NASA Astrophysics Data System (ADS)
Preston, Leiph Alexander
We develop and apply a non-linear inversion of direct and wide-angle reflection travel times for 3-D P-wave velocity structure, earthquake hypocenters, and reflector geometry under NW Washington focusing on the structure of the subducting Juan de Fuca plate. The first-arrival travel times are derived from both active-source experiments and from local earthquakes. The reflection arrivals were picked from data collected during the 1998 Wet SHIPS active-source experiment, which consisted of air-gun sources within the inland water-ways of NW Washington and SW British Columbia to land-based stations. Our inversion procedure reduces the well-known trade-off between reflector position and the velocities above it by the combination of simultaneous inversion and adequate crossing paths. We interpret the wide-angle reflector as the Moho of the subducting Juan de Fuca slab. The relocated intraslab earthquakes separate into two groups: those located up-dip of the 45km reflector depth contour generally lie below the reflector in material whose velocity exceeds 7.7km/s, placing them within the subducting mantle, while those down-dip of this contour occur within material whose velocities are 6.8--7.5km/s, placing them within subducted oceanic crust. We interpret these groups of earthquakes as resulting from serpentine dehydration in the subducted mantle and the basalt to eclogite transformation in the subducted crust. We have performed velocity checkerboard, slab velocity resolution, and parameter sensitivity tests to estimate our ability to resolve the relationship among the reflector, intraslab hypocenters, and slab velocity structure. These tests indicate we have the necessary resolvability and can distinguish the relative locations among the velocities, reflector, and intraslab hypocenters within the subducting slab to +/-2km. The occurrence of events within the subducted mantle geometrically allows for larger magnitude earthquakes than could occur if they were confined to
NASA Astrophysics Data System (ADS)
Zhu, Lupei; Zhou, Xiaofeng
2016-10-01
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the "Cut-and-Paste" (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.
NASA Astrophysics Data System (ADS)
Aucejo, M.; Totaro, N.; Guyader, J.-L.
2010-08-01
In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Kawai, Kenji; Geller, Robert J.; Borgeaud, Anselme F. E.; Konishi, Kensuke
2016-12-01
We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D'' region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ˜3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ˜200 km, whose lower boundary is ˜150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ˜2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (˜300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.
2015-12-01
We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.
NASA Astrophysics Data System (ADS)
Pilia, S.; Rawlinson, N.; Direen, N. G.
2013-12-01
Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This
Azimuthally Anisotropic 3D Velocity Continuation
Burnett, William; Fomel, Sergey
2011-01-01
We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
3D Electromagnetic inversion using conjugate gradients
Newman, G.A.; Alumbaugh, D.L.
1997-06-01
In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Forsyth, D. W.; Fouch, M. J.; James, D. E.
2009-12-01
The High Lava Plains (HLP) of eastern Oregon represent an unusual track of bimodal volcanism extending from the southeastern-most corner of the state to its current position beneath the Newberry Volcano on the eastern margin of the Cascades. The silicic volcanism is time progressive along this track, beginning some 15 Ma near the Owyhee plateau and then trending to the north east. The timing and location of the start of the HLP coincides with that of the initial volcanism associated with the Yellowstone/Snake River Plain track (YSRP). While the YSRP has often been interpreted as the classic intra-continental hot spot track, the HLP, which trends almost normal to absolute plate motion, is harder to explain. This study uses the 100+ stations associated with the HLP seismic deployment together with another ~100 Earthscope Transportable Array stations (TA) to perform a high resolution inversion for Rayleigh wave phase velocities using the 2-plane-wave methodology of Forsyth and Li (2004). Because of the comparatively small grid spacing of this study, we are able to discern much finer scale structures than studies looking at the entire western U.S. with only TA stations. Preliminary results indicate very low velocities across the study area, especially at upper mantle depths. Especially low velocities are seen beneath the Owyhee plateau and along both the HLP and YSRP tracks. Final details about the exact geometries of these features will help constrain possible scenarios for the formation of the HLP volcanic sequence.
NASA Astrophysics Data System (ADS)
Chang, Y.; Hung, S.; Kuo, B.; Kuochen, H.
2012-12-01
Taiwan is one of the archetypical places for studying the active orogenic process in the world, where the Luzon arc has obliquely collided into the southwest China continental margin since 5 Ma ago. Because of the lack of convincing evidence for the structure in the lithospheric mantle and at even greater depths, several competing models have been proposed for the Taiwan mountain-building process. With the deployment of ocean-bottom seismometers (OBSs) on the seafloor around Taiwan from the TAIGER (TAiwan Integrated GEodynamic Research) and IES seismic experiments, the aperture of the seismic network is greatly extended to improve the depth resolution of tomographic imaging, which is critical to illuminate the nature of the arc-continent collision and accretion in Taiwan. In this study, we use relative travel-time residuals between a collection of teleseismic body wave arrivals to tomographically image the velocity structure beneath Taiwan. In addition to those from common distant earthquakes observed across an array of stations, we take advantage of dense seismicity in the vicinity of Taiwan and the source and receiver reciprocity to augment the data coverage from clustered earthquakes recorded by global stations. As waveforms are dependent of source mechanisms, we carry out the cluster analysis to group the phase arrivals with similar waveforms into clusters and simultaneously determine relative travel-time anomalies in the same cluster accurately by a cross correlation method. The combination of these two datasets would particularly enhance the resolvability of the tomographic models offshore of eastern Taiwan, where the two subduction systems of opposite polarity are taking place and have primarily shaped the present tectonic framework of Taiwan. On the other hand, our inversion adopts an innovation that invokes wavelet-based, multi-scale parameterization and finite-frequency theory. Not only does this approach make full use of frequency-dependent travel
3-D radial gravity gradient inversion
NASA Astrophysics Data System (ADS)
Oliveira, Vanderlei C.; Barbosa, Valéria C. F.
2013-11-01
We have presented a joint inversion of all gravity-gradient tensor components to estimate the shape of an isolated 3-D geological body located in subsurface. The method assumes the knowledge about the depth to the top and density contrast of the source. The geological body is approximated by an interpretation model formed by an ensemble of vertically juxtaposed 3-D right prisms, each one with known thickness and density contrast. All prisms forming the interpretation model have a polygonal horizontal cross-section that approximates a depth slice of the body. Each polygon defining a horizontal cross-section has the same fixed number of vertices, which are equally spaced from 0° to 360° and have their horizontal locations described in polar coordinates referred to an arbitrary origin inside the polygon. Although the number of vertices forming each polygon is known, the horizontal coordinates of these vertices are unknown. To retrieve a set of juxtaposed depth slices of the body, and consequently, its shape, our method estimates the radii of all vertices and the horizontal Cartesian coordinates of all arbitrary origins defining the geometry of all polygons describing the horizontal cross-sections of the prisms forming the interpretation model. To obtain a stable estimate that fits the observed data, we impose constraints on the shape of the estimated body. These constraints are imposed through the well-known zeroth- and first-order Tikhonov regularizations allowing, for example, the estimate of vertical or dipping bodies. If the data do not have enough in-depth resolution, the proposed inverse method can obtain a set of stable estimates fitting the observed data with different maximum depths. To analyse the data resolution and deal with this possible ambiguity, we plot the ℓ2-norm of the residuals (s) against the estimated volume (vp) produced by a set of estimated sources having different maximum depths. If this s × vp curve (s as a function of vp) shows a well
Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models
NASA Astrophysics Data System (ADS)
Ruan, Y.; Zhou, Y.
2010-12-01
It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement
NASA Astrophysics Data System (ADS)
Pujol, J. M.; Chiu, J. M.
2014-12-01
When applying seismic tomography to local arrival times from an area with a low-velocity sedimentary cover, the effect of the sediments on travel times should be taken into account. If that is not done, the resulting velocity model(s) cannot be assumed to be correct. This fairly obvious statement has been challenged recently by Powell et al. (JGR, 2010), who claimed that the sediments that cover the New Madrid seismic zone (NMSZ, central United States) can be ignored. This claim is examined here and shown to be incorrect. The NMSZ is covered by low-velocity, poorly consolidated sediments (Vp=1.8 km/s, Vs=3), which are underlain by Paleozoic rocks of much higher velocity. In the central NMSZ the sediment thickness varies between about 0.1 and 0.7 km. The JHD analysis of the data collected in that area by a portable network (PANDA) showed that the P- and S-wave station corrections spanned large ranges (0.35 and 0.63 s, respectively, Pujol et al., Eng. Geol., 1997). This study also showed that a Vp/Vs of 3 for the sediments would be too high if the lateral velocity variations were confined to the sedimentary cover. Here we generate synthetic traveltimes for a model with a sedimentary cover having variable depth (as determined from boreholes) underlain by the high-velocity layers in the 1-D model used for the JHD analysis. The synthetic data were generated for the station and event distributions corresponding to the Panda data. The tomographic inversion of the synthetic times produces spurious anomalies in Vp, Vs, and Vp/Vs, from the surface to a depth of 10 km. In addition, the events are mislocated in depth, with errors between 0 and 1 km for most of them. These results should dispel the notion that the effect of the unconsolidated sediments can be ignored. On the other hand, the inversion of the actual Panda data results in velocity anomalies similar to the synthetic anomalies, although larger, which is consistent with the conclusions of Pujol et al. (1997
Joint inversions of two VTEM surveys using quasi-3D TDEM and 3D magnetic inversion algorithms
NASA Astrophysics Data System (ADS)
Kaminski, Vlad; Di Massa, Domenico; Viezzoli, Andrea
2016-05-01
In the current paper, we present results of a joint quasi-three-dimensional (quasi-3D) inversion of two versatile time domain electromagnetic (VTEM) datasets, as well as a joint 3D inversion of associated aeromagnetic datasets, from two surveys flown six years apart from one another (2007 and 2013) over a volcanogenic massive sulphide gold (VMS-Au) prospect in northern Ontario, Canada. The time domain electromagnetic (TDEM) data were inverted jointly using the spatially constrained inversion (SCI) approach. In order to increase the coherency in the model space, a calibration parameter was added. This was followed by a joint inversion of the total magnetic intensity (TMI) data extracted from the two surveys. The results of the inversions have been studied and matched with the known geology, adding some new valuable information to the ongoing mineral exploration initiative.
NASA Astrophysics Data System (ADS)
Fadel, I.; van der Meijde, M.; Kerle, N.
2013-12-01
Non-uniqueness of satellite gravity interpretation has been usually reduced by using a priori information from various sources, e.g. seismic tomography models. The reduction in non-uniqueness has been based on velocity-density conversion formulas or user interpretation for 3D subsurface structures (objects) in seismic tomography models. However, these processes introduce additional uncertainty through the conversion relations due to the dependency on the other physical parameters such as temperature and pressure, or through the bias in the interpretation due to user choices and experience. In this research, a new methodology is introduced to extract the 3D subsurface structures from 3D geophysical data using a state-of-art 3D Object Oriented Image Analysis (OOA) technique. 3D OOA is tested using a set of synthetic models that simulate the real situation in the study area of this research. Then, 3D OOA is used to extract 3D subsurface objects from a real 3D seismic tomography model. The extracted 3D objects are used to reconstruct a forward model and its response is compared with the measured satellite gravity. Finally, the result of the forward modelling, based on the extracted 3D objects, is used to constrain the inversion process of satellite gravity data. Through this work, a new object-based approach is introduced to interpret and extract the 3D subsurface objects from 3D geophysical data. This can be used to constrain modelling and inversion of potential field data using the extracted 3D subsurface structures from other methods. In summary, a new approach is introduced to constrain inversion of satellite gravity measurements and enhance interpretation capabilities.
3D Magnetic inversion and remanence: solving the problem
NASA Astrophysics Data System (ADS)
Thomson, V.; Morris, W.
2003-04-01
3D inversion of surface magnetic data is a common processing technique when used in mineral exploration. The major drawback of most 3D inversion algorithms is that they assume that the surface magnetic anomaly is produced by induced magnetization and that there are no remanent magnetization or demagnetization effects present. This has a significant impact when modeling magnetic data that has remanent magnetization. The magnetic anomaly produced by a dipping subsurface body will be identical for a consistent relationship between the dip of the body and the dip of the magnetic vector, regardless of the actual dip of the magnetic body. For example, in the case where a subsurface body is dipping, such as a dipping dike, the dip estimated by the inversion routine will be correct only if induced magnetization is present. This has serious implications for mineral exploration. A solution to the remanence problem is to model the surface magnetic anomaly using a constrained 2D approach rather than 3D. Using a priori information on dip and strike length of a source body, it is possible to approximate the remanence direction and intensity. The 2D solutions can then be rendered into a 3D imaging package to create a model in 3D. A case study was performed on a mafic-ultramafic layered igneous intrusion located in Big Trout Lake, northwestern Ontario, Canada. Large layered igneous intrusions are known to have significant remanence. Like many other layered igneous intrusions such as the Bushveld Complex in South Africa, the Big Trout Lake Complex is highly prospective for Platinum Group Elements (PGEs). Intruded during Archean time, the Big Trout Lake Complex has been subsequently folded and faulted to near vertical. As a consequence of limited surface exposures, knowledge of layering within the pluton and the extent of deformation of the pluton is very limited. Newly acquired high-resolution aeromagnetic data shows a strongly mineralized horizon within the intrusion that
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
NASA Astrophysics Data System (ADS)
Simutė, S.; Fichtner, A.
2015-12-01
We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.
The novel high-performance 3-D MT inverse solver
NASA Astrophysics Data System (ADS)
Kruglyakov, Mikhail; Geraskin, Alexey; Kuvshinov, Alexey
2016-04-01
We present novel, robust, scalable, and fast 3-D magnetotelluric (MT) inverse solver. The solver is written in multi-language paradigm to make it as efficient, readable and maintainable as possible. Separation of concerns and single responsibility concepts go through implementation of the solver. As a forward modelling engine a modern scalable solver extrEMe, based on contracting integral equation approach, is used. Iterative gradient-type (quasi-Newton) optimization scheme is invoked to search for (regularized) inverse problem solution, and adjoint source approach is used to calculate efficiently the gradient of the misfit. The inverse solver is able to deal with highly detailed and contrasting models, allows for working (separately or jointly) with any type of MT responses, and supports massive parallelization. Moreover, different parallelization strategies implemented in the code allow optimal usage of available computational resources for a given problem statement. To parameterize an inverse domain the so-called mask parameterization is implemented, which means that one can merge any subset of forward modelling cells in order to account for (usually) irregular distribution of observation sites. We report results of 3-D numerical experiments aimed at analysing the robustness, performance and scalability of the code. In particular, our computational experiments carried out at different platforms ranging from modern laptops to HPC Piz Daint (6th supercomputer in the world) demonstrate practically linear scalability of the code up to thousands of nodes.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
3D finite element simulations of high velocity projectile impact
NASA Astrophysics Data System (ADS)
Ožbolt, Joško; İrhan, Barış; Ruta, Daniela
2015-09-01
An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.
3D-spectral CDIs: a fast alternative to 3D inversion?
NASA Astrophysics Data System (ADS)
Macnae, James
2015-09-01
Virtually all airborne electromagnetic (AEM) data is interpreted using stitched 1D conductivity sections, derived from constrained inversion or fast but fairly accurate approximations. A small subset of this AEM data recently has been inverted using either block 3D models or thin plates, which processes have limitations in terms of cost and accuracy, and the results are in general strongly biased by the choice of starting models. Recent developments in spectral modelling have allowed fast 3D approximations of the EM response of both vortex induction and current gathering for simple geological target geometries. Fitting these spectral responses to AEM data should be sufficient to accurately locate current systems within the ground, and the behaviour of these local current systems can in theory approximately define a conductivity structure in 3D. This paper describes the results of initial testing of the algorithm in fitting vortex induction in a small target at the Forrestania test range, Western Australia, using results from a versatile time-domain electromagnetic (VTEM)-Max survey.
Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics
NASA Astrophysics Data System (ADS)
Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony
2016-08-01
We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)
NASA Astrophysics Data System (ADS)
Maceira, M.; Zhang, H.; Rowe, C. A.
2009-12-01
We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.
Laplace-domain waveform modeling and inversion for the 3D acoustic-elastic coupled media
NASA Astrophysics Data System (ADS)
Shin, Jungkyun; Shin, Changsoo; Calandra, Henri
2016-06-01
Laplace-domain waveform inversion reconstructs long-wavelength subsurface models by using the zero-frequency component of damped seismic signals. Despite the computational advantages of Laplace-domain waveform inversion over conventional frequency-domain waveform inversion, an acoustic assumption and an iterative matrix solver have been used to invert 3D marine datasets to mitigate the intensive computing cost. In this study, we develop a Laplace-domain waveform modeling and inversion algorithm for 3D acoustic-elastic coupled media by using a parallel sparse direct solver library (MUltifrontal Massively Parallel Solver, MUMPS). We precisely simulate a real marine environment by coupling the 3D acoustic and elastic wave equations with the proper boundary condition at the fluid-solid interface. In addition, we can extract the elastic properties of the Earth below the sea bottom from the recorded acoustic pressure datasets. As a matrix solver, the parallel sparse direct solver is used to factorize the non-symmetric impedance matrix in a distributed memory architecture and rapidly solve the wave field for a number of shots by using the lower and upper matrix factors. Using both synthetic datasets and real datasets obtained by a 3D wide azimuth survey, the long-wavelength component of the P-wave and S-wave velocity models is reconstructed and the proposed modeling and inversion algorithm are verified. A cluster of 80 CPU cores is used for this study.
NASA Astrophysics Data System (ADS)
Bell, R. E.; Morgan, J. V.; Warner, M.
2013-12-01
Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across
3-D Inverse Teleseismic Scattered Wave Imaging using the Kirchhoff Approximation
NASA Astrophysics Data System (ADS)
Liu, K.; Levander, A.
2012-04-01
We have developed a 3-D teleseismic imaging technique for scattered elastic wavefields using the Kirchhoff approximation. Kirchhoff migration/inversion have been well developed in exploration seismology within the inverse scattering framework (e.g. Miller et al., 1987; Beylkin and Burridge, 1990) to image subsurface structure that generates secondary wavefields caused by localized heterogeneities. Application of this method in global seismology has been largely limited to 2-D images made with 1-D reference models due to high computational cost and the lack of adequately dense receiver arrays (Bostock, 2002, Poppeliers and Pavlis, 2003; Frederiksen and Revenaugh, 2004; Cao et al., 2010). The deployment of the USArray Transportable and Flexible arrays in the United States and dense array recordings in other countries motivate developing teleseismic scattered wavefield imaging with the Kirchhoff approximation for 3-D velocity models for both scalar and vector wavefields to improve upper mantle imaging. Following Bostock's development of the 2-D problem (2002), we derive the 3-D P-to-S scattering inversion formula by phrasing the inverse problem in terms of the generalized Radon transform (GRT) and singular functions of discontinuity surfaces. In the forward scattering modeling, we extend the method to utilize a 3-D migration velocity model by calculating 3-D finite-difference traveltimes, backprojected from the receivers using an eikonal solver. To demonstrate the relative accuracy of the inversion, we examine several synthetic cases with a variety of discontinuity surfaces (sinuous, dipping, dome- and crater-shaped discontinuity interfaces, point scatterers, etc.). The Kirchhoff GRT imaging can successfully recover the shapes of these structures very well. We compare our Kirchhoff approximation imaging with the Born-approximate results, as well as the common-conversion point (CCP) stacked receiver function imaging for the various synthetic cases, and show a field
Computational and methodological developments towards 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.
2010-12-01
Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion
Inverse Tomo-Lithography for Making Microscopic 3D Parts
NASA Technical Reports Server (NTRS)
White, Victor; Wiberg, Dean
2003-01-01
According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.
3-D Velocity Measurement of Natural Convection Using Image Processing
NASA Astrophysics Data System (ADS)
Shinoki, Masatoshi; Ozawa, Mamoru; Okada, Toshifumi; Kimura, Ichiro
This paper describes quantitative three-dimensional measurement method for flow field of a rotating Rayleigh-Benard convection in a cylindrical cell heated below and cooled above. A correlation method for two-dimensional measurement was well advanced to a spatio-temporal correlation method. Erroneous vectors, often appeared in the correlation method, was successfully removed using Hopfield neural network. As a result, calculated 3-D velocity vector distribution well corresponded to the observed temperature distribution. Consequently, the simultaneous three-dimensional measurement system for temperature and flow field was developed.
NASA Astrophysics Data System (ADS)
Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas
2016-04-01
We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic
Refining the 3D seismic velocity and attenuation models for Katmai National Park, Alaska
NASA Astrophysics Data System (ADS)
Murphy, R. A.; Thurber, C. H.; Prejean, S. G.
2009-12-01
We invert data from approximately 4,000 local earthquakes occurring between September 2004 and August 2009 to determine the 3D P-wave velocity and P-wave attenuation structures in the Katmai volcanic region. Arrival information and waveforms for the study come from the Alaska Volcano Observatory’s permanent network of 20 seismometers in the area, which are predominantly single-component, short period instruments. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for an improved velocity model for the main volcanic centers. We use the resulting 3D velocity model to relocate all catalog earthquakes in Katmai between January 1996 and August 2009. Inversions for the quality factor Q are completed using a spectral decay approach to determine source parameters, t*, and site response with a nonlinear inversion. Using the final 3D velocity model to define the ray paths, t* values are then inverted to determine frequency-independent Q models. The final models developed through these inversions reveal a low velocity and low Q zone from the surface to ~7 km depth centered on the volcanic axis and extending ~25 km between Martin and Katmai volcanoes. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident, and Katmai. While the Martin, Mageik, and Katmai clusters are all at 3-4 km depth, the Trident cluster is slightly deeper at 4-6 km. Many new features are apparent within these clusters, including a strand of earthquakes trending NE-SW between the main Martin and Mageik clusters. Smaller linear features are also visible in the Katmai cluster along with a small migrating swarm which occurred NW of the Katmai caldera during mid-2006. Data from an array of 11 three-component broadband instruments currently deployed in the area between Mageik volcano and Katmai caldera will be
Visualizing 3D velocity fields near contour surfaces
Max, N.; Crawfis, R.; Grant, C.
