics on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng

    2016-10-01

    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.

  15. A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Smolarkiewicz, Piotr; Szmelter, Joanna

    2011-12-01

    A semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic soundproof equations, inclusive of anelastic and pseudo-incompressible systems of partial differential equations. The model builds on nonoscillatory forward-in-time MPDATA approach using finite-volume discretization and unstructured meshes with arbitrarily shaped cells. Implicit treatment of gravity waves benefits both accuracy and stability of the model. The unstructured-mesh solutions are compared to equivalent structured-grid results for intricate, multiscale internal-wave phenomenon of a non-Boussinesq amplification and breaking of deep stratospheric gravity waves. The departures of the anelastic and pseudoincompressible results are quantified in reference to a recent asymptotic theory [Achatz et al. 2010, J. Fluid Mech., 663, 120-147)].

  16. Adaptive unstructured meshing for thermal stress analysis of built-up structures

    NASA Technical Reports Server (NTRS)

    Dechaumphai, Pramote

    1992-01-01

    An adaptive unstructured meshing technique for mechanical and thermal stress analysis of built-up structures has been developed. A triangular membrane finite element and a new plate bending element are evaluated on a panel with a circular cutout and a frame stiffened panel. The adaptive unstructured meshing technique, without a priori knowledge of the solution to the problem, generates clustered elements only where needed. An improved solution accuracy is obtained at a reduced problem size and analysis computational time as compared to the results produced by the standard finite element procedure.

  17. On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1992-01-01

    A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical simulation of hyperbolic equations and systems was constructed. Since then, some extensions have been made to multidimensional simulations of compressible flows, mainly in the context of very regular structured meshes. In this paper, we first recall and improve the results of an earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasizing the effective calculation of the reconstruction. Then we describe a class of numerical schemes on unstructured meshes and give some applications for its third order version. This demonstrates that a higher order of accuracy is indeed obtained, even on very irregular meshes.

  18. Euler and Navier-Stokes computations for two-dimensional geometries using unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1990-01-01

    A general purpose unstructured mesh solver for steady-state two-dimensional inviscid and viscous flows is described. The efficiency and accuracy of the method are enhanced by the simultaneous use of adaptive meshing and an unstructured multigrid technique. A method for generating highly stretched triangulations in regions of viscous flow is outlined, and a procedure for implementing an algebraic turbulence model on unstructured meshes is described. Results are shown for external and internal inviscid flows and for turbulent viscous flow over a multi-element airfoil configuration.

  19. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Kühnlein, Christian; Smolarkiewicz, Piotr K.

    2017-04-01

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity-the latter being essential for flux-form schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.

  20. Development and validation of a three-dimensional, wave-current coupled model on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Wang, JinHua; Shen, YongMing

    2011-01-01

    Using unstructured meshes provides great flexibility for modeling the flow in complex geomorphology of tidal creeks, barriers and islands, with refined grid resolution in regions of interest and not elsewhere. In this paper, an unstructured three-dimensional fully coupled wave-current model is developed. Firstly, a parallel, unstructured wave module is developed. Variations in wave properties are governed by a wave energy equation that includes wave-current interactions and dissipation representative of wave breaking. Then, the existing Finite-Volume Coastal Ocean Model (FVCOM) is modified to couple with the wave module. The couple procedure includes depth dependent wave radiation stress terms, Stokes drift, vertical transfer of wave-generated pressure transfer to the mean momentum equation, wave dissipation as a source term in the turbulence kinetic energy equation, and mean current advection and refraction of wave energy. Several applications are presented to evaluate the developed model. In particular the wind and wave-induced storm surge generated by Hurricane Katrina is investigated. The obtained results have been compared to the in situ measurements with respect to the wave heights and water level elevations revealing good accuracy of the model in reproduction of the investigated events. In a comparison to water level measurements at Dauphin Island, inclusion of the wave induced water level setup reduced the normalized root mean square error from 0.301 to 0.257 m and increased the correlation coefficient from 0.860 to 0.929. Several runs were carried out to analyze the effects of waves. The experiments show that among the processes that represent wave effects, radiation stress and wave-induced surface stress are more important than wave-induced bottom stress in affecting the water level. The Hurricane Katrina simulations showed the importance of the inclusion of the wave effects for the hindcast of the water levels during the storm surge.

  1. A 3D Unstructured Mesh Euler Solver Based on the Fourth-Order CESE Method

    DTIC Science & Technology

    2013-06-01

    conservation in space and time without using a one-dimensional Riemann solver, (ii) genuinely multi-dimensional treatment without dimensional splitting (iii...of the original second-order CESE method, including: (i) flux conservation in space and time without using a one-dimensional Riemann solver, (ii...treated in a unified manner. The geometry for a three-dimensional CESE method is more difficult to visualize than the one- and two-dimensional methods

  2. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.

    2011-02-01

    The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.

  3. A New Approach to Parallel Dynamic Partitioning for Adaptive Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.

    1999-01-01

    Classical mesh partitioning algorithms were designed for rather static situations, and their straightforward application in a dynamical framework may lead to unsatisfactory results, e.g., excessive data migration among processors. Furthermore, special attention should be paid to their amenability to parallelization. In this paper, a novel parallel method for the dynamic partitioning of adaptive unstructured meshes is described. It is based on a linear representation of the mesh using self-avoiding walks.

  4. Numerical Examination of Flux Correction for Solving the Navier-Stokes Equations on Unstructured Meshes

    DTIC Science & Technology

    2014-08-29

    background to the present thesis. The oldest high-order schemes consist of Finite Difference (FD) methods , Finite Vol- ume (FV) methods , and Finite...implementing high-order methods is rela- tively easy using FD. FD is not conducive to complex geometries , limiting it’s usefulness to rather simple geometries ...FD methods are not considered further because the topic of this work is evaluating high-order methods over complex geometries on unstructured meshes

  5. On Essentially Non-Oscillatory Schemes on Unstructured Meshes: Analysis and Implementation

    DTIC Science & Technology

    1992-12-01

    is to use a Lagrange type interpolation with an adapted stencil: when a discontinuity is detected, the procedure looks for the region around this...be introduced for unstructured meshes. We first recall how to interpolate data in an essentially non-oscillatory Lagrange fashion, and then how this...is used to reconstruct 1D data. Essentially non-oscillatory interpolation . This relies on two well known properties of divided differences. Let {yo

  6. Euler and Navier-Stokes Computations for Two-Dimensional Geometries Using Unstructured Meshes

    DTIC Science & Technology

    1990-01-01

    by the simultaneous use of adaptive meshing and an unstructured multigrid technique . A method for generating highly stretched triangulations in regions...are enhanced by the simultanious use of adaptive meshing and an unstruc- tured multigrid technique . A method for generating highly stretched triangula...unstructured mesh solver for steady-state two-dimensional inviscid and viscous flows is described. The efficiency and accuracy of the method are enhanced

  7. A Parallel Unstructured-Mesh Methodology for Device-Scale Combustion Calculations

    SciTech Connect

    O'Rourke, P.J.; Sahota, M.S.; Zhang, S.

    1998-12-03

    At Los Alamos we are developing a parallel, unstructured-mesh, finite-volume CFD methodology for the simulation of chemically reactive flows in complex geometries. The methodology is embodied in the CHAD (Computational Hydrodynamics for Advanced Design) code. In this report we give an overview of the CHAD numerical methodology and present parallel scaling results for calculations of flows in a four-valve diesel engine.

  8. TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend G. M.

    2015-10-01

    Total variation diminishing (TVD) schemes are a widely applied group of monotonicity-preserving advection differencing schemes for partial differential equations in numerical heat transfer and computational fluid dynamics. These schemes are typically designed for one-dimensional problems or multidimensional problems on structured equidistant quadrilateral meshes. Practical applications, however, often involve complex geometries that cannot be represented by Cartesian meshes and, therefore, necessitate the application of unstructured meshes, which require a more sophisticated discretisation to account for their additional topological complexity. In principle, TVD schemes are applicable to unstructured meshes, however, not all the data required for TVD differencing is readily available on unstructured meshes, and the solution suffers from considerable numerical diffusion as a result of mesh skewness. In this article we analyse TVD differencing on unstructured three-dimensional meshes, focusing on the non-linearity of TVD differencing and the extrapolation of the virtual upwind node. Furthermore, we propose a novel monotonicity-preserving correction method for TVD schemes that significantly reduces numerical diffusion caused by mesh skewness. The presented numerical experiments demonstrate the importance of accounting for the non-linearity introduced by TVD differencing and of imposing carefully chosen limits on the extrapolated virtual upwind node, as well as the efficacy of the proposed method to correct mesh skewness.

  9. Unstructured Polyhedral Mesh Thermal Radiation Diffusion

    SciTech Connect

    Palmer, T.S.; Zika, M.R.; Madsen, N.K.

    2000-07-27

    Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.

  10. In-memory integration of existing software components for parallel adaptive unstructured mesh workflows

    SciTech Connect

    Smith, Cameron W.; Granzow, Brian; Diamond, Gerrett; Ibanez, Daniel; Sahni, Onkar; Jansen, Kenneth E.; Shephard, Mark S.

    2017-01-01

    Unstructured mesh methods, like finite elements and finite volumes, support the effective analysis of complex physical behaviors modeled by partial differential equations over general threedimensional domains. The most reliable and efficient methods apply adaptive procedures with a-posteriori error estimators that indicate where and how the mesh is to be modified. Although adaptive meshes can have two to three orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, there are many complex simulations where the meshes required are so large that they can only be solved on massively parallel systems.

  11. An Interpreted Language and System for the Visualization of Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.

  12. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

  13. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  14. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  15. Numerical study of three-dimensional liquid jet breakup with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Pain, Christopher; Matar, Omar

    2016-11-01

    Liquid jet breakup is an important fundamental multiphase flow, often found in many industrial engineering applications. The breakup process is very complex, involving jets, liquid films, ligaments, and small droplets, featuring tremendous complexity in interfacial topology and a large range of spatial scales. The objective of this study is to investigate the fluid dynamics of three-dimensional liquid jet breakup problems, such as liquid jet primary breakup and gas-sheared liquid jet breakup. An adaptive unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to optimally represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a 'volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of liquid jet breakup with and without ambient gas are presented to demonstrate the capability of this method.

  16. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  17. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew J.; Liu, Yuan; Tang, Qi; Xu, Zhengfu

    2015-01-01

    In this paper, we generalize the maximum-principle-preserving (MPP) flux limiting technique developed by Xu (2013) [20] to a class of high order finite volume weighted essentially non-oscillatory (WENO) schemes for scalar conservation laws and the compressible Euler system on unstructured meshes in one and two dimensions. The key idea of this parameterized limiting technique is to limit the high order numerical flux with a first order flux which preserves the MPP or positivity-preserving (PP) property. The main purpose of this paper is to investigate the flux limiting approach with high order finite volume method on unstructured meshes which are often needed for solving some important problems on irregular domains. Truncation error analysis based on one-dimensional nonuniform meshes is presented to justify that the proposed MPP schemes can maintain third order accuracy in space and time. We also demonstrate through smooth test problems that the proposed third order MPP/PP WENO schemes coupled with a third order Runge-Kutta (RK) method attain the desired order of accuracy. Several test problems containing strong shocks and complex domain geometries are also presented to assess the performance of the schemes.

  18. Topographic accuracy assessment of bare earth lidar-derived unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Hagen, Scott C.

    2013-02-01

    This study is focused on the integration of bare earth lidar (Light Detection and Ranging) data into unstructured (triangular) finite element meshes and the implications on simulating storm surge inundation using a shallow water equations model. A methodology is developed to compute root mean square error (RMSE) and the 95th percentile of vertical elevation errors using four different interpolation methods (linear, inverse distance weighted, natural neighbor, and cell averaging) to resample bare earth lidar and lidar-derived digital elevation models (DEMs) onto unstructured meshes at different resolutions. The results are consolidated into a table of optimal interpolation methods that minimize the vertical elevation error of an unstructured mesh for a given mesh node density. The cell area averaging method performed most accurate when DEM grid cells within 0.25 times the ratio of local element size and DEM cell size were averaged. The methodology is applied to simulate inundation extent and maximum water levels in southern Mississippi due to Hurricane Katrina, which illustrates that local changes in topography such as adjusting element size and interpolation method drastically alter simulated storm surge locally and non-locally. The methods and results presented have utility and implications to any modeling application that uses bare earth lidar.

  19. Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2016-08-18

    In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less

  20. Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes

    SciTech Connect

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; Mahadevan, Vijay; Jiao, Xiangmin

    2016-08-18

    In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used to project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.

  1. Framework for a Robust General Purpose Navier-Stokes Solver on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Xiao, Cheng-Nian; Denner, Fabian; van Wachem, Berend G. M.

    2016-11-01

    A numerical framework for a pressure-based all-speeds flow solver operating on unstructured meshes, which is robust for a broad range of flow configurations, is proposed. The distinct features of our framework are the full coupling of the momentum and continuity equations as well as the use of an energy equation in conservation form to relate the thermal quantities with the flow field. In order to overcome the well-documented instability occurring while coupling the thermal energy to the remaining flow variables, a multistage iteration cycle has been devised which exhibits excellent convergence behavior without requiring any numerical relaxation parameters. Different spatial schemes for accurate shock resolution as well as complex thermodynamic gas models are also seamlessly incorporated into the framework. The solver is directly applicable to stationary and transient flows in all Mach number regimes (sub-, trans-, supersonic), exhibits strong robustness and accurately predicts flow and thermal variables at all speeds across shocks of different strengths. We present a wide range of results for both steady and transient compressible flows with vastly different Mach numbers and thermodynamic conditions in complex geometries represented by different types of unstructured meshes. The authors are grateful for the financial support provided by Shell.

  2. Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data

    NASA Astrophysics Data System (ADS)

    De Hoop, M. V.

    2015-12-01

    We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.

  3. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    SciTech Connect

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-07-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  4. A parallel code base on discontinuous Galerkin method on three dimensional unstructured meshes for MHD equations

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zheng, Weiying

    2016-10-01

    A new parallel code based on discontinuous Galerkin (DG) method for hyperbolic conservation laws on three dimensional unstructured meshes is developed recently. This code can be used for simulations of MHD equations, which are very important in magnetic confined plasma research. The main challenges in MHD simulations in fusion include the complex geometry of the configurations, such as plasma in tokamaks, the possibly discontinuous solutions and large scale computing. Our new developed code is based on three dimensional unstructured meshes, i.e. tetrahedron. This makes the code flexible to arbitrary geometries. Second order polynomials are used on each element and HWENO type limiter are applied. The accuracy tests show that our scheme reaches the desired three order accuracy and the nonlinear shock test demonstrate that our code can capture the sharp shock transitions. Moreover, One of the advantages of DG compared with the classical finite element methods is that the matrices solved are localized on each element, making it easy for parallelization. Several simulations including the kink instabilities in toroidal geometry will be present here. Chinese National Magnetic Confinement Fusion Science Program 2015GB110003.

  5. A three dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1994-01-01

    A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described. Turbulence is simulated using a single field-equation model. Computational overheads are minimized through the use of a single edge-based data-structure, and efficient multigrid solution technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and efficiency of the code are evaluated by computing two-dimensional flows in three dimensions and comparing with results from a previously validated two-dimensional code which employs the same solution algorithm. The feasibility of computing three-dimensional flows on grids of several million points in less than two hours of wall clock time is demonstrated.

  6. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  7. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  8. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  9. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution

    NASA Astrophysics Data System (ADS)

    Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.

    2015-08-01

    The paper advances the limited-area anelastic model (Smolarkiewicz et al. (2013) [45]) for investigation of nonhydrostatic dynamics in mesoscale atmospheric flows. New developments include the extension to a tetrahedral-based median-dual option for unstructured meshes and a static mesh adaptivity technique using an error indicator based on inherent properties of the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA). The model employs semi-implicit nonoscillatory forward-in-time integrators for soundproof PDEs, built on MPDATA and a robust non-symmetric Krylov-subspace elliptic solver. Finite-volume spatial discretisation adopts an edge-based data structure. Simulations of stratified orographic flows and the associated gravity-wave phenomena in media with uniform and variable dispersive properties verify the advancement and demonstrate the potential of heterogeneous anisotropic discretisation with large variation in spatial resolution for study of complex stratified flows that can be computationally unattainable with regular grids.

  10. Spatial and temporal adaptive procedures for the unsteady aerodynamic analysis of airfoils using unstructured meshes

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Batina, John T.; Williams, Marc H.

    1992-01-01

    An algorithm which combines spatial and temporal adaption for the time integration of the two-dimensional Euler equations on unstructured meshes of triangles is presented. Spatial adaption involves mesh enrichment to add elements in high gradient regions of the flow and mesh coarsening to remove elements where they are no longer needed. Temporal adaption is a time accurate, local time stepping procedure which integrates the flow equations in each cell according to the local numerical stability constraint. The flow solver utilizes a four-stage Runge-Kutta time integration scheme with an upwind flux-split spatial discretization. Results obtained using spatial and temporal adaption indicate that highly accurate solutions can be obtained with a significant savings of computing time over global time stepping.

  11. Gradient Calculation Methods on Arbitrary Polyhedral Unstructured Meshes for Cell-Centered CFD Solvers

    NASA Technical Reports Server (NTRS)

    Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.

    2014-01-01

    A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties

  12. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  13. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  14. Well-balanced finite volume schemes for pollutant transport by shallow water equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Benkhaldoun, Fayssal; Elmahi, Imad; Seaı¨d, Mohammed

    2007-09-01

    Pollutant transport by shallow water flows on non-flat topography is presented and numerically solved using a finite volume scheme. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bathymetric gradients that may form in the approximate solution. The scheme is non-oscillatory and possesses conservation property that conserves the pollutant mass during the transport process. Numerical results are presented for three test examples which demonstrate the accuracy and robustness of the scheme and its applicability in predicting pollutant transport by shallow water flows. In this paper, we also apply the developed scheme for a pollutant transport event in the Strait of Gibraltar. The scheme is efficient, robust and may be used for practical pollutant transport phenomena.

  15. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    DOE PAGES

    Pautz, Shawn D.; Bailey, Teresa S.

    2016-11-29

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amountmore » of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 105 processor cores.« less

  16. Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions

    SciTech Connect

    Pautz, Shawn D.; Bailey, Teresa S.

    2016-11-29

    Here, the efficiency of discrete ordinates transport sweeps depends on the scheduling algorithm, the domain decomposition, the problem to be solved, and the computational platform. Sweep scheduling algorithms may be categorized by their approach to several issues. In this paper we examine the strategy of domain overloading for mesh partitioning as one of the components of such algorithms. In particular, we extend the domain overloading strategy, previously defined and analyzed for structured meshes, to the general case of unstructured meshes. We also present computational results for both the structured and unstructured domain overloading cases. We find that an appropriate amount of domain overloading can greatly improve the efficiency of parallel sweeps for both structured and unstructured partitionings of the test problems examined on up to 105 processor cores.

  17. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  18. Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The Advisory Group for Aerospace Research and Development (AGARD) has requested my participation in the lecture series entitled Parallel Computing in Computational Fluid Dynamics to be held at the von Karman Institute in Brussels, Belgium on May 15-19, 1995. In addition, a request has been made from the US Coordinator for AGARD at the Pentagon for NASA Ames to hold a repetition of the lecture series on October 16-20, 1995. I have been asked to be a local coordinator for the Ames event. All AGARD lecture series events have attendance limited to NATO allied countries. A brief of the lecture series is provided in the attached enclosure. Specifically, I have been asked to give two lectures of approximately 75 minutes each on the subject of parallel solution techniques for the fluid flow equations on unstructured meshes. The title of my lectures is "Parallel CFD Algorithms for Aerodynamical Flow Solvers on Unstructured Meshes" (Parts I-II). The contents of these lectures will be largely review in nature and will draw upon previously published work in this area. Topics of my lectures will include: (1) Mesh partitioning algorithms. Recursive techniques based on coordinate bisection, Cuthill-McKee level structures, and spectral bisection. (2) Newton's method for large scale CFD problems. Size and complexity estimates for Newton's method, modifications for insuring global convergence. (3) Techniques for constructing the Jacobian matrix. Analytic and numerical techniques for Jacobian matrix-vector products, constructing the transposed matrix, extensions to optimization and homotopy theories. (4) Iterative solution algorithms. Practical experience with GIVIRES and BICG-STAB matrix solvers. (5) Parallel matrix preconditioning. Incomplete Lower-Upper (ILU) factorization, domain-decomposed ILU, approximate Schur complement strategies.

  19. Development of an Unstructured Mesh Code for Flows About Complete Vehicles

    NASA Technical Reports Server (NTRS)

    Peraire, Jaime; Gupta, K. K. (Technical Monitor)

    2001-01-01

    This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the

  20. Dynamic Rupture Modeling in Three Dimensions on Unstructured Meshes Using a Discontinuous Galerkin Method

    NASA Astrophysics Data System (ADS)

    Pelties, C.; Käser, M.

    2010-12-01

    We will present recent developments concerning the extensions of the ADER-DG method to solve three dimensional dynamic rupture problems on unstructured tetrahedral meshes. The simulation of earthquake rupture dynamics and seismic wave propagation using a discontinuous Galerkin (DG) method in 2D was recently presented by J. de la Puente et al. (2009). A considerable feature of this study regarding spontaneous rupture problems was the combination of the DG scheme and a time integration method using Arbitrarily high-order DERivatives (ADER) to provide high accuracy in space and time with the discretization on unstructured meshes. In the resulting discrete velocity-stress formulation of the elastic wave equations variables are naturally discontinuous at the interfaces between elements. The so-called Riemann problem can then be solved to obtain well defined values of the variables at the discontinuity itself. This is in particular valid for the fault at which a certain friction law has to be evaluated. Hence, the fault’s geometry is honored by the computational mesh. This way, complex fault planes can be modeled adequately with small elements while fast mesh coarsening is possible with increasing distance from the fault. Due to the strict locality of the scheme using only direct neighbor communication, excellent parallel behavior can be observed. A further advantage of the scheme is that it avoids spurious high-frequency contributions in the slip rate spectra and therefore does not require artificial Kelvin-Voigt damping or filtering of synthetic seismograms. In order to test the accuracy of the ADER-DG method the Southern California Earthquake Center (SCEC) benchmark for spontaneous rupture simulations was employed. Reference: J. de la Puente, J.-P. Ampuero, and M. Käser (2009), Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B10302, doi:10.1029/2008JB006271

  1. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R. G.

    2013-02-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing models are computationally restricted by the fixed mesh approaches that they employ. In contrast, this paper presents a new multiphase flow model that uses an adaptive unstructured mesh approach. As a simulation progresses, the mesh is optimized to focus numerical resolution in areas important to the dynamics and decrease it where it is not needed, thereby potentially reducing computational requirements. Model verification is performed using the method of manufactured solutions, which shows the correct solution convergence rates. Model validation and application considers 2-D simulations of plume formation in a water tank which replicate published laboratory experiments. The numerically predicted settling velocities for both individual particles and plumes, as well as instability behaviour, agree well with experimental data and observations. Plume settling is clearly hindered by the presence of a salinity gradient, and its influence must therefore be taken into account when considering particles in bodies of saline water. Furthermore, individual particles settle in the laminar flow regime while plume settling is shown (by plume Reynolds numbers greater than unity) to be in the turbulent flow regime, which has a significant impact on entrainment and settling rates. Mesh adaptivity maintains solution accuracy while providing a substantial reduction in computational requirements when compared to the same simulation performed using a fixed mesh, highlighting the benefits of an

  2. Terrain-driven unstructured mesh development through semi-automatic vertical feature extraction

    NASA Astrophysics Data System (ADS)

    Bilskie, Matthew V.; Coggin, David; Hagen, Scott C.; Medeiros, Stephen C.