1994-03-01
Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.
The USGS 3D Seismic Velocity Model for Northern California
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.
2006-12-01
We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at
NASA Astrophysics Data System (ADS)
Maesano, Francesco E.; D'Ambrogi, Chiara
2017-02-01
We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.
NASA Astrophysics Data System (ADS)
Ullmann, A.; Scheunert, M.; Afanasjew, M.; Börner, R.-U.; Siemon, B.; Spitzer, K.
2016-07-01
As a standard procedure, multi-frequency helicopter-borne electromagnetic (HEM) data are inverted to conductivity-depth models using 1-D inversion methods, which may, however, fail in areas of strong lateral conductivity contrasts (so-called induction anomalies). Such areas require more realistic multi-dimensional modelling. Since the full 3-D inversion of an entire HEM data set is still extremely time consuming, our idea is to combine fast 1-D and accurate but numerically expensive 3-D inversion of HEM data in such a way that the full 3-D inversion is only carried out for those parts of a HEM survey which are affected by induction anomalies. For all other parts, a 1-D inversion method is sufficient. We present a newly developed algorithm for identification, selection, and extraction of induction anomalies in HEM data sets and show how the 3-D inversion model of the anomalous area is re-integrated into the quasi-1-D background. Our proposed method is demonstrated to work properly on a synthetic and a field HEM data set from the Cuxhaven tunnel valley in Germany. We show that our 1-D/3-D approach yields better results compared to 1-D inversions in areas where 3-D effects occur.
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.
UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models
NASA Astrophysics Data System (ADS)
Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.
2015-12-01
Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small
Uncertainty assessment of 3D instantaneous velocity model from stack velocities
NASA Astrophysics Data System (ADS)
Emanuele Maesano, Francesco; D'Ambrogi, Chiara
2015-04-01
3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the
Earthquake source tensor inversion with the gCAP method and 3D Green's functions
NASA Astrophysics Data System (ADS)
Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.
2013-12-01
We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.
3D P-wave Velocity Structure Beneath the Eastern Canadian Shield and Northern Appalachian Region
NASA Astrophysics Data System (ADS)
Villemaire, M.; Darbyshire, F. A.; Bastow, I. D.
2010-12-01
Previous seismic studies of the upper mantle of the Canadian Shield have indicated some low-velocity anomalies within the cratonic lithosphere in the Abitibi-Grenville region. The lack of seismograph station coverage to the east and south-east of the studied area prevented definition of the 3D geometry of these anomalies. Adding new stations from the province of Quebec and from the northeastern United States allows us to carry out new studies of the P-wave velocity structure of the upper mantle, in order to better understand the complexity of the region and the interaction of the lithosphere with possible thermal anomalies in the underlying mantle. We analysed teleseismic P wave arrivals from almost 200 earthquakes, recorded at 45 stations deployed across the provinces of Quebec and Ontario and across the northeastern US. The relative arrival times of teleseismic P waves across the array were measured using the cross-correlation method of VanDecar & Crosson (1990). The travel time data were then inverted to estimate the 3D P-wave velocity structure beneath the region, using the least-squares tomographic inversion code of VanDecar (1991). The model shows some interesting features. We see a diffuse low-velocity structure beneath New-England that extends to at least 500 km depth, and that may be related to the Appalachian Mountain belt. There is also a linear low-velocity structure, flanked by higher velocities, perpendicular to the Grenville Front, and along the Ottawa Valley. We interpret this feature as a mantle signature of the Great Meteor Hotspot track. We have looked for systematic differences between the mantle underlying the Archean Superior craton and the Proterozoic Grenville Province but did not find a significant difference in the upper mantle. We investigate the role of thermal and compositional effects to interpret the velocity models and to relate the patterns of the anomalies to past and present tectonic structures.
High-resolution imaging of crustal melts using 3D full-waveform seismic inversion
NASA Astrophysics Data System (ADS)
Warner, M.; Morgan, J. V.
2013-12-01
A newly practical seismic imaging technique, 3D full-waveform inversion (FWI), now has the ability to image zones of melt and melt pathways throughout the crust with a better resolution than any other geophysical method. 3D FWI has recently changed practice within the petroleum industry where it is used to obtain high-resolution high-fidelity models of physical properties in the sub-surface that are both interpreted directly and used to improve the migration of deeper reflections. This technology has been spectacularly successful in improving the imaging of reservoirs beneath shallow heterogeneities produced by, for example, gas clouds, buried fluvial channels, carbonate reefs and salt bodies. During FWI, the sub-surface model is recovered principally by using the low-frequency transmitted, refracted portion of the wavefield which is most sensitive to the macro-velocity structure. In the petroleum industry, these inversions are now routinely performed using long-offset surface-streamer and ocean-bottom data to maximum source-receiver offsets of about 15 km, leading to a maximum penetration depth of around 5 km. Using longer offsets, it is possible to extend this technology to image deeper crustal targets. Localised zones of partial melt produce large changes in p-wave and s-wave properties that are restricted in their spatial extent, and that therefore form ideal targets for 3D FWI. We have performed a suite of tests to explore the use of 3D FWI in imaging melt distribution beneath the active volcano of Montserrat. We built a model of the subsurface using a 3D travel-time tomographic model obtained from the SEA CALIPSO experiment. We added two magma chambers in accordance with a model obtained using surface-elevation changes and geochemical data. We used a wide-angle, wide-azimuth acquisition geometry to generate a fully-elastic synthetic seismic dataset, added noise, and inverted the windowed transmitted arrivals only. We used an elastic code for the forward
NASA Astrophysics Data System (ADS)
Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.
2014-12-01
Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex
3D stochastic joint inversion of gravity and magnetic data
NASA Astrophysics Data System (ADS)
Shamsipour, Pejman; Marcotte, Denis; Chouteau, Michel
2012-04-01
A novel stochastic joint inversion method based on cokriging is applied to estimate density and magnetic susceptibility distributions from gravity and total magnetic field data. The method fully integrates the physical relations between density-gravity, on one hand, and magnetic susceptibility-total magnetic field, on the other hand. As a consequence, when the data are considered noise-free, the responses from the inverted density and susceptibility data exactly reproduce the observed data. The required density and magnetic susceptibility auto- and cross covariance are assumed to follow a linear model of coregionalization (LCM). The parameters of the LCM are estimated from v-v plot fitting of the gravity and total magnetic experimental covariances. The model is tested on two synthetic cases and one real data set, the Perseverance mine (Quebec, Canada). Joint inversions are compared to separate inversions. The joint inversions better recover the known models in the synthetic cases. With the real data set, better definition and location of the mineralized lenses are achieved by joint inversion.
Towards Automated Seismic Moment Tensor Inversion in Australia Using 3D Structural Model
NASA Astrophysics Data System (ADS)
Hingee, M.; Tkalcic, H.; Fichtner, A.; Sambridge, M.; Kennett, B. L.; Gorbatov, A.
2009-12-01
There is significant seismic activity in the region around Australia, largely due to the plate boundaries to the north and to the east of the mainland. This seismicity poses serious seismic and tsunamigenic hazard in a wider region, and risk to coastal areas of Australia, and is monitored by Geoscience Australia (GA) using a network of permanent broadband seismometers within Australia. Earthquake and tsunami warning systems were established by the Australian Government and have been using the waveforms from the GA seismological network. The permanent instruments are augmented by non-GA seismic stations based both within and outside of Australia. In particular, seismic moment tensor (MT) solutions for events around Australia as well as local distances are useful for both warning systems and geophysical studies in general. These monitoring systems, however, currently use only one dimensional, spherically-symmetric models of the Earth for source parameter determination. Recently, a novel 3D model of Australia and the surrounding area has been developed from spectral element simulations [1], taking into account not only velocity heterogeneities, but also radial anisotropy and seismic attenuation. This development, inter alia, introduces the potential of providing significant improvements in MT solution accuracy. Allowing reliable MT solutions with reduced dependence on non-GA stations is a secondary advantage. We studied the feasibility of using 1D versus 3D structural models. The accuracy of the 3D model has been investigated, confirming that these models are in most cases superior to the 1D models. A full MT inversion method using a point source approximation was developed as the first step, keeping in mind that for more complex source time functions, a finite source inversion will be needed. Synthetic experiments have been performed with random noise added to the signal to test the code in the both 1D and 3D setting, using a precomputed library of structural Greens
Direct inversion of digital 3D Fraunhofer holography maps.
Podorov, Sergei G; Förster, Eckhart
2016-01-20
Differential Fourier holography (DFH) gives an exact mathematical solution of the inverse problem of diffraction in the Fraunhofer regime. After the first publication [Opt. Express15, 9954 (2007)], DFH was successfully applied in many experiments to obtain amplitude and phase information about two-dimensional images. In this paper, we demonstrate numerically the possibility to apply DFH also for investigation of unknown three-dimensional objects. The first simulation is made for a double-spiral structure plus a line as a reference object.
An optimal transport approach for seismic tomography: application to 3D full waveform inversion
NASA Astrophysics Data System (ADS)
Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.
2016-11-01
The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L 2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L 2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on
The 3D velocity structure beneath Iceland: Identifying melt pathways
NASA Astrophysics Data System (ADS)
Allen, R.
2003-04-01
The integration of various seismic datasets, recorded by the broadband HOTSPOT network deployed across Iceland, provides one of the highest resolution studies of the crust and mantle structure associated with a plume-ridge system. The mantle P- and S-velocity models (ICEMAN), derived from teleseismic body-wave and surface wave analysis, show a vertical, cylindrical low velocity anomaly ˜200 km in diameter extending from ˜400 km, the maximum depth of resolution, up to ˜200 km above which low velocity material is present beneath all of Iceland. The maximum P- and S-velocity anomalies of -2% and -4% respectively are found beneath the northwestern edge of Vatnajokull. The crustal S-velocity model (ICECRTb) is constrained by local surface waves, refraction experiments and receiver functions, and shows significant variation in crustal thickness. The thinnest, ˜15 km, crust is found around coastal regions, the thickest crust is beneath northwestern Vatnajokull where it reaches a thickness of 45 km. Within this thick crustal root is a vertical low velocity anomaly connecting the core of the mantle anomaly to horizontal low velocity regions that extend along the western and eastern volcanic zones but not the northern volcanic zone. These crustal low velocity zones are interpreted as regions through which melt is fed from the mantle to shallow magma chambers beneath the rift zones, where crustal formation occurs. The pipework between the core of the mantle anomaly and the southern rift zones is responsible for ˜30 km thick crust. Its absence to the north results in relatively thin, ˜20 km thick, crust.
3D parallel inversion of time-domain airborne EM data
NASA Astrophysics Data System (ADS)
Liu, Yun-He; Yin, Chang-Chun; Ren, Xiu-Yan; Qiu, Chang-Kai
2016-12-01
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
NASA Astrophysics Data System (ADS)
Lestari, Titik; Nugraha, Andri Dian
2015-04-01
Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.
Lestari, Titik; Nugraha, Andri Dian
2015-04-24
Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
A 3-D crustal velocity structure across the Variscides of southwest Ireland
NASA Astrophysics Data System (ADS)
Landes, M.; Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.
2003-04-01
In the VARNET-96 experiment three seismic refraction profiles were acquired to examine the crustal structure in the south-west of Ireland. The shotpoint geometry allowed for both in-line and off-line fan shot recordings on the three profiles. Results of 3-D inversion modelling illustrate that there is pervasive lateral heterogeneity of the sedimentary and crustal velocity structure south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones beneath Dingle Bay and the Kenmare River region may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from 28-29 km at the south coast to 32-33 km beneath the Dingle-Shannon Basin. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure thus supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent offshore sedimentary basins.
Rodriguez, Brian D.; Sweetkind, Donald S.
2015-01-01
The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.
NASA Astrophysics Data System (ADS)
Rezaie, Mohammad; Moradzadeh, Ali; Kalate, Ali Nejati; Aghajani, Hamid
2017-01-01
Inversion of gravity data is one of the important steps in the interpretation of practical data. One of the most interesting geological frameworks for gravity data inversion is the detection of sharp boundaries between orebody and host rocks. The focusing inversion is able to reconstruct a sharp image of the geological target. This technique can be efficiently applied for the quantitative interpretation of gravity data. In this study, a new reweighted regularized method for the 3D focusing inversion technique based on Lanczos bidiagonalization method is developed. The inversion results of synthetic data show that the new method is faster than common reweighted regularized conjugate gradient method to produce an acceptable solution for focusing inverse problem. The new developed inversion scheme is also applied for inversion of the gravity data collected over the San Nicolas Cu-Zn orebody in Zacatecas State, Mexico. The inversion results indicate a remarkable correlation with the true structure of the orebody that is achieved from drilling data.
Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge
Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin
2015-01-26
A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-10-01
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight
2016-06-07
3D Propagation and Geoacoustic Inversion Studies in the Mid-Atlantic Bight Kevin B. Smith Code PH/Sk, Department of Physics Naval Postgraduate...properties and measured transmission loss. Results from this analysis will be considered in the context of geoacoustic inversions . OBJECTIVES To...bathymetric features and ocean fronts near the shelf break of the mid-Atlantic Bight, and use of various data for geoacoutic inversion studies. The results
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
Slip velocity and velocity inversion in a cylindrical Couette flow.
Kim, Sangrak
2009-03-01
Velocity inversion in a nanoscale cylindrical Couette flow is investigated with the Navier-Stokes (NS) equation and molecular-dynamics (MD) simulation. With general slip boundary conditions in the NS equation, the flow can be classified into five distinct profiles. The condition of velocity inversion is explored in the whole space of four dimensionless variables of beta , slip velocity ratio u('), radius ratio a('), and angular velocity ratio omega('). MD computer simulations are performed to estimate the constitutive coefficient of the slip velocities at the walls. The flow is generated by a rotating inner wall and a stationary outer wall in conformity with the theoretical result. By varying an attraction parameter in the Lennard-Jones potential, the slip velocities can be easily controlled. The theoretical predictions are compared with the simulation results. We find that in the intermediate range of the attraction parameter the two results are quite comparable to some extent, but at both extreme values of the attraction parameter, they are quite different.
NASA Astrophysics Data System (ADS)
Lee, Dong Hun; Lee, Jung Mo; Cho, Hyun-Moo; Kang, Tae-Seob
2016-10-01
A temporary seismic array was in operation between October 2010 and March 2013 in the Gyeongju area of Korea. Teleseismic records of the seismic array appropriate for receiver function analysis were collected, and selected seismograms were split into five groups based on epicenters-the Banda-Molucca, Sumatra, Iran, Aleutian, and Vanuatu groups. 1D velocity structures beneath each seismic station were estimated by inverting the stacked receiver functions for possible groups. The inversion was done by applying a genetic algorithm, whereas surface wave dispersion data were used as constraints to avoid non-uniqueness in the inversion. The composite velocity structure was constructed by averaging the velocity structures weighted by the number of receiver functions used in stacking. The uncertainty analysis for the velocity structures showed that the average of 95% confidence intervals was ± 0.1 km/s. The 3D velocity structure was modeled through interpolation of 1D composite velocity structures. Moho depths were determined in each composite velocity structure based on the AK135-F S-wave velocity model, and the depths were similar to the H-κ analysis results. The deepest Moho depth in the study area was found to be 31.9 km, and the shallowest, was 25.9 km. The Moho discontinuity dips in a southwestward direction beneath the area. A low velocity layer was also detected between 4 and 14 km depth. Adakitic intrusions and/or a high geothermal gradient appear to be the causes of this low velocity layer. The 3D velocity structure can be used to reliably assess seismic hazards in this area.
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids
Słomka, Jonasz; Dunkel, Jörn
2017-01-01
Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853
NASA Astrophysics Data System (ADS)
Hara, Tatsuhiko
2004-08-01
We implement the Direct Solution Method (DSM) on a vector-parallel supercomputer and show that it is possible to significantly improve its computational efficiency through parallel computing. We apply the parallel DSM calculation to waveform inversion of long period (250-500 s) surface wave data for three-dimensional (3-D) S-wave velocity structure in the upper and uppermost lower mantle. We use a spherical harmonic expansion to represent lateral variation with the maximum angular degree 16. We find significant low velocities under south Pacific hot spots in the transition zone. This is consistent with other seismological studies conducted in the Superplume project, which suggests deep roots of these hot spots. We also perform simultaneous waveform inversion for 3-D S-wave velocity and Q structure. Since resolution for Q is not good, we develop a new technique in which power spectra are used as data for inversion. We find good correlation between long wavelength patterns of Vs and Q in the transition zone such as high Vs and high Q under the western Pacific.
Centroid Moment Tensor Inversion in a 3D heterogeneous Earth: Application to the Australasian region
NASA Astrophysics Data System (ADS)
Hejrani, B.; Tkalcic, H.; Fichtner, A.
2015-12-01
Australia is surrounded by active complex tectonic belts causing significant seismicity. The recent expansion of permanent seismic networks in the Australasian region provides great opportunity to study Earth structure and a great variety of physical mechanisms responsible for earthquakes.On one hand, a better understanding of the Australasian lithosphere, which is now available through tomographic images from full waveform modelling (Fichtner et al. 2010), provides a powerful tool to scrutinize the determination of earthquake source parameters. Even at relatively long periods (40-200s), the 3D effects of regional structure were shown to significantly alter the global centroid moment tensor solutions (Hingee et al. 2012). Thus, we can now explore other types of uncertainties and test the accuracy of global centroid moment tensor (GCMT) solution for the earthquakes in the Australasian region while checking for the systematic inconsistencies in the solutions. This has a significant bearing on tectonic interpretations. For example, azimuth and plunge of fault planes can be investigated in search for systematic biases.On the other hand, the time has come to take a full advantage of the 3D Earth structural model and embrace ongoing advances in computational power and storage. We develop a semi-automated procedure to calculate the Centroid Moment Tensors in a 3D heterogeneous Earth. We utilize the reciprocity theorem to create Green's functions for point sources covering seismogenic zones of Australasia. We focus on improving the capacity of the method to fully complement the existing monitoring tools at Geosciences Australia. Furthermore, we investigate the effects of detailed velocity structure on Centroid location and double-couple percentages. Moreover Azimuth and Plunge of focal mechanisms in GCMT (Global CMT), were investigated in search for any systematic bias.References: Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2010. Full waveform tomography for
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
Lithologic identification & mapping test based on 3D inversion of magnetic and gravity
NASA Astrophysics Data System (ADS)
Yan, Jiayong; Lv, Qingtian; Qi, Guang; Zhao, Jinhua; Zhang, Yongqian
2016-04-01
Though lithologic identification & mapping to achieve ore concentration district transparent within 5km depth is the main way to realize deep fine structures study, to explore deep mineral resources and to reveal metallogenic regularity of large-scale ore district . Owing to the wide covered area, high sampling density and mature three-dimensional inversion algorithm of gravity and magnetic data, so gravity and magnetic inversion become the most likely way to achieve three-dimensional lithologic mapping at the present stage. In this paper, we take Lu-zong(Lujiang county to Zongyang county in Anhui province ,east China) ore district as a case, we proposed lithologic mapping flow based 3D inversion of gravity magnetic and then carry out the lithologic mapping test. Lithologic identification & mapping flow is as follows: 1. Analysis relations between lithology and density and magnetic susceptibility by cross plot. 2.Extracting appropriate residual anomalies from high-precision Bourger gravity and aeromagnetic. 3.Use same mesh, do 3D magnetic and gravity inversion respectively under prior information constrained, and then invert susceptibility and density 3D model. 4. According setp1, construct logical topology operations between density 3D model and susceptibility. 5.Use the logical operations, identify lithogies cell by cell in 3D mesh, and then get 3D lithological model. According this flow, we obtained three-dimensional distribution of five main type lithologies in the Lu-Zong ore district within 5km depth. The result of lithologic mapping not only showed that the shallow characteristics and surface geological mapping are basically Coincide,more importantly ,it reveals the deeper lithologic changes.The lithlogical model make up the insufficient of surface geological mapping. The lithologic mapping test results in Lu-Zong ore concentration district showed that lithological mapping using 3D inversion of gravity and magnetic is a effective method to reveal the
3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.
2015-11-01
With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.
2010-09-01
lithosphere elude us. We have been able to surmise that geologic variations here are substantial, and we know that they frustrate attempts to use robust...concepts are summarized conceptually in Figure 2, which shows the regions of the lithosphere most sensitive to the different data that we employ. To...construct an approximate 3D model of the lithosphere , we use a hybrid 1D-3D inversion. In many tomography analyses, dispersion variations are
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow.
López-Caballero, Miguel; Burguete, Javier
2013-03-22
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
Inverse Cascades Sustained by the Transfer Rate of Angular Momentum in a 3D Turbulent Flow
NASA Astrophysics Data System (ADS)
López-Caballero, Miguel; Burguete, Javier
2013-03-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In homogeneous 3D turbulence, the energy conservation produces a direct cascade from large to small scales, although in 2D, it produces an inverse cascade pointing towards small wave numbers. In this Letter, we present the first evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. Two counterrotating flows collide in a central region where very large fluctuations are produced, generating a turbulent drag that transfers the external torque between different fluid layers.
3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region
NASA Astrophysics Data System (ADS)
Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.
2014-12-01
We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that
An industrial light-field camera applied for 3D velocity measurements in a slot jet
NASA Astrophysics Data System (ADS)
Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.
2016-10-01
Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.
Effects of 3D random correlated velocity perturbations on predicted ground motions
Hartzell, S.; Harmsen, S.; Frankel, A.
2010-01-01
Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.
Development of direct-inverse 3-D methods for applied aerodynamic design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1988-01-01
Several inverse methods have been compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are presented. These results show that boundary layer displacements must be included in the design process for accurate results.
High-resolution imaging and inversion of 3D GPR data for layered media
NASA Astrophysics Data System (ADS)
Slob, Evert
2013-04-01
Ground penetrating radar is increasingly being used to provide quantitative information of layered structures. For application in civil engineering these can be roads, highway pavements, airport runways, bridges, tunnels, or buildings. Monitoring is important for the management and safety of these structures. Standard imaging uses a modeled wavefield extrapolator to image the data and the quality of the image depends heavily on the quality of the modeled extrapolator. Usually, data inversion is implemented by minimizing a cost function involving the measured data and the modeled data. The model is modified such that data computed from the model fits to the measured data. The data itself is not used, except as a measure of the model data fit. A recently developed alternative method is to use results from inverse scattering theory to first construct an image while all multiple reflections are simultaneously eliminated from the data. This image can be constructed from surface reflection data if the data allows separating the subsurface reflection response from the down going emitted field. For 3D waves in a layered medium this requires knowledge of all horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. In layered media the plane wave decomposition allows computing the image for each angle of incidence separately as a function of image time that is equal to the one-way intercept time. Once the image is constructed for all available angles of incidence a simple matrix inversion leads to the desired electric permittivity and magnetic permeability values in each layer. Finally these values provide interval velocities that can be used to convert image time to depth and the inverse problem is solved. The theory requires infinite bandwidth frequency domain data, which is equivalent to measuring the true impulse response. This is not possible in practice and numerical results show that data with finite bandwidths can be
Using Adjoint Methods to Improve 3-D Velocity Models of Southern California
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.
2006-12-01
We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical
NASA Astrophysics Data System (ADS)
Sladen, A.; Monteiller, V.
2014-12-01
Most large earthquakes are generated in subduction zones. To study the complexity of these events, teleseismic body waves offer many advantages over other types of data: they allow to study both the temporal and spatial evolution of slip during the rupture, they don't depend on the presence of nearby land and they allow to study earthquakes regardless of their location. Since the development of teleseismic finite-fault inversion in the 1980th, teleseismic body waves have been simulated using 1D velocity models to take into account propagation effects at the source. Yet, subduction zones are known to be highly heterogeneous: they are characterized by curved and dipping structures, strong seismic velocity contrasts, strong variations of topography and height of the water column. The main reason for relying on a 1D approximation is the computational cost of 3D simulations. And while forward simulations of teleseismic waves in a 3D Earth are only starting to be tractable on modern computers at the frequency range of interest (0.1Hz or shorter), finite-fault source studies require a large number of these simulations. In this work, we present a new and efficient approach to compute 3D teleseismic body waves, in which the full 3D propagation is only computed in a regional domain using discontinuous Galerkin finite-element method, while the rest of the seismic wave field is propagated in a background axisymmetric Earth. The regional and global wave fields are matched using the so-called Total-Field/Scattered-Field technique. This new simulation approach allows us to study the waveform complexities resulting from 3D propagation and investigate how they could improve the resolution and reduce the non-uniqueness of finite-fault inversions.
3D velocity measurement by a single camera using Doppler phase-shifting holography
NASA Astrophysics Data System (ADS)
Ninomiya, Nao; Kubo, Yamato; Barada, Daisuke; Kiire, Tomohiro
2016-10-01
In order to understand the details of the flow field in micro- and nano-fluidic devices, it is necessary to measure the 3D velocities under a microscopy. Thus, there is a strong need for the development of a new measuring technique for 3D velocity by a single camera. One solution is the use of holography, but it is well known that the accuracy in the depth direction is very poor for the commonly used in-line holography. At present, the Doppler phase-shifting holography is used for the 3D measurement of an object. This method extracts the signal of a fixed frequency caused by the Doppler beat between the object light and the reference light. It can measure the 3D shape precisely. Here, the frequency of the Doppler beat is determined by the velocity difference between the object light and the reference light. This implies that the velocity of an object can be calculated by the Doppler frequency. In this study, a Japanese 5 yen coin was traversed at a constant speed and its holography has been observed by a high-speed camera. By extracting only the first order diffraction signal at the Doppler frequency, a precise measurement of the shape and the position of a 5 yen coin has been achieved. At the same time, the longitudinal velocity of a 5 yen coin can be measured by the Doppler frequency. Furthermore, the lateral velocities are obtained by particle image velocimetry (PIV) method. A 5 yen coin has been traversed at different angles and its shapes and the 3D velocities have been measured accurately. This method can be applied to the particle flows in the micro- or nano-devices, and the 3D velocities will be measured under microscopes.
Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
3D LBFGS inversion of controlled source extremely low frequency electromagnetic data
NASA Astrophysics Data System (ADS)
Cao, Meng; Tan, Han-Dong; Wang, Kun-Peng
2016-12-01
The controlled source extremely low frequency (CSELF) electromagnetic method is characterized by extremely long and powerful sources and a huge measurement range. Its electromagnetic field can therefore be affected by the ionosphere and displacement current. Research on 3D forward modeling and inversion of CSELF electromagnetic data is currently in its infancy. This paper makes exploratory attempts to firstly calculate the 1D extremely low frequency electromagnetic field under ionosphere-air-earth coupling circumstances, and secondly analyze the propagation characteristics of the background electromagnetic field. The 3D staggered-grid finite difference scheme for solving for the secondary electric field is adopted and incorporated with the 1D modeling algorithm to complete 3D forward modeling. Considering that surveys can be carried out in the near field and transition zone for lower frequencies, the 3D Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) inversion of CSELF electromagnetic data is presented (in which the sources, or primary fields, are included), with the aim of directly inverting the impedance data, regardless of where it is acquired. Derivation of the objective functional gradient is the core component in the inversion. Synthetic tests indicate that the well-chosen approximation to the Hessian can significantly speed up the inversion. The model responses corresponding to the coexistence of conductive and resistive blocks show that the off-diagonal components of tensor impedance are much more sensitive to the resistivity variation than the diagonal components. In comparison with conventional scalar inversion, tensor inversion is superior in the recoveries of electric anomalies and background resistivity.
3D inversion of aeromagnetic Data on Las Tablas District, Panama
NASA Astrophysics Data System (ADS)
Batista-Rodríguez, José A.; Caballero, Alberto; Pérez-Flores, Marco A.; Almaguer-Carmenates, Yuri
2017-03-01
We present a 3D model of Las Tablas District, Panama, obtained from the 3D inversion of aeromagnetic data, and constrained with information from surface geology, water wells and topography. The 3D model suggests the location, boundary, shape and depths of the sedimentary basin where the Mensabé and Salados rivers hydrogeological sub-basin is located. The model shows the connections between tectonics and the sedimentary basin, suggesting the probable areas for aquifers, the relations between them, their zone of recharge and discharge, and the probable zone of pollution. The inferred faults in the model may be the main recharge and discharge conduits for the groundwater and anthropogenic pollution. The geological and geometric characteristics shown in the 3D model are fundamental data for further hydrogeological and geophysical studies such as the location for future drinking water wells.
3-D wavelet compression and progressive inverse wavelet synthesis rendering of concentric mosaic.
Luo, Lin; Wu, Yunnan; Li, Jin; Zhang, Ya-Qin
2002-01-01
Using an array of photo shots, the concentric mosaic offers a quick way to capture and model a realistic three-dimensional (3-D) environment. We compress the concentric mosaic image array with a 3-D wavelet transform and coding scheme. Our compression algorithm and bitstream syntax are designed to ensure that a local view rendering of the environment requires only a partial bitstream, thereby eliminating the need to decompress the entire compressed bitstream before rendering. By exploiting the ladder-like structure of the wavelet lifting scheme, the progressive inverse wavelet synthesis (PIWS) algorithm is proposed to maximally reduce the computational cost of selective data accesses on such wavelet compressed datasets. Experimental results show that the 3-D wavelet coder achieves high-compression performance. With the PIWS algorithm, a 3-D environment can be rendered in real time from a compressed dataset.
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.
2014-05-01
Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Anisotropic 3D inversion of towed streamer EM data from the Troll West oil province (Invited)
NASA Astrophysics Data System (ADS)
Mattsson, J.; Midgley, J.; Zhdanov, M. S.; ENDO, M.
2013-12-01
Obviating the need for ocean bottom receivers, the towed streamer EM system enables CSEM data to be acquired simultaneously with seismic over very large areas in frontier and mature basins for higher production rates and more cost effective than conventional marine CSEM. The towed streamer EM data are currently processed and delivered as a spectrum of frequency-domain responses. We apply a 3D anisotropic inversion methodology for towed streamer EM data that includes a moving sensitivity domain. Our implementation is based on the 3D contraction integral equation method for computing the EM responses and Fréchet derivatives, and uses the re-weighted regularized conjugate gradient method for minimizing the objective functional with focusing regularization. We present an actual case study for the 3D anisotropic inversion of towed streamer EM data from the Troll West oil province in the North Sea, and demonstrate our ability to image the Troll West Oil and Gas Provinces. We conclude that 3D anisotropic inversion of the data from the current generation of towed streamer EM system can adequately recover both the vertical and horizontal resistivities in anisotropic hydrocarbon-bearing formations.
3-D inversion of gravity data in spherical coordinates with application to the GRAIL data
NASA Astrophysics Data System (ADS)
Liang, Qing; Chen, Chao; Li, Yaoguo
2014-06-01
Three-dimensional (3-D) inversion of gravity data has been widely used to reconstruct the density distributions of ore bodies, basins, crust, lithosphere, and upper mantle. For global model of 3-D density structures of planetary interior, such as the Earth, the Moon, or Mars, it is necessary to use an inversion algorithm that operates in the spherical coordinates. We develop a 3-D inversion algorithm formulated with specially designed model objective function and radial weighting function in the spherical coordinates. We present regional and global synthetic examples to illustrate the capability of the algorithm. The inverted results show density distribution features consistent with the true models. We also apply the algorithm to a set of lunar Bouguer gravity anomaly derived from the Gravity Recovery and Interior Laboratory (GRAIL) gravity field and obtain a lunar 3-D density distribution. High-density anomalies are clearly identified underlying lunar basins, a wide region of the lateral density heterogeneities that exist beneath the South Pole-Aitken basin are found, and low-density anomalies are distributed beneath the Feldspathic Highlands Terrane on the lunar far-side. The consistency of these results with those obtained independently from other existing methods verifies the newly developed algorithm.
3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.
2017-04-01
Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.
Fast 3D inversion of airborne gravity-gradiometry data using Lanczos bidiagonalization method
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Zhang, Dailei; Xu, Xuechun; Huang, Danian
2016-09-01
We developed a new fast inversion method for to process and interpret airborne gravity gradiometry data, which was based on Lanczos bidiagonalization algorithm. Here, we describe the application of this new 3D gravity gradiometry inversion method to recover a subsurface density distribution model from the airborne measured gravity gradiometry anomalies. For this purpose, the survey area is divided into a large number of rectangular cells with each cell possessing a constant unknown density. It is well known that the solution of large linear gravity gradiometry is an ill-posed problem since using the smoothest inversion method is considerably time consuming. We demonstrate that the Lanczos bidiagonalization method can be an appropriate algorithm to solve a Tikhonov solver time cost function for resolving the large equations within a short time. Lanczos bidiagonalization is designed to make the very large gravity gradiometry forward modeling matrices to become low-rank, which will considerably reduce the running time of the inversion method. We also use a weighted generalized cross validation method to choose the appropriate Tikhonov parameter to improve inversion results. The inversion incorporates a model norm that allows us to attain the smoothing and depth of the solution; in addition, the model norm counteracts the natural decay of the kernels, which concentrate at shallow depths. The method is applied on noise-contaminated synthetic gravity gradiometry data to demonstrate its suitability for large 3D gravity gradiometry data inversion. The airborne gravity gradiometry data from the Vinton Salt Dome, USE, were considered as a case study. The validity of the new method on real data is discussed with reference to the Vinton Dome inversion result. The intermediate density values in the constructed model coincide well with previous results and geological information. This demonstrates the validity of the gravity gradiometry inversion method.
Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization
NASA Astrophysics Data System (ADS)
Rezaie, Mohammad; Moradzadeh, Ali; Kalateh, Ali Nejati
2017-01-01
Inversion of gravity data is one of the most important steps in the quantitative interpretation of practical data. Inversion is a mathematical technique that automatically constructs a subsurface geophysical model from measured data, incorporating some priori information. Inversion of gravity data is time consuming because of increase in data and model parameters. Some efforts have been made to deal with this problem, one of them is using fast algorithms for solving system of equations in inverse problem. Lanczos bidiagonalization method is a fast algorithm that works based on Krylov subspace iterations and projection method, but cannot always provide a good basis for a projection method. So in this study, we combined the Krylov method with a regularization method applied to the low-dimensional projected problem. To achieve the goal, the orthonormal basis vectors of the discrete cosine transform (DCT) were used to build the low-dimensional subspace. The forward operator matrix replaced with a matrix of lower dimension, thus, the required memory and running time of the inverse modeling is decreased by using the proposed algorithm. It is shown that this algorithm can be appropriate to solve a Tikhonov cost function for inversion of gravity data. The proposed method has been applied on a noise-corrupted synthetic data and field gravity data (Mobrun gravity data) to demonstrate its reliability for three dimensional (3D) gravity inversion. The obtained results of 3D inversion both synthetic and field gravity data (Mobrun gravity data) indicate the proposed inversion algorithm could produce density models consistent with true structures.
NASA Astrophysics Data System (ADS)
Beka, Thomas I.; Smirnov, Maxim; Birkelund, Yngve; Senger, Kim; Bergh, Steffen G.
2016-08-01
Broadband (0.001-1000 s) magnetotelluric (MT) data along a crooked profile collected to investigate the geothermal potential on Spitsbergen could not be fully explained by two-dimensional (2D) models; hence we interpret the data with three-dimensional (3D) inversion herein. To better accommodate 3D features and nearby off profile resistivity structures, the full MT impedance tensor data together with the tipper were inverted. As a model control, a detailed bathymetry is systematically incorporated in the inversion. Our results from testing different inversion settings emphasised that appropriately choosing and tuning the starting model, data error floor and the model regularization together are crucial to obtain optimum benefit from MT field data. Through the 3D inversion, we reproduced out of quadrant impedance components and obtained an overall satisfactory data fit (RMS = 1.05). The final 3D resistivity model displays a complex geology of the near surface region (< 1.5 km), which suggests fractures, localized and regional fault systems and igneous intrusions in the Mesozoic platform cover deposits. The Billefjorden fault zone is revealed as a consistent and deep rooted (> 2 km) conductive anomaly, confirming the regional nature of the fault. The fault zone is positioned between two uplifted basement blocks (> 1000 Ωm) of presumably pre-Devonian (Caledonian) metamorphic rocks, and the fault may have been responsible for deformation in the overlying Paleozoic-Mesozoic unit. Upper crustal conductive anomalies (< 10 Ωm) below the Paleozoic-Mesozoic succession in the western part of the 3D model are interpreted as part of a Devonian basin fill. These conductors are laterally and vertically bounded by resistive rocks, suggesting a conducive environment for deep geothermal heat storage. Having this scenario in an area of a known high heat-flow, deep faults and a thinned lithosphere makes the hypothesis on finding a technologically exploitable geothermal resource
Large scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-02-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-11-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Romanov, Vladimir G.
2016-01-01
The 3D inverse scattering problem of the reconstruction of the unknown dielectric permittivity in the generalized Helmholtz equation is considered. Applications are in imaging of nanostructures and biological cells. The main difference with the conventional inverse scattering problems is that only the modulus of the scattering wave field is measured. The phase is not measured. The initializing wave field is the incident plane wave. On the other hand, in the previous recent works of the authors about the ‘phaseless topic’ the case of the point source was considered (Klibanov and Romanov 2015 J. Inverse Ill-Posed Problem 23 415-28 J. Inverse Ill-Posed Problem 23 187-93). Two reconstruction procedures are developed.
Representation of 3-D surface orientation by velocity and disparity gradient cues in area MT.
Sanada, Takahisa M; Nguyenkim, Jerry D; Deangelis, Gregory C
2012-04-01
Neural coding of the three-dimensional (3-D) orientation of planar surface patches may be an important intermediate step in constructing representations of complex 3-D surface structure. Spatial gradients of binocular disparity, image velocity, and texture provide potent cues to the 3-D orientation (tilt and slant) of planar surfaces. Previous studies have described neurons in both dorsal and ventral stream areas that are selective for surface tilt based on one or more of these gradient cues. However, relatively little is known about whether single neurons provide consistent information about surface orientation from multiple gradient cues. Moreover, it is unclear how neural responses to combinations of surface orientation cues are related to responses to the individual cues. We measured responses of middle temporal (MT) neurons to random dot stimuli that simulated planar surfaces at a variety of tilts and slants. Four cue conditions were tested: disparity, velocity, and texture gradients alone, as well as all three gradient cues combined. Many neurons showed robust tuning for surface tilt based on disparity and velocity gradients, with relatively little selectivity for texture gradients. Some neurons showed consistent tilt preferences for disparity and velocity cues, whereas others showed large discrepancies. Responses to the combined stimulus were generally well described as a weighted linear sum of responses to the individual cues, even when disparity and velocity preferences were discrepant. These findings suggest that area MT contains a rudimentary representation of 3-D surface orientation based on multiple cues, with single neurons implementing a simple cue integration rule.
3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
Duindam, Vincent; Xu, Jijie; Alterovitz, Ron; Sastry, Shankar; Goldberg, Ken
2010-01-01
Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles. PMID:21359051
3-D Sound Propagation and Acoustic Inversions in Shallow Water Oceans
2011-09-01
method is used to study canonical environmental models of shelfbreak front systems and nonlinear internal wave ducts. The WHOI 3D Parabolic-Equation...localization methods with normal mode theory have been established for localizing low frequency, broadband signals in a shallow water environment. Gauss ...approach for low-frequency broadband sound source localization in a shallow-water ocean is established. Gauss -Markov inverse theory is used in both
Sensitivity study of 3-D modeling for multi-D inversion of surface NMR
NASA Astrophysics Data System (ADS)
Warsa, Grandis, Hendra
2012-06-01
Geophysical field method of surface nuclear magnetic resonance (SNMR) allows a direct determination of hydrogeological parameters of the subsurface. The amplitude of the SNMR signal is directly linked to the amount of mobile water. The relaxation behaviour of the signal correlates with pore sizes and hydraulic conductivities of an aquifer. For improving capability and reliability of SNMR method we have presented a forward modeling scheme of 3-D water content and decay time structures that can be used for multi-D interpretation. Currently SNMR is carried out mainly with a 1-D working scheme using coinciding loops. For each sounding point using a coincident circular loop antenna, the amplitudes and decay times of the SNMR signal are the product of a three dimensional distribution of the water content and decay time in the subsurface and their sensitivity to the receiver. The antenna is moved at the surface and the SNMR relaxation signal are plotted as a function of the pulse moment and sounding point. The errors might be very large by neglecting the 2-D or even 3-D geometry of the structures which have to be considered in the analysis and inversion in the future. The results show that the 3-D modeling is reliable and flexible to be integrated into the 2-D/3-D inversion scheme for inverting surface NMR data to recover a multi-D distribution of water content and decay time of an aquifer.
3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin
NASA Astrophysics Data System (ADS)
Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar
2015-04-01
The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.
3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin
NASA Astrophysics Data System (ADS)
Bayrakci, G.; Minshull, T. A.; Davy, R. G.; Sawyer, D. S.; Klaeschen, D.; Papenberg, C. A.; Reston, T. J.; Shillington, D. J.; Ranero, C. R.
2014-12-01
The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
Kılıç, Emre Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
3D inversion of land-based CSEM data from the Ketzin CO2 storage formation
NASA Astrophysics Data System (ADS)
Grayver, Alexander; Streich, Rita; Ritter, Oliver
2013-04-01
We present 3D inversion of land controlled-source electromagnetic (CSEM) data collected across the CO2 storage test site at Ketzin, Germany. The CSEM data were generated by injecting currents into the earth at eight locations using a newly developed transmitter equipped with three grounded electrodes. Electric and magnetic field responses were recorded by 39 receivers along a line approximately perpendicular to the main geological trend. The survey aimed at imaging large-scale resistivity structure beyond the near-well region monitored by higher-resolution electrical techniques. Infrastructure present in the survey area, such as pipelines with impressed-current cathodic protection systems, power lines, and wind power plants cause strong noise in the data. The noise is effectively suppressed by adopting statistically robust processing techniques known from passive magnetotellurics. A newly developed Gauss-Newton type parallel distributed inversion scheme, which is based on a direct forward solver and explicitly calculates the full sensitivity matrix, is applied to recover subsurface conductivity images. As 3D inversion is demanding on computer time and memory, we run inversions on parallel distributed machines. We achieve good scalability by distributing computations and memory uniformly among the processes involved. We carry out cumulative sensitivity and resolution analyses for the sparse CSEM acquisition geometry. These studies indicate reasonable spatial coverage along the main survey line. Synthetic studies calculated for the real survey layout and representative conductivity models indicate that the magnetic field components are practically insensitive to resistive structures, whereas the electric field components resolve resistors and conductors similarly well. Because the magnetic field contributes little subsurface information, we concentrate on inverting the electric field, which is also more computer-efficient than inverting all components. We test
The multi-scale 3D-1D compatibility scoring for inverse protein folding problem
Oniuka, Kentaro; Asai, Kiyoshi
1994-12-31
The applicability of the Multi-Scale Structure Description (MSSD) scheme to the inverse-folding problems was investigated. An MSSD represents a 3D protein structure with multiple symbolic sequences, where fine structures are represented with the sequence at low levels, the middle scale structural motifs at middle levels, and global topology at high levels. Each symbol in the symbolic sequence denotes a type of local structure of the level scale. The structure fragments are classified at each scale level respectively according to the shape and the environment around the fragments: how the structure is exposed to the solvent or buried in the molecule. I modeled the propensity of an amino-acid sequence to the structure fragment type (i.e., primary constraint) at each scale level. The local propensity is, therefore, modeled at small scale (low) levels, while the global propensity modeled at large scale (high) levels. Thus, superposing all the primary constraints, a 3D protein structure yields an amino-acid sequence profile. Evaluating the fit of an amino acid sequence to the profile derived from the known 3D protein structure, we can identify which 3D structure the given amino-acid sequence would fold into. I checked whether a sequence identifies its own structure over two hundred protein sequences. In many cases, an amino acid sequence identified its own 3D protein structure.