    2015-12-01

    A semi-automated vertical feature terrain extraction algorithm is described and applied to a two-dimensional, depth-integrated, shallow water equation inundation model. The extracted features describe what are commonly sub-mesh scale elevation details (ridge and valleys), which may be ignored in standard practice because adequate mesh resolution cannot be afforded. The extraction algorithm is semi-automated, requires minimal human intervention, and is reproducible. A lidar-derived digital elevation model (DEM) of coastal Mississippi and Alabama serves as the source data for the vertical feature extraction. Unstructured mesh nodes and element edges are aligned to the vertical features and an interpolation algorithm aimed at minimizing topographic elevation error assigns elevations to mesh nodes via the DEM. The end result is a mesh that accurately represents the bare earth surface as derived from lidar with element resolution in the floodplain ranging from 15 m to 200 m. To examine the influence of the inclusion of vertical features on overland flooding, two additional meshes were developed, one without crest elevations of the features and another with vertical features withheld. All three meshes were incorporated into a SWAN+ADCIRC model simulation of Hurricane Katrina. Each of the three models resulted in similar validation statistics when compared to observed time-series water levels at gages and post-storm collected high water marks. Simulated water level peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of ∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not clear which of the three model experiments performed best in terms of accuracy. Examination of inundation extent among the three model results were compared to debris lines derived from NOAA post-event aerial imagery, and the mesh including vertical features showed higher accuracy. The comparison of model results to debris lines demonstrates that additional

  3. Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2003-01-01

    An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.

  4. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Several stabilized demoralization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin demoralization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS, and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobean linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Discrete maximum principle theory will be presented for general finite volume approximations on unstructured meshes. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc, will. be addressed as needed.

  5. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2002-01-01

    The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

  6. Unstructured-mesh modeling of the Congo river-to-sea continuum

    NASA Astrophysics Data System (ADS)

    Bars, Yoann Le; Vallaeys, Valentin; Deleersnijder, Éric; Hanert, Emmanuel; Carrere, Loren; Channelière, Claire

    2016-04-01

    With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.

  7. Global impact of 3D cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Schäfer, Sophia; Hogan, Robin; Fielding, Mark; Chiu, Christine

    2017-04-01

    Clouds have a decisive impact on the Earth's radiation budget and on the temperature of the atmosphere and surface. However, in global weather and climate models, cloud-radiation interaction is treated in only the vertical dimension using several non-realistic assumptions, which contributes to the large uncertainty on the climatic role of clouds. We provide a first systematic investigation into the impact of horizontal radiative transport for both shortwave and longwave radiation on a global, long-term scale. For this purpose, we have developed and validated the SPARTACUS radiation scheme, a method for including three-dimensional radiative transfer effects approximately in a one-dimensional radiation calculation that is numerically efficient enough for global calculations, allowing us to conduct 1D and quasi-3D radiation calculations for a year of global of ERA-Interim re-analysis atmospheric data and compare the results of various radiation treatments. SPARTACUS includes the effects of cloud internal inhomogeneity, horizontal in-region transport and the spatial distribution of in-cloud radiative fluxes.The impact of varying three-dimensional cloud geometry can be described by one parameter, the effective cloud scale, which has a characteristic value for each cloud type. We find that both the 3D effects of cloud-side transport and of horizontal in-cloud radiative transport in the shortwave are significant. Overall, 3D cloud effects warm the Earth by about 4 W m -2 , with warming effects in both the shortwave and the longwave. The dominant 3D cloud effect is the previously rarely investigated in-region horizontal transfer effect in the shortwave, which significantly decreases cloud reflectance and warms the Earth system by 5 W m -2 , partly counteracted by the cooling effect of shortwave 3D cloud-side transport. Longwave heating and cooling at various heights is strengthened by up to 0.2 K d ^{-1} and -0.3 K d ^{-1} respectively. These 3D effects, neglected by

  8. 3D treatment planning and intensity-modulated radiation therapy.

    PubMed

    Purdy, J A

    1999-10-01

    Three-dimensional (3D) image-based treatment planning and new delivery technologies have spurred the implementation of external beam radiation therapy techniques, in which the high-dose region is conformed much more closely to the target volume than previously possible, thus reducing the volume of normal tissues receiving a high dose. This form of external beam irradiation is referred to as 3D conformal radiation therapy (3DCRT). 3DCRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. Defining target volumes and organs at risk in 3D by drawing contours on CT images on a slice-by-slice basis, as opposed to drawing beam portals on a simulator radiograph, can be challenging, because radiation oncologists are generally not well trained in cross-sectional imaging. Currently, the 3DCRT approach will increase the time and effort required by physicians inexperienced with 3D treatment planning. Intensity-modulated radiation therapy (IMRT) is a more advanced form of 3DCRT, but there is considerable developmental work remaining. The instrumentation and methods used for IMRT quality assurance procedures and testing are not well established. Computer optimization cost functions are too simplistic, and thus time-consuming. Subjective plan evaluation by the radiation oncologist is still the norm. In addition, many fundamental questions regarding IMRT remain unanswered. For example, the radiobiophysical consequences of altered time-dose-fraction are unknown. Also, the fact that there is much greater dose heterogeneity for both the target and normal critical structures with IMRT compared to traditional irradiation techniques challenges current radiation oncology planning principles. However, this new process of planning and treatment delivery shows significant potential for improving the therapeutic ratio. In addition, while inefficient today, these systems, when fully developed

  9. Construction of edge-based 1-exact schemes for solving the Euler equations on hybrid unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bakhvalov, P. A.; Kozubskaya, T. K.

    2017-04-01

    In this paper, 1-exact vertex-centered finite-volume schemes with an edge-based approximation of fluxes are constructed for numerically solving hyperbolic problems on hybrid unstructured meshes. The 1-exactness property is ensured by introducing a new type of control volumes, which are called semitransparent cells. The features of a parallel algorithm implementing the computations using semitransparent cells on modern supercomputers are described. The results of solving linear and nonlinear test problems are given.

  10. A third-order compact gas-kinetic scheme on unstructured meshes for compressible Navier-Stokes solutions

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun

    2016-08-01

    In this paper, for the first time a third-order compact gas-kinetic scheme is proposed on unstructured meshes for the compressible viscous flow computations. The possibility to design such a third-order compact scheme is due to the high-order gas evolution model, where a time-dependent gas distribution function at cell interface not only provides the fluxes across a cell interface, but also presents a time accurate solution for flow variables at cell interface. As a result, both cell averaged and cell interface flow variables can be used for the initial data reconstruction at the beginning of next time step. A weighted least-square procedure has been used for the initial reconstruction. Therefore, a compact third-order gas-kinetic scheme with the involvement of neighboring cells only can be developed on unstructured meshes. In comparison with other conventional high-order schemes, the current method avoids the Gaussian point integration for numerical fluxes along a cell interface and the multi-stage Runge-Kutta method for temporal accuracy. The third-order compact scheme is numerically stable under CFL condition CFL ≈ 0.5. Due to its multidimensional gas-kinetic formulation and the coupling of inviscid and viscous terms, even with unstructured meshes, the boundary layer solution and vortex structure can be accurately captured by the current scheme. At the same time, the compact scheme can capture strong shocks as well.

  11. 3-D Radiative Transfer Modeling of Structured Winds in Massive Hot Stars with Wind3D

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Toalá, J. A.; Blomme, R.

    2011-01-01

    We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed line profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV λ1395. We develop parameterized input models for Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions' (CIRs) and `Rotational Modulation Regions' (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that the modulations are produced by a regular pattern of radial density enhancements that protrude almost linearly into the equatorial wind. We find that the modulations are caused by narrow `spoke-like' wind regions. We present a hydrodynamic model showing that the linearly shaped radial wind pattern can be caused by mechanical wave action at the base of the stellar wind from the blue supergiant.

  12. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  13. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  14. Modeling radiative transfer in heterogeneous 3D vegetation canopies

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis

    1995-01-01

    The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.

  15. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding

    NASA Astrophysics Data System (ADS)

    Schubert, Jochen E.; Sanders, Brett F.; Smith, Martin J.; Wright, Nigel G.

    2008-12-01

    Urban flood inundation modeling with a hydrodynamic flow solver is addressed in this paper, focusing on strategies to effectively integrate geospatial data for unstructured mesh generation, building representation and flow resistance parameterization. Data considered include Light Detection and Ranging (LiDAR) terrain height surveys, aerial imagery and vector datasets such as building footprint polygons. First, a unstructured mesh-generation technique we term the building-hole method (BH) is developed whereby building footprint data define interior domain boundaries or mesh holes. A wall boundary condition depicts the impact of buildings on flood hydrodynamics. BH provides an alternative to the more commonly used method of raising terrain heights where buildings coincide with the mesh. We term this the building-block method (BB). Application of BH and BB to a flooding site in Glasgow, Scotland identifies a number of tradeoffs to consider at resolutions ranging from 1 to 5 m. At fine resolution, BH is shown to be similarly accurate but execute faster than BB. And at coarse resolution, BH is shown to preserve the geometry of buildings and maintain better accuracy than BB, but requires a longer run time. Meshes that ignore buildings completely ( no-building method or NB) also support surprisingly good flood inundation predictions at coarse resolution compared to BH and BB. NB also supports faster execution times than BH at coarse resolution because the latter uses localized refinements that mandate a greater number of computational cells. However, with mesh refinement, NB converges to a different (and presumably less-accurate) solution compared to BH and BB. Using the same test conditions, Hunter et al. [Hunter NM, Bates PD, Neelz S, Pender G, Villanueva I, Wright NG, Liang D, et al. Benchmarking 2D hydraulic models for urban flood simulations. ICE J Water Manage 2008;161(1):13-30] compared the performance of dynamic-wave and diffusive-wave models and reported that

  16. Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh.

    SciTech Connect

    Xu, J.; Ostroumov, P. N.; Mustapha, B.; Nolen, J.

    2010-12-01

    This paper presents the development of parallel direct Vlasov solvers with discontinuous Galerkin (DG) method for beam and plasma simulations in four dimensions. Both physical and velocity spaces are in two dimesions (2P2V) with unstructured mesh. Contrary to the standard particle-in-cell (PIC) approach for kinetic space plasma simulations, i.e., solving Vlasov-Maxwell equations, direct method has been used in this paper. There are several benefits to solving a Vlasov equation directly, such as avoiding noise associated with a finite number of particles and the capability to capture fine structure in the plasma. The most challanging part of a direct Vlasov solver comes from higher dimensions, as the computational cost increases as N{sup 2d}, where d is the dimension of the physical space. Recently, due to the fast development of supercomputers, the possibility has become more realistic. Many efforts have been made to solve Vlasov equations in low dimensions before; now more interest has focused on higher dimensions. Different numerical methods have been tried so far, such as the finite difference method, Fourier Spectral method, finite volume method, and spectral element method. This paper is based on our previous efforts to use the DG method. The DG method has been proven to be very successful in solving Maxwell equations, and this paper is our first effort in applying the DG method to Vlasov equations. DG has shown several advantages, such as local mass matrix, strong stability, and easy parallelization. These are particularly suitable for Vlasov equations. Domain decomposition in high dimensions has been used for parallelization; these include a highly scalable parallel two-dimensional Poisson solver. Benchmark results have been shown and simulation results will be reported.

  17. An optimization-based method for high order gradient calculation on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Busatto, Alcides Dallanora

    A new implicit and compact optimization-based method is presented for high order derivative calculation for finite-volume numerical method on unstructured meshes. High-order approaches to gradient calculation are often based on variants of the Least-Squares (L-S) method, an explicit method that requires a stencil large enough to accommodate the necessary variable information to calculate the derivatives. The new scheme proposed here is applicable for an arbitrary order of accuracy (demonstrated here up to 3rd order), and uses just the first level of face neighbors to compute all derivatives, thus reducing stencil size and avoiding stiffness in the calculation matrix. Preliminary results for a static variable field example and solution of a simple scalar transport (advection) equation show that the proposed method is able to deliver numerical accuracy equivalent to (or better than) the nominal order of accuracy for both 2nd and 3rd order schemes in the presence of a smoothly distributed variable field (i.e., in the absence of discontinuities). This new Optimization-based Gradient REconstruction (herein denoted OGRE) scheme produces, for the simple scalar transport test case, lower error and demands less computational time (for a given level of required precision) for a 3rd order scheme when compared to an equivalent L-S approach on a two-dimensional framework. For three-dimensional simulations, where the L-S scheme fails to obtain convergence without the help of limiters, the new scheme obtains stable convergence and also produces lower error solution when compared to a third order MUSCL scheme. Furthermore, spectral analysis of results from the advection equation shows that the new scheme is better able to accurately resolve high wave number modes, which demonstrates its potential to better solve problems presenting a wide spectrum of wavelengths, for example unsteady turbulent flow simulations.

  18. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya

    2016-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  19. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Marvriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    An agglomeration multigrid strategy is developed and implemented for the solution of three-dimensional steady viscous flows. The method enables convergence acceleration with minimal additional memory overheads, and is completely automated, in that it can deal with grids of arbitrary construction. The multigrid technique is validated by comparing the delivered convergence rates with those obtained by a previously developed overset-mesh multigrid approach, and by demonstrating grid independent convergence rates for aerodynamic problems on very large grids. Prospects for further increases in multigrid efficiency for high-Reynolds number viscous flows on highly stretched meshes are discussed.

  20. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  1. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  2. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  3. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  4. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  5. Photon Scattering in 3D Radiative MHD Simulations

    NASA Astrophysics Data System (ADS)

    Hayek, Wolfgang

    2009-09-01

    Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.

  6. An implementation of a chemical and thermal nonequilibrium flow solver on unstructured meshes and application to blunt bodies

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1994-01-01

    This paper presents a nonequilibrium flow solver, implementation of the algorithm on unstructured meshes, and application to hypersonic flow past blunt bodies. Air is modeled as a mixture of five chemical species, namely O2, N2, O, NO, and N, having two temperatures namely translational and vibrational. The solution algorithm is a cell centered, point implicit upwind scheme that employs Roe's flux difference splitting technique. Implementation of this algorithm on unstructured meshes is described. The computer code is applied to solve Mach 15 flow with and without a Type IV shock interference on a cylindrical body of 2.5mm radius representing a cowl lip. Adaptively generated meshes are employed, and the meshes are refined several times until the solution exhibits detailed flow features and surface pressure and heat flux distributions. Effects of a catalytic wall on surface heat flux distribution are studied. For the Mach 15 Type IV shock interference flow, present results showed a peak heat flux of 544 MW/m2 for a fully catalytic wall and 431 MW/m(exp 2) for a noncatalytic wall. Some of the results are compared with available computational data.

  7. High-Order Discontinuous Galerkin Level Set Method for Interface Tracking and Re-Distancing on Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Greene, Patrick; Nourgaliev, Robert; Schofield, Sam

    2015-11-01

    A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.

  8. Numerical Modelling of Volcanic Ash Settling in Water Using Adaptive Unstructured Meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, C. T.; Collins, G. S.; Piggott, M. D.; Kramer, S. C.; Wilson, C. R.

    2011-12-01

    At the bottom of the world's oceans lies layer after layer of ash deposited from past volcanic eruptions. Correct interpretation of these layers can provide important constraints on the duration and frequency of volcanism, but requires a full understanding of the complex multi-phase settling and deposition process. Analogue experiments of tephra settling through a tank of water demonstrate that small ash particles can either settle individually, or collectively as a gravitationally unstable ash-laden plume. These plumes are generated when the concentration of particles exceeds a certain threshold such that the density of the tephra-water mixture is sufficiently large relative to the underlying particle-free water for a gravitational Rayleigh-Taylor instability to develop. These ash-laden plumes are observed to descend as a vertical density current at a velocity much greater than that of single particles, which has important implications for the emplacement of tephra deposits on the seabed. To extend the results of laboratory experiments to large scales and explore the conditions under which vertical density currents may form and persist, we have developed a multi-phase extension to Fluidity, a combined finite element / control volume CFD code that uses adaptive unstructured meshes. As a model validation, we present two- and three-dimensional simulations of tephra plume formation in a water tank that replicate laboratory experiments (Carey, 1997, doi:10.1130/0091-7613(1997)025<0839:IOCSOT>2.3.CO;2). An inflow boundary condition at the top of the domain allows particles to flux in at a constant rate of 0.472 gm-2s-1, forming a near-surface layer of tephra particles, which initially settle individually at the predicted Stokes velocity of 1.7 mms-1. As more tephra enters the water and the particle concentration increases, the layer eventually becomes unstable and plumes begin to form, descending with velocities more than ten times greater than those of individual

  9. International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.

  10. An implicit block LU-SGS finite-volume lattice-Boltzmann scheme for steady flows on arbitrary unstructured meshes

    NASA Astrophysics Data System (ADS)

    Li, Weidong; Luo, Li-Shi

    2016-12-01

    This work proposes a fully implicit lattice Boltzmann (LB) scheme based on finite-volume (FV) discretization on arbitrary unstructured meshes. The linear system derived from the finite-volume lattice Boltzmann equation (LBE) is solved by the block lower-upper (BLU) symmetric-Gauss-Seidel (SGS) algorithm. The proposed implicit FV-LB scheme is efficient and robust, and has a low-storage requirement. The effectiveness and efficiency of the proposed implicit FV-LB scheme are validated and verified by the simulations of three test cases in two dimensions: (a) the laminar Blasius flow over a flat plate with Re =105; (b) the steady viscous flow past a circular cylinder with Re = 10, 20, and 40; and (c) the inviscid flow past a circular cylinder. The proposed implicit FV-LB scheme is shown to be not only effective and efficient for simulations of steady viscous flows, but also robust and efficient for simulations of inviscid flows in particular.

  11. Spatial and temporal adaptive procedures for the unsteady aerodynamic analysis of airfoils using unstructured meshes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Batina, John T.; Williams, Marc H.

    1992-01-01

    An algorithm which combines spatial and temporal adaption for the time integration of the two dimensional Euler equations on unstructured meshes of triangles is presented. Spatial adaption involves mesh enrichment to add elements in high gradient regions of the flow and mesh coarsening to remove elements where they are no longer needed. Temporal adaption is a time accurate, local time stepping procedure which integrates the flow equations in each cell according to the local numerical stability constraint. The flow solver utilizes a four stage Runge-Kutta time integration scheme with an upwind flux-split spatial discretization. Results obtained using spatial and temporal adaption indicate that highly accurate solutions can be obtained with a significant savings of computing time over global time stepping.

  12. The application of ICOM, a non-hydrostatic, fully unstructured mesh model in large scale ocean domains

    NASA Astrophysics Data System (ADS)

    Kramer, Stephan C.; Piggott, Matthew D.; Cotter, Colin J.; Pain, Chris C.; Nelson, Rhodri B.

    2010-05-01

    There are many apparent advantages of the application of unstructured meshes in ocean modelling: a much better representation of the coastal boundaries, the ability to focus resolution in areas of interest, or areas of intensified flow, such as boundary currents, etc. In particular with adaptive mesh technology, where the mesh is adapted during the simulation as the flow evolves, one is able to resolve much smaller features in the often turbulent ocean flow, than would be possible with fixed, structured mesh models. The Imperial College Ocean Model[1], is a non-hydrostatic ocean model that employs fully unstructured adaptive meshes, that allow focussing of resolution not only in the horizontal but also in the vertical. This enables the modelling of physical processes, such as open ocean deep convection, density driven flows on a steep bottom topography, etc. that are very important for the global ocean circulation. The Imperial College Ocean Model has been applied succesfully in the modelling of many of these processes. On the other hand hydrostatic, layered ocean models have a significant advantage in large areas of the oceans where the hydrostatic assumption is valid. The fact that with fully unstructured meshes it is no longer straightforward to separate horizontal, baroptropic modes and vertical, baroclinic dynamics, has consequences for both numerical accuracy and the efficiency of the linear solvers. It has therefore been a challenge for ICOM to remain competitive in these areas with layered mesh models. These problems have been overcome by, amongst others, the development of a new mesh adaptation technique that maintains a columnar structure of the mesh in such areas. The application of multigrid techniques has improved the effiency of the non-hydrostatic pressure solve[2] in such a way that convergence is now independent of aspect ratio, which makes the pressure solve competitive with that of a hydrostatic model. In this contribution an overview will be

  13. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes

    NASA Astrophysics Data System (ADS)

    Blachère, F.; Turpault, R.

    2016-06-01

    The objective of this work is to design explicit finite volumes schemes for specific systems of conservations laws with stiff source terms, which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme, that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regime, for any two-dimensional unstructured mesh. Moreover, the scheme developed also preserves the set of admissible states, which is mandatory to keep physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the diffusive equation, which gives the form of the global scheme for the complete system of conservation laws. Numerical results are provided to validate the scheme in both regimes.

  14. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  15. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  16. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Alvarez Laguna, A.; Lani, A.; Deconinck, H.; Mansour, N. N.; Poedts, S.

    2016-08-01

    We present a Finite Volume scheme for solving Maxwell's equations coupled to magnetized multi-fluid plasma equations for reactive and collisional partially ionized flows on unstructured meshes. The inclusion of the displacement current allows for studying electromagnetic wave propagation in a plasma as well as charge separation effects beyond the standard magnetohydrodynamics (MHD) description, however, it leads to a very stiff system with characteristic velocities ranging from the speed of sound of the fluids up to the speed of light. In order to control the fulfillment of the elliptical constraints of the Maxwell's equations, we use the hyperbolic divergence cleaning method. In this paper, we extend the latter method applying the CIR scheme with scaled numerical diffusion in order to balance those terms with the Maxwell flux vectors. For the fluids, we generalize the AUSM+-up to multiple fluids of different species within the plasma. The fully implicit second-order method is first verified on the Hartmann flow (including comparison with its analytical solution), two ideal MHD cases with strong shocks, namely, Orszag-Tang and the MHD rotor, then validated on a much more challenging case, representing a two-fluid magnetic reconnection under solar chromospheric conditions. For the latter case, a comparison with pioneering results available in literature is provided.

  17. An eigenvector-based linear reconstruction scheme for the shallow-water equations on two-dimensional unstructured meshes

    NASA Astrophysics Data System (ADS)

    Soares Frazão, Sandra; Guinot, Vincent

    2007-01-01

    This paper presents a new approach to MUSCL reconstruction for solving the shallow-water equations on two-dimensional unstructured meshes. The approach takes advantage of the particular structure of the shallow-water equations. Indeed, their hyperbolic nature allows the flow variables to be expressed as a linear combination of the eigenvectors of the system. The particularity of the shallow-water equations is that the coefficients of this combination only depend upon the water depth. Reconstructing only the water depth with second-order accuracy and using only a first-order reconstruction for the flow velocity proves to be as accurate as the classical MUSCL approach. The method also appears to be more robust in cases with very strong depth gradients such as the propagation of a wave on a dry bed. Since only one reconstruction is needed (against three reconstructions in the MUSCL approach) the EVR method is shown to be 1.4-5 times as fast as the classical MUSCL scheme, depending on the computational application.

  18. Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.

    2010-03-01

    In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.

  19. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  20. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  1. An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers

    DTIC Science & Technology

    2001-05-01

    problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods

  2. Radiation Effects in 3D Integrated SOl SRAM Circuits

    DTIC Science & Technology

    2011-08-23

    Comparing Neutrons and Protons Data Monoenergetic neutrons and protons are used to characterize single event effects in electronics circuits, and are...for proton irradiation with energies between 4.8 and 500 MeV. Results are compared with 14-MeV neutron irradiation. Single event upset cross-section...fabricating circuits for space applications. singIe event effects, SOl, fully depleted, 3D integration, neutron , protons, upset cross-section U U U U SAR

  3. Generalized Framework and Algorithms for Illustrative Visualization of Time-Varying Data on Unstructured Meshes

    SciTech Connect

    Alexander S. Rattner; Donna Post Guillen; Alark Joshi

    2012-12-01

    Photo- and physically-realistic techniques are often insufficient for visualization of simulation results, especially for 3D and time-varying datasets. Substantial research efforts have been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. While these efforts have yielded valuable visualization results, a great deal of work has been reproduced in studies as individual research groups often develop purpose-built platforms. Additionally, interoperability between illustrative visualization software is limited due to specialized processing and rendering architectures employed in different studies. In this investigation, a generalized framework for illustrative visualization is proposed, and implemented in marmotViz, a ParaView plugin, enabling its use on variety of computing platforms with various data file formats and mesh geometries. Detailed descriptions of the region-of-interest identification and feature-tracking algorithms incorporated into this tool are provided. Additionally, implementations of multiple illustrative effect algorithms are presented to demonstrate the use and flexibility of this framework. By providing a framework and useful underlying functionality, the marmotViz tool can act as a springboard for future research in the field of illustrative visualization.