Effect of postural changes on 3D joint angular velocity during starting block phase.
Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice
2013-01-01
Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.
Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient
NASA Astrophysics Data System (ADS)
Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie
2016-03-01
Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
3D Inversion of complex resistivity data: Case study on Mineral Exploration Site.
NASA Astrophysics Data System (ADS)
Son, Jeong-Sul; Kim, Jung-ho; Park, Sam-gyu; Park, My-Kyung
2016-04-01
Complex resistivity (CR) method is a frequency domain induced polarization (IP) method. It is also known as Spectral IP (SIP) method, if wider frequencies are used in data acquisition and interpretation. Although it takes more times than conventional time domain IP method, its data quality is more stable because its data acquisition which measures amplitude and phase is done when the source current is being injected. Our research group has been studying the modeling and inversion algorithms of complex resistivity (CR) method since several years ago and recently applied developed algorithms to various real field application. Due to tough terrain in our country, Profile survey and 2D interpretation were generally used. But to get more precise interpretation, three dimensional modeling and inversion algorithm is required. We developed three dimensional inversion algorithm for this purpose. In the inversion, we adopt the method of adaptive lagraingian multiplier which is automatically set based on the size of error misfit and model regularization norm. It was applied on the real data acquired for mineral exploration sites. CR data was acquired with the Zeta system, manufactured by Zonge Co. In the inversion, only the lower frequency data is used considering its quality and developed 3D inversion algorithm was applied to the acquired data set. Its results were compared to those of time domain IP data conducted at the same site. Resistivity image sections of CR and conventional resistivity method were almost identical. Phase anomalies were well matched with chargeability anomalies and the mining history of the test site. Each anomalies were well discriminated in 3D interpretation than those of 2D. From those experiments, we know that CR method was very effective for the mineral exploration.
UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models
NASA Astrophysics Data System (ADS)
Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.
2014-12-01
Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract
Separate Perceptual and Neural Processing of Velocity- and Disparity-Based 3D Motion Signals.
Joo, Sung Jun; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C
2016-10-19
Although the visual system uses both velocity- and disparity-based binocular information for computing 3D motion, it is unknown whether (and how) these two signals interact. We found that these two binocular signals are processed distinctly at the levels of both cortical activity in human MT and perception. In human MT, adaptation to both velocity-based and disparity-based 3D motions demonstrated direction-selective neuroimaging responses. However, when adaptation to one cue was probed using the other cue, there was no evidence of interaction between them (i.e., there was no "cross-cue" adaptation). Analogous psychophysical measurements yielded correspondingly weak cross-cue motion aftereffects (MAEs) in the face of very strong within-cue adaptation. In a direct test of perceptual independence, adapting to opposite 3D directions generated by different binocular cues resulted in simultaneous, superimposed, opposite-direction MAEs. These findings suggest that velocity- and disparity-based 3D motion signals may both flow through area MT but constitute distinct signals and pathways.
The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography
NASA Astrophysics Data System (ADS)
Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias
2017-01-01
New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.
Joint earthquake source inversions using seismo-geodesy and 3-D earth models
NASA Astrophysics Data System (ADS)
Weston, J.; Ferreira, A. M. G.; Funning, G. J.
2014-08-01
A joint earthquake source inversion technique is presented that uses InSAR and long-period teleseismic data, and, for the first time, takes 3-D Earth structure into account when modelling seismic surface and body waves. Ten average source parameters (Moment, latitude, longitude, depth, strike, dip, rake, length, width and slip) are estimated; hence, the technique is potentially useful for rapid source inversions of moderate magnitude earthquakes using multiple data sets. Unwrapped interferograms and long-period seismic data are jointly inverted for the location, fault geometry and seismic moment, using a hybrid downhill Powell-Monte Carlo algorithm. While the InSAR data are modelled assuming a rectangular dislocation in a homogeneous half-space, seismic data are modelled using the spectral element method for a 3-D earth model. The effect of noise and lateral heterogeneity on the inversions is investigated by carrying out realistic synthetic tests for various earthquakes with different faulting mechanisms and magnitude (Mw 6.0-6.6). Synthetic tests highlight the improvement in the constraint of fault geometry (strike, dip and rake) and moment when InSAR and seismic data are combined. Tests comparing the effect of using a 1-D or 3-D earth model show that long-period surface waves are more sensitive than long-period body waves to the change in earth model. Incorrect source parameters, particularly incorrect fault dip angles, can compensate for systematic errors in the assumed Earth structure, leading to an acceptable data fit despite large discrepancies in source parameters. Three real earthquakes are also investigated: Eureka Valley, California (1993 May 17, Mw 6.0), Aiquile, Bolivia (1998 February 22, Mw 6.6) and Zarand, Iran (2005 May 22, Mw 6.5). These events are located in different tectonic environments and show large discrepancies between InSAR and seismically determined source models. Despite the 40-50 km discrepancies in location between previous geodetic and
Enhanced imaging of CO2 at the Ketzin storage site: Inversion of 3D time-lapse seismic data
NASA Astrophysics Data System (ADS)
Gil, M.; Götz, J.; Ivanova, A.; Juhlin, C.; Krawczyk, C. M.; Lüth, S.; Yang, C.
2012-04-01
The Ketzin test site, located near Berlin, is Europe's longest-operating on-shore CO2 storage site. As of December 2011, more than 56,000 tons of food grade CO2 has been injected since June 2008 in an anticlinal structure of the Northeast German Basin. The target reservoir consists of porous, brine bearing sandstone units of the Upper Triassic Stuttgart Formation at approximately 630 to 650 m depth. In order to enhance the understanding of the structural geometry of the site and to investigate the extension of the CO2-plume, several geophysical monitoring methods are being applied at Ketzin, among these are active seismic measurements, geoelectrics and borehole measurements. Among the various seismic techniques (e.g. 2D reflection surveys, crosshole tomography, Vertical Seismic Profiling, 2D- and 3D-Moving Source Profiling) employed at this pilot site, 3D time-lapse reflection surveys are an important component. The baseline 3D survey was acquired in 2005 and the first repeat measurements were performed in 2009 after injection of about 22,000 tons of CO2. The second repeat survey is planned to be carried out in fall 2012. These measurements allow the time-lapse signature of the injected CO2 to be imaged. The time-lapse amplitude variation attributed to the injected CO2 in the reservoir matches, considering detection limits of seismic surface measurements, the expected distribution of the CO2 plume derived from reservoir simulations. Previous attempts towards a quantitative interpretation were based on integrative considerations of different types of geophysical measurements using strict assumptions and characterized by large error bars. In order to increase the resolution and reliability of the data and to improve estimation of rock properties and especially to enhance the imaging resolution of the CO2-plume, the time-lapse 3D seismic data have now been inverted for seismic impedances with different methods, which is the focus of this presentation. One difficulty
Finite Element Based Anisotropic 3D Inversion of Marine CSEM Data
NASA Astrophysics Data System (ADS)
Chung, Y.; Byun, J.
2015-12-01
In order to interpret three-dimensional (3D) marine controlled-source electromagnetic (MCSEM) data, it is critical to accurately determine electrical anisotropy because ignoring anisotropy can produce misleading artifacts. In this study, we present an inversion method for 3D subsurface imaging in media with an inhomogeneous and anisotropic conductivity distribution. Direct solvers are incorporated both in the forward and inverse problems, For the forward problem, the vector Helmholtz equation for the secondary electric field is discretized on a hexahedral mesh using edge finite elements, then a direct sparse-matrix solver is chosen to effectively reuse its factorization both in the survey simulation and Jacobian computation. The inversion method is formulated as a functional optimization with an objective functional containing terms measuring data misfit and model structure by means of smoothness and anisotropy. These measures are efficiently incorporated through the use of an iteratively reweighted least-squares scheme. The objective functional is minimized by a Gauss-Newton approach using a direct dense-matrix solver. We demonstrate the accuracy and applicability of the algorithm by testing it on synthetic data sets.
3D inversion of time-lapse CSEM data for reservoir monitoring
NASA Astrophysics Data System (ADS)
Black, N.; Wilson, G. A.; Zhdanov, M. S.
2010-12-01
Effective reservoir monitoring requires time-lapse reservoir information throughout the interwell volume. The ability to understand and control reservoir behavior over the course of production allows for optimization of reservoir performance and production strategies. Good monitoring information makes it possible to improve the timing and location of new drilling (for both production and injection wells), to recognize flow paths, and to map oil that has been bypassed. Recent studies have inferred the feasibility of time-lapse marine controlled-source electromagnetic (CSEM) methods for the monitoring of offshore oil and gas fields. However, quantitative interpretations to ascertain what reservoir information may be recovered have not been performed. The time-lapse CSEM inverse problem can be highly constrained since the geometry of the reservoir is established prior from high resolution seismic surveys, rock and fluid properties are measured from well logs, and multiple history matched production scenarios are contained in dynamic reservoir models. We present a 3D inversion study of synthetic time-lapse CSEM data modeled from dynamic reservoir simulations. We demonstrate that even with few constraints on the model, the hydrocarbon-water front can be recovered from 3D inversion.
A hybrid method for inversion of 3D DC resistivity logging measurements.
Gajda-Zagórska, Ewa; Schaefer, Robert; Smołka, Maciej; Paszyński, Maciej; Pardo, David
This paper focuses on the application of hp hierarchic genetic strategy (hp-HGS) for solution of a challenging problem, the inversion of 3D direct current (DC) resistivity logging measurements. The problem under consideration has been formulated as the global optimization one, for which the objective function (misfit between computed and reference data) exhibits multiple minima. In this paper, we consider the extension of the hp-HGS strategy, namely we couple the hp-HGS algorithm with a gradient based optimization method for a local search. Forward simulations are performed with a self-adaptive hp finite element method, hp-FEM. The computational cost of misfit evaluation by hp-FEM depends strongly on the assumed accuracy. This accuracy is adapted to the tree of populations generated by the hp-HGS algorithm, which makes the global phase significantly cheaper. Moreover, tree structure of demes as well as branch reduction and conditional sprouting mechanism reduces the number of expensive local searches up to the number of minima to be recognized. The common (direct and inverse) accuracy control, crucial for the hp-HGS efficiency, has been motivated by precise mathematical considerations. Numerical results demonstrate the suitability of the proposed method for the inversion of 3D DC resistivity logging measurements.
NASA Astrophysics Data System (ADS)
Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.
2014-12-01
We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
NASA Astrophysics Data System (ADS)
Ren, Z. X.; Zhang, S. Q.; Meng, J.
2017-02-01
A new method to solve the Dirac equation on a 3D lattice is proposed, in which the variational collapse problem is avoided by the inverse Hamiltonian method and the fermion doubling problem is avoided by performing spatial derivatives in momentum space with the help of the discrete Fourier transform, i.e., the spectral method. This method is demonstrated in solving the Dirac equation for a given spherical potential in a 3D lattice space. In comparison with the results obtained by the shooting method, the differences in single-particle energy are smaller than 10-4 MeV, and the densities are almost identical, which demonstrates the high accuracy of the present method. The results obtained by applying this method without any modification to solve the Dirac equations for an axial-deformed, nonaxial-deformed, and octupole-deformed potential are provided and discussed.
Stratified shear flow in an inclined duct: near-instantaneous 3D velocity and density measurements
NASA Astrophysics Data System (ADS)
Partridge, Jamie; Lefauve, Adrien; Dalziel, Stuart; Linden, Paul
2016-11-01
We present results from a new experimental setup to study the exchange flow in an inclined square duct between two reservoirs containing fluids of different densities. This system can exhibit stratified shear wave motions, and has a distinct parameter threshold above which turbulence is triggered and progressively fills a larger fraction of the duct. To probe these intrinsically 3D flows, we introduce a new setup in which a traversing laser sheet allows us to obtain near-instantaneous 3D velocity and density fields. Three components of velocity are measured on successive 2D planes using stereo particle image velocimetry (PIV) with density information obtained simultaneously using laser induced fluorescence (LIF). Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".
Analysis of the 3D Structure and Velocity of a CME on 2 January 2008
NASA Astrophysics Data System (ADS)
López, F. M.; Cremades, H.
We perform an analysis of the 3D structure and velocity of a CME (coronal mass ejection) ejected on 2 January 2008. The event was imaged by both STEREO A and B spacecraft (mutual separation of ˜44°), providing polarized images of the event from two different points of view. To obtain information on the 3D structure of the CME from polarized images, a polarization technique (Moran & Davila, Science 305, 66, 2003) is applied. Aided by this method, we have constructed topographical maps which show the height of the various event features from the plane of the sky (i.e. toward or away from the observer) and have dinamically analyzed and compared the real and projected on the plane of the sky velocities.
A 3D radiative transfer framework . VII. Arbitrary velocity fields in the Eulerian frame
NASA Astrophysics Data System (ADS)
Seelmann, A. M.; Hauschildt, P. H.; Baron, E.
2010-11-01
Aims: A solution of the radiative-transfer problem in 3D with arbitrary velocity fields in the Eulerian frame is presented. The method is implemented in our 3D radiative transfer framework and used in the PHOENIX/3D code. It is tested by comparison to our well-tested 1D co-moving frame radiative transfer code, where the treatment of a monotonic velocity field is implemented in the Lagrangian frame. The Eulerian formulation does not need much additional memory and is useable on state-of-the-art computers, even large-scale applications with 1000's of wavelength points are feasible. Methods: In the Eulerian formulation of the problem, the photon is seen by the atom at a Doppler-shifted wavelength depending on its propagation direction, which leads to a Doppler-shifted absorption and emission. This leads to a different source function and a different Λ^* operator in the radiative transfer equations compared to the static case. Results: The results of the Eulerian 3D spherical calculations are compared to our well-tested 1D Lagrangian spherical calculations, the agreement is, up to vmax = 1 × 103 km s-1 very good. Test calculation in other geometries are also shown.
Locating earthquakes in west Texas oil fields using 3-D anisotropic velocity models
Hua, Fa; Doser, D.; Baker, M. . Dept. of Geological Sciences)
1993-02-01
Earthquakes within the War-Wink gas field, Ward County, Texas, that have been located with a 1-D velocity model occur near the edges and top of a naturally occurring overpressured zone. Because the War-Wink field is a structurally controlled anticline with significant velocity anisotropy associated with the overpressured zone and finely layered evaporites, the authors have attempted to re-locate earthquakes using a 3-D anisotropic velocity model. Preliminary results with this model give the unsatisfactory result that many earthquakes previously located at the top of the overpressured zone (3-3.5 km) moved into the evaporites (1-1.5 km) above the field. They believe that this result could be caused by: (1) aliasing the velocity model; or (2) problems in determining the correct location minima when several minima exist. They are currently attempting to determine which of these causes is more likely for the unsatisfactory result observed.
NASA Astrophysics Data System (ADS)
Yang, Dikun; Oldenburg, Douglas W.; Haber, Eldad
2014-03-01
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth's conductivity structures in a large area at low cost. However, the configuration of AEM measurements, which typically have widely distributed transmitter-receiver pairs, makes the rigorous modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can occur when working on a large mesh covering the entire survey area and inverting all soundings in the data set. We propose two improvements. The first is to use a locally optimized mesh for each AEM sounding for the forward modelling and calculation of sensitivity. This dedicated local mesh is small with fine cells near the sounding location and coarse cells far away in accordance with EM diffusion and the geometric decay of the signals. Once the forward problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is available through quick interpolation. Using local meshes for AEM forward modelling avoids unnecessary computing on fine cells on a global mesh that are far away from the sounding location. Since local meshes are highly independent, the forward modelling can be efficiently parallelized over an array of processors. The second improvement is random and dynamic down-sampling of the soundings. Each inversion iteration only uses a random subset of the soundings, and the subset is reselected for every iteration. The number of soundings in the random subset, determined by an adaptive algorithm, is tied to the degree of model regularization. This minimizes the overcomputing caused by working with redundant soundings. Our methods are compared against conventional methods and tested with a synthetic example. We also invert a field data set that was previously considered to be too large to be practically inverted in 3-D. These examples show that our methodology can dramatically reduce the processing time of 3-D inversion to a practical level without losing resolution
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2011-12-01
Recent developments in high resolution imaging technology of subsurface objects involves a combination of different geophysical measurements (gravity, EM and seismic). A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data due to their differing physical nature. For example, in conducting media, which is typical of the Earth's interior, EM energy propagation is defined by a diffusive mechanism and may be characterized by two specific length scales: wavelength and skin depth. However, the propagation of seismic signals is a multiwave process and is characterized by a set of wavelengths. Thus, to consistently treat seismic and electromagnetic data an additional length scale is needed for seismic data that does not directly depend on a wavelength and describes a diffusive process, similar to EM wave propagation in the subsurface. Works by Brown et al.(2005), Shin and Cha(2008), and Shin and Ha(2008) suggest that an artificial damping of seismic wave fields via Laplace-Fourier transformation can be an effective approach to obtain a seismic data that have similar spatial resolution to EM data. The key benefit of such transformation is that diffusive wave-field inversion works well for both data sets: seismic (Brown et al.,2005; Shin and Cha,2008) and electromagnetic (Commer and Newman,2008; Newman et al.,2010). With the recent interest in the Laplace-Fourier domain full waveform inversion, 3D fourth and second-order finite-difference schemes for modeling of seismic wave propagation have been developed (Petrov and Newman, 2010). Incorporation of attenuation and anisotropy into a velocity model is a necessary step for a more realistic description of subsurface media. Here we consider the extension of our method which includes attenuation and VTI anisotropy. Our approach is based on the integro-interpolation technique for velocity-stress formulation. Seven
3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI
NASA Astrophysics Data System (ADS)
Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.
2017-01-01
Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast
3D Self-Potential Inversion for Monitoring DNAPL Contaminant Distributions
NASA Astrophysics Data System (ADS)
Minsley, B. J.; Sogade, J.; Vichabian, Y.; Morgan, F. D.
2005-05-01
Self-potential (SP) data are collected over an area known to be contaminated with Dense Non-Aqueous Phase Liquids (DNAPLs) at the Savannah River Site in South Carolina. The field experiment consists of approximately 100 SP measurements on a surface grid and in four boreholes, and is repeated after one year. DNAPLs are known to undergo redox reactions during their degradation in the environment, which is often biologically mediated. Self-potential geophysics is employed in this study because of its sensitivity to the in-situ biochemical processes that degrade the contaminants. These reactions provide an electrochemical source that is manifested as an SP signature at the measurement locations remote from the contaminated areas. 3D inversion of the SP data is therefore needed to spatially locate the distribution of sources, which is related to contaminant presence. The inversion incorporates the 3D resistivity structure collected at the same site, and is better constrained in depth by using borehole data and regularization. Ground truth information taken after the first field experiment provides concentration data with depth for several DNAPL species in five boreholes. There is a good correlation between the ground truth data and SP source inversion, though this comparison is limited by several factors: the difference in resolution of the ground truth and inverted data, and the dependence of the redox processes on other constituents that were not measured during the ground truthing, such as oxygen content or microbial presence. Inversion of the second year's dataset provides information on the changes in the contaminant distribution, either due to natural degradation or ongoing remediation.
NASA Astrophysics Data System (ADS)
Kong, Jian; Yao, Yibin; Shum, Che-Kwan
2014-05-01
Due to the sparsity of world's GNSS stations and limitations of projection angles, GNSS-based ionosphere tomography is a typical ill-posed problem. There are two main ways to solve this problem. Firstly the joint inversion method combining multi-source data is one of the effective ways. Secondly using a priori or reference ionosphere models, e.g., IRI or GIM models, as the constraints to improve the state of normal equation is another effective approach. The traditional way for adding constraints with virtual observations can only solve the problem of sparse stations but the virtual observations still lack horizontal grid constraints therefore unable to fundamentally improve the near-singularity characteristic of the normal equation. In this paper, we impose a priori constraints by increasing the virtual observations in n-dimensional space, which can greatly reduce the condition number of the normal equation. Then after the inversion region is gridded, we can form a stable structure among the grids with loose constraints. We then further consider that the ionosphere indeed changes within certain temporal scale, e.g., two hours. In order to establish a more sophisticated and realistic ionosphere model and obtain the real time ionosphere electron density velocity (IEDV) information, we introduce the grid electron density velocity parameters, which can be estimated with electron density parameters simultaneously. The velocity parameters not only can enhance the temporal resolution of the ionosphere model thereby reflecting more elaborate structure (short-term disturbances) under ionosphere disturbances status, but also provide a new way for the real-time detection and prediction of ionosphere 3D changes. We applied the new algorithm to the GNSS data collected in Europe for tomography inversion for ionosphere electron density and velocity at 2-hour resolutions, which are consistent throughout the whole day variation. We then validate the resulting tomography model
UCVM: An Open Source Framework for 3D Velocity Model Research
NASA Astrophysics Data System (ADS)
Gill, D.; Maechling, P. J.; Jordan, T. H.; Plesch, A.; Taborda, R.; Callaghan, S.; Small, P.