  4. Framework and algorithms for illustrative visualizations of time-varying flows on unstructured meshes

    SciTech Connect

    Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; Garimella, Srinivas

    2016-03-17

    Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaView plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.

  5. Framework and algorithms for illustrative visualizations of time-varying flows on unstructured meshes

    DOE PAGES

    Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; ...

    2016-03-17

    Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaViewmore » plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.« less

  6. Radiation Transport in 3D Heterogeneous Materials: DNS

    SciTech Connect

    Graziani, F

    2003-07-09

    In order to develop a phenomenological approach to transport in 3D heterogeneous media, we have performed direct numerical simulation studies. Using an algorithm based on the lattice random walk to generate random media, we have performed radiographic shots of the sample and digitized both the chord length and optical depth distributions. The optical depth distribution is then used to compute an effective mean free path. As theory predicts, the atomically averaged mean free path is always a minimum value. We have also demonstrated a dependency of mean free path on the distribution of random material.

  7. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  8. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  9. 3-D Measurement of Recycling and Radiation in MST

    NASA Astrophysics Data System (ADS)

    Norval, Ryan; Goetz, John; Schmitz, Oliver

    2016-10-01

    The MST reversed-field pinch (RFP) can undergo spontaneous transition to a helical core state, associated with the growth of the innermost resonant magnetic mode. Currently multiple 2-D imaging cameras are in place allowing for nearly full vessel viewing and measurement of recycling and impurities fluxes. The transition from the standard to helical RFP causes an observable change in edge plasma. While in the helical state the plasma wall interaction (PWI) on MSTs poloidal limiter strongly correlates with the helicity of the core mode. PWI on the toroidal limiter overall is reduced, with the remaining PWI sites corresponding the helicity of the core mode, or the locations of diagnostic limiters and the error fields they create. EIRENE, a neutral particle code use for modeling edge plasmas, is used to compute the neutral profiles based on measured recycling fluxes. EIRENE computes the radiative and charge exchange power losses. Comparison is made between the standard and helical RFP plasmas. Bolometer measurements of total radiation are currently in progress to supplement the modeling. This work is supported by the U.S. Department of Energy.

  10. Parallel beam optical tomography apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2005-06-01

    Since the discovery of X rays radiotherapy has had the same aim - to deliver a precisely measured dose of radiation to a defined tumour volume with minimal damage to surrounding healthy tissue. Recent developments in radiotherapy such as intensity modulated radiotherapy (IMRT) can generate complex shapes of dose distributions. Until recently it has not been possible to verify that the delivered dose matches the planned dose. However, one often wants to know the real three-dimensional dose distribution. Three-dimensional radiation dosimeters have been developed since the early 1980s. Most chemical formulations involve a radiosensitive species immobilised in space by gelling agent. Magnetic Resonance Imaging (MRI) and optical techniques have been the most successful gel scanning techniques so far. Optical techniques rely on gels changing colour once irradiated. Parallel beam optical tomography has been developed at the University of Surrey since the late 1990s. The apparatus involves light emitting diode light source collimated to a wide (12cm) parallel beam. The beam is attenuated or scattered (depending on the chemical formulation) as it passes through the gel. Focusing optics projects the beam onto a CCD chip. The dosimeter sits on a rotation stage. The tomography scan involves continuously rotating the dosimeter and taking CCD images. Once the dosimeter has been rotated over 180 degrees the images are processed by filtered back projection. The work presented discusses the optics of the apparatus in more detail.

  11. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  12. 3-D Simulations Of AGN Feedback via Radiation and Radiation-driven Outflows

    NASA Astrophysics Data System (ADS)

    Kurosawa, Ryuichi; Proga, D.

    2009-01-01

    We present numerical studies of non-axisymmetric, time-dependent gas hydrodynamic in a relatively large scale ( 10 pc). We consider the gas under the influence of the gravity of a super massive black hole (SMBH) and the radiation produced by a radiatively efficient flow accreting onto the SMBH. We examine two cases: (1) the formation of an outflow from the accretion of the ambient gas without rotation and (2) that with rotation. Our 3-D simulations of a non-rotating gas show small yet noticeable non-axisymmetric small-scale features inside the outflow; however, the outflow as a whole and the inflow do not seem to suffer from any large-scale instability. In the rotating case, the non-axisymmetric features are very prominent, especially in the outflow which consists of many cold dense clouds entrained in a smoother hot component. The 3-D outflow becomes non-axisymmetric due to the shear and thermal instabilities. We find that gas rotation increases the outflow thermal energy flux, but it reduces the outflow mass and kinetic energy fluxes and the outflow collimation. The virial mass estimated from the kinematics of the cold clouds found in our 3-D simulations of rotating gas underestimates the actual mass used in the simulations by about 40%. Overall the large scale outflow significantly reduces the rate at which mass accretes onto the SMBH. This work was supported by NASA through grant HST-AR-11276 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Suzuki, K.; Inoue, T.; Nakajima, T. Y.; Okamoto, H.

    2017-01-01

    This study evaluates 3-D cloud effects on the radiation budget with a combined use of active sensor cloud profiling radar/CloudSat and imager Moderate Resolution Imaging Spectroradiometer/Aqua data on the A-train. An algorithm is devised for constructing 3-D cloud fields based on satellite-observed cloud information. The 3-D cloud fields thus constructed are used to calculate the broadband solar and thermal radiative fluxes with a 3-D radiative transfer code developed by the authors. The aim of this study is to investigate the effects of cloud morphology on solar radiative transfer in cloudy atmosphere. For this purpose, 3-D cloud fields are constructed with the new satellite-based method, to which full 3D-RT (radiative transfer) simulations are applied. The simulated 3-D radiation fields are then used to examine and quantify errors of existing typical plane-parallel approximations, i.e., Plane-Parallel Approximation, Independent Pixel Approximation and Tilted Independent Pixel Approximation. Such 3D-RT simulations also serve to address another objective of this study, i.e., to devise an accurate approximation and to characterize the observed specific 3D-RT effects by the cloud morphology based on knowledge of idealized 3D-RT effects. We introduce a modified approach based on an optimum value of diffusivity factor to better approximate the radiative fluxes for arbitrary solar zenith angle determined from the results of 3-D radiative transfer simulations to redeem the overcorrections of these approximations for large solar zenith angles (SZAs). This new approach, called Slant path Independent Pixel Approximation, is found to be better than other approximations when SZA is large for some cloud cases. Based on the SZA dependence of the errors of these approximations relative to 3-D computations, satellite-observed real cloud cases are found to fall into either of three types of different morphologies, i.e., isolated cloud type, upper cloud-roughened type and lower

  14. Effects of 1D and 3D Thermal Radiation on Cloud Dynamics and Microphysics

    NASA Astrophysics Data System (ADS)

    Klinger, C.; Mayer, B. C.; Jakub, F.; Zinner, T.

    2016-12-01

    Radiation is a key driver for the development of clouds. Solar radiation heats the surface and causes updrafts to rise, thus initializing cloud formation. In the very moment that a cloud forms, absorption and emission of thermal radiation at the cloud itself cause heating and cooling rates of several hundred K/d at the interface between cloud and cloudless sky. The magnitude of the cooling rates, compared to the commonly known clear sky cooling of 1-2 K/d, can alter cloud dynamics and microphysics and thus cloud development or lifetime. In cloud resolving numerical simulations, radiation is, if considered at all, usually applied as a 1D approximation, omitting horizontal transport of radiation through the modeling domain. However, it is obvious that radiation is a three dimensional problem. Applying 3D radiative transfer in cloud resolving simulations causes, in addition to cloud top cooling and cloud bottom warming, an additional cooling at cloud sides which is completely neglected by common 1D radiative transfer solutions. Here, we examine the effects of 1D and 3D thermal radiative transfer in cloud resolving simulation, by applying the newly developed "Neighboring Column Approximation" (NCA) - a fast 3D approximation for thermal radiative transfer in cloud resolving simulations. The NCA accurately represents 3D effects at moderate computational cost which make it an ideal tool to explore how 1D and 3D radiative transfer modify cloud development in numerical models. Thermal radiation can modify clouds in terms of cloud lifetime, cloud size and cloud circulation. These effects on cloud development will be analyzed in a set of cumulus cloud simulations.

  15. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  16. 3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.

  17. 3D photomechanical model of tooth enamel ablation by Er-laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2014-02-01

    The three-dimensional (3D) photomechanical model of human tooth enamel ablation is described. It takes into account: the structural peculiarities of enamel, Er-laser beam energy spatial distribution and laser radiation attenuation in the tissue. Dynamics change of enamel coefficient of absorption during ablation is also discussed. We consider the 3D photomechanical model of incomplete removal (modification) of the enamel rods by the pressure of water contained in the enamel pores and heated by laser radiation, and complete removal (ablation) of the enamel rods as result of hydroxyapatite heated by laser radiation and evaporation. Modeling results are in close agreement with the experimental results.

  18. Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard; Jakub, Fabian; Zinner, Tobias; Park, Seung-Bu; Gentine, Pierre

    2017-04-01

    We investigate the effects of thermal radiation on cloud development in large-eddy simulations (LESs) with the UCLA-LES model. We investigate single convective clouds (driven by a warm bubble) at 50 m horizontal resolution and a large cumulus cloud field at 50 and 100 m horizontal resolutions. We compare the newly developed 3-D Neighboring Column Approximation with the independent column approximation and a simulation without radiation and their respective impact on clouds. Thermal radiation causes strong local cooling at cloud tops accompanied by a modest warming at the cloud bottom and, in the case of the 3-D scheme, also cloud side cooling. 3-D thermal radiation causes systematically larger cooling when averaged over the model domain. In order to investigate the effects of local cooling on the clouds and to separate these local effects from a systematically larger cooling effect in the modeling domain, we apply the radiative transfer solutions in different ways. The direct effect of heating and cooling at the clouds is applied (local thermal radiation) in a first simulation. Furthermore, a horizontal average of the 1-D and 3-D radiation in each layer is used to study the effect of local cloud radiation as opposed to the domain-averaged effect. These averaged radiation simulations exhibit a cooling profile with stronger cooling in the cloudy layers. In a final setup, we replace the radiation simulation by a uniform cooling of 2.6 K day-1. To focus on the radiation effects themselves and to avoid possible feedbacks, we fixed surface fluxes of latent and sensible heat and omitted the formation of rain in our simulations. Local thermal radiation changes cloud circulation in the single cloud simulations, as well as in the shallow cumulus cloud field, by causing stronger updrafts and stronger subsiding shells. In our cumulus cloud field simulation, we find that local radiation enhances the circulation compared to the averaged radiation applications. In addition, we

  19. MO-B-BRD-01: Creation of 3D Printed Phantoms for Clinical Radiation Therapy

    SciTech Connect

    Ehler, E.

    2015-06-15

    This session is designed so that the learning objectives are practical. The intent is that the attendee may take home an understanding of not just the technology, but also the logistical steps necessary to execute these 3D printing techniques in the clinic. Four practical 3D printing topics will be discussed: (i) Creating bolus and compensators for photon machines; (ii) tools for proton therapy; (iii) clinical applications in imaging; (iv) custom phantom design for clinic and research use. The use of 3D printers within the radiation oncology setting is proving to be a useful tool for creating patient specific bolus and compensators with the added benefit of cost savings. Creating the proper protocol is essential to ensuring that the desired effect is achieved and modeled in the treatment planning system. The critical choice of printer material (since it determines the interaction with the radiation) will be discussed. Selection of 3D printer type, design methods, verification of dose calculation, and the printing process will be detailed to give the basis for establishing your own protocol for electron and photon fields. A practical discussion of likely obstacles that may be encountered will be included. The diversity of systems and techniques in proton facilities leads to different facilities having very different requirements for beam modifying hardware and quality assurance devices. Many departments find the need to design and fabricate facility-specific equipment, making 3D printing an attractive technology. 3D printer applications in proton therapy will be discussed, including beam filters and compensators, and the design of proton therapy specific quality assurance tools. Quality control specific to 3D printing in proton therapy will be addressed. Advantages and disadvantages of different printing technology for these applications will also be discussed. 3D printing applications using high-resolution radiology-based imaging data will be presented. This data

  20. Numerical non-LTE 3D radiative transfer using a multigrid method

    NASA Astrophysics Data System (ADS)

    Bjørgen, Johan P.; Leenaarts, Jorrit

    2017-03-01

    Context. 3D non-LTE radiative transfer problems are computationally demanding, and this sets limits on the size of the problems that can be solved. So far, multilevel accelerated lambda iteration (MALI) has been the method of choice to perform high-resolution computations in multidimensional problems. The disadvantage of MALI is that its computing time scales as O(n2), with n the number of grid points. When the grid becomes finer, the computational cost increases quadratically. Aims: We aim to develop a 3D non-LTE radiative transfer code that is more efficient than MALI. Methods: We implement a non-linear multigrid, fast approximation storage scheme, into the existing Multi3D radiative transfer code. We verify our multigrid implementation by comparing with MALI computations. We show that multigrid can be employed in realistic problems with snapshots from 3D radiative magnetohydrodynamics (MHD) simulations as input atmospheres. Results: With multigrid, we obtain a factor 3.3-4.5 speed-up compared to MALI. With full-multigrid, the speed-up increases to a factor 6. The speed-up is expected to increase for input atmospheres with more grid points and finer grid spacing. Conclusions: Solving 3D non-LTE radiative transfer problems using non-linear multigrid methods can be applied to realistic atmospheres with a substantial increase in speed.

  1. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total

  2. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  3. Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Marshak, Alexander

    2010-02-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  4. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses

    PubMed Central

    Stevenson, Katrina; Gilmour, Lesley; Hamilton, Graham; Chalmers, Anthony J

    2017-01-01

    Abstract Background. Glioblastoma (GBM) is the most common primary brain tumor, with dismal prognosis. The failure of drug–radiation combinations with promising preclinical data to translate into effective clinical treatments may relate to the use of simplified 2-dimensional in vitro GBM cultures. Methods. We developed a customized 3D GBM culture system based on a polystyrene scaffold (Alvetex) that recapitulates key histological features of GBM and compared it with conventional 2D cultures with respect to their response to radiation and to molecular targeted agents for which clinical data are available. Results. In 3 patient-derived GBM lines, no difference in radiation sensitivity was observed between 2D and 3D cultures, as measured by clonogenic survival. Three different molecular targeted agents, for which robust clinical data are available were evaluated in 2D and 3D conditions: (i) temozolomide, which improves overall survival and is standard of care for GBM, exhibited statistically significant effects on clonogenic survival in both patient-derived cell lines when evaluated in the 3D model compared with only one cell line in 2D cells; (ii) bevacizumab, which has been shown to increase progression-free survival when added to standard chemoradiation in phase III clinical trials, exhibited marked radiosensitizing activity in our 3D model but had no effect on 2D cells; and (iii) erlotinib, which had no efficacy in clinical trials, displayed no activity in our 3D GBM model, but radiosensitized 2D cells. Conclusions. Our 3D model reliably predicted clinical efficacy, strongly supporting its clinical relevance and potential value in preclinical evaluation of drug–radiation combinations for GBM. PMID:27576873

  5. A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses.

    PubMed

    Gomez-Roman, Natividad; Stevenson, Katrina; Gilmour, Lesley; Hamilton, Graham; Chalmers, Anthony J

    2017-02-01

    Glioblastoma (GBM) is the most common primary brain tumor, with dismal prognosis. The failure of drug-radiation combinations with promising preclinical data to translate into effective clinical treatments may relate to the use of simplified 2-dimensional in vitro GBM cultures. We developed a customized 3D GBM culture system based on a polystyrene scaffold (Alvetex) that recapitulates key histological features of GBM and compared it with conventional 2D cultures with respect to their response to radiation and to molecular targeted agents for which clinical data are available. In 3 patient-derived GBM lines, no difference in radiation sensitivity was observed between 2D and 3D cultures, as measured by clonogenic survival. Three different molecular targeted agents, for which robust clinical data are available were evaluated in 2D and 3D conditions: (i) temozolomide, which improves overall survival and is standard of care for GBM, exhibited statistically significant effects on clonogenic survival in both patient-derived cell lines when evaluated in the 3D model compared with only one cell line in 2D cells; (ii) bevacizumab, which has been shown to increase progression-free survival when added to standard chemoradiation in phase III clinical trials, exhibited marked radiosensitizing activity in our 3D model but had no effect on 2D cells; and (iii) erlotinib, which had no efficacy in clinical trials, displayed no activity in our 3D GBM model, but radiosensitized 2D cells. Our 3D model reliably predicted clinical efficacy, strongly supporting its clinical relevance and potential value in preclinical evaluation of drug-radiation combinations for GBM.

  6. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  7. Application of a 3D volumetric display for radiation therapy treatment planning I: quality assurance procedures.

    PubMed

    Gong, Xing; Kirk, Michael Collins; Napoli, Josh; Stutsman, Sandy; Zusag, Tom; Khelashvili, Gocha; Chu, James

    2009-07-17

    To design and implement a set of quality assurance tests for an innovative 3D volumetric display for radiation treatment planning applications. A genuine 3D display (Perspecta Spatial 3D, Actuality-Systems Inc., Bedford, MA) has been integrated with the Pinnacle TPS (Philips Medical Systems, Madison WI), for treatment planning. The Perspecta 3D display renders a 25 cm diameter volume that is viewable from any side, floating within a translucent dome. In addition to displaying all 3D data exported from Pinnacle, the system provides a 3D mouse to define beam angles and apertures and to measure distance. The focus of this work is the design and implementation of a quality assurance program for 3D displays and specific 3D planning issues as guided by AAPM Task Group Report 53. A series of acceptance and quality assurance tests have been designed to evaluate the accuracy of CT images, contours, beams, and dose distributions as displayed on Perspecta. Three-dimensional matrices, rulers and phantoms with known spatial dimensions were used to check Perspecta's absolute spatial accuracy. In addition, a system of tests was designed to confirm Perspecta's ability to import and display Pinnacle data consistently. CT scans of phantoms were used to confirm beam field size, divergence, and gantry and couch angular accuracy as displayed on Perspecta. Beam angles were verified through Cartesian coordinate system measurements and by CT scans of phantoms rotated at known angles. Beams designed on Perspecta were exported to Pinnacle and checked for accuracy. Dose at sampled points were checked for consistency with Pinnacle and agreed within 1% or 1 mm. All data exported from Pinnacle to Perspecta was displayed consistently. The 3D spatial display of images, contours, and dose distributions were consistent with Pinnacle display. When measured by the 3D ruler, the distances between any two points calculated using Perspecta agreed with Pinnacle within the measurement error.

  8. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  9. New insights on pulsating white dwarfs from 3D radiation-hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter; Gianninas, Alexandros; Kilic, Mukremin

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of pure-hydrogen DA white dwarfs in the range 5.0 < log g < 9.0. Our grid covers the full ZZ Ceti instability strip where pulsating DA white dwarfs are located. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We present improved atmospheric parameter determinations based on spectroscopic fits with 3D model spectra, allowing for an updated definition of the empirical edges of the ZZ Ceti instability strip. Our 3D simulations also precisely predict the depth of the convection zones, narrowing down the internal layers where pulsation are being driven. We hope that these 3D effects will be included in asteroseismic models in the future to predict the region of the HR diagram where white dwarfs are expected to pulsate.

  10. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    SciTech Connect

    Steer, Christopher A.; Durose, Aaron

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)

  11. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    DOE PAGES

    Olson, Gordon Lee

    2016-12-06

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less

  12. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    SciTech Connect

    Olson, Gordon Lee

    2016-12-06

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.

  13. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    NASA Astrophysics Data System (ADS)

    Olson, Gordon L.

    2017-03-01

    Gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that are nearly identical while 1D slab solutions are fundamentally different.

  14. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  15. 3D Radiative Transfer models of Planetary Nebulae with CRONOS and CLOUDY

    NASA Astrophysics Data System (ADS)

    Niederwanger, F.; Öttl, Silvia; Kimeswenger, S.; Kissmann, R.; Reitberger, K.

    2014-04-01

    We present our ideas about a new setup for a full 3D radiative transfer hydrodynamic (RT-HD) computation for planetary nebulae (PNe). The setup is based on the 3D MHD code CRONOS, using low dissipative conservation numerical schemes for hydrodynamics and MHD (Kissmann et al. 2009), and on CLOUDY (Ferland et al. 2013). New to our ideas is the implementation of CLOUDY for the radiative terms. While in previous works internal cooling was calculated using analytical cooling curves from Dalgarno&McCray (1972) for the lower temperatures and from Gerritsen&Icke (1997) for the high temperature regime, we intend to use the sophisticated physics of CLOUDY in a similar way as for CLOUDY 3D (Morisset, 2011). The hydrodynamic calculations provide the density and velocity structure. Repeatedly, a CLOUDY model is calculated to derive cooling, absorption and radiative pressure acceleration terms for the hydro code. We show the feasibility of this setup for symmetric and asymmetric geometries of PNe. Euclidean grids are used to avoid imprinting. We present first tests for this setup and first results on the numerical stability. These simulations were run using different geometries, like e.g. disks. Another group is working on 3D models of particle acceleration in radiatively driven colliding winds of massive star binary systems. Although this is a completely different energy regime, binary systems are of great interest for asymmetric PNe as well. The setup allows us simulations using any arbitrary geometry.

  16. A 3D radiative transfer framework . VII. Arbitrary velocity fields in the Eulerian frame

    NASA Astrophysics Data System (ADS)

    Seelmann, A. M.; Hauschildt, P. H.; Baron, E.

    2010-11-01

    Aims: A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well-tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible. Methods: In the Eulerian formulation of the problem, the photon is seen by the atom at a Doppler-shifted wavelength depending on its propagation direction, which leads to a Doppler-shifted absorption and emission. This leads to a different source function and a different Λ^* operator in the radiative transfer equations compared to the static case. Results: The results of the Eulerian 3D spherical calculations are compared to our well-tested 1D Lagrangian spherical calculations, the agreement is, up to vmax = 1 × 103 km s-1 very good. Test calculation in other geometries are also shown.

  17. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  18. Impact of 3-D topography on surface radiation budget over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Liang; Liou, K. N.; Wang, Chia-chi

    2013-07-01

    The 3-D complex topography effect on the surface solar radiative budget over the Tibetan Plateau is investigated by means of a parameterization approach on the basis of "exact" 3-D Monte Carlo photon tracing simulations, which use 90 m topography data as building blocks. Using a demonstrative grid size of 10 × 10 km2, we show that differences in downward surface solar fluxes for a clear sky without aerosols between the 3-D model and the conventional plane-parallel radiative transfer scheme are substantial, on the order of 200 W/m2 at shaded or sunward slopes. Deviations in the reflected fluxes of the direct solar beam amount to about +100 W/m2 over snow-covered areas, which would lead to an enhanced snowmelt if the 3-D topography effects had been accounted for in current climate models. We further demonstrate that the entire Tibetan Plateau would receive more solar flux by about 14 W/m2, if its 3-D mountain structure was included in the calculations, which would result in larger sensible and latent heat transfer from the surface to the atmosphere.