2013-12-01
Three-dimensional (3D) seismic velocity models provide fundamental input data to ground motion simulations, in the form of structured or unstructured meshes or grids. Numerous models are available for California, as well as for other parts of the United States and Europe, but models do not share a common interface. Being able to interact with these models in a standardized way is critical in order to configure and run 3D ground motion simulations. The Unified Community Velocity Model (UCVM) software, developed by researchers at the Southern California Earthquake Center (SCEC), is an open source framework designed to provide a cohesive way to interact with seismic velocity models. We describe the several ways in which we have improved the UCVM software over the last year. We have simplified the UCVM installation process by automating the installation of various community codebases, improving the ease of use.. We discuss how UCVM software was used to build velocity meshes for high-frequency (4Hz) deterministic 3D wave propagation simulations, and how the UCVM framework interacts with other open source resources, such as NetCDF file formats for visualization. The UCVM software uses a layered software architecture that transparently converts geographic coordinates to the coordinate systems used by the underlying velocity models and supports inclusion of a configurable near-surface geotechnical layer, while interacting with the velocity model codes through their existing software interfaces. No changes to the velocity model codes are required. Our recent UCVM installation improvements bundle UCVM with a setup script, written in Python, which guides users through the process that installs the UCVM software along with all the user-selectable velocity models. Each velocity model is converted into a standardized (configure, make, make install) format that is easily downloaded and installed via the script. UCVM is often run in specialized high performance computing (HPC
Development and Tuning of a 3-D Stochastic Inversion Methodology for the European Arctic
2008-09-01
Norway and is subdivided into four tectonic nappes. Obduction started in the Vendian to Middle Cambrian and lasted until the Silurian . 2008...10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps...showing the 2D group-velocity distribution of Love and Rayleigh waves for specific periods . Using a Monte Carlo inversion technique (Shapiro and
NASA Astrophysics Data System (ADS)
Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William
2016-02-01
3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.
Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation.
Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed; Pihl, Michael Johannes; Hansen, Kristoffer Lindskov; Stuart, Matthias Bo; Thomsen, Carsten; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-03-01
Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.
3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.
2012-12-01
In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward
NASA Astrophysics Data System (ADS)
Coviello, Velio; Manconi, Andrea; Occhiena, Cristina; Arattano, Massimo; Scavia, Claudio
2013-04-01
Rock-falls are one of the most common and hazardous phenomena occurring in mountainous areas. The formation of cracks in rocks is often accompanied by a sudden release of energy, which propagates in form of elastic waves and can be detected by a suitable transducer array. Therefore, geophones are among the most effective monitoring devices to investigate eventual precursors of rock-fall phenomena. However, the identification of an efficient procedure to forecast rock-fall occurrence in space and time is still an open challenge. In this study, we aim at developing an efficient procedure to locate microseismic sources relevant to cracking mechanisms, and thus gather indications on eventual precursors of rock-fall phenomena. Common seismic location tools usually implement homogeneous or multilayered velocity models but, in case of high slope gradients and heavily fractured rock masses, these simplifications may lead to errors on the correct estimation of the source location. Thus, we analyzed how the consideration of 3D material properties on the propagation medium may influence the location. In the framework of the Alcotra 2007-2013 Project MASSA (Medium And Small Size rock-fall hazard Assessment), a monitoring system composed by 8 triaxial geophones was installed in 2010 at the J.A. Carrel hut (3829 m a.s.l., Matterhorn, NW Italian Alps) and during the first year of operation the network recorded more than 600 natural events that exceeded a fixed threshold [1]. Despite the harsh environmental conditions of the study area, eighteen points distributed as uniformly as possible in space were selected for hammering. The artificial source dataset of known coordinates was used to constrain a 3D heterogeneous velocity model through a Simultaneous Iterative Reconstructive Technique. In order to mitigate the intrinsic uncertainties of the inversion procedure, bootstrapping was performed to extend the dataset and a statistical analysis was issued to improve the model
3-D inversion of synthetic marine magnetotelluric data: resolution and sensitivity
NASA Astrophysics Data System (ADS)
Tada, N.; Baba, K.; Siripunvaraporn, W.; Uyeshima, M.; Utada, H.
2010-12-01
In recent years, seafloor magnetotelluric (MT) observation is carried out by using an increasing number of ocean bottom electromagnetometers (OBEMs) not only along a line but also in 2-D array. Thus, imaging electrical conductivity structures under the seafloor in 3-D is now feasible. A 3-D approach is indispensable especially for marine MT data, because the electric and magnetic fields observed at the seafloor are heavily distorted by the rugged seafloor topography and the distribution of land and sea which are generally 3-D. It is very important to incorporate the topography in a 3-D model for an accurate estimation of the conductivity structure beneath seafloor that is generally more resistive than seawater by several orders of magnitude. WSINV3DMT (Siripunvaraporn et al., 2005) is one of 3-D inversion codes that are now of practical use, but the original WSINV3DMT is not applicable to marine MT data because of two reasons. 1) MT responses are calculated only at the boundary corresponding to the Earth surface. 2) We have to use fine mesh design because an observation site must locate exactly at the center of the top surface of a block, which needs large memory that even a highest performance computer can not handle. We propose an extended version of the WSINV3DMT by solving the two problems shown above so that it can be applied to the marine MT data. The extended version of the WSINV3DMT is tested using synthetic models including a 3-D anomaly, seawater and topographic variation. Here shown is an example of a checkerboard test by using a model in which 10 ohm-m and 100 ohm-m blocks are put alternately in both horizontal and vertical directions. The model is composed of 5 blocks in horizontal directions and of 4 blocks in vertical direction with a background of a 31.6 ohm-m half-space below actual topography. The calculation area in the inversion is 7440 × 7440 × 1008 km, and is discretized at 35 blocks in the x and y directions, and 69 blocks in the z
Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.
2007-01-01
We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.
Iversen, Daniel Hoyer; Lindseth, Frank; Unsgaard, Geirmund; Torp, Hans; Lovstakken, Lasse
2013-09-01
In neurosurgery, information of blood flow is important to identify and avoid damage to important vessels. Three-dimensional intraoperative ultrasound color-Doppler imaging has proven useful in this respect. However, due to Doppler angle-dependencies and the complexity of the vascular architecture, clinical valuable 3-D information of flow direction and velocity is currently not available. In this work, we aim to correct for angle-dependencies in 3-D flow images based on a geometric model of the neurovascular tree generated on-the-fly from free-hand 2-D imaging and an accurate position sensor system. The 3-D vessel model acts as a priori information of vessel orientation used to angle-correct the Doppler measurements, as well as provide an estimate of the average flow direction. Based on the flow direction we were also able to do aliasing correction to approximately double the measurable velocity range. In vitro experiments revealed a high accuracy and robustness for estimating the mean direction of flow. Accurate angle-correction of axial velocities were possible given a sufficient beam-to-flow angle for at least parts of a vessel segment . In vitro experiments showed an absolute relative bias of 9.5% for a challenging low-flow scenario. The method also showed promising results in vivo, improving the depiction of flow in the distal branches of intracranial aneurysms and the feeding arteries of an arteriovenous malformation. Careful inspection by an experienced surgeon confirmed the correct flow direction for all in vivo examples.
3D CSEM data inversion using Newton and Halley class methods
NASA Astrophysics Data System (ADS)
Amaya, M.; Hansen, K. R.; Morten, J. P.
2016-05-01
For the first time in 3D controlled source electromagnetic data inversion, we explore the use of the Newton and the Halley optimization methods, which may show their potential when the cost function has a complex topology. The inversion is formulated as a constrained nonlinear least-squares problem which is solved by iterative optimization. These methods require the derivatives up to second order of the residuals with respect to model parameters. We show how Green's functions determine the high-order derivatives, and develop a diagrammatical representation of the residual derivatives. The Green's functions are efficiently calculated on-the-fly, making use of a finite-difference frequency-domain forward modelling code based on a multi-frontal sparse direct solver. This allow us to build the second-order derivatives of the residuals keeping the memory cost in the same order as in a Gauss-Newton (GN) scheme. Model updates are computed with a trust-region based conjugate-gradient solver which does not require the computation of a stabilizer. We present inversion results for a synthetic survey and compare the GN, Newton, and super-Halley optimization schemes, and consider two different approaches to set the initial trust-region radius. Our analysis shows that the Newton and super-Halley schemes, using the same regularization configuration, add significant information to the inversion so that the convergence is reached by different paths. In our simple resistivity model examples, the convergence speed of the Newton and the super-Halley schemes are either similar or slightly superior with respect to the convergence speed of the GN scheme, close to the minimum of the cost function. Due to the current noise levels and other measurement inaccuracies in geophysical investigations, this advantageous behaviour is at present of low consequence, but may, with the further improvement of geophysical data acquisition, be an argument for more accurate higher-order methods like those
NASA Astrophysics Data System (ADS)
Chen, Haopeng; Zhu, Liangbao; Su, Youjin
2016-08-01
We used teleseismic data recorded by a permanent seismic network in Yunnan, SE Tibet, and measured the interstation Rayleigh wave phase velocity between 10 and 60 s. A two-step inversion scheme was used to invert for the 3D S-wave velocity and azimuthal anisotropy structure of 10-110 km. The results show that there are two low velocity channels between depths of 20-30 km in Yunnan and that the fast axes are sub-parallel to the strikes of the low velocity channels, which supports the crustal flow model. The azimuthal anisotropy pattern is quite complicated and reveals a complex crust-mantle coupling mechanism in Yunnan. The N-S trending Lüzhijiang Fault separates the Dianzhong Block into two parts. In the western Dianzhong Block, the fast axis of the S-wave changes with depth, which indicates that the crust and the lithospheric mantle are decoupled. In the eastern Dianzhong Block and the western Yangtze Craton, the crust and the lithospheric mantle may be decoupled because of crustal flow, despite a coherent S-wave fast axis at depths of 10-110 km. In addition, the difference between the S-wave fast axis in the lithosphere and the SKS splitting measurement suggests that the lithosphere and the upper mantle are decoupled there. In the Baoshan Block, the stratified anisotropic pattern suggests that the crust and the upper mantle are decoupled.
Levander, Alan Richard; Zelt, Colin A.
2015-03-17
The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.
The 3D inversion of airborne gamma-ray spectrometric data
NASA Astrophysics Data System (ADS)
Minty, Brian; Brodie, Ross
2016-07-01
We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data after the conventional processing of these data assuming a flat-earth model.
3-D Inversion of MT Data for Imaging Deformation Fronts in NW Poland
NASA Astrophysics Data System (ADS)
Ślęzak, Katarzyna; Jóźwiak, Waldemar; Nowożyński, Krzysztof; Brasse, Heinrich
2016-07-01
The Pomerania region (northwest part of Poland) occupies a significant position, where the largest European tectonic boundary is situated. This is the area of the contact between the East European Craton (EEC) and the Paleozoic Platform (PP) and it is known as the Trans-European Suture Zone (TESZ). The TESZ was formed during Paleozoic time as a consequence of the collision of several crustal units and it extends from the Black Sea in the southeast to the British Isles in the northwest. It is a region of key importance for our understanding of the tectonic history of Europe. Previous magnetotelluric (MT) results, based on 2-D inverse modeling, show that the contact zone is of lithospheric discontinuity character and there are distinct differences in geoelectric structures between the Precambrian EEC, transitional zone (TESZ), and the younger PP. The presence of a significant conductor at mid and lower crustal depths was also shown. Thus, the main aim of the research presented here was to obtain detailed, 3-D images of electrical conductivity in the crust and upper mantle and its regional distribution below the TESZ in the northwest part of Poland. To accomplish this task we applied the latest 3-D inversion codes, which allowed us to get more realistic model geometries. Additionally, to confirm and complement the study, the Horizontal Magnetic Tensor (HMT) analysis was realized. This method gives us an opportunity to efficiently locate the position of well-conducting structures. As a result we obtain a clearer, three-dimensional model of conductivity distribution, where highly conductive rock complexes appear which we tentatively connected to deformation fronts.
Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution
NASA Astrophysics Data System (ADS)
Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.
2015-12-01
Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.
Review on applications of 3D inverse design method for pump
NASA Astrophysics Data System (ADS)
Yin, Junlian; Wang, Dezhong
2014-05-01
The 3D inverse design method, which methodology is far superior to the conventional design method that based on geometrical description, is gradually applied in pump blade design. However, no complete description about the method is outlined. Also, there are no general rules available to set the two important input parameters, blade loading distribution and stacking condition. In this sense, the basic theory and the mechanism why the design method can suppress the formation of secondary flow are summarized. And also, several typical pump design cases with different specific speeds ranging from centrifugal pump to axial pump are surveyed. The results indicates that, for centrifugal pump and mixed pump or turbine, the ratio of blade loading on the hub to that on the shroud is more than unit in the fore part of the blade, whereas in the aft part, the ratio is decreased to satisfy the same wrap angle for hub and shroud. And the choice of blade loading type depends on the balancing of efficiency and cavitation. If the cavitation is more weighted, the better choice is aft-loaded, otherwise, the fore-loaded or mid-loaded is preferable to improve the efficiency. The stacking condition, which is an auxiliary to suppress the secondary flow, can have great effect on the jet-wake outflow and the operation range for pump. Ultimately, how to link the design method to modern optimization techniques is illustrated. With the know-how design methodology and the know-how systematic optimization approach, the application of optimization design is promising for engineering. This paper summarizes the 3D inverse design method systematically.
Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J
2015-11-01
We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed.
3D elastic full waveform inversion: case study from a land seismic survey
NASA Astrophysics Data System (ADS)
Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon
2016-04-01
Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.
GIA-Induced 3-D Crustal Velocities Predicted Using a New Generation of Viscoelastic Earth Models
NASA Astrophysics Data System (ADS)
Mitrovica, J. X.; Latychev, K.; Tamisiea, M. E.; Tromp, J.; Milne, G. A.
2004-05-01
In recent work we have described a new finite-volume, time-domain numerical scheme for predicting the response of a complex (Maxwell) viscoelastic Earth model to arbitrary surface mass loads. The method permits the incorporation of 3-D variations in mantle viscoelastic structure including, for example, heterogeneities in elastic plate strength and mantle viscosity. To address these complexities numerically, we have developed our code for a distributed (parallel) computer environment such as a Beowulf PC cluster. In this talk we apply the numerical formulation to compute a suite of predictions of present-day 3-D crustal deformation rates driven by the glacial isostatic adjustment process (GIA). These predictions are generated using an input global ice model and an ocean load computed using a solution to the governing `sea-level equation'. The latter is obtained in a numerical calculation that utilizes the same space-time discretization as in the main solver. Our goal is to assess the sensitivity of previous predictions of GIA-induced 3-D crustal rates based on spherically symmetric Earth models to the introduction of: (1) elastic plate thickness variations within oceanic regions and across the ocean-continent interface; and (2) variations in mantle viscosity inferred, indirectly, from a tomographic model of seismic velocity heterogeneity.
KOALA: 3-D shape of asteroids from multi-data inversion
NASA Astrophysics Data System (ADS)
Carry, B.; Kaasalainen, M.; Merline, W. J.; Drummond, J. D.; Durech, J.; Berthier, J.; Conrad, A.
2011-10-01
We describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA.
NASA Astrophysics Data System (ADS)
Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.
2013-12-01
A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or
NASA Astrophysics Data System (ADS)
Spicer, B.; Morris, B.; Ugalde, H.
2011-09-01
Hosted within the Pacquet Harbour Group (PHG) on the Baie Verte Peninsula of north-central Newfoundland, the Rambler rhyolite is a 487 Ma unit of felsic tuffs, flows and subvolcanic intrusive rocks. The PHG has been affected by multiple phases of deformation with the youngest D4 deformation event producing broad northeast plunging upright cross folds in the Rambler rhyolite. Fold culminations on the upper bounding surface of the rhyolite host Cu +/- Au volcanogenic massive sulfide deposits (e.g. Rambler and Ming mines). Geophysical inversions of recently acquired high resolution gravity and magnetic data have been implemented to determine the extent of the fold axis (dome) at depth. To direct the outcome of the inversion process towards a more geologically reasonable solution this study outlines a procedure which permits the inclusion of known geological and geophysical constraints into the input (reference) model for inversion using the MAG3D and GRAV3D algorithms provided by the University of British Columbia Geophysical Inversion Facility. Reference model constraints included surficial geological contacts as defined by aeromagnetic data, and subsurface distribution of physical property variations from a series of drill-hole logs. The output (computed) model images the surface of the rhyolite dome as dipping roughly 40° to the northeast as a series of voxels with density values ranging from 2.71 to 2.75 g/cm3. While previously published ore deposit models parallel this structure in the near surface, results from these inversions suggest deeper exploration may be favorable. Magnetic inversion modeling has not provided any insight into dome morphology however it outlines the distribution of gabbroic dykes surrounding the dome.
Joint hypocenter-velocity inversion for the eastern Tennessee seismic zone
NASA Astrophysics Data System (ADS)
Vlahovic, Gordana; Powell, Christine A.; Chapman, Martin C.; Sibol, Matthew S.
1998-03-01
A joint hypocenter-velocity inversion for the eastern Tennessee seismic zone (ETSZ) has resolved velocity features in basement rock below detached Appalachian thrust sheets. P and S wave arrival times from 492 earthquakes have been inverted for one-(1-D) and three-dimensional (3-D) velocity models to midcrustal depths. The 3-D P and S wave velocity solutions are computed independly and are very similar. In relation to the 1-D model, velocity anomalies range from -8% to +16% in the first layer (upper 5 km) and between ±7% in deeper layers. Prominent velocity anomalies parallel the seismic zone and are consistent from layer to layer. The most persistent anomaly is a low-velocity region that borders the seismic zone to the northwest and is flanked on either side by regions of anomalously high velocity. The New York-Alabama (NY-AL) magnetic lineament coincides with or lies close to the southeast boundary of the prominent velocity low in both the P and S wave velocity images. The spatial coincidence between velocity, gravity, and magnetic gradients suggests that major discontinuities are present in the basement. Relocation in the 3-D velocity model reduced the number of very deep earthquakes (below 20 km) and further accentuated differences in seismogenic properties on either side of the NY-AL lineament. After relocation, most earthquakes occur in a vertically bounded region roughly 30 km wide extending from 4 to 22 km in depth. Most earthquakes occur in regions characterized by either average velocity or small velocity anomalies.
Understanding how Fault-bounded Blocks Deform in 3D by Inverse Modelling
NASA Astrophysics Data System (ADS)
Jouen, G.; White, N.
2004-05-01
Normal faults play a crucial role in modifying basin stratigraphy. At the exploration scale, the internal deformation of tilted blocks is governed by the three-dimensional geometry of large-scale faults which bound these blocks. At the reservoir scale, the geometry and growth of normal faulting control the deformation of strata and the compartmentalisation of reservoir intervals. Despite their importance, large-scale normal faults are often difficult to image. The purpose of structural validation is two-fold: to determine the 3D shape of normal faults and to investigate the relationship between fault geometry and deformed stratigraphy including the intra-block faults. We have developed methods for tackling structural validation at a variety of scales in two and three dimensions. The cornerstone of our approach is the use of geophysical inverse theory to calculate optimal fault geometries from deformed strata. This approach allows us to focus on key questions: does a solution exist? Are there several possible solutions or just one unique one? In a complex normal fault system, which part of the fault controls the motion responsible for the deformation in the hanging-wall? Traditional forward modelling cannot answer these fundamental issues. We have applied the inversion on seismic data in particularly complex areas in the northern North Sea. The aims of this project are to determine the geometry of the basin-bounding fault, to assess the likelihood of out-of-plane motion as well as understanding the mode of deformation leading to the complexity of the present structure. Closely spaced inverse models show that the basin-bounding fault on the UK side is steeper and more planar than previously thought. This method also helped us to have a better view of what could have been the cause of the organisation and density of the intra-block faulting where it occurs. The North Cormorant study has shown how inverse modelling can yield important, quantitative, insights. Our
NASA Astrophysics Data System (ADS)
Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.
2013-12-01
The overarching objectives of the second phase of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structures of the Atlas Mountains, and (ii) to test the hypotheses for explaining the observation of a 'missing' mantle root inferred from surface heat flow, gravity and geoid anomalies, elevation and seismic data modeling (i.e. Zeyen et al., 2005; Teixell et al., 2005; Fullea et al., 2010). We present the results from three-dimensional (3-D) MT inversion of data from two MT profiles employing the parallel version of Modular system for Electromagnetic inversion (ModEM; Egbert & Kelbert, 2012) code. For the profile in eastern Morocco, passing through Midelt, a distinct conductivity difference between the Middle-High Atlas (conductive) and Anti Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approximately 55 km). In all inverse solutions, the crust and the upper mantle show a resistive signature (750 Ωm - 1,000 Ωm) beneath the Anti Atlas to a depth of 100 km, which is the part of stable West African Craton. Our results are at variance with the proposed thin lithosphere beneath the Middle-High Atlas as we see no evidence for a shallow asthenosphere. Our second profile lies in western Morocco traversing through Marrakech. For the first time, the electrical resistivity distribution in the crust and in the upper mantle of Western High Atlas has been studied. Our 3-D resistivity model shows that conductive (1-20 Ωm) western High Atlas is confined by two resistive basins (>1,000 Ωm), Souss basin to the south and Houz basin to the north. At the southern boundary of the western High Atlas
The 3D Space and Spin Velocities of a Gamma-ray Pulsar
NASA Astrophysics Data System (ADS)
Romani, Roger W.
2016-04-01
PSR J2030+4415 is a LAT-discovered 0.5My-old gamma-ray pulsar with an X-ray synchrotron trail and a rare Halpha bowshock. We have obtained GMOS IFU spectroscopic imaging of this shell, and show a sweep through the remarkable Halpha structure, comparing with the high energy emission. These data provide a unique 3D map of the momentum distribution of the relativistic pulsar wind. This shows that the pulsar is moving nearly in the plane of the sky and that the pulsar wind has a polar component misaligned with the space velocity. The spin axis is shown to be inclined some 95degrees to the Earth line of sight, explaining why this is a radio-quiet, gamma-only pulsar. Intriguingly, the shell also shows multiple bubbles that suggest that the pulsar wind power has varied substantially over the past 500 years.
Born Inversion with a Stratified Reference Velocity.
1984-12-08
observation point at z =0 (2) p = I~iIoffset (4) = !’. offset (11) r (K, z) travel time (8) Iphase function (14) wcircular frequency (2) * Carter and Frazer...the inversion results. See BG for further discussion of this point . The algorithm presented here has the same structure as the BG algorithm and hence it...the source/receiver point and the output point at depth. We must still determine the amplitude, A, in this operator. To do so, we require that the
Stephenson, William J.
2007-01-01
INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.
Xie, G.; Li, J.; Majer, E.; Zuo, D.
1998-07-01
This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.
Chern insulators without band inversion in Mo S2 monolayers with 3 d adatoms
NASA Astrophysics Data System (ADS)
Wei, Xinyuan; Zhao, Bao; Zhang, Jiayong; Xue, Yang; Li, Yun; Yang, Zhongqin
2017-02-01
Electronic and topological properties of Mo S2 monolayers endowed with 3 d transition metal (TM) adatoms (V-Fe) are explored by using ab initio methods and k .p models. Without the consideration of the Hubbard U interaction, the V, Cr, and Fe adatoms tend to locate on the top of the Mo atoms, while the most stable site for the Mn atom is at the hollow position of the Mo-S hexagon. After the Hubbard U is applied, the most stable sites of all the systems become the top of the Mo atoms. Chern insulators without band inversion are achieved in these systems. The V and Fe adsorption systems are the best candidates to produce the topological states. The k .p model calculations indicate that these topological states are determined by the TM magnetism, the C3 v crystal field from the Mo S2 substrate, and the TM atomic spin-orbit coupling (SOC). The special two-meron pseudospin texture is found to contribute to the topology. The apparent difference between the Berry curvatures for the V and Fe adsorption systems is also explored. Our results widen the understanding of the Chern insulators and are helpful for the applications of the Mo S2 monolayers in the future electronics and spintronics.
Statistical Inverse Ray Tracing for Image-Based 3D Modeling.
Liu, Shubao; Cooper, David B
2014-10-01
This paper proposes a new formulation and solution to image-based 3D modeling (aka "multi-view stereo") based on generative statistical modeling and inference. The proposed new approach, named statistical inverse ray tracing, models and estimates the occlusion relationship accurately through optimizing a physically sound image generation model based on volumetric ray tracing. Together with geometric priors, they are put together into a Bayesian formulation known as Markov random field (MRF) model. This MRF model is different from typical MRFs used in image analysis in the sense that the ray clique, which models the ray-tracing process, consists of thousands of random variables instead of two to dozens. To handle the computational challenges associated with large clique size, an algorithm with linear computational complexity is developed by exploiting, using dynamic programming, the recursive chain structure of the ray clique. We further demonstrate the benefit of exact modeling and accurate estimation of the occlusion relationship by evaluating the proposed algorithm on several challenging data sets.
Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.
2004-01-01
Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.
NASA Astrophysics Data System (ADS)
Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando
2016-04-01
Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.
Graves, Robert; Pitarka, Arben
2016-01-01
We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from
NASA Astrophysics Data System (ADS)
Kaban, Mikhail K.; Stolk, Ward; Tesauro, Magdala; El Khrepy, Sami; Al-Arifi, Nassir; Beekman, Fred; Cloetingh, Sierd A. P. L.
2016-11-01
We construct a new-generation 3D density model of the upper mantle of Asia and its surrounding areas based on a joint interpretation of several data sets. A recent model of the crust combining nearly all available seismic data is employed to calculate the impact of the crust on the gravity anomalies and observed topography and to estimate the residual mantle anomalies and residual topography. These fields are jointly inverted to calculate the density variations in the lithosphere and upper mantle down to 325 km. As an initial approximation, we estimate density variations using a seismic tomography model. Seismic velocity variations are converted into temperatures and then to density variations based on mineral physics constraints. In the Occam-type inversion, we fit both the residual mantle gravity anomalies and residual topography by finding deviations to the initial model. The obtained corrections improve the resolution of the initial model and reflect important features of the mantle structure that are not well resolved by the seismic tomography. The most significant negative corrections of the upper mantle density, found in the Siberian and East European cratons, can be associated with depleted mantle material. The most pronounced positive density anomalies are found beneath the Tarim and South Caspian basins, Barents Sea, and Bay of Bengal. We attribute these anomalies to eclogites in the uppermost mantle, which have substantially affected the evolution of the basins. Furthermore, the obtained results provide evidence for the presence of eclogites in the oceanic subducting mantle lithosphere.
Regional conductivity structure of Cascadia from 3D inversion of USArray magnetotelluric data
NASA Astrophysics Data System (ADS)
Egbert, G. D.; Patro, P. K.
2008-12-01
Magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental US through EMScope, a part of the USArray component of EarthScope. Initial deployments in 2006 and 2007 acquired data at 110 sites covering the US Pacific Northwest. The MT sites, distributed with the same nominal spacing as the USArray seismic transportable array (~75 km), produced data in the period range 10- 20,000s of very good to excellent quality. The most striking and robust feature revealed by 3D inversion of this dataset is an extensive lower crustal conductor covering most of the study area southeast of a line running from the California border at the coast to the Blue Mountains of Northeastern Oregon. The conductance of this layer, which is about 15 km thick with a top at roughly 20 km depth, exceeds 3000 S beneath the he Northwest Basin and Range (BR) province of southeastern Oregon. The high conductivity in this region is inferred to result from fluids - including possibly partial melt at depth - associated with magmatic underplating and BR extension. The lower crust is much more resistive beneath the Coast Range, Willamette Valley and Puget Lowlands of Western Washington and Oregon, and beneath the Columbia Plateau. This area of resistive crust, which was derived from a large fragment of thickened oceanic lithosphere that was accreted to North America at approximately 48 Ma ("Siletzia"), is revealed by geological and geodetic studies to be strong, accommodating tectonic stresses through rigid block rotations. In contrast, the area to the southeast characterized by high conductivity in the lower crust is actively deforming, consistent with an important role for fluids in weakening of continental crust. The resistive Siletzia crust is broken by an elongated N-S zone of high conductivity beneath the Cascade volcanoes. High conductivities beneath the volcanoes also most likely reflect the presence of interconnected fluids, in this case released
NASA Astrophysics Data System (ADS)
Yuan, Huaiyu; Romanowicz, Barbara; Fischer, Karen M.; Abt, David
2011-03-01
Using a combination of long period seismic waveforms and SKS splitting measurements, we have developed a 3-D upper-mantle model (SAWum_NA2) of North America that includes isotropic shear velocity, with a lateral resolution of ˜250 km, as well as radial and azimuthal anisotropy, with a lateral resolution of ˜500 km. Combining these results, we infer several key features of lithosphere and asthenosphere structure. A rapid change from thin (˜70-80 km) lithosphere in the western United States (WUS) to thick lithosphere (˜200 km) in the central, cratonic part of the continent closely follows the Rocky Mountain Front (RMF). Changes with depth of the fast axis direction of azimuthal anisotropy reveal the presence of two layers in the cratonic lithosphere, corresponding to the fast-to-slow discontinuity found in receiver functions. Below the lithosphere, azimuthal anisotropy manifests a maximum, stronger in the WUS than under the craton, and the fast axis of anisotropy aligns with the absolute plate motion, as described in the hotspot reference frame (HS3-NUVEL 1A). In the WUS, this zone is confined between 70 and 150 km, decreasing in strength with depth from the top, from the RMF to the San Andreas Fault system and the Juan de Fuca/Gorda ridges. This result suggests that shear associated with lithosphere-asthenosphere coupling dominates mantle deformation down to this depth in the western part of the continent. The depth extent of the zone of increased azimuthal anisotropy below the cratonic lithosphere is not well resolved in our study, although it is peaked around 270 km, a robust result. Radial anisotropy is such that, predominantly, ξ > 1, where ξ= (Vsh/Vsv)2, under the continent and its borders down to ˜200 km, with stronger ξ in the bordering oceanic regions. Across the continent and below 200 km, alternating zones of weaker and stronger radial anisotropy, with predominantly ξ < 1, correlate with zones of small lateral changes in the fast axis direction of
Wave equation based microseismic source location and velocity inversion
NASA Astrophysics Data System (ADS)
Zheng, Yikang; Wang, Yibo; Chang, Xu
2016-12-01
The microseismic event locations and velocity information can be used to infer the stress field and guide hydraulic fracturing process, as well as to image the subsurface structures. How to get accurate microseismic event locations and velocity model is the principal problem in reservoir monitoring. For most location methods, the velocity model has significant relation with the accuracy of the location results. The velocity obtained from log data is usually too rough to be used for location directly. It is necessary to discuss how to combine the location and velocity inversion. Among the main techniques for locating microseismic events, time reversal imaging (TRI) based on wave equation avoids traveltime picking and offers high-resolution locations. Frequency dependent wave equation traveltime inversion (FWT) is an inversion method that can invert velocity model with source uncertainty at certain frequency band. Thus we combine TRI with FWT to produce improved event locations and velocity model. In the proposed approach, the location and model information are interactively used and updated. Through the proposed workflow, the inverted model is better resolved and the event locations are more accurate. We test this method on synthetic borehole data and filed data of a hydraulic fracturing experiment. The results verify the effectiveness of the method and prove it has potential for real-time microseismic monitoring.
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.
Poroelastic Wave Propagation With a 3D Velocity-Stress-Pressure Finite-Difference Algorithm
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Symons, N. P.; Bartel, L. C.
2004-12-01
Seismic wave propagation within a three-dimensional, heterogeneous, isotropic poroelastic medium is numerically simulated with an explicit, time-domain, finite-difference algorithm. A system of thirteen, coupled, first-order, partial differential equations is solved for the particle velocity vector components, the stress tensor components, and the pressure associated with solid and fluid constituents of the two-phase continuum. These thirteen dependent variables are stored on staggered temporal and spatial grids, analogous to the scheme utilized for solution of the conventional velocity-stress system of isotropic elastodynamics. Centered finite-difference operators possess 2nd-order accuracy in time and 4th-order accuracy in space. Seismological utility is enhanced by an optional stress-free boundary condition applied on a horizontal plane representing the earth's surface. Absorbing boundary conditions are imposed on the flanks of the 3D spatial grid via a simple wavefield amplitude taper approach. A massively parallel computational implementation, utilizing the spatial domain decomposition strategy, allows investigation of large-scale earth models and/or broadband wave propagation within reasonable execution times. Initial algorithm testing indicates that a point force density and/or moment density source activated within a poroelastic medium generates diverging fast and slow P waves (and possibly an S-wave)in accord with Biot theory. Solid and fluid particle velocities are in-phase for the fast P-wave, whereas they are out-of-phase for the slow P-wave. Conversions between all wave types occur during reflection and transmission at interfaces. Thus, although the slow P-wave is regarded as difficult to detect experimentally, its presence is strongly manifest within the complex of waves generated at a lithologic or fluid boundary. Very fine spatial and temporal gridding are required for high-fidelity representation of the slow P-wave, without inducing excessive
A new model of the Arctic crustal thickness from 3D gravity inversion
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, N. N.; Gaina, C.; Minakov, A.; Kashubin, S.
2015-12-01
The remarkable increase of new data collections and compilations for the Arctic region during the last decade motivate for a re-evaluation of our knowledge about the crustal structure and the tectonic evolution of the Arctic basins. 3D forward and inverse gravity modelling methods in the spectral domain (Minakov et al. 2012); lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density are integrated in the algorithm for derive the crustal thickness of the High Arctic region. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2015) was modified according to the most recent published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. Derived crustal thickness and Moho depth grids cover the area northward from 66° N and fit within a few kilometres with seismic crustal models for the most parts of the High Arctic region. Greater misfit in Moho depth between our results and seismic study (Chain & Lebedeva-Ivanova, 2015) under the northern Canada Basin suggest exceptional property of crust or/and mantel in this part of the Basin. Assumed mantle density of 3.25 kg/cm3provide the best fit for the region; it may indicate pervasive subcontinental lithospheric mantle (Goldstein et al., 2008) under the whole Arctic region. New results show a possible crustal connection between the Alpha and the Lomonosov ridges near the Canadian margin. The deepest Moho depth of c.34 km for Alpha-Mendeleev Ridge System is observed under the southern Mendeleev Ridge. The derived crustal thickness and Moho depth show a substantial improvement from the publicly available grids (CRUST1 (Laske et al., 2013
3D inversion of full gravity gradient tensor data using SL0 sparse recovery
NASA Astrophysics Data System (ADS)
Meng, Zhaohai
2016-04-01
We present a new method dedicated to the interpretation of full gravity gradient tensor data, based on SL0 sparse recovery inversion. The SL0 sparse recovery method aims to find out the minimum value of the objective function to fit the data function and to solve the non-zero solution to the objective function. Based on continuous iteration, we can easily obtain the final global minimum (namely the property and space attribute of the inversion target). We consider which type of tensor data combination produces the best inversion results based on the inversion results of different full gravity gradient tensor data combinations (separate tensor data and combined tensor data). We compare the recovered models obtained by inverting the different combinations of different gravity gradient tensor components to understand how different component combinations contribute to the resolution of the recovered model. Based on the comparison between the SL0 sparse recovery inversion results and the smoothest and focusing inversion results of the full gravity gradient tensor data, we show that SL0 sparse recovery inversion can obtain more stable and efficient inversion results with relatively sharp edge information, and that this method can also produce a stable solution of the inverse problem for complex geological structures. This new method to resolve very large full gravity gradient tensor datasets has the considerable advantage of being highly efficient; the full gravity gradient tensor inversion requires very little time. This new method is very effective in explaining the full gravity tensor which is very sensitive to small changes in local anomaly. The numerical simulation and inversion results of the compositional model indicates that including multiple components for inversion increases the resolution of the recovered density model and improves the structure delineation. We apply our inversion method to invert the gravity gradient tensor survey data from the Vinton salt
Toward precise solution of one-dimensional velocity inverse problems
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.
NASA Astrophysics Data System (ADS)
Ross, Z.; Ben-Zion, Y.; Zhu, L.; Graves, R. W.
2015-12-01
We perform a full source tensor inversion of several M > 4 earthquakes that occurred in the San Jacinto fault zone in southern California, with an emphasis on resolving signatures of volumetric source changes. A previous study on these events with Green's functions based on a 1D velocity model identified statistically significant explosive isotropic components (Ross et al. 2015). Here we use the SCEC 3D Community Velocity Model to derive Green's functions with source-receiver reciprocity and finite-difference calculations based on the code of Graves (1996). About 50 stations are used at epicentral distances of up to 55 km. The inversions are performed using the 'generalized Cut and Paste' method, which includes CLVD and isotropic components (Zhu and Ben-Zion 2013). The derived source tensors are compared to the results of the previous study based on the simplified 1D velocity model. The results are analyzed with bootstrap analysis to estimate uncertainties involved. Additional tests are performed using synthetic waveforms to study the effects of neglecting various features on the source inversions.
NASA Astrophysics Data System (ADS)
Środa, Piotr; Dec, Monika
2016-04-01
The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Extremal inversion of lunar travel time data. [seismic velocity structure
NASA Technical Reports Server (NTRS)
Burkhard, N.; Jackson, D. D.
1975-01-01
The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.
NASA Astrophysics Data System (ADS)
Moorkamp, M.; Fishwick, S.; Jones, A. G.
2015-12-01
Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.
Anderson, Jeff R; Klucznik, Richard; Diaz, Orlando; Zhang, Y Jonathan; Britz, Gavin W; Grossman, Robert G; Karmonik, Christof
2015-01-01
Phase contrast MRI (pcMRI) was used to measure flow before and after placement of a flow diverter (n = 3). Decreases from 18% to 31% in flow velocity were seen in the inflow jet of the aneurysms. Flow patterns were also compared. It was observed that the gross aneurysmal flow patterns were maintained after flow diverter placement despite decreased fluid velocities. All measurements were carried out in 3D printed aneurysm replicas.
Low-Velocity Impact Response and Finite Element Analysis of Four-Step 3-D Braided Composites
NASA Astrophysics Data System (ADS)
Sun, Baozhong; Zhang, Yan; Gu, Bohong
2013-08-01
The low-velocity impact characters of 3-D braided carbon/epoxy composites were investigated from experimental and finite element simulation approaches. The quasi-static tests were carried out at a constant velocity of 2 mm/min on MTS 810.23 material tester system to obtain the indentation load-displacement curves and indentation damages. The low-velocity tests were conducted at the velocities from 1 m/s to 6 m/s (corresponding to the impact energy from 3.22 J to 116 J) on Instron Dynatup 9250 impact tester. The peak force, energy for peak force, time to peak force, and total energy absorption were obtained to determine the impact responses of 3-D braided composites. A unit cell model was established according to the microstructure of 3-D braided composites to derive the constitutive equation. Based on the model, a user-defined material subroutine (VUMAT) has been compiled by FORTRAN and connected with commercial finite element code ABAQUS/Explicit to calculate the impact damage. The unit cell model successfully predicted the impact response of 3-D braided composites. Furthermore, the stress wave propagation and failure mechanisms have been revealed from the finite element simulation results and ultimate damage morphologies of specimens.
Realistic 3D coherent transfer function inverse filtering of complex fields
Cotte, Yann; Toy, Fatih M.; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-01-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation. PMID:21833359
Realistic 3D coherent transfer function inverse filtering of complex fields.
Cotte, Yann; Toy, Fatih M; Arfire, Cristian; Kou, Shan Shan; Boss, Daniel; Bergoënd, Isabelle; Depeursinge, Christian
2011-08-01
We present a novel technique for three-dimensional (3D) image processing of complex fields. It consists in inverting the coherent image formation by filtering the complex spectrum with a realistic 3D coherent transfer function (CTF) of a high-NA digital holographic microscope. By combining scattering theory and signal processing, the method is demonstrated to yield the reconstruction of a scattering object field. Experimental reconstructions in phase and amplitude are presented under non-design imaging conditions. The suggested technique is best suited for an implementation in high-resolution diffraction tomography based on sample or illumination rotation.
NASA Astrophysics Data System (ADS)
Gao, J.; Zhang, H.
2015-12-01
Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones
3D Gravity Inversion of Northern Sinai Peninsula: A Case Study
NASA Astrophysics Data System (ADS)
Khalil, Mohamed A.; Santos, Fernando M.
2014-07-01
The Sinai Peninsula has attracted the attention of many geological and geophysical studies as it is influenced and bounded by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of the Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea-Gulf of Aqaba rift. Additionally, the shear zones inside Sinai such as the Ragabet El-Naam and Minsherah-Abu Kandu Shear Zones. Each of these major tectonic events has affected dramatically the structure evolution of the northern Sinai area. The present paper estimates the 3D density contrast model using the gravity data of northern Sinai. The estimated 3D density contrast model elucidated the peculiarities of the main structural elements in the region. The estimated 3D density contrast model showed the high and low gravity anomalies that form the main mountains and main valleys in northern Sinai. The estimated low density zones are in agreement with the inferred faults resulting from the first horizontal derivative. Comparing the 3D model with the tectonic history of the region and the results of the first horizontal derivative and least square separation increased the reliability of the model.
3-D Sound Propagation and Acoustic Inversions in Shallow Water Oceans
2012-12-19
fixed arc-length grid.] 10 Modeling comparisons Propagate over seamount , off center Source at 250 m, 100Hz 4 cases - (1) Nx2D, (2) Cartesian, (3...cylindrical PE. Figure 2. PE model comparisons I Sound propagation over a seamount are computed by different 3-D PE models, including (1) Nx2- D (2
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Kelbert, A.
2011-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through the EMScope component of EarthScope. MT deployments in 2006-2011 have acquired data at 325 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km). The MT sites span a rectangular area from NW Washington to NW Colorado. Here we present results of a 3-D inversion of the full data set. A number of conductive and resistive features appear consistently in the crust and upper mantle in essentially all of a large suite of 3-D inverse solutions. Extensive areas of high conductivity are found in the lower crust (up to a depth of ~ 40 km) beneath the Basin & Range in southeastern Oregon, as imaged by Patro and Egbert (2008). In our new model, this feature extends further to the south and to the east, where it merges with somewhat deeper (uppermost mantle) conductivities beneath the Yellowstone-Snake River Plain. This deeper feature, which extends from Yellowstone to the SW into northeastern Nevada, coincides with the track of the Yellowstone hotspot discussed e.g., in Smith et. al. (2008). The lower crust and the uppermost mantle in the northeastern part of the domain, covering the area from eastern Washington to Montana and continuing south to Wyoming, is generally resistive, with a few localized exceptions. This resistive zone coincides with high velocities discussed and interpreted, e.g., by Yang et. al. (2008) as thick, stable Proterozoic lithosphere. A number of large-scale anomalous features also appear consistently in the upper mantle, at depths of ~ 50 km to 300 km. Most striking is a zone of high resistivity on the western edge of the domain, beneath western Oregon, Washington and northern California in the area occupied by oceanic lithosphere of the Juan de Fuca Plate, which has subducted beneath the relatively more conductive
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
NASA Astrophysics Data System (ADS)
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2017-02-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Compartmentalization of the Coso East Flank Geothermal Field Imaged by 3-D Full-tensor MT Inversion
NASA Astrophysics Data System (ADS)
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2016-11-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2 - 5 Ohm-m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT dataset as well as the degree of modeling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60o) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modeling to test the best fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally-controlled by an unmapped blind East Flank fault zone.
NASA Astrophysics Data System (ADS)
di Stefano, R.; Tondi, R.; de Luca, L.; Lippitsch, R.; Sandoval, S.; Kissling, E.