  19. Time-Accurate Local Time Stepping and High-Order Time CESE Methods for Multi-Dimensional Flows Using Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary

    2013-01-01

    With the wide availability of affordable multiple-core parallel supercomputers, next generation numerical simulations of flow physics are being focused on unsteady computations for problems involving multiple time scales and multiple physics. These simulations require higher solution accuracy than most algorithms and computational fluid dynamics codes currently available. This paper focuses on the developmental effort for high-fidelity multi-dimensional, unstructured-mesh flow solvers using the space-time conservation element, solution element (CESE) framework. Two approaches have been investigated in this research in order to provide high-accuracy, cross-cutting numerical simulations for a variety of flow regimes: 1) time-accurate local time stepping and 2) highorder CESE method. The first approach utilizes consistent numerical formulations in the space-time flux integration to preserve temporal conservation across the cells with different marching time steps. Such approach relieves the stringent time step constraint associated with the smallest time step in the computational domain while preserving temporal accuracy for all the cells. For flows involving multiple scales, both numerical accuracy and efficiency can be significantly enhanced. The second approach extends the current CESE solver to higher-order accuracy. Unlike other existing explicit high-order methods for unstructured meshes, the CESE framework maintains a CFL condition of one for arbitrarily high-order formulations while retaining the same compact stencil as its second-order counterpart. For large-scale unsteady computations, this feature substantially enhances numerical efficiency. Numerical formulations and validations using benchmark problems are discussed in this paper along with realistic examples.

  20. Validation of computational code UST3D by the example of experimental aerodynamic data

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2017-02-01

    Numerical simulation of the aerodynamic characteristics of the hypersonic vehicles X-33 and X-34 as well as spherically blunted cone is performed using the unstructured meshes. It is demonstrated that the numerical predictions obtained with the computational code UST3D are in acceptable agreement with the experimental data for approximate parameters of the geometry of the hypersonic vehicles and in excellent agreement with data for blunted cone.

  1. Radiation Quality Effects on Transcriptome Profiles in 3-D Cultures After Charged Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kidane, Yared H.; Huff, Janice L.

    2014-01-01

    In this work, we evaluated the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Current risk models for assessment of space radiation-induced cancer have large uncertainties because the models for adverse health effects following radiation exposure are founded on epidemiological analyses of human populations exposed to low-LET radiation. Reducing these uncertainties requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. In order to better quantify these radiation quality effects in biological systems, we are utilizing novel 3-D organotypic human tissue models for space radiation research. These models hold promise for risk assessment as they provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information.

  2. Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification.

    PubMed

    Sun, Shuh-Ping; Wu, Ching-Jung

    2004-01-01

    This paper describes the full size solid 3D Anthropometric Model using in the positioning and verification process for radiation treatment planning of the skull of cancer patients in radiotherapy. In order to obtain a full scale 3D, solid Anthropometric Model, data is first collected through computed tomography and optical scanning. Through surface reconstruction, a model is made of the patients skull, after which rapid prototyping and rapid tooling is applied to acquire a 1:1 solid model, thus, it can replace the patient for the tumor positioning and verification in radiotherapy. The 3D Anthropometric Model are not only provide a clear picture of the external appearance, but also allow insight into the internal structure of organic bodies, which is of great advantage in radiotherapy. During radiotherapy planning, 3D Anthropometric Model can be used to simulate all kinds of situations on the simulator and the linear accelerator, without the patient needing to be present, so that the medical physicist or dosimetrist will be able to design a precise treatment plan that is tailored to the patient. The 3D Anthropometric Model production system can effectively help us solve problems related to r adiotherapy positioning and verification, helping both radiotherapists and cancer patients. We expect that the application of 3D Anthropometric Model can reduce the time that needs to be spent on pretreatment procedures and enhance the quality of health care for cancer patients.

  3. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  4. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  5. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  6. TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer

    NASA Astrophysics Data System (ADS)

    Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J.

    2017-07-01

    Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between

  7. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  8. Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System

    SciTech Connect

    Holdsworth, Clay; Hummel-Kramer, Sharon M.; Phillips, Mark

    2011-10-01

    Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.

  9. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    SciTech Connect

    Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.

  10. Partial redistribution in 3D non-LTE radiative transfer in solar-atmosphere models

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Andrii V.; Leenaarts, Jorrit

    2017-01-01

    Context. Resonance spectral lines such as H I Ly α, Mg II H&K, and Ca II H&K that form in the solar chromosphere, are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is, however, indispensable for accurate diagnostics of the chromosphere. Aims: We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-local thermodynamic equilibrium (non-LTE) radiative transfer code. Methods: To make the method memory-friendly, we use the hybrid approximation for the redistribution integral. To make the method fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the H&K lines and H I with the Ly α line treated in PRD. Results: A typical 3D PRD solution can be obtained in a model atmosphere with 252 × 252 × 496 coordinate points in 50 000-200 000 CPU hours, which is a factor ten slower than computations assuming complete redistribution. We illustrate the importance of the joint action of PRD and 3D effects for the Mg II H&K lines for disk-center intensities, as well as the center-to-limb variation. Conclusions: The proposed method allows for the simulation of PRD lines in a time series of radiation-magnetohydrodynamic models, in order to interpret observations of chromospheric lines at high spatial resolution.

  11. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order

  12. Fast and slow radiation-driven wind solutions using ZEUS-3D

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.; ud-Doula, A.; Santillán, A.

    2014-10-01

    Currently, the theory of radiation-driven winds of massive stars possess three known solutions for the velocity and density profiles of the stellar winds, namely: the fast, Ω -slow and δ -slow solutions. In order to confirm their stability we use a time-dependent numerical hydrodynamic code called ZEUS-3D, and then we compare their results with the stationary solutions from our numerical hydrodynamic code. ZEUS-3D needs an initial trial solution to start to integrate, for this we use the stationary solution (from our code) or a β-law for the velocity field. In both cases we obtain the same results. Fast and both slow stationary solutions are attained in ZEUS-3D and are all stable. Furthermore, there is a very good agreement with the velocity and density fields from ZEUS-3D and our code, having differences between the terminal velocities lower than 3%. In addition, we found that ZEUS-3D is very sensitive to the boundary conditions (base density and velocity profile), in some cases we obtain kinks in the velocity profiles, similar to the ones obtained by Madura et al. (2007) for stars with high rotation. Such kinks are most likely the result of the wind being mass overloaded, but further investigation is needed to understand its nature better. Currently, we are exploring the effects of small perturbation at the base of the wind in order to study possible transitions or oscillations between δ-slow and fast solutions.

  13. The history and principles of chemical dosimetry for 3-D radiation fields: gels, polymers and plastics.

    PubMed

    Doran, Simon J

    2009-03-01

    Over recent decades, modern protocols of external beam radiotherapy have been developed that involve very steep dose gradients and are thus extremely sensitive to errors in treatment delivery. A recent credentialling study by the Radiological Physics Center at the MD Anderson Cancer Center (Texas, USA) has noted potentially significant inaccuracies in test treatments at a variety of institutions. 3-D radiation dosimetry (often referred to as "gel dosimetry") may have an important role in commissioning new treatment protocols, to help prevent this type of error. This article discusses the various techniques of 3-D radiation dosimetry, with a focus on the types of radiosensitive samples used and on the optical computed tomography readout technique.

  14. Gamma Radiation Induces Micronucleated Reticulocytes in 3-D Bone Marrow Bioreactors in Vitro

    PubMed Central

    Sun, Hongliang; Dertinger, Stephen D.; Hyrien, Ollivier; David Wu, J. H.; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3-D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RET). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3-D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th to 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 and 32 hours post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5 – 2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3-D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro. PMID:19786117

  15. Gamma-radiation induces micronucleated reticulocytes in 3D bone marrow bioreactors in vitro.

    PubMed

    Sun, Hongliang; Dertinger, Stephen D; Hyrien, Ollivier; Wu, J H David; Chen, Yuhchyau

    2009-01-01

    Radiation injury to the bone marrow is potentially lethal due to the potent DNA-damaging effects on cells of the hematopoietic system, including bone marrow stem cell, progenitor, and the precursor cell populations. Investigation of radiation genotoxic effects on bone marrow progenitor/precursor cells has been challenged by the lack of optimal in vitro surrogate organ culture systems, and the overall difficulty to sustain lineage-specific proliferation and differentiation of hematopoiesis in vitro. We report the investigation of radiation genotoxic effects in bone marrow cultures of C57Bl/6 mice established in 3D bioreactors, which sustain long-term bone marrow cultures. For these studies, genotoxicity is measured by the induction of micronucleated reticulocytes (MN-RETs). The kinetics and dose-response relationship of MN-RET induction in response to gamma-radiation of bioreactor-maintained bone marrow cultures are presented. Our data showed that 3D long-term bone marrow cultures had sustained erythropoiesis capable of generating reticulocytes up to 8 weeks. The peak time-interval of viable cell output and percentage of reticulocytes increased steadily and reached the initial peak between the 14th and 21st days after inoculations. This was followed by a rebound or staying relatively constant until week 8. The percentage of MN-RET reached the maximum between 24 h and 32 h post 1 Gy gamma-ray. There was a near linear MN-RET induction by gamma-radiation from 0 Gy to 1.0 Gy, followed by an attenuated increase to 1.5-2.0 Gy. The MN-RET response showed a downtrend beyond 2 Gy. Our data suggest that bone marrow culture in the 3D bioreactor may be a useful organ culture system for the investigation of radiation genotoxic effect in vitro.

  16. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    NASA Astrophysics Data System (ADS)

    McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

    2015-01-01

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

  17. New 3D Silicon detectors for dosimetry in Microbeam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Lerch, M. L. F.; Dipuglia, A.; Cameron, M.; Fournier, P.; Davis, J.; Petasecca, M.; Cornelius, I.; Perevertaylo, V.; Rosenfeld, A. B.

    2017-01-01

    Microbeam Radiation Therapy (MRT) involves the use of a spatially fractionated beam of synchrotron generated X-rays to treat tumours. MRT treatment is delivered via an array of high dose ‘peaks’ separated by low dose ‘valleys’. A good Peak to Valley Dose Ratio (PVDR) is an important indicator of successful treatment outcomes. MRT dosimetry requires a radiation hard detector with high spatial resolution, large dynamic range, which is ideally real-time and tissue equivalent. We have developed a Silicon Strip Detector (SSD) and very recently, a new 3D MESA SSD to meet the very stringent requirements of MRT dosimetry. We have compared these detectors through the characterisation of the MRT radiation field at the Australian Synchrotron Imaging and Medical Beamline. The EPI SSD was able to measure the microbeam profiles and PVDRs, however the effective spatial resolution was limited by the detector alignment options available at the time. The geometry of the new 3D MESA SSD is less sensitive to this alignment restriction was able to measure the microbeam profiles within 2 μm of that expected. The 3D MESA SSD measured PVDRs were possibly affected by undesired and slow charge collection outside the sensitive volume and additional scattering from the device substrate.

  18. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  19. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  20. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  1. Development of an accurate 3D Monte Carlo broadband atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Jones, Alexandra L.

    Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth's properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth's atmosphere all parameterize radiative transfer with approximations that reduce or neglect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolution modeling and remote sensing observations of clouds, from shallow cumulus to deep convective clouds, and given our ever advancing technological capabilities, these approximations have been exposed as inappropriate in many situations. This presents a need for accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactions between clouds and radiation to judge the accuracy of similar but less expensive models and to aid in new parameterizations that take into account 3D effects when coupled to dynamic models of the atmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer ("IMC-original") Model is the task at hand. It has involved incorporating (1) thermal emission sources of radiation ("IMC+emission model"), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary

  2. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  3. A study of the excitation and radiative decay of the 3s-prime 3D-0 and 3d 3D-0 levels of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Mclaughlin, R. W.; Gorman, M. R.

    1979-01-01

    The absolute cross-sections for the excitation of the 989 A, 1027 A, 7990 A, 8446 A, 1.1287 micron and 1.3164 micron multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O(+) radiative recombination and of electron-impact excitation of the O I(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the lambda 989 A and lambda 1027 A multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI EUV emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures.

  4. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography.

    PubMed

    James, Judy R; Pavlicek, William; Hanson, James A; Boltz, Thomas F; Patel, Bhavika K

    2017-02-01

    We aimed to compare radiation dose received during contrast-enhanced spectral mammography (CESM) using high- and low-energy projections with radiation dose received during 2D full field digital mammography (FFDM) and 3D tomosynthesis on phantoms and patients with varying breast thickness and density. A single left craniocaudal projection was chosen to determine the doses for 6214 patients who underwent 2D FFDM, 3662 patients who underwent 3D tomosynthesis, and 173 patients who underwent CESM in this retrospective study. Dose measurements were also collected in phantoms with composition mimicking nondense and dense breast tissue. Average glandular dose (AGD) ± SD was 3.0 ± 1.1 mGy for CESM exposures at a mean breast thickness of 63 mm. At this thickness, the dose was 2.1 mGy from 2D FFDM and 2.5 mGy from 3D tomosynthesis. The nondense phantom had a mean AGD of 1.0 mGy with 2D FFDM, 1.3 mGy with 3D tomosynthesis, and 1.6 mGy with CESM. The dense breast phantom had a mean AGD of 1.3 mGy with 2D FFDM, 1.4 mGy with 3D tomosynthesis, and 2.1 mGy with CESM. At a compressed thickness of 4.5 cm, radiation exposure from CESM was approximately 25% higher in dense breast phantoms than in nondense breast phantoms. The dose in the dense phantom at a compressed thickness of 6 cm was approximately 42% higher than the dose in the nondense phantom at a compressed thickness of 4.5 cm. CESM was found to increase AGD at a mean breast thickness of 63 mm by approximately 0.9 mGy and 0.5 mGy compared with 2D FFDM and 3D tomosynthesis, respectively. Of note, CESM provides a standard image (similar to 2D FFDM) that is obtained using the low-energy projection. Overall, the AGD from CESM falls below the dose limit of 3 mGy set by Mammography Quality Standards Act regulations.

  5. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  6. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  7. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    PubMed

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  9. A Radiative Transfer Case Study for 3-d cloud effects in the UV

    NASA Astrophysics Data System (ADS)

    Meerkötter, Ralf; Degünther, Markus

    Satellite UV mapping is usually based on the independent pixel approximation (IPA) which neglects horizontal photon transport between adjacent columns. Horizontal inhomogeneity of cloud fields therefore causes uncertainties in the derived UV radiation fields. While these effects are small for large pixel satellites, the broken-cloud errors increase as the pixel size decreases. By comparing results of 1-d and 3-d UV radiative transfer calculations for three selected cloud scenes that cover a rather broad range of cloud inhomogeneity the main 3-d cloud effects on the atmospheric UV transmission are identified and quantified in their order of magnitude. With respect to the different spatial resolutions of satellite instruments it is further shown how 3-d cloud effects average out with increasing spatial scale. It turns out that locally the IPA cause maximum uncertainties up to ±100% for a spatial resolution of about 1 × 1 km² (e.g., AVHRR), they are reduced to ±10% for a resolution of about 15 × 15 km² and below 5% for a resolution greater than 30 km (e.g., TOMS).

  10. PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Štěpán, J.

    2014-10-01

    The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).

  11. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  12. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  13. A simulation technique for 3D MR-guided acoustic radiation force imaging

    PubMed Central

    Payne, Allison; de Bever, Josh; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  14. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  15. Evaluation of a 3D diamond detector for medical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.

    2017-01-01

    Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.

  16. New normoxic N-(Hydroxymethyl)acrylamide based polymer gel for 3D dosimetry in radiation therapy.

    PubMed

    Rabaeh, Khalid A; Basfar, Ahmed A; Almousa, Akram A; Devic, Slobodan; Moftah, Belal

    2017-01-01

    A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for 3D dosimetry for Quality Assurance (QA) in radiation therapy. Dosimeters were irradiated by 6, 10 and 18MV photon beams of a medical linear accelerator at various dose rates to doses of up to 20Gy. The dose response of polymer gel dosimeters was studied using nuclear magnetic resonance (NMR) spin-spin relaxation rate (R2) of hydrogen protons within the water molecule. Also, we measured gel response using absorption spectroscopy and found that this novel gel can be successfully utilized for both MRI- and OCT- (Optical Computed Tomography) based 3D dosimetry. We investigated dosimetric properties of six different compositions of the new NHMA-based gel in terms of dose rate, radiation beam quality and stability of dose-dependent polymerization after irradiation. We found no significant effects of these parameters on the novel gel dosimeter performance in both relaxation rate and absorbance measurements.

  17. Parameterization of Solar Radiative Fluxes For 3d-inhomogeneous Clouds

    NASA Astrophysics Data System (ADS)

    Schewski, M.; Macke, A.

    radiative fluxes for 3d clouds appears to be a promis- ing approach.

  18. 3D cardiovascular navigation system: accuracy and reduction in radiation exposure in left ventricular lead implant.

    PubMed

    Valderrabano, Miguel; Greenberg, Steven; Razavi, Hedi; More, Rohan; Ryu, Kyungmoo; Heist, E Kevin

    2014-01-01

    Cardiac resynchronization therapy implants entail significant radiation exposure for patients and physicians. A novel 3D electromagnetic cardiovascular navigation system (MediGuide™) was designed to superimpose the real-time location of sensors embedded in delivery tools on prerecorded coronary sinus (CS) venograms while adjusting for patient movement and variations in heart rate under different C-arm angulations. We studied the accuracy and efficacy of MediGuide™ in reducing radiation exposure during LV lead implants. Fluoroscopy durations and radiation exposures were measured in 6 canines undergoing both conventional and MediGuide™-guided LV lead implants. The in vivo accuracy of MediGuide™ was evaluated by obtaining CS venograms at 3 different C-arm angulations at 3 different heart rates and measuring the separation between the projected sensor icon of a MediGuide™ sensor-enabled guidewire and the encompassing branch on prerecorded venograms. Mediguide™-guided implants resulted in significant reductions in fluoroscopy time (52 ± 120 [median 6] vs 129 ± 118 [median 90] sec, P < 0.001) and radiation exposure (13.8 ± 32.4 [median 1.7] vs 49.2 ± 45.3 [median 27.2] μGym(2) , P = 0.03) compared to conventional implants. LV lead delivery time was not significantly different between the 2 implant techniques (P = 0.27). The mean separation between the projected guidewire sensor icon and its encompassing branch was 0.48 ± 0.94 (median 0.00) mm. System accuracy was not affected by variations in heart rate or C-arm angulations. The novel 3D cardiovascular navigation system enabled accurate and reliable tracking of sensor-enabled tools at varying heart rates and C-arm angulations with minimal need for fluoroscopy guidance, significantly reducing fluoroscopy time and radiation exposure. © 2014 Wiley Periodicals, Inc.

  19. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  20. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  1. Pollutant transport by shallow water equations on unstructured meshes: Hyperbolization of the model and numerical solution via a novel flux splitting scheme

    NASA Astrophysics Data System (ADS)

    Vanzo, Davide; Siviglia, Annunziato; Toro, Eleuterio F.

    2016-09-01

    The purpose of this paper is twofold. First, using the Cattaneo's relaxation approach, we reformulate the system of governing equations for the pollutant transport by shallow water flows over non-flat topography and anisotropic diffusion as hyperbolic balance laws with stiff source terms. The proposed relaxation system circumvents the infinite wave speed paradox which is inherent in standard advection-diffusion models. This turns out to give a larger stability range for the choice of the time step. Second, following a flux splitting approach, we derive a novel numerical method to discretise the resulting problem. In particular, we propose a new flux splitting and study the associated two systems of differential equations, called the ;hydrodynamic; and the ;relaxed diffusive; system, respectively. For the presented splitting we analyse the resulting two systems of differential equations and propose two discretisation schemes of the Godunov-type. These schemes are simple to implement, robust, accurate and fast when compared with existing methods. The resulting method is implemented on unstructured meshes and is systematically assessed for accuracy, robustness and efficiency on a carefully selected suite of test problems including non-flat topography and wetting and drying problems. Formal second order accuracy is assessed through convergence rates studies.

  2. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Woodruff, P.; Golovkin, I.

    2011-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e . g . , that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to the software package and plans for future developments.

  3. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.

    PubMed

    Goryawala, Mohammed; Guillen, Magno R; Cabrerizo, Mercedes; Barreto, Armando; Gulec, Seza; Barot, Tushar C; Suthar, Rekha R; Bhatt, Ruchir N; Mcgoron, Anthony; Adjouadi, Malek

    2012-01-01

    This study describes a new 3-D liver segmentation method in support of the selective internal radiation treatment as a treatment for liver tumors. This 3-D segmentation is based on coupling a modified k-means segmentation method with a special localized contouring algorithm. In the segmentation process, five separate regions are identified on the computerized tomography image frames. The merit of the proposed method lays in its potential to provide fast and accurate liver segmentation and 3-D rendering as well as in delineating tumor region(s), all with minimal user interaction. Leveraging of multicore platforms is shown to speed up the processing of medical images considerably, making this method more suitable in clinical settings. Experiments were performed to assess the effect of parallelization using up to 442 slices. Empirical results, using a single workstation, show a reduction in processing time from 4.5 h to almost 1 h for a 78% gain. Most important is the accuracy achieved in estimating the volumes of the liver and tumor region(s), yielding an average error of less than 2% in volume estimation over volumes generated on the basis of the current manually guided segmentation processes. Results were assessed using the analysis of variance statistical analysis.

  4. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  5. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  6. Cherenkov radiation from the target with predetermined dielectric properties, produced by a 3D-printer

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Potylitsyn, A.; Bleko, V.; Soboleva, V.; Stuchebrov, S.

    2017-07-01

    Most targets made of industrial materials, used for the generation of Cherenkov radiation (ChR) have a refractive index n > 1.4 in millimeter wavelength region. It is often a problem to get out the radiation from such cylindrical or flat targets because the angle of incidence of ChR on the outer surface of target is greater than the angle of total internal reflection. In this work we present the solution of this problem by the usage of the targets with predetermined dielectric properties, manufactured using 3-D printer. We demonstrate the emission of ChR in millimeter wavelength region from the such flat target with the refractive index n = 1.37 . Suggested technique allows us to fabricate targets with turned refractive index.

  7. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance

    NASA Astrophysics Data System (ADS)

    Qiu, Jimmy; Hope, Andrew J.; Cho, B. C. John; Sharpe, Michael B.; Dickie, Colleen I.; DaCosta, Ralph S.; Jaffray, David A.; Weersink, Robert A.

    2012-10-01

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ˜2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  8. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  9. Microstructure analysis of the secondary pulmonary lobules by 3D synchrotron radiation CT

    NASA Astrophysics Data System (ADS)

    Fukuoka, Y.; Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohmatsu, H.; Moriyama, N.; Itoh, H.

    2014-03-01

    Recognition of abnormalities related to the lobular anatomy has become increasingly important in the diagnosis and differential diagnosis of lung abnormalities at clinical routines of CT examinations. This paper aims a 3-D microstructural analysis of the pulmonary acinus with isotropic spatial resolution in the range of several micrometers by using micro CT. Previously, we demonstrated the ability of synchrotron radiation micro CT (SRμCT) using offset scan mode in microstructural analysis of the whole part of the secondary pulmonary lobule. In this paper, we present a semiautomatic method to segment the acinar and subacinar airspaces from the secondary pulmonary lobule and to track small vessels running inside alveolar walls in human acinus imaged by the SRμCT. The method beains with and segmentation of the tissues such as pleural surface, interlobular septa, alveola wall, or vessel using a threshold technique and 3-D connected component analysis. 3-D air space are then conustructed separated by tissues and represented branching patterns of airways and airspaces distal to the terminal bronchiole. A graph-partitioning approach isolated acini whose stems are interactively defined as the terminal bronchiole in the secondary pulmonary lobule. Finally, we performed vessel tracking using a non-linear sate space which captures both smoothness of the trajectories and intensity coherence along vessel orientations. Results demonstrate that the proposed method can extract several acinar airspaces from the 3-D SRμCT image of secondary pulmonary lobule and that the extracted acinar airspace enable an accurate quantitative description of the anatomy of the human acinus for interpretation of the basic unit of pulmonary structure and function.

  10. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  11. 3D radiative transfer of intrinsically polarized dust emission based on aligned aspherical grains

    NASA Astrophysics Data System (ADS)

    Bertrang, G. H.-M.; Wolf, S.

    2017-08-01

    (Sub-)millimetre observations of the polarized emission of aligned aspherical dust grains enable us to study the magnetic fields within protoplanetary disc. However, the interpretation of these observations is complex. One must consider the various effects that alter the measured polarized signal, such as the shape of dust grains, the efficiency of grain alignment, the magnetic field properties and the projection of the signal along the line of sight. We aim at analysing observations of the polarized dust emission by disentangling the effects on the polarization signal in the context of 3D radiative transfer simulations. For this purpose, we developed a code capable of simulating dust grain alignment of aspherical grains and intrinsical polarization of thermal dust emission. We find that the influence of thermal polarization and dust grain alignment on the polarized emission displayed as spatially resolved polarization map or as spectral energy distribution trace disc properties that are not traced in total (unpolarized) emission such as the magnetic field topology. The radiative transfer simulations presented in this work enable the 3D analysis of intrinsically polarized dust emission - observed with e.g. Atacama Large Millimeter/submillimeter Array (ALMA) - which is essential to constrain magnetic field properties.

  12. Characterisation of PRESAGE: A new 3-D radiochromic solid polymer dosemeter for ionising radiation.

    PubMed

    Adamovics, J; Maryanski, M J

    2006-01-01

    For the past 50 years there has been interest in developing 3-D dosemeters for ionising radiation. Particular emphasis has been put on those dosemeters that change their optical properties in proportion to the absorbed dose. Many of the dosemeters that have been evaluated have had limitations such as lack of transparency, diffusion of the image of the dose distribution or poor stability of baseline optical density. Many of these performance limitations have been overcome by the development of PRESAGE, an optically clear polyurethane-based radiochromic 3-D dosemeter. The solid PRESAGE dosemeter is formulated with a free radical initiator and a leuco dye and it does not require a container to maintain its shape. The polyurethane matrix is tissue equivalent and prevents the diffusion of the dose distribution image. There is a linear dose-response, which is independent of both photon energy and dose rate. Simple precautions such as preventing long-term exposure to additional ionising radiation including ultraviolet and controlling storage temperatures prevent the bleaching of the radiochromic response field within the irradiated dosemeter.

  13. Analysis of the radiative lifetime of Pr{sup 3+} d-f emission

    SciTech Connect

    Zych, Aleksander; Lange, Matthijs de; Mello Donega, Celso de; Meijerink, Andries

    2012-07-01

    The radiative lifetime of excited states is governed by Fermi's Golden Rule. For many applications, the radiative decay rate is an important parameter. For example, for scintillators materials in PET scanners, a short response time is crucial and it has been realized that the d-f emission of Pr{sup 3+} is faster than for the widely applied d-f emission from Ce{sup 3+}. In this paper, the radiative decay rate of d-f emission from Pr{sup 3+} is systematically investigated in a wide variety of host lattices, including scintillators materials. The variation in the decay rate is analyzed based on Fermi's Golden Rule. The trend observed is best described using a full cavity model to correct for local-field effects and a {lambda}{sup 3} factor to account for the energy of the transition. Still, there is a considerable scatter of the experimental data around the best fit to these data. The variation is explained by uncertainties in the refractive indices and a variation in the transition dipole moment of the d-f transition for Pr{sup 3+}. Based on the results, the shortest radiative lifetime that can be achieved for Pr{sup 3+} d-f emission is predicted to be {approx}6 ns.

  14. 3D Visualization of Solar Disk: Radiation Assessment of Solar Particle Events at Mars and Earth

    NASA Astrophysics Data System (ADS)

    Saganti, P.; Towns, E.; Cucinotta, F.; Cleghorn, T.; Zeitlin, C.

    Between 2002 and 2003 the MARIE Martian Radiation Environment Experiment instrument onboard the 2001 Mars Odyssey spacecraft provided some unique data from the Martian orbit The orbit alignment of Mars-Sun-Earth provided a wealth of opportunity between 180 degrees August 2002 and 0 degrees October 2003 During this time the MARIE data included the background GCR Galactic Cosmic Rays and several SPE Solar Particle Events enhanced radiation dose-rate measurements at Mars The MARIE instrument provided a unique data set of radiation dose-rate at Mars from the active regions on the solar disk facing the Mars side and there were no indications of these events towards the Earth at that time Nearly 40 times increase in the quiet-time GCR dose-rate was noted from about 25 mrad day to nearly 1000 mrad day at Mars Radiation dose-rate enhancement was not observed toward the Earth or in the Low Earth Orbit LEO during this time Understanding the active regions on the Sun that are likely to result into SPE on the far side will also be of concern for future deep space explorations beyond LEO We present our approach in depicting SPE with 3D visualization of solar disks facing Mars and Earth We present the assessment of SPE activity between 2004 and 2005 towards Mars along with an estimated dose-rate during an SPE at Mars and towards Earth

  15. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  16. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  17. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  18. The Secular Changes of the 3-D Profile of the Synchrotron Radiation around Jupiter.

    NASA Astrophysics Data System (ADS)

    Dunn, D. E.; de Pater, I.; Sault, R. J.

    2000-10-01

    We present a summary of Jupiter data taken over a seventeen year span (1981-1998) by the Very Large Array at ~ 20.0 cm. At this wavelength the emission is dominated by synchrotron radiation, which is roughly proportional to the product of the electron number density and magnetic field strength (Ne B). At each epoch 8--12 hours of data were taken, which allowed us to examine Jupiter during an entire rotation period. We mapped the azimuthal structure of the synchrotron radiation by using a 3-D reconstruction techinique developed by Sault et al. (AA 324 1190--1196, 1997). We have applied this technique to all the data to produce plots of the latitude, radial distance, and peak intensity vs. Jovian longitude (System III). The results show a remarkable constancy of the shape of the synchrotron radiation and hence both the particle distribution and magnetic field. Throughout all epochs, the data show nearly the same latitudinal structure. Furthermore, the radial distance of the synchrotron radiation has generally remained the same in the 17-year span. As we expected, the only change appears to have been the intensity of the synchrotron radiation as a function of time. There are certain epochs (e.g. 1987) which seem clearly (though modestly) brighter than others (e.g. 1981, 1995) at all longitudes. Does this suggest a seasonal or other periodic effect on Jupiter? Also seen is an expected anti-correlation between the azimuthally averaged radial distance and azimuthally averaged peak intensity of the synchrotron radiation. We examine these trends by comparing the data to radial diffusion models. The data analysis and research has been supported by NASA grant NAG5-6890.

  19. Characterization of 3D geometric distortion of magnetic resonance imaging scanners commissioned for radiation therapy planning.

    PubMed

    Torfeh, Tarraf; Hammoud, Rabih; Perkins, Gregory; McGarry, Maeve; Aouadi, Souha; Celik, Azim; Hwang, Ken-Pin; Stancanello, Joseph; Petric, Primoz; Al-Hammadi, Noora

    2016-06-01

    To develop a method for the assessment and characterization of 3D geometric distortion as part of routine quality assurance for MRI scanners commissioned for Radiation Therapy planning. In this study, the in-plane and through-plane geometric distortions on a 1.5T GE MRI-SIM unit are characterized and the 2D and 3D correction algorithms provided by the vendor are evaluated. We used a phantom developed by GE Healthcare that covers a large field of view of 500mm, and consists of layers of foam embedded with a matrix of ellipsoidal markers. An in-house Java-based software module was developed to automatically assess the geometric distortion by calculating the center of each marker using the center of mass method, correcting of gross rotation errors and comparing the corrected positions with a CT gold standard data set. Spatial accuracy of typical pulse sequences used in RT planning was assessed (2D T1/T2 FSE, 3D CUBE, T1 SPGR) using the software. The accuracy of vendor specific geometric distortion correction (GDC) algorithms was quantified by measuring distortions before and after the application of the 2D and 3D correction algorithms. Our algorithm was able to accurately calculate geometric distortion with sub-pixel precision. For all typical MR sequences used in Radiotherapy, the vendor's GDC was able to substantially reduce the distortions. Our results showed also that the impact of the acquisition produced a maximum variation of 0.2mm over a radial distance of 200mm. It has been shown that while the 2D correction algorithm remarkably reduces the in-plane geometric distortion, 3D geometric distortion further reduced the geometric distortion by correcting both in-plane and through-plane distortions in all acquisitions. The presented methods represent a valuable tool for routine quality assurance of MR applications that require stringent spatial accuracy assessment such as radiotherapy. The phantom used in this study provides three dimensional arrays of control

  20. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    DOE PAGES

    Sentís, Manuel Lorenzo; Gable, Carl Walter

    2017-06-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will providemore » more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less

  1. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    NASA Astrophysics Data System (ADS)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  2. 3D quantification of brain microvessels exposed to heavy particle radiation

    NASA Astrophysics Data System (ADS)

    Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.

    2009-09-01

    Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.

  3. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  4. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  5. An Improved 3D Radiative-MHD Model of the Convection Zone-to-Corona System

    NASA Astrophysics Data System (ADS)

    Abbett, William P.; Bercik, D. J.; Kazachenko, M.

    2012-05-01

    We present the latest results from an improved radiative-MHD model of the convection zone-to-corona system. The numerical methods of the RADMHD model of Abbett & Fisher (2012) have been significantly updated so that the underlying finite volume scheme is (1) no longer dimensionally split along coordinate axes; (2) of much higher order accuracy using a three-dimensional 27-point stencil; and (3) capable of performing much larger scale calculations in both spherical polar coordinates and Cartesian coordinates. We will describe the improvements of the underlying scheme in detail, present a 3D dynamic convection zone-to-corona quiet Sun model using the new formalism, and compare the latest results with previous models.

  6. Improved Simulation of Subsurface Flow in Heterogeneous Reservoirs Using a Fully Discontinuous Control-Volume-Finite-Element Method, Implicit Timestepping and Dynamic Unstructured Mesh Optimization

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.

    2015-12-01

    We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.

  7. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    NASA Astrophysics Data System (ADS)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  8. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    PubMed Central

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2016-01-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the

  9. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  10. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  11. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    SciTech Connect

    Michalski, Jeff; Winter, Kathryn; Roach, Mack; Markoe, Arnold; Sandler, Howard M.; Ryu, Janice; Parliament, Matthew; Purdy, James A.; Valicenti, Richard K.; Cox, James D.

    2012-07-01

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  12. High-resolution 3D dust radiative transfer in galaxies with DART-Ray

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard. J.; Debattista, Victor P.; Grootes, Meiert W.

    2015-02-01

    DART-Ray is a 3D ray-tracing dust radiative transfer (RT) code that can be used to derive stellar and dust emission maps of galaxy models and simulations with arbitrary geometries. In addition to the previously published RT algorithm, we have now included in DART-Ray the possibility of calculating the stocastically heated dust emission from each volume element within a galaxy. To show the capabilities of the code, we performed a high-resolution (26 pc) RT calculation for a galaxy N-body+SPH simulation. The simulated galaxy we considered is characterized by a nuclear disc and a flocculent spiral structure. We analysed the derived galaxy maps for the global and local effects of dust on the galaxy attenuation as well as the contribution of scattered radiation to the predicted observed emission. In addition, by performing an additional RT calculation including only the stellar volume emissivity due to young stellar populations (SPs), we derived the contribution to the total dust emission powered by young and old SPs. Full details of this work will be presented in a forthcoming publication.

  13. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  14. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  15. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  16. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  17. 3D Visualization of Solar Disk: Mars Radiation Environment 2003-2008

    NASA Astrophysics Data System (ADS)

    Saganti, P. B.; Erickson, G. M.; Cucinotta, F. A.

    2008-12-01

    During 2002 and 2003, MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft provided some unique data from the Martian orbit. The orbit alignment of Mars- Sun-Earth provided an opportunity between 180° (August 2002) and 0° (October 2003). During this time, the MARIE data included the background GCR (Galactic Cosmic Rays) and several SPE (Solar Particle Events) enhanced radiation dose-rate measurements at Mars. Nearly 40 times increase in the quiet- time GCR dose-rate was noted from 25 mrad/day to nearly 1000 mrad/day at Mars. Understanding the active regions on the Sun that are likely to result into SPE on the far side will also be of concern for future deep space explorations beyond LEO. We present our approach in depicting SPE with 3D visualization of solar disks facing Mars and Earth. We present the assessment of SPE activity between 2003 and 2008 towards Mars along with an estimated dose-rate during an SPE at Mars along with heliosphere distribution.

  18. 3D Visualization of Solar Disk: Martian Radiation Assessment of Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Saganti, P. B.; Towns, E. L.; Erickson, G. M.

    2007-12-01

    During 2002 and 2003, MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft provided some unique data from the Martian orbit. The orbit alignment of Mars-Sun-Earth provided an opportunity between 180 degrees (August 2002) and 0 degrees (October 2003). During this time, the MARIE data included the background GCR (Galactic Cosmic Rays) and several SPE (Solar Particle Events) enhanced radiation dose-rate measurements at Mars. Nearly 40 times increase in the quiet-time GCR dose-rate was noted from about 25 mrad/day to nearly 1000 mrad/day at Mars. Understanding the active regions on the Sun that are likely to result into SPE on the far side will also be of concern for future deep space explorations beyond LEO. We present our approach in depicting SPE with 3D visualization of solar disks facing Mars and Earth. We present the assessment of SPE activity between 2004 and 2006 towards Mars along with an estimated dose-rate during an SPE at Mars along with heliosphere distribution.

  19. How feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?

    NASA Astrophysics Data System (ADS)

    Mein, S.; Rankine, L.; Miles, D.; Juang, T.; Cai, B.; Curcuru, A.; Mutic, S.; Fenoli, J.; Adamovics, J.; Li, H.; Oldham, M.

    2017-05-01

    To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MR-compatibility, and energy-independence. An open calibration field and symmetrical 3-field plans were delivered to 10cm diameter PRESAGE® to examine percent depth dose and response uniformity under a magnetic field. Evidence of non-linear dose response led to a large volume PRESAGE® study where small corrections were developed for temporally- and spatially-dependent behaviors observed between irradiation and delayed readout. TG-119 plans were created in the MRIdian® TPS and then delivered to 14.5cm 2kg PRESAGE® dosimeters. Through the domestic investigation of an off-site MRgRT system, a refined 3D remote dosimetry protocol is presented capable of validation of advanced MRgRT radiation treatments.

  20. Ray tracing method for the description of radiation trapping in 3D plasma domains

    NASA Astrophysics Data System (ADS)

    Kalanov, D.; Golubovskii, Yu; Gortschakow, S.; Uhrlandt, D.

    2017-10-01

    A new approach for the solution of the Holstein–Biberman equation based on the advanced matrix method is developed. It allows for the consideration of radiation trapping in arbitrary finite 3D plasma domains for the various shapes of line contours and in a wide range of optical depths. Homogeneous and inhomogeneous distributions of absorbing atoms are considered. To solve the equation, an arbitrary plasma domain is discretized on a Cartesian voxel grid. The distances between the cells which are crossed by photons are computed by means of an efficient ray traversal algorithm. The algorithm is optimized for parallel computation on a graphical processing unit (GPU). For the Lorentzian shape of emission and absorption lines, the analytical expressions (which significantly decrease the computation time) have been derived. In the high opacity limit, the matrix is transformed to the universal form with an escape factor as a multiplier. The method is validated against a previously developed matrix approach by comparing the solutions for a finite cylinder geometry. The applicability range of the old method is specified. This range is defined by the asymptotics of Lorentz line wings at high optical depths. The capability of the method is illustrated with several complex geometries which are typical for various plasma sources. The effects related to the presence of photon blocking barriers are demonstrated. The proposed method allows for the demonstration of the fundamental differences between radiation and diffusion transport processes in the plasma domains of a complex shape. The method can be integrated into multi-component collisional–radiative models.

  1. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  2. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  3. Search for secular changes in the 3D profile of the synchrotron radiation around Jupiter

    NASA Astrophysics Data System (ADS)

    Dunn, David E.; de Pater, Imke; Sault, R. J.

    2003-09-01

    We present a summary of Jupiter data taken over an eighteen year span (1981-1998) by the Very Large Array at ˜21.0 cm. At this wavelength the emission is dominated by synchrotron radiation, which is roughly proportional to the product of the electron number density and magnetic field strength ( NeB). At each epoch 8-12 hours of data were taken, which allowed us to examine Jupiter during an entire rotation period. We mapped the longitudinal structure of the synchrotron radiation by using a 3D reconstruction technique developed by Sault et al. [Astron. Astrophys. 324 (1997) 1190] which enabled us to produce plots of the latitude, radial distance, and peak intensity vs. jovian longitude (System III). The results show the shape of the synchrotron radiation has remained stable (except, of course, during the period of comet Shoemaker-Levy 9 impacts). Specifically, the latitudinal structure has remained nearly constant. Furthermore, the general dependence of the radial intensity profile has remained the same throughout the years, though radial distance has slightly, though significantly, changed. This constancy implies that the spatial structure of both the particle distribution and magnetic field have varied little over the eighteen year span. The primary changes in the synchrotron radiation have been seen in the intensity of emission as a function of time. There are certain epochs (e.g., 1987) which show more emissivity than others (e.g., 1981, 1995) at all longitudes. When each epoch is longitudinally averaged, there may be an anti-correlation between the radial distance and corresponding peak intensities of the synchrotron radiation, as one might expect if radial diffusion is important. We examine these trends by comparing the data to plots of the total intensity at 13 cm (by Klein et al., in: Rucker, H.O., et al., Planetary Radio Emissions V. Austrian Acad. Sci. Press, Vienna, p. 221). Overall, variations in our 21-cm data are similar to those measured at 13 cm, but

  4. Intrafractional 3D localization using kilovoltage digital tomosynthesis for sliding-window intensity modulated radiation therapy

    PubMed Central

    Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig

    2016-01-01

    Purpose To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management. Method In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ±3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions. Result No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 seconds, respectively. Mean ± standard deviation error in predicted position was −0.3±0.2 mm, −0.1±0.1 mm in-plane, and 0.2±0.4 mm out-of-plane with rotational gantry, 0.8±0.1 mm, −0.7±0.3 mm in-plane and 1.1±0.1 mm out-of-plane with translational source/detector. Conclusion Acquiring 3D fiducial positions

  5. Intrafractional 3D localization using kilovoltage digital tomosynthesis for sliding-window intensity modulated radiation therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig

    2015-09-07

    To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management.In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ± 3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions.No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 s, respectively. Mean ± standard deviation error in predicted position was -0.3 ± 0.2 mm, -0.1 ± 0.1 mm in-plane, and 0.2 ± 0.4 mm out-of-plane with rotational gantry, 0.8 ± 0.1 mm, -0.7 ± 0.3 mm in-plane and 1.1 ± 0.1 mm out-of-plane with translational source/detector.Acquiring 3D fiducial positions from kV-DTS during fixed gantry

  6. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  7. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz

    2017-07-01

    This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by  <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy  ×  cm)-1, a large linear dose range of  >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.

  8. A fast hybrid (3-D/1-D) model for thermal radiative transfer in cirrus via successive orders of scattering

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Céline; Szczap, Fredéric; Platnick, Steven; Dubuisson, Philippe; Thieuleux, François

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 μm and 12.05 μm) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  9. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  10. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    NASA Technical Reports Server (NTRS)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  11. Unstructured mesh methods for CFD

    NASA Technical Reports Server (NTRS)

    Peraire, J.; Morgan, K.; Peiro, J.

    1990-01-01

    Mesh generation methods for Computational Fluid Dynamics (CFD) are outlined. Geometric modeling is discussed. An advancing front method is described. Flow past a two engine Falcon aeroplane is studied. An algorithm and associated data structure called the alternating digital tree, which efficiently solves the geometric searching problem is described. The computation of an initial approximation to the steady state solution of a given poblem is described. Mesh generation for transient flows is described.

  12. An object-oriented implementation of a parallel Monte Carlo code for radiation transport

    NASA Astrophysics Data System (ADS)

    Santos, Pedro Duarte; Lani, Andrea

    2016-05-01

    This paper describes the main features of a state-of-the-art Monte Carlo solver for radiation transport which has been implemented within COOLFluiD, a world-class open source object-oriented platform for scientific simulations. The Monte Carlo code makes use of efficient ray tracing algorithms (for 2D, axisymmetric and 3D arbitrary unstructured meshes) which are described in detail. The solver accuracy is first verified in testcases for which analytical solutions are available, then validated for a space re-entry flight experiment (i.e. FIRE II) for which comparisons against both experiments and reference numerical solutions are provided. Through the flexible design of the physical models, ray tracing and parallelization strategy (fully reusing the mesh decomposition inherited by the fluid simulator), the implementation was made efficient and reusable.

  13. Toward 3D dosimetry of intensity modulated radiation therapy treatments with plastic scintillation detectors

    NASA Astrophysics Data System (ADS)

    Guillot, M.; Gingras, L.; Archambault, L.; Beddar, S.; Beaulieu, L.

    2010-11-01

    In this work, we present a novel two Dimensional Plastic Scintillation Detector (2D-PSD) array designed to measure dose distributions generated by high energy photon beams from medical linear accelerators. This study aim to demonstrate that the dose distribution in the irradiated volume is not modified by the presence of several hundred plastic scintillation detectors (PSDs). The 2D-PSD consists of 781 PSDs inserted in a plastic water slab. The dose distributions measured with the 2D-PSD were compared to calculations from a treatment planning system (Pinnacle3, Philips Medical Systems) and with measurements taken with an ionization chambers array (MatriXX Evolution, IBA Dosimetry). Furthermore, a clinical head and neck IMRT plan was delivered on the 2D-PSD. A good agreement is obtained between the measured and planned dose distributions. The results show that the 2D arrangement presented in this work is water equivalent and transparent to x-ray radiation. As a consequence, our design could be extended to multiple detection planes, opening the possibility for 3D dosimetry with PSDs.

  14. Design and testing of indigenous cost effective three dimensional radiation field analyser (3D RFA).

    PubMed

    Ganesh, K M; Pichandi, A; Nehru, R M; Ravikumar, M

    2014-06-01

    The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 x 750 x 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20 and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epo and X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.

  15. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  16. Low-mass gas envelopes around accreting cores embedded in radiative 3D discs

    NASA Astrophysics Data System (ADS)

    Lega, Elena; Lambrechts, Michiel

    2016-10-01

    Planets with a core mass larger than few Earth masses and a gaseous envelope not exceeding about 10% of the total mass budget are common. Such planets are present in the Solar System (Uranus, Neptune) and are frequently observed around other stars.Our knowledge about the evolution of gas envelopes is mainly based on 1D models. However, such models cannot investigate the complex interaction between the forming envelope and the surrounding gas disc.In this work we perform 3D hydrodynamics simulations accounting for energy transfer and radiative cooling using the FARGOCA code (Lega et al., MNRAS 440, 2014). In addition to the usually considered heatingsources, namely viscous and compressional heating, we have modeled the energy deposited by the accretion of solids.We show that the thermal evolution of the envelope of a 5 Earth mass core is mainly dominated by compressional heating for accretion rates lower than 5 Earth masses per 105 years.Additionally, we demonstrate efficient gas circulation through the envelope. Under certain conditions, the competition between gas circulation and cooling of the envelope can efficiently delay the onset of runaway accretion. This could help in explaining the population of planets with low-mass gas envelope.

  17. EPID-based dosimetry and its relation to other 2D and 3D dose measurement techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Mijnheer, B.

    2017-05-01

    In this paper I will summarize the possibilities and limitations of different 2D and 3D dosimetry techniques used in radiation therapy, and evaluate these features relative to those of EPID-based techniques. After briefly discussing their characteristics, I will review the use of EPIDs for pre-treatment and in vivo dosimetry applications by separating them into transit and non-transit approaches, analysed by either forward- or backward-projection methods. I will then review the various types of 3D dosimetry systems by categorizing them into semi-3D, pseudo-3D, to which EPID-based back-projection approaches belong, and full-3D systems. All methods can in principle be used for pre-treatment 3D dose verification; the choice of a specific system depends on the aim of the measurement and the properties of the specific hard- and software. At this moment EPIDs are the only tools available for 3D in vivo dosimetry. I will conclude with revealing some trends and future developments in 3D pre-treatment and in vivo dosimetry.