2003-04-01
The complex lithosphere structure of the Italian region leads to difficulties in uniquely interpreting the results obtained with geophysical investigation methods. Relating to P waves velocity models, the geometry of the moho is the main first order structure influencing the interpretation of controlled source seismology (CSS) profile data and results from local earthquake tomography (LET). Moreover, the crustal structures complexities, though poorly resolved by teleseismic tomography, strongly distort teleseismic wave fronts and thus influence teleseismic traveltimes. In 1996 a method was developed by F. Waldhauser to determine the 3D topography and lateral continuity of seismic interfaces using 2D-derived controlled-source seismic reflector data. This method has been successfully applied to retrieve the moho geometry in the complex Alpine region with the aim to obtain the simplest possible 3D structure consistent with all reflector data and error estimates. For the Alpine region a 3D crustal P-wave velocity model has been thus developed from comparative use of published information from active and passive sources surveys. Here we present the extension of this map to the Italian peninsula to include Northern and Central Apennines. Information from the CROP project and from other CSS experiments performed in the past 40 years, both on land and offshore, has been included to cover the whole area. The first order features of Adriatic and Tyrrhenian moho have been recovered and a Vp crustal velocity model has been produced. For the Northern Apennines we compare the newly derived crustal model with the 3D structure of the crust obtained by the inversion of P-wave first arrivals picked on the CSS data, and of gravity data collected on land and off-shore (see Tondi et al., session SM3).
NASA Astrophysics Data System (ADS)
Sheng, J.; Meng, H.
This research explores a novel technique, using Genetic Algorithm Particle Pairing (GAPP) to extract three-dimensional (3D) velocity fields of complex flows. It is motivated by Holographic Particle Image Velocimetry (HPIV), in which intrinsic speckle noise hinders the achievement of high particle density required for conventional correlation methods in extracting 3D velocity fields, especially in regions with large velocity gradients. The GA particle pairing method maps particles recorded at the first exposure to those at the second exposure in a 3D space, providing one velocity vector for each particle pair instead of seeking statistical averaging. Hence, particle pairing can work with sparse seeding and complex 3D velocity fields. When dealing with a large number of particles from two instants, however, the accuracy of pairing results and processing speed become major concerns. Using GA's capability to search a large solution space parallelly, our algorithm can efficiently find the best mapping scenarios among a large number of possible particle pairing schemes. During GA iterations, different pairing schemes or solutions are evaluated based on fluid dynamics. Two types of evaluation functions are proposed, tested, and embedded into the GA procedures. Hence, our Genetic Algorithm Particle Pairing (GAPP) technique is characterized by robustness in velocity calculation, high spatial resolution, good parallelism in handling large data sets, and high processing speed on parallel architectures. It has been successfully tested on a simple HPIV measurement of a real trapped vortex flow as well as a series of numerical experiments. In this paper, we introduce the principle of GAPP, analyze its performance under different parameters, and evaluate its processing speed on different computer architectures.
NASA Astrophysics Data System (ADS)
Macquet, Marie; Paul, Anne; Pedersen, Helle A.; Villaseñor, Antonio; Chevrot, Sébastien; Sylvander, Matthieu; Wolyniec, David; Pyrope Working Group
2014-10-01
The lithospheric architecture of the Pyrenees is still uncertain and highly debated. Here, we provide new constraints from a high-resolution 3-D S-wave velocity model of the Pyrenees and the adjacent foreland basins. This model is obtained from ambient noise tomography on records of temporary and permanent seismic arrays installed in southwestern France and northern Spain. We first computed group velocity maps for Rayleigh waves in the 5 to 55 s period range using noise correlation stacks at 1500-8500 station pairs. As the crust is very heterogeneous, poor results were obtained using a single starting model in a linearized inversion of group velocity dispersion curves for the shear wave structure. We therefore built a starting model for each grid node by full exploration of the model space. The resulting 3-D shear wave velocity model is compared to data from previous geophysical studies as a validation test. Despite the poor sensitivity of surface waves to seismic discontinuities, the geometry of the top of the basement and the Moho depth are retrieved well, except along the Cantabrian coast. Major reflectors of the ECORS deep seismic sounding profiles in the central and western Pyrenees coincide with sharp velocity gradients in our velocity model. We retrieve the difference between the thicker Iberian crust and the thinner European crust, the presence of low-velocity material of the Iberian crust underthrust beneath the European crust in the central Pyrenees, and the structural dissymmetry between the South Pyrenean Zone and the North Pyrenean Zone at the shallow crustal level. In the Labourd-Mauléon-Arzacq region (western Pyrenees), there is a high S-wave velocity anomaly at 20-30 km in depth, which might explain the positive Bouguer anomaly of the Labourd Massif. This high-velocity lower crust, which is also detected beneath the Parentis area, might be an imprint of the Albian-Aptian rifting phase. The southeastern part of the Massif Central has an unusual
NASA Astrophysics Data System (ADS)
Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio
2016-02-01
The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment
Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect
Newman, Gregory
2001-10-24
NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.
NASA Astrophysics Data System (ADS)
Santhanam, Anand P.; Min, Yugang; Mudur, Sudhir P.; Rastogi, Abhinav; Ruddy, Bari H.; Shah, Amish; Divo, Eduardo; Kassab, Alain; Rolland, Jannick P.; Kupelian, Patrick
2010-07-01
A method to estimate the deformation operator for the 3D volumetric lung dynamics of human subjects is described in this paper. For known values of air flow and volumetric displacement, the deformation operator and subsequently the elastic properties of the lung are estimated in terms of a Green's function. A Hyper-Spherical Harmonic (HSH) transformation is employed to compute the deformation operator. The hyper-spherical coordinate transformation method discussed in this paper facilitates accounting for the heterogeneity of the deformation operator using a finite number of frequency coefficients. Spirometry measurements are used to provide values for the airflow inside the lung. Using a 3D optical flow-based method, the 3D volumetric displacement of the left and right lungs, which represents the local anatomy and deformation of a human subject, was estimated from 4D-CT dataset. Results from an implementation of the method show the estimation of the deformation operator for the left and right lungs of a human subject with non-small cell lung cancer. Validation of the proposed method shows that we can estimate the Young's modulus of each voxel within a 2% error level.
Structural results for La Palma island using 3-D gravity inversion
NASA Astrophysics Data System (ADS)
Camacho, A. G.; FernáNdez, J.; GonzáLez, P. J.; Rundle, J. B.; Prieto, J. F.; Arjona, A.
2009-05-01
A recent gravity survey composed of 317 bench marks all over the island of La Palma (Canary Islands) is used, in combination with satellite data for regional aspects, to obtain results about structural properties of the island connected with the tectonic environment and local volcanism. To that end, a nonlinear three-dimensional gravity inversion approach is considered. The inversion scheme provides, in a nonsubjective form, the geometry of the anomalous bodies constructed in a random growth process. Results from the inversion can be interpreted in the framework of the geologic evolution of this ocean island volcano as a complex composite volcano with a large central body with high-density corresponding to the older intrusive part of the basalt complex. New unexpected features are enlightened, such as large thermal anomalies in the upper mantle southward of La Palma, as well as fracture en echelon zones associable to a slow active process of dislocation related to the recent volcanism in the southern half of the island. The results obtained for La Palma as a test site testify to the usefulness of the developed gravity inversion methodology for structural studies on islands in general.
Tests and Comparisons of Velocity-Inversion Techniques
NASA Astrophysics Data System (ADS)
Welsch, B. T.; Abbett, W. P.; De Rosa, M. L.; Fisher, G. H.; Georgoulis, M. K.; Kusano, K.; Longcope, D. W.; Ravindra, B.; Schuck, P. W.
2007-12-01
Recently, several methods that measure the velocity of magnetized plasma from time series of photospheric vector magnetograms have been developed. Velocity fields derived using such techniques can be used both to determine the fluxes of magnetic energy and helicity into the corona, which have important consequences for understanding solar flares, coronal mass ejections, and the solar dynamo, and to drive time-dependent numerical models of coronal magnetic fields. To date, these methods have not been rigorously tested against realistic, simulated data sets, in which the magnetic field evolution and velocities are known. Here we present the results of such tests using several velocity-inversion techniques applied to synthetic magnetogram data sets, generated from anelastic MHD simulations of the upper convection zone with the ANMHD code, in which the velocity field is fully known. Broadly speaking, the MEF, DAVE, FLCT, IM, and ILCT algorithms performed comparably in many categories. While DAVE estimated the magnitude and direction of velocities slightly more accurately than the other methods, MEF's estimates of the fluxes of magnetic energy and helicity were far more accurate than any other method's. Overall, therefore, the MEF algorithm performed best in tests using the ANMHD data set. We note that ANMHD data simulate fully relaxed convection in a high-β plasma, and therefore do not realistically model photospheric evolution.
NASA Astrophysics Data System (ADS)
Timur, Emre
2016-04-01
There are numerous geophysical methods used to investigate geothermal areas. The major purpose of this magnetic survey is to locate the boudaries of active hydrothermal system in the South of Gediz Graben in Salihli (Manisa/Turkey). The presence of the hydrothermal system had already been inferred from surface evidence of hydrothermal activity and drillings. Firstly, 3-D prismatic models were theoretically investigated and edge detection methods were utilized with an iterative inversion method to define the boundaries and the parameters of the structure. In the first step of the application, it was necessary to convert the total field anomaly into a pseudo-gravity anomaly map. Then the geometric boudaries of the structures were determined by applying a MATLAB based software with 3 different edge detection algorithms. The exact location of the structures were obtained by using these boundary coordinates as initial geometric parameters in the inversion process. In addition to these methods, reduction to pole and horizontal gradient methods were applied to the data to achieve more information about the location and shape of the possible reservoir. As a result, the edge detection methods were found to be successful, both in the field and as theoretical data sets for delineating the boundaries of the possible geothermal reservoir structure. The depth of the geothermal reservoir was determined as 2,4 km from 3-D inversion and 2,1 km from power spectrum methods.
NASA Astrophysics Data System (ADS)
Hanson-Hedgecock, S.; Wagner, L.; Fouch, M. J.; James, D. E.
2011-12-01
We present the results of inversions for 3D shear velocity structure of the crust and uppermost mantle beneath the High Lava Plains, Oregon using data from ~300 broadband stations of the High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA). The High Lava Plains (HLP) is a WNW progressive silicic volcanism, initiated ~14.5 Ma near the Owyhee Plateau and is currently active at the Newberry caldera. The Yellowstone Snake River Plain (YSRP) volcanic track is temporally contemporaneous with the HLP, but trends to the northeast, parallel to North American plate motion. The cause of volcanism along the HLP is debated and has been variously attributed to Basin and Range extension, back-arc extension, rollback of the subducting Juan de Fuca plate, and an intra-continental hotspot/plume source. Additionally the relationship between the HLP, YSRP, and Columbia River Basalts (CRB), the three major post-17Ma intracontinental volcanic provinces of the Pacific Northwest, is not well understood. The 3D shear velocity structure of the crust and uppermost mantle to ~65km depth is determined from fundamental mode Rayleigh wave ambient noise phase velocity maps at periods up to 40s. The use of ambient noise tomography with the dense station spacing of the combined High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA) datasets allows the shallow structure of the High Lava Plains to be imaged in finer detail than previous ANT studies that focused on the entire western United States. In the crust, low velocities in central Oregon are observed in association with the Brothers Fault Zone, Jordan and Diamond Craters and Steens Mountain regions in addition to the strong low velocity zone associated with the Cascades to the west. To the east of the HLP, low velocities are observed to about 10km depth in the western SRP. In the eastern SRP we observe a shallow veneer of low velocities underlain by a ~10km thick high velocity
NASA Astrophysics Data System (ADS)
Tang, S.; Zhang, M.
2013-12-01
Based on the constrained variational analysis (CVA) algorithm developed by Zhang and Lin (1997), a 3-dimensional (3D) version of CVA is developed. The new algorithm used gridded surface and TOA observations as constraints to adjust atmospheric state variables in each grid point to satisfy column-integrated mass, moisture and static energy conservation. From the process of adjustment a set of high-quality 3D large-scale forcing data (vertical velocity and horizontal advections) can be derived to drive Single-Column models (SCM), Cloud-Resolving Models (CRM) and Large-Eddy Simulations (LES) to evaluate and improve parameterizations. Since the 3D CVA can adjust gridded state variables from any data source with observed precipitation, radiation and surface fluxes, it also gives a potential possibility to use this algorithm in data assimilation system to assimilate precipitation and radiation data.
NASA Astrophysics Data System (ADS)
Latorre, D.; Mirabella, F.; Chiaraluce, L.; Trippetta, F.; Lomax, A.
2016-11-01
The accuracy of earthquake locations and their correspondence with subsurface geology depends strongly on the accuracy of the available seismic velocity model. Most modern methods to construct a velocity model for earthquake location are based on the inversion of passive source seismological data. Another approach is the integration of high-resolution geological and geophysical data to construct deterministic velocity models in which earthquake locations can be directly correlated to the geological structures. Such models have to be kinematically consistent with independent seismological data in order to provide precise hypocenter solutions. We present the Altotiberina (AT) seismic model, a three-dimensional velocity model for the Upper Tiber Valley region (Northern Apennines, Italy), constructed by combining 300 km of seismic reflection profiles, six deep boreholes (down to 5 km depth), detailed data from geological surveys and direct measurements of P and S wave velocities performed in situ and in laboratory. We assess the robustness of the AT seismic model by locating 11,713 earthquakes with a nonlinear, global-search inversion method and comparing the probabilistic hypocenter solutions to those calculated in three previously published velocity models, constructed by inverting passive seismological data only. Our results demonstrate that the AT seismic model is able to provide higher-quality hypocenter locations than the previous velocity models. Earthquake locations are consistent with the subsurface geological structures and show a high degree of spatial correlation with specific lithostratigraphic units, suggesting a lithological control on the seismic activity evolution.
Full-wave Moment Tensor and Tomographic Inversions Based on 3D Strain Green Tensor
2010-01-31
G. Jahnke, Wave propagation in 3D spherical sections: effects of subduction zones , Phys. Earth Planet. Inter., 132, 219-234, 2002. Komastitsch, D...is at scales smaller than the Fresnel zone . For example, a 1-Hz P/Pn wave recorded by a receiver ~1000 km from the source has a Fresnel zone width...approach, Eos Trans. AGU, 89(53), Fall Meet. Suppl., abstract T11E-06 Invited, 2008b. Sigloch, K., N. McQuarrie, G. Nolet, Two-stage subduction
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
An inverse wing design method was developed around an existing transonic wing analysis code. The original analysis code, TAWFIVE, has as its core the numerical potential flow solver, FLO30, developed by Jameson and Caughey. Features of the analysis code include a finite-volume formulation; wing and fuselage fitted, curvilinear grid mesh; and a viscous boundary layer correction that also accounts for viscous wake thickness and curvature. The development of the inverse methods as an extension of previous methods existing for design in Cartesian coordinates is presented. Results are shown for inviscid wing design cases in super-critical flow regimes. The test cases selected also demonstrate the versatility of the design method in designing an entire wing or discontinuous sections of a wing.
Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R
2010-05-28
The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used.
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...
2017-02-06
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with goodmore » accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less
Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel
2017-01-01
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.
NASA Astrophysics Data System (ADS)
Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel
2017-02-01
Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Ertekin, Can
2015-04-01
Concern about sedimentary basins is generally related to their genetic and economic significance. Analysis of sedimentary basins requires the acquisition of data through outcrop studies and subsurface investigations that encompass drilling and geophysics. These data are commonly analysed by computer-assisted techniques. One of these methods is based on analysing gravity anomalies to compute the depth of sedimentary basin-basement rock interface. Sedimentary basins produce negative gravity anomalies, because they have mostly lower densities than that of the surrounding basement rocks. Density variations in a sedimentary fill increase rapidly at shallower depths then gradually reach the density of surrounding basement rocks due to the geostatic pressure i.e. compaction. The decrease of the density contrast can be easily estimated by a quadratic function. Hence, if the densities are chosen properly and the regional background is removed correctly, the topographical relief of the sedimentary basin-basement rock interface might be estimated by the inversion of the gravity data using an exponential density-depth relation. Three dimensional forward modelling procedure can be carried out by introducing a Cartesian coordinate system, and placing vertical prisms just below observation points on the grid plane. Depth to the basement, namely depths to the bottom of the vertical prisms are adjusted in an iterative manner by minimizing the differences between measured and calculated residual gravity anomalies. In this study, we present a MATLAB-based inversion code for the interpretation of sedimentary basins by approximating the topographical relief of sedimentary basin-basement rock interfaces. For a given gridded residual gravity anomaly map, the procedure estimates the bottom depths of vertical prisms by considering some published formulas and assumptions. The utility of the developed inversion code was successfully tested on theoretically produced gridded gravity data set
On the critical one-component velocity regularity criteria to 3-D incompressible MHD system
NASA Astrophysics Data System (ADS)
Liu, Yanlin
2016-05-01
Let (u , b) be a smooth enough solution of 3-D incompressible MHD system. We prove that if (u , b) blows up at a finite time T*, then for any p ∈ ] 4 , ∞ [, there holds ∫0T* (‖u3(t‧) ‖ H ˙ 1/2 +2/p p + ‖b(t‧) ‖ H ˙ 1/2 +2/p p) dt‧ = ∞. We remark that all these quantities are in the critical regularity of the MHD system.
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling
2011-09-01
Explosion Monitoring Technologies 101 low-velocity anomalies in Fig. 1 merge continuously above 175 km. This possibly explains why igneous rocks from...and nuclear monitoring. Gravity measurements can provide constraints on spatial variations in (mass) density of rock in the subsurface, but like any
NASA Astrophysics Data System (ADS)
Martin, Roland; Monteiller, Vadim; Chevrot, Sébastien; Wang, Yi; Komatitsch, Dimitri; Dufréchou, Grégory
2015-04-01
We describe here a method of inversion applied to seismic data sets constrained by gravity data at the regional scale. This will allow us to obtain robust models of P and S wave velocities but also of density, providing key constraints on the composition and thermal state of the lithosphere. Our approach relies on teleseimic waves, which illuminate the medium from below. We have developped a hybrid method in which a wave propagation method at the global scale (DSM/Direct solution method) is coupled with a spectral element method at the regional scale (Monteiller et al. 2013). With the spectral element method, we are able to model the 3D wave propagation effects in a computational domain of 400km long x 400km wide and 200 km deep, for an incident teleseismic wavefront introduced at the boundaries of this domain with periods as short as 2 s. The DSM global method allows to compute this incident field for a spherical Earth model. We use a multi-scale joint inversion of both gravity and seismic waveform data, accounting for the long wavelengths of the gravity field taken from a global model. In terms of inversion technique, we have validated an adjoint method for the inversion of seismic waveforms. An optimized BFGS inversion technique is used to minimize the difference between observed and computed full waveforms. The gradient of the misfit function gives the direction over which the model must be perturbed to minimize this difference. At each step of the inversion procedure we choose an optimal step length that accelerates the minimization. This is the crucial ingredient that allows us to build an efficient iterative full waveform inversion. We have extended this method by incorporating gravity data provided by the BGI/Bureau Gravimétrique International into the inversion. If the waveforms allow us to constrain the seismic velocities, they are less sensitive to the structure in density, which gives independent and crucial information to constrain the nature of rocks
NASA Astrophysics Data System (ADS)
Suess, P.; Shaw, J. H.; Komatitsch, D.; Tromp, J.
2001-12-01
We present a 3D velocity model and a 3D density model of the LA basin. The LA basin velocity model was constructed using sonic log and stacking velocity information, provided by oil industry sources and not previously incorporated into southern California velocity models. The density model is based upon a new database of approximately 300 oil industry density logs from across the Los Angeles basin. These logs use gamma ray emissions to determine formation density at samples of about one meter. We have developed an empirical relation between sonic velocity and density by comparing data from approximately 30 wells in which we have both sonic and density logs. For the remaining wells, we have derived relationships between depth and density, and characterized this relationship for the three main stratigraphic sub-divisions of the SCEC Phase 2 model (Quaternary to base Pico Fm., top Repetto Fm. to top Mohnian, and top Mohnian to basement). The density-depth and density-velocity relations will provide independent rules that can be employed to define density and velocity structure in areas where data does not exist, or in other areas with similar lithology to the Los Angeles basin. We use a spectral element method (SEM) for simulation of seismic wave propagation which is currently being implemented on a 156-node Pentium PC cluster at Cal Tech. Preliminary work shows that SEM results using a 1D velocity model for southern California compare very well to discrete-wavenumber results. Both the density structure and velocity structure must be defined in a 3D model for its use in simulations of seismic wave propagation with a spectral element method, to predict the distribution of hazardous ground shaking during large events. Previous work has typically used density values which were predicted by the sonic velocity values; use of our measured density values should provide more accurate ground shaking predictions, and comparison to previous results will provide a useful
Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2001-01-01
A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.
Validation of 3D Seismic Velocity Models Using the Spectral Element Method
NASA Astrophysics Data System (ADS)
Maceira, M.; Larmat, C. S.; Porritt, R. W.; Higdon, D.; Allen, R. M.
2012-12-01
For over a decade now, many research institutions have been focusing on addressing the Earth's 3D heterogeneities and complexities by improving tomographic methods. Utilizing dense array datasets, these efforts have led to unprecedented 3D seismic images, but little is done in terms of model validation or to provide any absolute assessment of model uncertainty. Furthermore, the question of "How good is a 3D geophysical model at representing the Earth's true physics? " remains largely not addressed in a time when 3D Earth models are used for societal and energy security. In the last few years, new horizons have opened up in earth structure imaging, with the advent of new numerical and mathematical methods in computational seismology and statistical sciences. We use these methods to tackle the question of model validation taking advantage of unique and extensive High Performance Computing resources available at Los Alamos National Laboratory. We present results from a study focused on validating 3D models for the Western USA generated using both ray-theoretical and finite-frequency approximations. In this manner we do not validate just the model but also the imaging technique. For this test case, we utilize the Dynamic North America (DNA) model family of UC Berkeley, as they are readily available in both formulations. We evaluate model performances by comparing observed and synthetic seismograms generated using the Spectral Element Method. Results show that both, finite-frequency and ray-theoretical DNA09 models, predict the observations well. Waveform cross-correlation coefficients show a difference in performance between models obtained with the finite-frequency or ray-theory limited to smallest periods (<15s), with no perceptible difference at longer periods (50-200s). At those shortest periods, and based on statistical analyses on S-wave phase delay measurements, finite-frequency shows an improvement over ray theory. We are also investigating the breakdown of ray
Bhattacharya, Jishnu; Wolverton, C
2013-05-07
Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.