  18. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure

    PubMed Central

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797

  19. Evaluation of the Radiation Susceptibility of a 3D NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Seidleck, Christina; Kim, Hak; Phan, Anthony; LaBel, Kenneth

    2017-01-01

    We evaluated the heavy ion and proton-induced single-event effects (SEE) for a 3D NAND flash. The 3D NAND showed similar single-event upset (SEU) sensitivity to a planar NAND of similar density and performance in the multiple-cell level (MLC) storage mode. However, the single-level-cell (SLC) storage mode of the 3D NAND showed significantly reduced SEU susceptibility. Additionally, the 3D NAND showed less MBU susceptibility than the planar NAND, with reduced number of upset bits per byte and reduced cross sections overall. However, the 3D architecture exhibited angular sensitivities for both base and face angles, reflecting the anisotropic nature of the SEU vulnerability in space. Furthermore, the SEU cross section decreased with increasing fluence for both the 3D NAND and the latest generation planar NAND, indicating a variable upset rate for a space mission. These unique characteristics introduce complexity to traditional ground irradiation test procedures.

  20. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  1. 3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.

    2017-02-01

    Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.

  2. Electron beam excitation of coherent sub-terahertz radiation in periodic structures manufactured by 3D printing

    NASA Astrophysics Data System (ADS)

    Phipps, A. R.; MacLachlan, A. J.; Robertson, C. W.; Zhang, L.; Konoplev, I. V.; Cross, A. W.; Phelps, A. D. R.

    2017-07-01

    For the creation of novel coherent sub-THz sources excited by electron beams there is a requirement to manufacture intricate periodic structures to produce and radiate electromagnetic fields. The specification and the measured performance is reported of a periodic structure constructed by additive manufacturing and used successfully in an electron beam driven sub-THz radiation source. Additive manufacturing, or ;3D printing;, is promising to be quick and cost-effective for prototyping these periodic structures.

  3. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2009-01-01

    phase matrix were determined by letting the elements of the reduced phase matrix ( ˜ P ij = Pij /P11) be equal to those of the reduced Rayleigh...for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional...F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for Randomly Oriented

  4. Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length

    NASA Astrophysics Data System (ADS)

    Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard

    2016-07-01

    Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.

  5. Line relaxation methods for the solution of 2D and 3D compressible flows

    NASA Technical Reports Server (NTRS)

    Hassan, O.; Probert, E. J.; Morgan, K.; Peraire, J.

    1993-01-01

    An implicit finite element based algorithm for the compressible Navier-Stokes equations is outlined, and the solution of the resulting equation by a line relaxation on general meshes of triangles or tetrahedra is described. The problem of generating and adapting unstructured meshes for viscous flows is reexamined, and an approach for both 2D and 3D simulations is proposed. An efficient approach appears to be the use of an implicit/explicit procedure, with the implicit treatment being restricted to those regions of the mesh where viscous effects are known to be dominant. Numerical examples demonstrating the computational performance of the proposed techniques are given.

  6. Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse

    NASA Astrophysics Data System (ADS)

    Dzyurkevich, Natalia; Commerçon, Benoît; Lesaffre, Pierre; Semenov, Dimitry

    2017-07-01

    Context. Both theory and observations of star-forming clouds require simulations that combine the co-evolving chemistry, magneto-hydrodynamics, and radiative transfer in protostellar collapse simulation. A detailed knowledge of self-consistent chemical evolution for the main charge carriers (both gas species and dust grains) allows us to correctly estimate the rate and nature of magnetic dissipation in the collapsing core. This knowledge is critical to answer one of the most significant issues of star and planet formation: what is the magnitude and spatial distribution of magnetic flux as the initial condition to protoplanetary disk evolution? Aims: We use a chemo-dynamical version of RAMSES, which is described in a companion publication, to follow the chemo-dynamical evolution of collapsing dense cores with various dust properties and interpret differences that occur in magnetic diffusivity terms. These differences are crucial to circumstellar disk formation. Methods: We performed 3D chemo-dynamical simulations of 1 M⊙ isolated dense core collapse for a range in dust size assumptions. The number density of dust and its mean size affect the efficiency of charge capturing and the formation of ices. The radiative hydrodynamics and dynamical evolution of chemical abundances were used to reconstruct the magnetic diffusivity terms for clouds with various magnetisation. Results: The simulations are performed for a mean dust size ranging from 0.017 μm to 1 μm, and we adopt both a fixed dust size and a dust size distribution. The chemical abundances for this range of dust sizes are produced by RAMSES and serve as inputs to calculations of Ohmic, ambipolar, and Hall diffusivity terms. Ohmic resistivity only plays a role at the late stage of the collapse in the innermost region of the cloud where gas density is in excess of a few times 1013 cm-3. Ambipolar diffusion is a dominant magnetic diffusivity term in cases where mean dust size is a typical ISM value or larger. We

  7. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2007-09-30

    An efficient method for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski ...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for...Operator Theory of Radiative Transfer. II. Scattering from Maritime Haze,” Appl. Opt. l2, 1071-1084 (1973). PUBLICATIONS 1. P . Zhai, G. W. Kattawar

  8. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  9. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  10. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation.

    PubMed

    Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-08-12

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.

  11. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.

    PubMed

    Tran-Gia, Johannes; Schlögl, Susanne; Lassmann, Michael

    2016-12-01

    Currently, the validation of multimodal quantitative imaging and absorbed dose measurements is impeded by the lack of suitable, commercially available anthropomorphic phantoms of variable sizes and shapes. To demonstrate the potential of 3-dimensional (3D) printing techniques for quantitative SPECT/CT imaging, a set of kidney dosimetry phantoms and their spherical counterparts was designed and manufactured with a fused-deposition-modeling 3D printer. Nuclide-dependent SPECT/CT calibration factors were determined to assess the accuracy of quantitative imaging for internal renal dosimetry.

  12. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    SciTech Connect

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Piva, Cristina; Ragona, Riccardo; Botto, Barbara; Gavarotti, Paolo; Merli, Francesco; Vitolo, Umberto; Iotti, Cinzia; Ricardi, Umberto

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  13. SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.

  14. Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation

    NASA Astrophysics Data System (ADS)

    Hogan, Robin J.; Schäfer, Sophia A. K.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard

    2016-07-01

    Estimating the impact of radiation transport through cloud sides on the global energy budget is hampered by the lack of a fast radiation scheme suitable for use in global atmospheric models that can represent these effects in both the shortwave and longwave. This two-part paper describes the development of such a scheme, which we refer to as the Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS). The principle of the method is to add extra terms to the two-stream equations to represent lateral transport between clear and cloudy regions, which vary in proportion to the length of cloud edge as a function of height. The present paper describes a robust and accurate method for solving the coupled system of equations in both the shortwave and longwave in terms of matrix exponentials. This solver has been coupled to a correlated-k model for gas absorption. We then confirm the accuracy of SPARTACUS by performing broadband comparisons with fully 3-D radiation calculations by the Monte Carlo model "MYSTIC" for a cumulus cloud field, examining particularly the percentage change in cloud radiative effect (CRE) when 3-D effects are introduced. In the shortwave, SPARTACUS correctly captures this change to CRE, which varies with solar zenith angle between -25% and +120%. In the longwave, SPARTACUS captures well the increase in radiative cooling of the cloud, although it is only able to correctly simulate the 30% increase in surface CRE (around 4 W m-2) if an approximate correction is made for cloud clustering.

  15. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification.

  16. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  17. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  18. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  19. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  20. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy.

    PubMed

    Kim, Min-Joo; Lee, Seu-Ran; Lee, Min-Young; Sohn, Jason W; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won; Suh, Tae Suk

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient's age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA

  1. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy

    PubMed Central

    Lee, Min-Young; Sohn, Jason W.; Yun, Hyong Geon; Choi, Joon Yong; Jeon, Sang Won

    2017-01-01

    Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA

  2. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  3. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  4. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W. -L.; Gu, Y.; Liou, K. N.; ...

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  5. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    SciTech Connect

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

  6. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  7. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  8. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  9. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  10. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    SciTech Connect

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  11. Observation of 2p3d(1Po)→1s3d(1De) radiative transition in He-like Si, S, and Cl ions.

    PubMed

    Kasthurirangan, S; Saha, J K; Agnihotri, A N; Bhattacharyya, S; Misra, D; Kumar, A; Mukherjee, P K; Santos, J P; Costa, A M; Indelicato, P; Mukherjee, T K; Tribedi, L C

    2013-12-13

    We present an experimental determination of the 2p3d(1Po)→1s3d(1De) x-ray line emitted from He-like Si, S, and Cl projectile ions, excited in collisions with thin carbon foils, using a high-resolution bent-crystal spectrometer. A good agreement between the observation and state-of-the-art relativistic calculations using the multiconfiguration Dirac-Fock formalism including the Breit interaction and QED effects implies the dominance of fluorescent decay over the autoionization process for the 2p3d(^{1}P^{o}) state of He-like heavy ions. This is the first observation of the fluorescence-active doubly excited states in He-like Si, S, and Cl ions.

  12. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    PubMed Central

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  13. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Ranitovic, P.; Belkacem, A.; Weber, Th.

    2016-06-01

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  14. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation.

    PubMed

    Sturm, F P; Wright, T W; Ray, D; Zalyubovskaya, I; Shivaram, N; Slaughter, D S; Ranitovic, P; Belkacem, A; Weber, Th

    2016-06-01

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  15. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction.

    PubMed

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-14

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  16. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  17. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    SciTech Connect

    Sturm, F. P.; Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Ranitovic, P.; Belkacem, A.; Weber, Th.

    2016-06-14

    Have we present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  18. 3D numerical modelling of the propagation of radiative intensity through a X-ray tomographied ligament

    NASA Astrophysics Data System (ADS)

    Le Hardy, David; Badri, Mohd Afeef; Rousseau, Benoit; Chupin, Sylvain; Rochais, Denis; Favennec, Yann

    2017-06-01

    In order to explain the macroscopic radiative behaviour of an open-cell ceramic foam, knowledge of its solid phase distribution in space and the radiative contributions by this solid phase is required. The solid phase in an open-cell ceramic foam is arranged as a porous skeleton, which is itself composed of an interconnected network of ligament. Typically, ligaments being based on the assembly of grains more or less compacted, exhibit an anisotropic geometry with a concave cross section having a lateral size of one hundred microns. Therefore, ligaments are likely to emit, absorb and scatter thermal radiation. This framework explains why experimental investigations at this scale must be developed to extract accurate homogenized radiative properties regardless the shape and size of ligaments. To support this development, a 3D numerical investigation of the radiative intensity propagation through a real world ligament, beforehand scanned by X-Ray micro-tomography, is presented in this paper. The Radiative Transfer Equation (RTE), applied to the resulting meshed volume, is solved by combining Discrete Ordinate Method (DOM) and Streamline upwind Petrov-Garlekin (SUPG) numerical scheme. A particular attention is paid to propose an improved discretization procedure (spatial and angular) based on ordinate parallelization with the aim to reach fast convergence. Towards the end of this article, we present the effects played by the local radiative properties of three ceramic materials (silicon carbide, alumina and zirconia), which are often used for designing open-cell refractory ceramic foams.

  19. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    PubMed

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates <10 mm in their thickness or welded joints with convex crowns. For the reliable application of phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  20. SU-E-T-419: Fabricating Cerrobend Grids with 3D Printing for Spatially Modulated Radiation Therapy: A Feasibility Study

    SciTech Connect

    Zhu, X; Driewer, J; Lei, Y; Zheng, D; Li, S; Zhang, Q; Zhang, M; Zhou, S; Cullip, T; Chang, S

    2015-06-15

    Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thickness of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.

  1. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis.

    PubMed

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this is an important first step towards the development 3-D tissue as a screening tool.

  2. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II. Ionization structure of helium at periastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.

  3. First 3D radiative transfer with scattering for domain-decomposed MHD simulations

    NASA Astrophysics Data System (ADS)

    Hayek, W.

    2008-12-01

    This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.

  4. Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.

  5. Calculation of the nuclear material inventory in a sealed vault by 3D radiation mapping

    SciTech Connect

    Adsley, Ian; Klepikov, Alexander; Tur, Yevgeniy; Wells, David

    2013-07-01

    The paper relates to the determination of the amount of nuclear material contained in a closed, concrete lined vault at the Aktau fast breeder reactor in Kazakhstan. This material had been disposed into the vault after examination in an experimental hot cell directly above the vault. In order to comply with IAEA Safeguards requirements it was necessary to determine the total quantities of nuclear materials - enriched uranium and plutonium - that were held with Kazakhstan. Although it was possible to determine the inventory of all of the accessible nuclear material - the quantity remaining in the vault was unknown. As part of the Global Threat Reduction Programme the UK Government funded a project to determine the inventory of these nuclear materials in this vault. This involved drilling three penetrations through the concrete lined roof of the vault; this enabled the placement of lights and a camera into the vault through two penetrations; while the third penetration enabled a lightweight manipulator arm to be introduced into the vault. This was used to provide a detailed 3D mapping of the dose rate within the vault and it also enabled the collection of samples for radionuclide analysis. The deconvolution of the 3D dose rate profile within the vault enabled the determination of the gamma emitting source distribution on the floor and walls of the vault. The samples were analysed to determine the fingerprint of those radionuclides producing the gamma dose - namely {sup 137}Cs and {sup 60}Co - to the nuclear materials. The combination of the dose rate source terms on the surfaces of the vault and the fingerprint then enabled the quantities of nuclear materials to be determined. The project was a major success and enabled the Kazakhstan Government to comply with IAEA Safeguards requirements. It also enabled the UK DECC Ministry to develop a technology of national (and international) use. Finally the technology was well received by IAEA Safeguards as an acceptable

  6. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  7. Radiative data for highly excited 3d84d levels in Ni II from laboratory measurements and atomic calculations

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K.

    2017-04-01

    Aims: This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d84d levels of astrophysical interest in singly ionized nickel. Methods: Radiative lifetimes of seven high-lying levels of even parity in Ni II (98 400-100 600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. Results: A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194-520 nm depopulating even parity 3d84d levels. The new calculated gf-values are, on the average, about 20% higher than a previous calculation and yield lifetimes within 5% of the experimental values.

  8. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  9. TU-CD-207-04: Radiation Exposure Comparisons of CESM with 2D FFDM and 3D Tomosynthesis Mammography

    SciTech Connect

    James, J; Boltz, T; Pavlicek, W

    2015-06-15

    Purpose: While mammography is considered the standard for front-line breast cancer screening, image sensitivity and specificity can be affected by factors like dense breast tissue. Contrast-enhanced spectral mammography (CESM) shows promising initial results for dense breasts but comes at the cost of increased dose compared with full-field-digital-mammography (FFDM). The goal of this study is to quantitatively assess the dose increase of CESM in comparison with 2D-FFDM and 3D-Tomo at varying breast thickness. Methods: The experiments were conducted on a Hologic-Selenia-Dimensions system that performed 2D-FFDM, 3D-Tomo and CESM (high and low energies) on regular (50/50) and dense (70/30) breast tissue-mimicking phantoms. Both the phantoms had 6, 1-cm thick slabs (total thickness 6cm), compressed at 20-lbs using an 18×24 paddle. A single exposure was performed for each of the 3 mammo techniques with the following settings: AEC-Auto; Focal Spot-Large; kVp-Auto; mAs- Auto, Target/Filter combination-Auto; AEC Sensor/Exposure compensation Step-2/0. Average glandular dose (AGD) in mGy was obtained and compared as a function of breast thickness (1 – 6 cm) for both the phantom types. Results: The study shows that dose from the total CESM from 50/50 phantom at a breast thickness of a) 4.5 cm was 37.5% higher than 2D-FFDM and 30% higher than 3D-Tomo, b) 6 cm was 36.2% higher than 2D-FFDM and 41% higher than 3D-Tomo. For a dense breast tissue of 70/30 phantom, it was found that CESM dose at a breast thickness of: a) 4.5 cm was 33.3% higher than 2D-FFDM and 28.8% higher than 3D-Tomo, b) 6 cm was 35.4% higher than 2D-FFDM and 48.0% higher than 3D-Tomo. The overall CESM dose for the dense breast phantom was 12.5% higher at 4.5cm and 35% higher at 6 cm compared to the 50/50 phantom. Conclusion: This quantitative comparison study showed that CESM technique has an increased radiation dose compared to conventional 2D-FFDM and 3D-Tomo.

  10. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    NASA Astrophysics Data System (ADS)

    Yoon, S. W.; Miles, D.; Cramer, C.; Reinsvold, M.; Kirsch, D.; Oldham, M.

    2017-05-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose.

  11. 3D computational and experimental radiation transport assessments of Pu-Be sources and graded moderators for parcel screening

    NASA Astrophysics Data System (ADS)

    Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Huang, Nancy

    2006-05-01

    The Florida Institute for Nuclear Detection and Security (FINDS) is currently working on the design and evaluation of a prototype neutron detector array that may be used for parcel screening systems and homeland security applications. In order to maximize neutron detector response over a wide spectrum of energies, moderator materials of different compositions and amounts are required, and can be optimized through 3-D discrete ordinates and Monte Carlo model simulations verified through measurement. Pu-Be sources can be used as didactic source materials to augment the design, optimization, and construction of detector arrays with proper characterization via transport analysis. To perform the assessments of the Pu-Be Source Capsule, 3-D radiation transport computations are used, including Monte Carlo (MCNP5) and deterministic (PENTRAN) methodologies. In establishing source geometry, we based our model on available source schematic data. Because both the MCNP5 and PENTRAN codes begin with source neutrons, exothermic (α,n) reactions are modeled using the SCALE5 code from ORNL to define the energy spectrum and the decay of the source. We combined our computational results with experimental data to fully validate our computational schemes, tools and models. Results from our computational models will then be used with experiment to generate a mosaic of the radiation spectrum. Finally, we discuss follow-up studies that highlight response optimization efforts in designing, building, and testing an array of detectors with varying moderators/thicknesses tagged to specific responses predicted using 3-D radiation transport models to augment special nuclear materials detection.

  12. Doppler effects on 3-D non-LTE radiation transport and emission spectra.

    SciTech Connect

    Giuliani, J. L.; Davis, J.; DasGupta, A.; Apruzese, John P.; Jennings, Christopher A.; Clark, R. W.; Ampleford, David J.; Bailey, James E.; Thornhill, Joseph W.; Cuneo, Michael Edward; Rochau, Gregory Alan; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-10-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

  13. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  14. Optimal matching of 3D film-measured and planned doses for intensity-modulated radiation therapy quality assurance.

    PubMed

    Shin, Dongho; Yoon, Myonggeun; Park, Sung Yong; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho

    2007-01-01

    Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm(3)) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.

  15. Fabrication and characterization of 3D pn junction structure for radiation detection

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Liu, Tao; Li, Jinlong; Lin, Jilei; Chen, Xiaoming; Guo, Xinglong; Xin, Peisheng; Xu, Shaohui; Xue, Weijia; Wang, Lianwei

    2008-02-01

    In this report, p-type macroporous silicon has been prepared by anodization. A phosphorus diffusion step is employed for the formation of three dimensional pn junction structures on this macroporous silicon. I-V and C-V measurement were employed to characterize the electrical properties. The results were compared with numeric simulation with T-SUPREM4 and MEDICI. It has been demonstrated that three-dimensional structure can increase the effective junction area and the collective efficiency remarkably, and hence improve the performance of semiconductor radiation detector.

  16. Wave-current interactions in three dimensions: why 3D radiation stresses are not practical

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice

    2017-04-01

    The coupling of ocean circulation and wave models is based on a wave-averaged mass and momentum conservation equations. Whereas several equivalent equations for the evolution of the current momentum have been proposed, implemented, and used, the possibility to formulate practical equations for the total momentum, which is the sum of the current and wave momenta, has been obscured by a series of publications. In a recent update on previous derivations, Mellor (J. Phys. Oceanogr. 2015) proposed a new set of wave-forced total momentum equations. Here we show that this derivation misses a term that integrates to zero over the vertical. This is because he went from his depth-integrated eq. (28) to the 3D equation (30) by simply removing the integral, but any extra zero-integrating term can be added. Corrected for this omission, the equations of motion are equivalent to the earlier equations by Mellor (2003) which are correct when expressed in terms of wave-induced pressure, horizontal velocity and vertical displacement. Namely the total momentum evolution is driven by the horizontal divergence of a horizontal momentum flux, ----- --- ∂^s- Sαβ = ^uα^uβ + δαβ ∂ς (^p- g^s) (1) and the vertical divergence of a vertical flux, Sαz = (p^-g^s)∂^s/∂xα, (2) where p is the wave-induced non-hydrostatic pressure, s is the wave-induced vertical displacement, and u^ α is the horizontal wave-induced velocity in direction α. So far, so good. Problems arise when p and s are evaluated. Indeend, Ardhuin et al. (J. Phys. Oceanogr. 2008) showed that, over a sloping bottom ∂Sαβ/∂xβ is of order of the slope, hence a consistent wave forcing requires an estimation of Sαz that must be estimated to first order in the bottom slope. For this, Airy wave theory, i.e. cosh(kz-+-kh) p ≃ ga cosh (kD ) cosψ, (3) is not enough. Ardhuin et al. (2008) has shown that using an exact solution of the Laplace equations the vertical flux can indeed be computed. The alternative of

  17. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  18. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    SciTech Connect

    Berk, Alexander; Hawes, Frederick; Fox, Marsha

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  19. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  20. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  1. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  2. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    DOE PAGES

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent ofmore » the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.« less

  3. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  4. Radiation and polarization signatures of the 3D multizone time-dependent hadronic blazar model

    SciTech Connect

    Zhang, Haocheng; Diltz, Chris; Bottcher, Markus

    2016-09-23

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker–Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. Lastly, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  5. Specular reflection treatment for the 3D radiative transfer equation solved with the discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Le Hardy, D.; Favennec, Y.; Rousseau, B.; Hecht, F.

    2017-04-01

    The contribution of this paper relies in the development of numerical algorithms for the mathematical treatment of specular reflection on borders when dealing with the numerical solution of radiative transfer problems. The radiative transfer equation being integro-differential, the discrete ordinates method allows to write down a set of semi-discrete equations in which weights are to be calculated. The calculation of these weights is well known to be based on either a quadrature or on angular discretization, making the use of such method straightforward for the state equation. Also, the diffuse contribution of reflection on borders is usually well taken into account. However, the calculation of accurate partition ratio coefficients is much more tricky for the specular condition applied on arbitrary geometrical borders. This paper presents algorithms that calculate analytically partition ratio coefficients needed in numerical treatments. The developed algorithms, combined with a decentered finite element scheme, are validated with the help of comparisons with analytical solutions before being applied on complex geometries.

  6. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  7. The 3D Radiative Effects of Clouds in Aerosol Retrieval: Can we Remove Them?

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.

    2009-09-30

    We outline a new method, called the ratio method, developed to retrieve aerosol optical depth (AOD) under broken cloud conditions and present validation results from sensitivity and case studies. Results of the sensitivity study demonstrate that the ratio method, which exploits ratios of reflectances in the visible spectral range, has the potential for accurate AOD retrievals under different observational conditions and random errors in input data. Also, we examine the performance of the ratio method using aircraft data collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS). Results of the case study suggest that the ratio method has the ability to retrieve AOD from multi-spectral aircraft observations of the reflected solar radiation.

  8. 3D measurement of the radiation distribution in a water phantom in a hadron therapy beam

    NASA Astrophysics Data System (ADS)

    Opalka, L.; Granja, C.; Hartmann, B.; Jakubek, J.; Jaekel, O.; Martisikova, M.; Pospisil, S.; Solc, J.

    2012-01-01

    Hadron therapy is a highly precise radio-therapeutic method with many advantages especially in cases when the tumour is close to sensitive organs where standard treatments cannot be used. For reliable treatment planning it is necessary to have calculation tools for maximization of the dose delivered to the targeted tissue and minimization of the dose outside of it. While the main physical processes in material irradiated by hadron beams are known, in reality the processes involved are complex so that analytical computations are impossible. Thus, the planning tools to incorporate simplified models and numerical approximations and an experimental method for high precision verification of the models within phantoms is desired. The development of sensitive, high resolution and online methods for measurement of the radiation environment inside of the irradiated object is the aim of this work. Such measurements are made possible by the resolving power of the state-of-the-art pixel detector Timepix. This quantum counting imaging device is able to record the characteristic shapes of the particle traces including their energies deposited in the detector. All these data recorded for each event allow to estimate the particle type, its energy and direction of flight. Event-by-event analysis is done using pattern recognition of the characteristic traces. The objective of the experiment is the detection and characterization of secondary radiation generated by the primary therapeutic beams in tissue equivalent material (water). Measurements were performed inside of a water phantom irradiated by a carbon beam at the Heidelberg Ion-Beam Therapy Center (HIT).

  9. 3D MR Sialography as a Tool to Investigate Radiation-Induced Xerostomia: Feasibility Study

    SciTech Connect

    Astreinidou, Eleftheria . E-mail: E.Astreinidou@umcutrecht.nl; Roesink, Judith M.; Raaijmakers, Cornelis P.J.; Bartels, Lambertus W.; Witkamp, Theo D.; Lagendijk, Jan J.W.; Terhaard, Chris H.J.

    2007-08-01

    Purpose: To evaluate whether magnetic-resonance (MR) sialography can be used to investigate radiation-induced xerostomia. Preradiotherapy (pre-RT) and postradiotherapy (post-RT) MR sialographic images of the major salivary ducts (parotid and submandibular) were compared. Methods and Materials: Magnetic-resonance sialography was performed pre-RT, and 6 weeks and 6 months post-RT on 9 patients with T1-4N0-2M0 naso- or oropharyngeal tumors, on a 1.5-T MR scanner. Patients were positioned in the scanner, using a radiotherapy immobilization mask. Image registration of the MR sialograms pre- and post-RT with each other and with the CT and consequently the dose distribution was performed. A categorical scoring system was used to compare the visibility of ducts pre-RT and post-RT. Results: Good-quality MR sialographic images were obtained, and image registration was successful in all cases. The visibility score of the parotid ducts and submandibular ducts was reduced at 6 weeks post-RT, which means that the full trajectory of the salivary ducts, from the intraglandular space to the mouth cavity, was only partially visualized. For some of the parotid ducts, the visibility score improved at 6 months post-RT, but not for the submandibular ducts. The mean dose for the parotid glands was 35 Gy (1 standard deviation [SD] 3 Gy), and for the submandibular glands it was 62 Gy (SD, 8 Gy). Conclusion: Three-dimensional MR sialography is a promising approach for investigating xerostomia, because radiation-induced changes to the saliva content of the ducts can be visualized.

  10. A Bayesian mixture model relating dose to critical organs and functional complication in 3D conformal radiation therapy.

    PubMed

    Johnson, Timothy D; Taylor, Jeremy M G; Ten Haken, Randall K; Eisbruch, Avraham

    2005-10-01

    A goal of cancer radiation therapy is to deliver maximum dose to the target tumor while minimizing complications due to irradiation of critical organs. Technological advances in 3D conformal radiation therapy has allowed great strides in realizing this goal; however, complications may still arise. Critical organs may be adjacent to tumors or in the path of the radiation beam. Several mathematical models have been proposed that describe the relationship between dose and observed functional complication; however, only a few published studies have successfully fit these models to data using modern statistical methods which make efficient use of the data. One complication following radiation therapy of head and neck cancers is the patient's inability to produce saliva. Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries and is, in general, unpleasant and an annoyance. We present a dose-damage-injury model that subsumes any of the various mathematical models relating dose to damage. The model is a nonlinear, longitudinal mixed effects model where the outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a gamma distribution whose mean is a function of time and dose. Bayesian methods are used to estimate the relationship between dose delivered to the parotid glands and the observational outcome-saliva flow rate. A summary measure of the dose-damage relationship is modeled and assessed by a Bayesian chi(2) test for goodness-of-fit.

  11. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  12. Predicting Heart Dose in Breast Cancer Patients Who Received 3D Conformal Radiation Therapy.

    PubMed

    Wollschläger, Daniel; Karle, Heiko; Stockinger, Marcus; Bartkowiak, Detlef; Bührdel, Sandra; Merzenich, Hiltrud; Wiegel, Thomas; Schmidberger, Heinz; Blettner, Maria

    2017-01-01

    Cardiac late effects are a major health concern for long-term survivors after radiotherapy for breast cancer. Large cohort studies to better understand the exact dose-response relationship require individual estimates of radiation dose to the heart. To predict individual cardiac dose from information that is typically available for all members of a retrospective epidemiological cohort study, 774 female breast cancer patients treated with megavoltage tangential field radiotherapy in 1998-2008 were examined. All dose distributions were calculated using Eclipse with the anisotropic analytical algorithm (AAA) for photon fields and the electron Monte Carlo algorithm for electron boost fields. Based on individual dose volume histograms, the authors calculated absorbed dose in the complete heart as well as in six functional substructures. Statistical models were developed to predict absorbed dose using only covariate information from patients' clinical records on tumor location, patient anatomy and radiotherapy prescription. The out-of-sample prediction error for mean heart dose was 54% (coefficient of variation). The prediction error in functional substructures ranged from 49-68% for mean dose and from 52-86% for extreme dose. The authors conclude that based on a patient sample with exact heart dosimetry, it is possible to use clinical information alone to predict absorbed heart dose in the remaining cohort with a quantified error suitable for dose-response analyses of cardiac late effects.

  13. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  14. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  15. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy.

    PubMed

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-05-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal.

  16. High-resolution, 3D radiative transfer modeling. I. The grand-design spiral galaxy M 51

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Fritz, Jacopo; Baes, Maarten; Bendo, George J.; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I.; De Geyter, Gert; Hughes, Thomas M.; Jones, Anthony P.; Karczewski, Oskar Ł.; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C.; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W. L.; Viaene, Sebastien; Wilson, Christine D.

    2014-11-01

    Context. Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered to be driven merely by young stars so is often applied to tracing the star formation rate in galaxies. Recent studies have argued that the old stellar population might be responsible for a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (≲100 Myr) and old (~10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M 51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and to model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT to account for the absorption, scattering, and non-local thermal equilibrium (NLTE) emission of dust in M 51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 μm, GALEX FUV, Hα, and MIPS 24 μm wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate, and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation, and infrared SED. Results: The dust emission derived from RT calculations is consistent with far-infrared and submillimeter observations of M 51, implying that the absorbed stellar energy is balanced by the thermal re-emission of dust. The young stars provide 63% of the energy for

  17. A Patient-Specific Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer Radiation Therapy.

    PubMed

    Park, So-Yeon; Choi, Chang Heon; Park, Jong Min; Chun, MinSoo; Han, Ji Hye; Kim, Jung-In

    2016-01-01

    The aim of this study was to assess the feasibility and advantages of a patient-specific breast bolus made using a 3D printer technique. We used the anthropomorphic female phantom with breast attachments, which volumes are 200, 300, 400, 500 and 650 cc. We simulated the treatment for a right breast patient using parallel opposed tangential fields. Treatment plans were used to investigate the effect of unwanted air gaps under bolus on the dose distribution of the whole breast. The commercial Super-Flex bolus and 3D-printed polylactic acid (PLA) bolus were applied to investigate the skin dose of the breast with the MOSFET measurement. Two boluses of 3 and 5 mm thicknesses were selected. There was a good agreement between the dose distribution for a virtual bolus generated by the TPS and PLA bolus. The difference in dose distribution between the virtual bolus and Super-Flex bolus was significant within the bolus and breast due to unwanted air gaps. The average differences between calculated and measured doses in a 200 and 300 cc with PLA bolus were not significant, which were -0.7% and -0.6% for 3mm, and -1.1% and -1.1% for 5 mm, respectively. With the Super-Flex bolus, however, significant dose differences were observed (-5.1% and -3.2% for 3mm, and -6.3% and -4.2% for 5 mm). The 3D-printed solid bolus can reduce the uncertainty of the daily setup and help to overcome the dose discrepancy by unwanted air gaps in the breast cancer radiation therapy.

  18. 2D-3D registration for prostate radiation therapy based on a statistical model of transmission images

    SciTech Connect

    Munbodh, Reshma; Tagare, Hemant D.; Chen Zhe; Jaffray, David A.; Moseley, Douglas J.; Knisely, Jonathan P. S.; Duncan, James S.

    2009-10-15

    Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.

  19. A Patient-Specific Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer Radiation Therapy

    PubMed Central

    Park, Jong Min; Chun, MinSoo; Han, Ji Hye; Kim, Jung-in

    2016-01-01

    Purpose The aim of this study was to assess the feasibility and advantages of a patient-specific breast bolus made using a 3D printer technique. Methods We used the anthropomorphic female phantom with breast attachments, which volumes are 200, 300, 400, 500 and 650 cc. We simulated the treatment for a right breast patient using parallel opposed tangential fields. Treatment plans were used to investigate the effect of unwanted air gaps under bolus on the dose distribution of the whole breast. The commercial Super-Flex bolus and 3D-printed polylactic acid (PLA) bolus were applied to investigate the skin dose of the breast with the MOSFET measurement. Two boluses of 3 and 5 mm thicknesses were selected. Results There was a good agreement between the dose distribution for a virtual bolus generated by the TPS and PLA bolus. The difference in dose distribution between the virtual bolus and Super-Flex bolus was significant within the bolus and breast due to unwanted air gaps. The average differences between calculated and measured doses in a 200 and 300 cc with PLA bolus were not significant, which were -0.7% and -0.6% for 3mm, and -1.1% and -1.1% for 5 mm, respectively. With the Super-Flex bolus, however, significant dose differences were observed (-5.1% and -3.2% for 3mm, and -6.3% and -4.2% for 5 mm). Conclusion The 3D-printed solid bolus can reduce the uncertainty of the daily setup and help to overcome the dose discrepancy by unwanted air gaps in the breast cancer radiation therapy. PMID:27930717

  20. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    SciTech Connect

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-06-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  1. Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  2. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  3. Late Side Effects After Image Guided Intensity Modulated Radiation Therapy Compared to 3D-Conformal Radiation Therapy for Prostate Cancer: Results From 2 Prospective Cohorts.

    PubMed

    Wortel, Ruud C; Incrocci, Luca; Pos, Floris J; van der Heide, Uulke A; Lebesque, Joos V; Aluwini, Shafak; Witte, Marnix G; Heemsbergen, Wilma D

    2016-06-01

    Technical developments in the field of external beam radiation therapy (RT) enabled the clinical introduction of image guided intensity modulated radiation therapy (IG-IMRT), which improved target conformity and allowed reduction of safety margins. Whether this had an impact on late toxicity levels compared to previously applied three-dimensional conformal radiation therapy (3D-CRT) is currently unknown. We analyzed late side effects after treatment with IG-IMRT or 3D-CRT, evaluating 2 prospective cohorts of men treated for localized prostate cancer to investigate the hypothesized reductions in toxicity. Patients treated with 3D-CRT (n=189) or IG-IMRT (n=242) to 78 Gy in 39 fractions were recruited from 2 Dutch randomized trials with identical toxicity scoring protocols. Late toxicity (>90 days after treatment) was derived from self-assessment questionnaires and case report forms, according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG-EORTC) scoring criteria. Grade ≥2 endpoints included gastrointestinal (GI) rectal bleeding, increased stool frequency, discomfort, rectal incontinence, proctitis, and genitourinary (GU) obstruction, increased urinary frequency, nocturia, urinary incontinence, and dysuria. The Cox proportional hazards regression model was used to compare grade ≥2 toxicities between both techniques, adjusting for other modifying factors. The 5-year cumulative incidence of grade ≥2 GI toxicity was 24.9% for IG-IMRT and 37.6% following 3D-CRT (adjusted hazard ratio [HR]: 0.59, P=.005), with significant reductions in proctitis (HR: 0.37, P=.047) and increased stool frequency (HR: 0.23, P<.001). GU grade ≥2 toxicity levels at 5 years were comparable with 46.2% and 36.4% following IG-IMRT and 3D-CRT, respectively (adjusted HR: 1.19, P=.33). Other strong predictors (P<.01) of grade ≥2 late toxicity were baseline complaints, acute toxicity, and age. Treatment with IG-IMRT reduced the risk of

  4. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    SciTech Connect

    Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-10-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  5. Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.

    2008-11-01

    Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.

  6. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells

    PubMed Central

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×106 cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective “off the shelf” therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia. PMID:23823334

  7. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    NASA Astrophysics Data System (ADS)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  8. Mitigation of Lethal Radiation Syndrome in Mice by Intramuscular Injection of 3D Cultured Adherent Human Placental Stromal Cells.

    PubMed

    Gaberman, Elena; Pinzur, Lena; Levdansky, Lilia; Tsirlin, Maria; Netzer, Nir; Aberman, Zami; Gorodetsky, Raphael

    2013-01-01

    Exposure to high lethal dose of ionizing radiation results in acute radiation syndrome with deleterious systemic effects to different organs. A primary target is the highly sensitive bone marrow and the hematopoietic system. In the current study C3H/HeN mice were total body irradiated by 7.7 Gy. Twenty four hrs and 5 days after irradiation 2×10(6) cells from different preparations of human derived 3D expanded adherent placental stromal cells (PLX) were injected intramuscularly. Treatment with batches consisting of pure maternal cell preparations (PLX-Mat) increased the survival of the irradiated mice from ∼27% to 68% (P<0.001), while cell preparations with a mixture of maternal and fetal derived cells (PLX-RAD) increased the survival to ∼98% (P<0.0001). The dose modifying factor of this treatment for both 50% and 37% survival (DMF50 and DMF37) was∼1.23. Initiation of the more effective treatment with PLX-RAD injection could be delayed for up to 48 hrs after irradiation with similar effect. A delayed treatment by 72 hrs had lower, but still significantly effect (p<0.05). A faster recovery of the BM and improved reconstitution of all blood cell lineages in the PLX-RAD treated mice during the follow-up explains the increased survival of the cells treated irradiated mice. The number of CD45+/SCA1+ hematopoietic progenitor cells within the fast recovering population of nucleated BM cells in the irradiated mice was also elevated in the PLX-RAD treated mice. Our study suggests that IM treatment with PLX-RAD cells may serve as a highly effective "off the shelf" therapy to treat BM failure following total body exposure to high doses of radiation. The results suggest that similar treatments may be beneficial also for clinical conditions associated with severe BM aplasia and pancytopenia.

  9. Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy

    SciTech Connect

    Su, Shiqin; Moran, Kathryn; Robar, James L.

    2014-08-15

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.

  10. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    SciTech Connect

    Ehler, E; Sterling, D; Higgins, P

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  11. SU-E-T-300: Dosimetric Comparision of 4D Radiation Therapy and 3D Radiation Therapy for the Liver Tumor Based On 4D Medical Image

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receiving 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.

  12. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.

    PubMed

    Giannoula, Alexia; Cobbold, Richard; Bezerianos, Anastasios

    2014-02-01

    A modulated acoustic radiation force, produced by two confocal tone-burst ultrasound beams of slightly different frequencies (i.e. 2.0 MHz ± Δf/2, where Δf is the difference frequency), can be used to remotely generate modulated low-frequency (Δf ≤ 500 Hz) shear waves in attenuating media. By appropriately selecting the duration of the two beams, the energy of the generated shear waves can be concentrated around the difference frequency (i.e., Δf ± Δf/2). In this manner, neither their amplitude nor their phase information is distorted by frequency-dependent effects, thereby, enabling a more accurate reconstruction of the viscoelastic properties. Assuming a Voigt viscoelastic model, this paper describes the use of a finite-element-method model to simulate three-dimensional (3-D) shear-wave propagation in viscoelastic media containing a spherical inclusion. Nonlinear propagation is assumed for the two ultrasound beams, so that higher harmonics are developed in the force and shear spectrum. Finally, an inverse reconstruction algorithm is used to extract 3-D maps of the local shear modulus and viscosity from the simulated shear-displacement fields based on the fundamental and second-harmonic component. The quality of the reconstructed maps is evaluated using the contrast between the inclusion and the background and the contrast-to-noise ratio (CNR). It is shown that the shear modulus can be accurately reconstructed based on the fundamental component, such that the observed contrast deviates from the true contrast by a root-mean-square-error (RMSE) of only 0.38 and the CNR is greater than 30 dB. If the second-harmonic component is used, the RMSE becomes 1.54 and the corresponding CNR decreases by approximately 10-15 dB. The reconstructed shear viscosity maps based on the second harmonic are shown to be of higher quality than those based on the fundamental. The effects of noise are also investigated and a fusion operation between the two spectral components is

  13. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  14. Quantification of Radiation Biomarkers in Leukocytes of Breast Cancer Patients Treated with Different Modalities of 3D-CRT or IMRT.

    PubMed

    Zahnreich, Sebastian; Ebersberger, Anne; Karle, Heiko; Kaina, Bernd; Schmidberger, Heinz

    2016-11-01

    The goal of this study was to determine whether the quantification of radiation biomarkers in peripheral leukocytes of 111 breast cancer patients after adjuvant treatment with different modalities of three-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) revealed any difference in the patients' radiation burden by out-of-field doses and an associated risk of second malignancies. Whole-breast radiation therapy was performed by 3D-CRT using either a hard wedge (n = 32) or a virtual wedge (n = 49) at dose rates of 3 and 6 Gy per min each. Patients receiving additional radiotherapy to lymph nodes were treated by 3D-CRT (n = 21) or IMRT (n = 9). DNA damage was measured as γ-H2AX foci (n = 111) and as unstable chromosomal aberrations (n = 15) in leukocytes drawn 30 min and 24 h after the first radiation fraction, respectively. The individual basal yield and radiation sensitivity ex vivo were assessed in leukocytes obtained before the first treatment. After radiation therapy, the average rate of γ-H2AX foci and chromosomal aberrations per leukocyte were dependent on multiple parameters of irradiation: the treatment volume, the administered equivalent whole-body dose, the number of monitor units and the beam-on time. Different modalities of radiation therapy caused significant variations in the levels of both radiation biomarkers irrespective of the treatment volume and administered dose, and in particular, a twofold higher rate after IMRT compared to 3D-CRT. Any deviation in biomarker response between radiation therapy techniques was directed by a linear dependence on the absolute beam-on time. However, the dispersion of γ-H2AX foci in peripheral leukocytes after radiation therapy correlated very well with the relative distribution of dose in the whole-body volume for each radiation therapy technique. In conclusion, the induction of radiation biomarkers in leukocytes of breast cancer patients by different radiotherapy

  15. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  16. Emission profile variability in hot star winds. A pseudo-3D method based on radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Dessart, L.; Owocki, S. P.

    2002-03-01

    We present theoretical calculations of emission line profile variability based on hot star wind structure calculated numerically using radiation hydrodynamics simulations. A principal goal is to examine how well short-time-scale variations observed in wind emission lines can be modelled by wind structure arising from small-scale instabilities intrinsic to the line-driving of these winds. The simulations here use a new implementation of the Smooth Source Function formalism for line-driving within a one-dimensional (1D) operation of the standard hydrodynamics code ZEUS-2D. As in previous wind instability simulations, the restriction to 1D is necessitated by the computational costs of non-local integrations needed for the line-driving force; but we find that naive application of such simulations within an explicit assumption of spherically symmetric structure leads to an unobserved strong concentration of profile variability toward the line wings. We thus introduce a new ``patch method'' for mimicking a full 3D wind structure by collecting random sequences of 1D simulations to represent the structure evolution along radial rays that extend over a selectable patch-size of solid angle. We provide illustrative results for a selection of patch sizes applied to a simulation with standard assumptions that govern the details of instability-generated wind structure, and show in particular that a typical model with a patch size of about 3 deg can qualitatively reproduce the fundamental properties of observed profile variations. We conclude with a discussion of prospects for extending the simulation method to optically thick winds of Wolf-Rayet (WR) stars, and for thereby applying our ``patch method'' to dynamical modelling of the extensive variability observed in wind emission lines from these WR stars.

  17. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  18. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose.

    PubMed

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-21

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required

  19. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km

  20. Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Ben-Zvi, I.; Kewisch, J.; /Brookhaven

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.

  1. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  2. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  3. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  4. Efficient implementation of the 3D-DDA ray traversal algorithm on GPU and its application in radiation dose calculation.

    PubMed

    Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo

    2012-12-01

    The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.

  5. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  6. A comparative analysis of 3D conformal deep inspiratory-breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer.

    PubMed

    Reardon, Kelli A; Read, Paul W; Morris, Monica M; Reardon, Michael A; Geesey, Constance; Wijesooriya, Krishni

    2013-01-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory-breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  7. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ('standard') 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name 'Independent Coaxial Detector Array', or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  8. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  9. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    PubMed

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  10. Registration uncertainties between 3D cone beam computed tomography and different reference CT datasets in lung stereotactic body radiation therapy.

    PubMed

    Oechsner, Markus; Chizzali, Barbara; Devecka, Michal; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona

    2016-10-26

    The aim of this study was to analyze differences in couch shifts (setup errors) resulting from image registration of different CT datasets with free breathing cone beam CTs (FB-CBCT). As well automatic as manual image registrations were performed and registration results were correlated to tumor characteristics. FB-CBCT image registration was performed for 49 patients with lung lesions using slow planning CT (PCT), average intensity projection (AIP), maximum intensity projection (MIP) and mid-ventilation CTs (MidV) as reference images. Both, automatic and manual image registrations were applied. Shift differences were evaluated between the registered CT datasets for automatic and manual registration, respectively. Furthermore, differences between automatic and manual registration were analyzed for the same CT datasets. The registration results were statistically analyzed and correlated to tumor characteristics (3D tumor motion, tumor volume, superior-inferior (SI) distance, tumor environment). Median 3D shift differences over all patients were between 0.5 mm (AIPvsMIP) and 1.9 mm (MIPvsPCT and MidVvsPCT) for the automatic registration and between 1.8 mm (AIPvsPCT) and 2.8 mm (MIPvsPCT and MidVvsPCT) for the manual registration. For some patients, large shift differences (>5.0 mm) were found (maximum 10.5 mm, automatic registration). Comparing automatic vs manual registrations for the same reference CTs, ∆AIP achieved the smallest (1.1 mm) and ∆MIP the largest (1.9 mm) median 3D shift differences. The standard deviation (variability) for the 3D shift differences was also the smallest for ∆AIP (1.1 mm). Significant correlations (p < 0.01) between 3D shift difference and 3D tumor motion (AIPvsMIP, MIPvsMidV) and SI distance (AIPvsMIP) (automatic) and also for 3D tumor motion (∆PCT, ∆MidV; automatic vs manual) were found. Using different CT datasets for image registration with FB-CBCTs can result in different 3D couch shifts. Manual registrations

  11. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  12. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  13. Comparison of ground-based UV irradiance measurements with satellite-derived values and 1-D- and 3-D-radiative transfer model calculations in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Arola, A.; Blumthaler, M.; Fitzka, M.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2009-04-01

    Since the discovery of anthropogenic ozone depletion more than 30 year ago, the scientific community has shown an increasing interest in UV-B radiation. Nowadays, ground-based high quality measurements of spectrally resolved UV-radiation are available. On the other hand, 1-D- and 3-D models have been developed, that describe the radiative transfer through the atmosphere physically very accurately. Another approach for determining the UV-irradiance at the surface of the earth is the use of satellite-based reflectance measurements as input for retrieval algorithms. At the moment, the research focuses on the impact of clouds on UV-radiation, but the impact of mountains on UV-radiation, especially in combination with high surface albedo due to snowcover, is also very strong and detailed comparisons between measurements and modelling are lacking. Therefore, three measurement campaigns had been conducted in alpine areas of Austria (Innsbruck and Hoher Sonnblick). The goal was to investigate the impact of alpine terrain in combination with snowcover on spectral UV-irradiance and actinic flux. This contribution uses the ground-based UV-irradiance measurements to evaluate three different UV-irradiance calculation methods. Results from three different calculation methods (satellite retrieval, 1-D- and 3-D radiative transfer model) for UV radiation in terms of UV-Index, erythemally weighted daily doses and spectrally resolved UV-Irradiance at 305, 310, 324 and 380nm are presented and compared with ground-based high quality measurements. The real case study is performed in very inhomogenous terrain under clear sky conditions. The values of the different methods are not only compared for the measurements sites, but additionally the impact of altitude is investigated. So far it seems, that 1-D simulations show the best agreement (±10%) with the measurements whereas the 3-D model simulations and satellite retrieved values differ much more. Satellite retrieved values

  14. Performance Portability for Unstructured Mesh Physics

    SciTech Connect

    Keasler, J A

    2012-03-23

    ASC legacy software must be ported to emerging hardware architectures. This paper notes that many programming models used by DOE applications are similar, and suggests that constructing a common terminology across these models could reveal a performance portable programming model. The paper then highlights how the LULESH mini-app is used to explore new programming models with outside solution providers. Finally, we suggest better tools to identify parallelism in software, and give suggestions for enhancing the co-design process with vendors.

  15. Adaption of unstructured meshes using node movement

    SciTech Connect

    Carpenter, J.G.; McRae, V.D.S.

    1996-12-31

    The adaption algorithm of Benson and McRae is modified for application to unstructured grids. The weight function generation was modified for application to unstructured grids and movement was limited to prevent cross over. A NACA 0012 airfoil is used as a test case to evaluate the modified algorithm when applied to unstructured grids and compared to results obtained by Warren. An adaptive mesh solution for the Sudhoo and Hall four element airfoil is included as a demonstration case.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  18. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting

  19. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data.

    PubMed

    Barker, H W; Kato, S; Wehr, T

    This study used realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE mission, was applied to CloudSat, CALIPSO and MODIS satellite data thus producing 3D cloudy atmospheres measuring 61 km wide by 14,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances were then computed by a Monte Carlo photon transfer model run in both full 3D and 1D independent column approximation modes. Results were averaged into 1,303 (50 km)(2) domains. For domains with total cloud fractions Ac  < 0.7 top-of-atmosphere (TOA) albedos tend to be largest for 3D transfer with differences increasing with solar zenith angle. Differences are largest for Ac  > 0.7 and characterized by small bias yet large random errors. Regardless of Ac , differences between 3D and 1D transfer rarely exceed ±30 W m(-2) for net TOA and surface fluxes and ±10 W m(-2) for atmospheric absorption. Horizontal fluxes through domain sides depend on Ac with ∼20% of cases exceeding ±30 W m(-2); the largest values occur for Ac  > 0.7. Conversely, heating rate differences rarely exceed ±20%. As a cursory test of TOA radiative closure, fluxes produced by the 3D model were averaged up to (20 km)(2) and compared to values measured by CERES. While relatively little attention was paid to optical properties of ice crystals and surfaces, and aerosols were neglected entirely, ∼30% of the differences between 3D model estimates and measurements fall within ±10 W m(-2); this is the target agreement set for EarthCARE. This, coupled with the aforementioned comparison between 3D and 1D transfer, leads to the recommendation that EarthCARE employ a 3D transport model when attempting TOA radiative closure.

  20. Radiation injury to the normal brain measured by 3D-echo-planar spectroscopic imaging and diffusion tensor imaging: initial experience.

    PubMed

    Chawla, Sanjeev; Wang, Sumei; Kim, Sungheon; Sheriff, Sulaiman; Lee, Peter; Rengan, Ramesh; Lin, Alexander; Melhem, Elias; Maudsley, Andrew; Poptani, Harish

    2015-01-01

    Whole brain radiation therapy (WBRT) may cause cognitive and neuropsychological impairment and hence objective assessment of adverse effects of radiation may be valuable to plan therapy. The purpose of our study was to determine the potential of echo planar spectroscopic imaging (EPSI) and diffusion tensor imaging (DTI) in detecting subacute radiation induced injury to the normal brain. Four patients with brain metastases and three patients with lung cancer underwent cranial irradiation. These patients were subjected to 3D-EPSI and DTI at two time points (pre-radiation, and 1 month post-irradiation). Parametric maps of N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), mean diffusivity (MD), and fractional anisotropy (FA) were generated and co-registered to post-contrast T1-weighted images. Normal appearing gray-matter and white-matter regions were compared between the two time points to assess sub-acute effects of radiation using independent sample t-tests. Significantly increased MD (P = .02), Cho/Cr (P = .02) and a trend towards a decrease in NAA/Cr (P = .06) was observed from the hippocampus. Significant decrease in FA (P = .02) from the centrum-semiovale and a significant increase in MD (P = .04) and Cho/Cr (P = .02) from genu of corpus-callosum was also observed. Our preliminary findings suggest that 3D-EPSI and DTI may provide quantitative measures of radiation induced injury to the normal brain. Copyright © 2013 by the American Society of Neuroimaging.

  1. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  2. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Hashim, S.; Karim, M. K. A.; Bahruddin, N. A.; Salehhon, N.; Musa, Y.

    2017-05-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients (n=20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients (n=20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDIvol) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDIvol significantly decreased by 38% in LD CT compared to STD CT (p<0.05). Objective and subjective image quality were statistically improved with AIDR 3D (p<0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis.

  3. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  4. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  5. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel.

    PubMed

    Lin, Yu-Fen; Nagasawa, Hatsumi; Peng, Yuanlin; Chuang, Eric Y; Bedford, Joel S

    2009-06-01

    It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.

  6. 3-D radiative transfer in large-eddy simulations - experiences coupling the TenStream solver to the UCLA-LES

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Mayer, Bernhard

    2016-04-01

    The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.

  7. Comparison of the 3D VERB Code Simulations of the Dynamic Evolution of the Outer and Inner Radiation Belts With the Reanalysis Obtained from Observations on Multiple Spacecraft

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Subbotin, D.; Ni, B.; Daae, M.; Kondrashov, D. A.; Hartinger, M.; Kim, K.; Orlova, K.; Nagai, T.; Friedel, R. H.; Chen, Y.

    2010-12-01

    In this study we present simulations of the inner and outer radiation belts using the Versatile Electron Radiation Belt (VERB) accounting for radial, pitch-angle, energy, and mixed diffusion. Qusi-linear diffusion coefficients are computed using the Full Diffusion Code (FDC) due to day-side and night-side chorus waves, magneto-sonic waves, phasmaspheric hiss waves, EMIC and hiss waves in the regions of plumes, lightning generated whistlers and anthropogenic whistlers. Sensitivity simulations show that the knowledge of wave spectral properties and spacial distribution of waves is crucially important for reproducing long term observations. The 3D VERB code simulations are compared to 3D reanalysis of the radiation belt fluxes obtained by blending the predictive model with observations from LANL GEO, CRRES, Akebono, and GPS. We also discuss the initial results of coupled RCM-VERB simulations. Finally, we present a statistical analysis of radiation belt phase space density obtained from reanalysis to explore sudden drop outs of the radiation belt fluxes and location of peaks in phase space density. The application of the developed tools to future measurements on board RBSP is discussed.

  8. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2013-09-30

    vector Monte Carlo code to calculate what is known as SOES (Spatial Offset Elastic Scattering ). We have used our method to calculate the SOES signal... scattering properties, such as different single scattering albedo, different phase function and different phase matrix. Our new 3D vector Monte Carlo ...feature about the asymptotic light field is that it depends profoundly on both the single scattering albedo as well as the phase function of the medium

  9. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  10. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  11. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    SciTech Connect

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  12. Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, G. K. H.; Wood, K.; Dobbs-Dixon, I.; Rice, A.; Helling, Ch.

    2017-05-01

    Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims: We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods: We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results: Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the

  13. Phantom investigation of 3D motion-dependent volume aliasing during CT simulation for radiation therapy planning

    PubMed Central

    Tanyi, James A; Fuss, Martin; Varchena, Vladimir; Lancaster, Jack L; Salter, Bill J

    2007-01-01

    Purpose To quantify volumetric and positional aliasing during non-gated fast- and slow-scan acquisition CT in the presence of 3D target motion. Methods Single-slice fast, single-slice slow, and multi-slice fast scan helical CTs were acquired of dynamic spherical targets (1 and 3.15 cm in diameter), embedded in an anthropomorphic phantom. 3D target motions typical of clinically observed tumor motion parameters were investigated. Motion excursions included ± 5, ± 10, and ± 15 mm displacements in the S-I direction synchronized with constant displacements of ± 5 and ± 2 mm in the A-P and lateral directions, respectively. For each target, scan technique, and motion excursion, eight different initial motion-to-scan phase relationships were investigated. Results An anticipated general trend of target volume overestimation was observed. The mean percentage overestimation of the true physical target volume typically increased with target motion amplitude and decreasing target diameter. Slow-scan percentage overestimations were larger, and better approximated the time-averaged motion envelope, as opposed to fast-scans. Motion induced centroid misrepresentation was greater in the S-I direction for fast-scan techniques, and transaxial direction for the slow-scan technique. Overestimation is fairly uniform for slice widths < 5 mm, beyond which there is gross overestimation. Conclusion Non-gated CT imaging of targets describing clinically relevant, 3D motion results in aliased overestimation of the target volume and misrepresentation of centroid location, with little or no correlation between the physical target geometry and the CT-generated target geometry. Slow-scan techniques are a practical method for characterizing time-averaged target position. Fast-scan techniques provide a more reliable, albeit still distorted, target margin. PMID:17319965

  14. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2010-01-01

    RaDyO platforms, the R/ P FLoating Instrument Platform (FLIP) and the R/V Kilo Moana (KM), are usually different. Among other important results, it is... Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete ordinates method”, Atmos. Res. 33, 283-308, (1994), 4. J. L...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for

  15. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  16. Optical CT scanner for in-air readout of gels for external radiation beam 3D dosimetry.

    PubMed

    Ramm, Daniel; Rutten, Thomas P; Shepherd, Justin; Bezak, Eva

    2012-06-21

    Optical CT scanners for a 3D readout of externally irradiated radiosensitive hydrogels currently require the use of a refractive index (RI) matching liquid bath to obtain suitable optical ray paths through the gel sample to the detector. The requirement for a RI matching liquid bath has been negated by the design of a plastic cylindrical gel container that provides parallel beam geometry through the gel sample for the majority of the projection. The design method can be used for various hydrogels. Preliminary test results for the prototype laser beam scanner with ferrous xylenol-orange gel show geometric distortion of 0.2 mm maximum, spatial resolution limited to beam spot size of about 0.4 mm and 0.8% noise (1 SD) for a uniform irradiation. Reconstruction of a star pattern irradiated through the cylinder walls demonstrates the suitability for external beam applications. The extremely simple and cost-effective construction of this optical CT scanner, together with the simplicity of scanning gel samples without RI matching fluid increases the feasibility of using 3D gel dosimetry for clinical external beam dose verifications.

  17. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    PubMed Central

    Jacob, Richard E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2014-01-01

    Rationale and Objectives To investigate the ability of variogram analysis of octree-decomposed CT images and volume change maps to detect radiation-induced damage in rat lungs. Materials and Methods The lungs of female Sprague-Dawley rats were exposed to one of five absorbed doses (0, 6, 9, 12, or 15 Gy) of gamma radiation from a Co-60 source. At 6 months post-exposure, pulmonary function tests were performed and 4DCT images were acquired using a respiratory-gated microCT scanner. Volume change maps were then calculated from the 4DCT images. Octree decomposition was performed on CT images and volume change maps, and variogram analysis was applied to the decomposed images. Correlations of measured parameters with dose were evaluated. Results The effects of irradiation were not detectable from measured parameters, indicating only mild lung damage. Additionally, there were no significant correlations of pulmonary function results or CT densitometry with radiation dose. However, the variogram analysis did detect a significant correlation with dose in both the CT images (r=−0.57, p=0.003) and the volume change maps (r=−0.53, p=0.008). Conclusion This is the first study to utilize variogram analysis of lung images to assess pulmonary damage in a model of radiation injury. Results show that this approach is more sensitive to detecting radiation damage than conventional measures such as pulmonary function tests or CT densitometry. PMID:24029058

  18. A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.

  19. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    SciTech Connect

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  20. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  1. Assessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot and Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer

    PubMed Central

    Salimi, Marzieh; Abi, Kaveh Shirani Tak; Nedaie, Hassan Ali; Hassani, Hossein; Gharaati, Hussain; Samei, Mahmood; Shahi, Rezgar; Zarei, Hamed

    2017-01-01

    Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf collimators and also compensators with optimum shapes in step and shoot (SAS) and compensator-based method, respectively. In the recent study, some important parameters were compared in two IMRT and 3D CRT methods. Prescribed dose was 80 Gy for both IMRT procedures and 70 Gy for 3D CRT. Treatment plans of 15 prostate cancer candidates were compared to target the minimum dose, maximum dose, V 76 Gy (for IMRT plans) V 66.5 Gy (for 3D CRT), mean dose, conformity index (CI), and homogeneity index (HI). Dose conformity in compensators-based IMRT was better than SAS and 3D CRT. The same outcome was also achieved for homogeneity index. The target coverage was achieved 95% of prescribed dose to 95% of planning target volume (PTV) in 3D CRT and 95% of prescribed dose to 98% of PTV in IMRT methods. IMRT increases maximum dose of tumor region, improves CI and HI of target volume, and also reduces dose of organs at risks. PMID:28553583

  2. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  3. Scaling and performance of a 3-D radiation hydrodynamics code on message-passing parallel computers: final report

    SciTech Connect

    Hayes, J C; Norman, M

    1999-10-28

    This report details an investigation into the efficacy of two approaches to solving the radiation diffusion equation within a radiation hydrodynamic simulation. Because leading-edge scientific computing platforms have evolved from large single-node vector processors to parallel aggregates containing tens to thousands of individual CPU's, the ability of an algorithm to maintain high compute efficiency when distributed over a large array of nodes is critically important. The viability of an algorithm thus hinges upon the tripartite question of numerical accuracy, total time to solution, and parallel efficiency.

  4. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    PubMed

    Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J

    2016-08-15

    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.

  5. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.; Gull, T. R.

    2015-03-01

    The highly eccentric binary system Eta Carinae (η Car) shows numerous time-variable emission and absorption features. These observational signatures are the result of interactions between the complex three-dimensional (3D) wind-wind collision regions and photoionization by the luminous stars. Specifically, helium presents several interesting spectral features that provide important clues on the geometry and physical proprieties of the system and the individual stars. We use the SIMPLEX algorithm to post-process 3D smoothed particle hydrodynamics simulation output of the interacting winds in η Car in order to obtain the fractions of ionized helium assuming three different primary star (ηA) mass-loss rates. The resultant ionization maps constrain the regions where helium is singly- and doubly-ionized. We find that reducing ηA's mass-loss rate (dot{M}_{η A}) increases the volume of He+. Lowering dot{M}_{η A} produces large variations in the volume of He+ in the pre-shock ηA wind on the periastron side of the system. Our results show that binary orientations in which apastron is on our side of the system are more consistent with available observations. We suggest that small variations in dot{M}_{η A} might explain the observed increase in He I absorption in recent decades, although numerous questions regarding this scenario remain open. We also propose that the absence of broad He I lines in the spectra of η Car between its 1890's eruption and ˜1944 might be explained by ηB's He0+-ionizing photons not being able to penetrate the wind-wind interaction region, due to a higher dot{M}_{η A} at that time (by a factor ≳2, compared to the present value).

  6. R3D-B2 - Measurement of ionizing and solar radiation in open space in the BIOPAN 5 facility outside the FOTON M2 satellite

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Richter, P.; Schuster, M.; Dachev, Ts.; Tomov, B.; Georgiev, Pl.; Matviichuk, Yu.

    2009-04-01

    Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170-280 nm, UV-B, 280-315 nm), UV-A (315-400 nm) and PAR (photosynthetic active radiation, 400-700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262-304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.

  7. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  8. Meta-analysis of Cumulative Radiation Duration and Dose During EVAR Using Mobile, Fixed, or Fixed/3D Fusion C-Arms.

    PubMed

    de Ruiter, Quirina M B; Reitsma, Johannes B; Moll, Frans L; van Herwaarden, Joost A

    2016-12-01

    To investigate the total fluoroscopy time and radiation exposure dose during endovascular aortic repairs using mobile, fixed, or fixed C-arms with 3-dimensional image fusion (3D-IF). A systematic search was performed to identify original articles reporting fluoroscopy time (FT) and the kerma area product (KAP) during endovascular aortic repairs. Data were grouped by noncomplex or complex (fenestrated, branched, or chimney) repairs and stratified by type of C-arm. The search identified 27 articles containing 51 study groups (35 noncomplex and 16 complex) that included 3444 patients. Random-effects meta-analysis and meta-regression models were used to calculate the pooled mean estimates of KAP and FT, as well as any effect of equipment or type of intervention. Results are presented with the 95% confidence interval and the statistical heterogeneity (I(2)). Within the noncomplex procedure studies, a significant (p<0.001) increase was found in the pooled mean KAP estimate in the fixed C-arm group (181 Gy·cm(2), 95% CI 129 to 233; I(2)=99.7) compared with the mobile C-arm (78 Gy·cm(2), 95% CI 59.6 to 97.3; I(2)=99.6). For complex cases, use of 3D-IF showed a significantly (p<0.001) lower mean KAP (139 Gy·cm(2), 95% CI 85 to 191; I(2)=94%) compared to using fixed C-arms without 3D-IF (487 Gy·cm(2), 95% CI 331 to 643; I(2)=94%). For equivalent fluoroscopy times, the use of a fixed C-arm in noncomplex procedures leads to higher patient radiation doses compared to a mobile C-arm. Complex procedures, which are predominantly performed using fixed C-arms, are associated with the highest radiation dose per intervention. Using fixed C-arms combined with 3D-IF techniques during complex cases might seem an adequate method to compensate for the higher radiation doses measured when a fixed C-arm is used. © The Author(s) 2016.

  9. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  10. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect

    Shapiro, A.B.

    1983-08-01

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  11. Determination of the 5d6s3D1 State Lifetime and Blackbody Radiation Clock Shift in Yb

    DTIC Science & Technology

    2012-08-03

    transition due to room temperature blackbody radiation is dominated by a static Stark effect , which was recently measured to high accuracy [J. A. Shennan et...Stark effect , which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. However, room temperature... effect , which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. However, room temperature

  12. Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-03-01

    We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.

  13. Low Dose Computed Tomography for 3D Planning of Total Hip Arthroplasty: Evaluation of Radiation Exposure and Image Quality.

    PubMed

    Huppertz, Alexander; Lembcke, Alexander; Sariali, El-Hadi; Durmus, Tahir; Schwenke, Carsten; Hamm, Bernd; Sparmann, Martin; Baur, Alexander D J

    2015-01-01

    The aim of the study was to compare radiation exposure and image quality between dedicated computed tomography (CT) protocols for preoperative total hip arthroplasty (THA) planning. Three protocols with automated tube current modulation using 64-slice (n = 177) and 128-slice CT scanners without (n = 129) and with automated tube voltage preselection (n = 84) were compared. All 390 CTs were of sufficient quality for THA planning. Mean DLP was 235.0 mGy*cm (effective dose 2.8 mSv). Lowest radiation exposure (2.5 mSv) was seen with automated voltage preselection and the algorithm's selection was 100 kV (90.5% of patients) and 120 kV. Lowest image noise was seen in the highest dose group (3.1 mSv, 128-slice CT fixed tube voltage). A significant difference in cortical bone radiodensity was seen between 100 kV and 120 kV (P < 0.0001). Preoperative pelvic CT for THA planning is possible with very low radiation dose and reliable quality. Automated voltage preselection further decreases the effective dose by 18.2%.

  14. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain

    SciTech Connect

    Sonnik, Deborah; Selvaraj, Raj N. . E-mail: selvarajrn@upmc.edu; Faul, Clare; Gerszten, Kristina; Heron, Dwight E.; King, Gwendolyn C.

    2007-04-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified 'Kuske Technique'). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  15. Evaluation of the respiratory motion influence in the 3D dose distribution of IMRT breast radiation therapy treatments

    NASA Astrophysics Data System (ADS)

    Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.

    2017-05-01

    This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.

  16. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    PubMed

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  17. [A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system].

    PubMed

    Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène

    2005-02-01

    Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine.

  18. 3D-CFD Investigation of Contrails and Volatile Aerosols Produced in the Near-Field of an Aircraft Wake

    NASA Astrophysics Data System (ADS)

    Garnier, F.; Ghedhaifi, W.; Vancassel, X.; Khou, J. C.; Montreuil, E.

    2015-12-01

    Civil aviation contributes to degradation of air quality around airport (SOx, NOx, speciated hydrocarbons,…) and climate change through its emissions of greenhouse gases (CO2, water vapor), as well as particulate matters. These particles include soot particles formed in the combustor, volatile aerosols and contrails generated in the aircraft wake. Although the aircraft emissions represent today only about 3% of all those produced on the surface of the earth by other anthropogenic sources, they are mostly released in the very sensitive region of the upper troposphere/lower stratosphere. These emissions have a radiative effect reinforced by specific physical and chemical processes at high altitudes, such as cloud formation and ozone production. In this context, most of the work to-date assessed that the actual effect of aviation on the climate are affected by very large uncertainties, partly due to lack of knowledge on the mechanisms of new particles formation and growth processes in the exhaust plume of the aircraft. The engine exhaust gases are mixed in the ambient air under the influence of the interaction between the jet engine and the wing tip vortices. The characteristics of vortices as well as their interaction with the jet depend on the aircraft airframe especially on the wing geometry and the engine position (distance from the wing tip). The aim of this study is to examine the influence of aircraft parameters on contrail formation using a 3D CFD calculation based on a RANS (Reynolds Average Navier-Stokes) approach. Numerical simulations have been performed using CEDRE, the multiphysics ONERA code for energetics. CEDRE is a CFD code using finite volume methods and unstructured meshes. These meshes are especially appropriate when complex geometries are used. A transport model has been used for condensation of water vapor onto ice particles. Growth is evaluated using a modified Fick's law to mass transfer on particles. In this study, different aircraft

  19. Studies of 3D-cloud optical depth from small to very large values, and of the radiation and remote sensing impacts of larger-drop clustering

    SciTech Connect

    Wiscombe, Warren; Marshak, Alexander; Knyazikhin, Yuri; Chiu, Christine

    2007-05-04

    We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.

  20. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    SciTech Connect

    Liou, Kuo-Nan

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracing computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the

  1. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  2. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Godoy, William F.; DesJardin, Paul E.

    2010-05-01

    The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  3. Using 3D dosimetry to quantify the Electron Return Effect (ERE) for MR-image-guided radiation therapy (MR-IGRT) applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Choi, Gye Won; Alqathami, Mamdooh; Kadbi, Mo; Ibbott, Geoffrey

    2017-05-01

    Image-guided radiation therapy (IGRT) using computed tomography (CT), cone-beam CT, MV on-board imager (OBI), and kV OBI systems have allowed for more accurate patient positioning prior to each treatment fraction. While these imaging modalities provide excellent bony anatomy image quality, MRI surpasses them in soft tissue image contrast for better visualization and tracking of soft tissue tumors with no additional radiation dose to the patient. A pre-clinical integrated 1.5 T magnetic resonance imaging and 7 MV linear accelerator system (MR-linac) allows for real-time tracking of soft tissues and adaptive treatment planning