Dirac Circles and Quantum Hall Effect in 3D Inversion-Symmetric Crystals
NASA Astrophysics Data System (ADS)
Wieder, Benjamin J.; Kim, Youngkuk; Kane, C. L.
2015-03-01
In the presence of inversion and time-reversal symmetries, materials with weak spin-orbit coupling may host topologically protected Dirac line nodes. A band inversion transition in these systems can produce a line node which closes on itself and forms a protected Dirac circle. The surfaces parallel to this circle host zero-energy puddles in momentum space which are flat if the inverting bands have the same effective mass. In cases with differing effective masses, the surface modes disperse, but the bulk Dirac circle remains gapless. Adding an external magnetic field perpendicular to this circle creates surface Landau levels, whose number can be controlled by tuning the field strength. When a new level is created or destroyed, the bulk becomes gapless and the zero-temperature bulk conductivity displays a sharp peak. The sequence of conductivity peaks describes an unusual manifestation of the integer quantum hall effect. We characterize surface and bulk transport as a function of magnetic field strength and in the presence of disorder.
A numerical method for the inverse problem of cell traction in 3D
NASA Astrophysics Data System (ADS)
Vitale, G.; Preziosi, L.; Ambrosi, D.
2012-09-01
Force traction microscopy is an inversion method that allows us to obtain the stress field applied by a living cell on the environment on the basis of a pointwise knowledge of the displacement produced by the cell itself. This classical biophysical problem, usually addressed in terms of Green’s functions, can be alternatively tackled in a variational framework. In such a case, a variation of the error functional under suitable regularization is operated in view of its minimization. This setting naturally suggests the introduction of a new equation, based on the adjoint operator of the elasticity problem. In this paper, we illustrate a numerical strategy of the inversion method that discretizes the partial differential equations associated with the optimal control problem by finite elements. A detailed discussion of the numerical approximation of a test problem (with known solution) that contains most of the mathematical difficulties of the real one allows a precise evaluation of the degree of confidence that one can achieve in the numerical results.
NASA Astrophysics Data System (ADS)
Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.
2012-12-01
collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.
NASA Astrophysics Data System (ADS)
Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean
2017-01-01
We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
A joint inversion for shear velocity and anisotropy: the Woodlark Rift, Papua New Guinea
NASA Astrophysics Data System (ADS)
Eilon, Zachary; Abers, Geoffrey A.; Gaherty, James B.
2016-08-01
Trade-offs between velocity and anisotropy heterogeneity complicate the interpretation of differential traveltime data and have the potential to bias isotropic tomographic models. By constructing a simple parametrisation to describe an elastic tensor with hexagonal symmetry, we find analytic solutions to the Christoffel equations in terms of fast and slow horizontal velocities that allow us to simultaneously invert differential traveltime data and splitting data from teleseismic S arrivals to recover 3-D velocity and anisotropy structure. This technique provides a constraint on the depth-extent of shallow anisotropy, otherwise absent from interpretations based on SKS splitting alone. This approach is well suited to the young Woodlark Rift, where previous studies have found strong velocity variation and substantial SKS splitting in a continental rift with relatively simple geometry. This study images a low-velocity rift axis with ≤4 per cent spreading-parallel anisotropy at 50-100 km depth that separates regions of pre-existing lithospheric fabric, indicating the synchronous development of extensional crystallographic preferred orientation and lithospheric thinning. A high-velocity slab fragment north of the rift axis is associated with strike-parallel anisotropic fast axes, similar to that seen in the shallow mantle of some subduction zones. In addition to the insights provided by the anisotropy structure, the improvement in fit to the differential traveltime data demonstrates the merit to a joint inversion that accounts for anisotropy.
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2015-02-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
Estimating 3D positions and velocities of projectiles from monocular views.
Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P
2009-05-01
In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Yoon, H.; Martinez, M. J.
2015-12-01
Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.
2006-01-01
A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.
Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.
1996-01-01
An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.
Development of direct-inverse 3-D methods for applied transonic aerodynamic wing design and analysis
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1989-01-01
Progress in the direct-inverse wing design method in curvilinear coordinates has been made. This includes the remedying of a spanwise oscillation problem and the assessment of grid skewness, viscous interaction, and the initial airfoil section on the final design. It was found that, in response to the spanwise oscillation problem that designing at every other spanwise station produced the best results for the cases presented, a smoothly varying grid is especially needed for the accurate design at the wing tip, the boundary layer displacement thicknesses must be included in a successful wing design, the design of high and medium aspect ratio wings is possible with this code, and the final airfoil section designed is fairly independent of the initial section.
Hall-Effect Sign Inversion in a Realizable 3D Metamaterial
NASA Astrophysics Data System (ADS)
Kadic, Muamer; Schittny, Robert; Bückmann, Tiemo; Kern, Christian; Wegener, Martin
2015-04-01
In 2009, Briane and Milton proved mathematically the existence of three-dimensional isotropic metamaterials with a classical Hall coefficient that is negative with respect to that of all of the metamaterial constituents. Here, we significantly simplify their blueprint towards an architecture composed of only a single-constituent material in vacuum or air, which can be seen as a special type of porosity. We show numerically that the sign of the Hall voltage is determined by a separation parameter between adjacent tori. This qualitative behavior is robust even for only a small number of metamaterial unit cells. The combination of simplification and robustness brings experimental verification of this striking sign inversion into reach. Furthermore, we provide a simple intuitive explanation of the underlying physical mechanism.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
NASA Astrophysics Data System (ADS)
Balkaya, Çağlayan; Ekinci, Yunus Levent; Göktürkler, Gökhan; Turan, Seçil
2017-01-01
3D non-linear inversion of total field magnetic anomalies caused by vertical-sided prismatic bodies has been achieved by differential evolution (DE), which is one of the population-based evolutionary algorithms. We have demonstrated the efficiency of the algorithm on both synthetic and field magnetic anomalies by estimating horizontal distances from the origin in both north and east directions, depths to the top and bottom of the bodies, inclination and declination angles of the magnetization, and intensity of magnetization of the causative bodies. In the synthetic anomaly case, we have considered both noise-free and noisy data sets due to two vertical-sided prismatic bodies in a non-magnetic medium. For the field case, airborne magnetic anomalies originated from intrusive granitoids at the eastern part of the Biga Peninsula (NW Turkey) which is composed of various kinds of sedimentary, metamorphic and igneous rocks, have been inverted and interpreted. Since the granitoids are the outcropped rocks in the field, the estimations for the top depths of two prisms representing the magnetic bodies were excluded during inversion studies. Estimated bottom depths are in good agreement with the ones obtained by a different approach based on 3D modelling of pseudogravity anomalies. Accuracy of the estimated parameters from both cases has been also investigated via probability density functions. Based on the tests in the present study, it can be concluded that DE is a useful tool for the parameter estimation of source bodies using magnetic anomalies.
On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids
NASA Astrophysics Data System (ADS)
Kaus, B.; Pusok, A. E.; Popov, A.
2015-12-01
The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation
NASA Astrophysics Data System (ADS)
Mair, H. D.; Ciorau, P.; Owen, D.; Hazelton, T.; Dunning, G.
2000-05-01
Two ultrasonic simulation packages: Imagine 3D and SIMSCAN have specifically been developed to solve the inverse problem for blade root and rotor steeple of low-pressure turbine. The software was integrated with the 3D drawing of the inspected parts, and with the dimensions of linear phased-array probes. SIMSCAN simulates the inspection scenario in both optional conditions: defect location and probe movement/refracted angle range. The results are displayed into Imagine 3-D, with a variety of options: rendering, display 1:1, grid, generated UT beam. The results are very useful for procedure developer, training and to optimize the phased-array probe inspection sequence. A spreadsheet is generated to correlate the defect coordinates with UT data (probe position, skew and refracted angle, UT path, and probe movement). The simulation models were validated during experimental work with phased-array systems. The accuracy in probe position is ±1 mm, and the refracted/skew angle is within ±0.5°. Representative examples of phased array focal laws/probe movement for a specific defect location, are also included.
NASA Astrophysics Data System (ADS)
Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng
2013-07-01
A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.
NASA Astrophysics Data System (ADS)
Zhang, Fengjiao; Juhlin, Christopher; Huang, Fei; Lüth, Stefan
2016-04-01
Time-lapse seismic methods are an important tool for monitoring CO2 migration and storage in geological formations. Near surface variations are one of the major problems which may introduce time-lapse noise in the application of land based seismic monitoring. Conventional reflection seismic methods have difficulties in imaging near surface structures (10-30 m depth) due to the limitation of the methods themselves. Traveltime tomography is a commonly used method to reconstruct the subsurface velocity model. It can often provide extra information on near surface structures which is difficult to obtain by the conventional reflection seismic method. In this study, we apply traveltime tomography to 3D time-lapse seismic data sets acquired from at the Ketzin CO2 storage site. We also test different inversion strategies for traveltime tomography to investigate which one is more suitable for this case study. The results show good correlation with near surface variations obtained by other studies.
Analysis of non linear partially standing waves from 3D velocity measurements
NASA Astrophysics Data System (ADS)
Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.
2003-04-01
Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.
Validated 3D Velocity Models in Asia from Joint Regional Body- and Surface-Wave Tomography
2009-02-17
90, 150 and 210 km. Some features of note in the new model include: • Crustal thickening beneath the major orogenic zones in the region...the low velocity area with respect to the background model beneath central Iran, which may have implications for the active subduction processes...occurring beneath the Eurasian continental collision zone . The slice on the right at 85°E cuts across the Himalayan Front, from northeastern India into
NASA Astrophysics Data System (ADS)
Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.
2013-12-01
this work we propose instead to directly tackle the non-linearity of the inverse problem by using stochastic methods to construct a 3D starting model with a good estimate of the depths of the main layering interfaces. We present preliminary results of the construction of such a starting 3D model based on: (1) Regionalizing the study area to define provinces within which lateral variations are smooth; (2) Applying trans-dimensional stochastic inversion (Bodin et al., 2012) to obtain accurate 1D models in each province as well as the corresponding error distribution, constrained by receiver function and surface wave dispersion data as well as the previously constructed 3D model (name), and (3) connecting these models laterally using data-driven smoothing operators to obtain a starting 3D model with errors. References Bodin, T.,et al. 2012, Transdimensional inversion of receiver functions and surface wave dispersion, J. Geophys. Res., 117, B02301, doi:10.1029/2011JB008560. Yuan and Romanowicz, 2013, in revison. Yuan, H., et al. 2011, 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophysical Journal International, 184: 1237-1260. doi: 10.1111/j.1365-246X.2010.04901.x Yuan, H. & Romanowicz, B., 2010. Lithospheric layering in the North American Craton, Nature, 466, 1063-1068.
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
NASA Astrophysics Data System (ADS)
Oh, Ju-Won; Alkhalifah, Tariq
2016-09-01
Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.
NASA Astrophysics Data System (ADS)
Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel
2016-10-01
In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: first, we evaluate the contribution of surface- and body-wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time-dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Second, we compare the lapse-time behaviour in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations
NASA Astrophysics Data System (ADS)
Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock
2016-07-01
The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.
A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors
Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun
2015-01-01
This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086
NASA Astrophysics Data System (ADS)
Spichak, V. V.
2011-01-01
Possibilities for three-dimensional (3D) magnetotelluric (MT) sounding of local objects contained in the Earth's crust are estimated in a case study of the magma chamber of the Vesuvius volcano. Stochastic inversion of the model MT data by the Markov Chain Monte Carlo (MCMC) method has shown that the most efficient approach is not simultaneous but successive estimation of the geometry and the depth of the anomaly and the assessment of the conductivity distribution within the anomalous region. A zone of equivalence is revealed between the a priori estimate of the depth of the anomalous zone and the a posteriori distribution of electric conductivity within it. Based on the present estimation and previous results, an algorithm for determination of the parameters of local crustal anomaly is proposed.
Resolving the 3D velocity field inside a Roughness Sublayer in a turbulent channel flow using HPIV
NASA Astrophysics Data System (ADS)
Talapatra, Siddharth; Katz, Joseph
2010-11-01
Microscopic holographic PIV is used to measure the 3D velocity field within the roughness sublayer of a turbulent channel flow at Reτ of 3400. Recording holograms through a rough surface is facilitated by matching the optical refractive index of the rough wall with that of the working fluid, a concentrated solution of NaI in water. The pyramidal roughness height is k=0.45mm, the sample volume size is 3.2x1.8x1.8mm^3, the long dimension being in the streamwise direction, and the wall-normal range is -0.33
NASA Astrophysics Data System (ADS)
Toloui, Mostafa; Brajkovic, David; Hong, Jiarong
2014-11-01
Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.
NASA Astrophysics Data System (ADS)
Kryukova, O.
2003-04-01
The seismic images of the crust beneath Northern Tien Shan (NTS) are obtained with using of different sets of data and several algorithms for solution of local earthquake tomography problem. The NTS is a very interesting region from geophysical point if view due to high seismic activity caused by interplate collision: Tien Shan and Kazakh. A rectangular region under investigation is constrained by lines 41.90o N - 43.40o N and 73.50o E- 76.50o E. 14661 P and 14436 S wave arrival times recorded 12 seismic stations of the Kyrgyzstan Broadband Network (KNET) from local earthquake in 1991-1999 years are used. In addition, data from 267 local earthquake recorded over a period of about 20 years by a regional arrays of 93 seismographs in NTS are involved in inversions. 1-d optimal velocity models and stations delays are estimated with help of program VELEST (E.Kissling, 1995). Block parameterization of model and ray tracing described by Thurber and Ellsworth (1980) are used for determination of 3-d velocity structure and relocation of events as one of the approaches (programs S.Roecker Sphypit90 and Sphrel3d). Other approach consists in application linear or cubic B spline interpolation of velocity function and ray tracing Um and Thurber (1987) for the solution of forward problem (program C.Thurber et al. Simulps and own program). The data resolution analysis and statistical analysis of models was carried out. Calculated P wave tomographic models were compared with tomographic models S.Roecker et al. (1993), S.Ghose et al. (1998) and T.Sabitova (1996). The main result is the confirmation of existence of different seismic velocity structure beneath Kyrgyz Range and Chu Basin. Using various sets of date and methods for reconstruction velocity model is effective in reveal of more reliable velocity heterogeneities in the domain of research. The author is grateful to dr. I. Kitov for help and to dr. I.Sanina for useful discussion.
Star-Lack, J; Nelson, S J; Kurhanewicz, J; Huang, L R; Vigneron, D B
1997-08-01
A T1 insensitive solvent suppression technique-band selective inversion with gradient dephasing (BASING)-was developed to suppress water and lipids for 1H magnetic resonance spectroscopy (MRS). BASING, which consists of a frequency selective RF inversion pulse surrounded by spoiler gradient pulses of opposite signs, was used to dephase stopband resonances and minimally impact passband metabolites. Passband phase linearity was achieved with a dual BASING scheme. Using the Shinnar-Le Roux algorithm, a highpass filter was designed to suppress water and rephase the lactate methyl doublet independently of TE, and water/lipid bandstop filters were designed for the brain and prostate. Phantom and in vivo experimental 3D PRESS CSI data were acquired at 1.5 T to compare BASING with CHESS and STIR suppression. With BASING, the measured suppression factor was over 100 times higher than with CHESS or STIR causing baseline distortions to be removed. It was shown that BASING can be incorporated into a variety of sequences to offer improved suppression in the presence of B1 and T1 inhomogeneites.
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
Łeski, Szymon; Wójcik, Daniel K; Tereszczuk, Joanna; Swiejkowski, Daniel A; Kublik, Ewa; Wróbel, Andrzej
2007-01-01
Estimation of the continuous current-source density in bulk tissue from a finite set of electrode measurements is a daunting task. Here we present a methodology which allows such a reconstruction by generalizing the one-dimensional inverse CSD method. The idea is to assume a particular plausible form of CSD within a class described by a number of parameters which can be estimated from available data, for example a set of cubic splines in 3D spanned on a fixed grid of the same size as the set of measurements. To avoid specificity of particular choice of reconstruction grid we add random jitter to the points positions and show that it leads to a correct reconstruction. We propose different ways of improving the quality of reconstruction which take into account the sources located outside the recording region through appropriate boundary treatment. The efficiency of the traditional CSD and variants of inverse CSD methods is compared using several fidelity measures on different test data to investigate when one of the methods is superior to the others. The methods are illustrated with reconstructions of CSD from potentials evoked by stimulation of a bunch of whiskers recorded in a slab of the rat forebrain on a grid of 4x5x7 positions.
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Fullea, J.; Yang, Y.; Griffin, W. L.; Jones, A. G.; Connolly, J.; Lebedev, S.; O'Reilly, S. Y.
2011-12-01
High-resolution imaging and characterization of the thermal and compositional structure of the lithospheric and sublithospheric upper mantle are the basis for understanding the formation and evolution of the lithosphere and the interaction between the crust-mantle and lithosphere-asthenosphere systems. Unfortunately, such imaging and characterization using available geophysical-geochemical methods still present unsolved and technically challenging problems. In this contribution we present a new full-3D multi-observable inversion method particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sublithospheric upper mantle. Ambient noise tomography, multiple plane wave earthquake tomography, magnetotelluric, thermal, thermodynamic, and potential field modelling are all combined in a single thermodynamic-geophysical framework and appraised within a general probabilistic (Bayesian) formulation. This circumvents the problems of strong non-linearity involved in traditional inversions, provides highly refined seismic information, minimizes the problem of trade-off between temperature and composition in wave speeds, offers critical insights into incompatibilities between traditional stand-alone methods, and takes advantage of a priori local geochemical information. Both synthetic models and preliminary results in real-case examples will be used to discuss the benefits, robustness, and limitations of this method.
NASA Astrophysics Data System (ADS)
Choi, S.; Kim, C.; Kim, H. R.; Park, C.; Park, H. Y.
2015-12-01
We performed the marine magnetic and the bathymetry survey in the Lau basin for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry datasets by using Overhouser Proton Magnetometer SeaSPY(Marine Magnetics Co.) and Multi-Beam Echo Sounder EM120(Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly and reduction to the pole(RTP). The Lau basin is one of the youngest back-arc basins in the Southwest Pacific. This region was a lot of hydrothermal activities and hydrothermal deposits. In particular, Tofua Arc(TA) in the Lau basin consists of various and complex stratovolcanos(from Massoth et al., 2007).), We calculated the magnetic susceptibility distribution of the TA19-1 seamount(longitude:176°23.5'W, latitude: 22°42.5'W)area using the RTP data by 3-D magnetic inversion from Jung's previous study(2013). Based on 2D 'compact gravity inversion' by Last & Kubik(1983), we expend it to the 3D algorithm using iterative reweighted least squares method with some weight matrices. The used weight matrices are two types: 1) the minimum gradient support(MGS) that controls the spatial distribution of the solution from Porniaguine and Zhdanov(1999); 2) the depth weight that are used according to the shape of subsurface structures. From the modeling, we derived the appropriate scale factor for the use of depth weight and setting magnetic susceptibility. Furthermore, we have to enter a very small error value to control the computation of the singular point of the inversion model that was able to be easily calculated for modeling. In addition, we applied separately weighted value for the correct shape and depth of the magnetic source. We selected the best results model by change to converge of RMS. Compared between the final modeled result and RTP values in this study, they are generally similar to the each other. But the input values and the modeled values have slightly little difference
3D mechanical modeling of the GPS velocity field along the North Anatolian fault
NASA Astrophysics Data System (ADS)
Provost, Ann-Sophie; Chéry, Jean; Hassani, Riad
2003-04-01
The North Anatolian fault (NAF) extends over 1500 km in a complex tectonic setting. In this region of the eastern Mediterranean, collision of the Arabian, African and Eurasian plates resulted in creation of mountain ranges (i.e. Zagros, Caucasus) and the westward extrusion of the Anatolian block. In this study we investigate the effects of crustal rheology on the long-term displacement rate along the NAF. Heat flow and geodetic data are used to constrain our mechanical model, built with the three-dimensional finite element code ADELI. The fault motion occurs on a material discontinuity of the model which is controlled by a Coulomb-type friction. The rheology of the lithosphere is composed of a frictional upper crust and a viscoelastic lower crust. The lithosphere is supported by a hydrostatic pressure at its base (representing the asthenospheric mantle). We model the long-term deformation of the surroundings of the NAF by adjusting the effective fault friction and also the geometry of the surface fault trace. To do so, we used a frictional range of 0.0-0.2 for the fault, and a viscosity varying between 10 19 and 10 21 Pa s. One of the most striking results of our rheological tests is that the upper part of the fault is locked if the friction exceeds 0.2. By comparing our results with geodetic measurements [McClusky et al., J. Geophys. Res. B 105 (2000) 5695-5719] and tectonic observations, we have defined a realistic model in which the displacement rate on the NAF reaches ˜17 mm/yr for a viscosity of 10 19 Pa s and a fault friction of 0.05. This strongly suggests that the NAF is a weak fault like the San Andreas fault in California. Adding topography with its corresponding crustal root does not induce gravity flow of Anatolia. Rather, it has the counter-intuitive effect of decreasing the westward Anatolian escape. We find a poor agreement between our calculated velocity field and what is observed with GPS in the Marmara and the Aegean regions. We suspect that the
NASA Astrophysics Data System (ADS)
Bignardi, S.; Mantovani, A.; Abu Zeid, N.
2016-08-01
OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.
Lunar Seismic Velocity and Crustal Thickness Inversions Using Constraints from Apollo and GRAIL Data
NASA Astrophysics Data System (ADS)
Blanchette-Guertin, J. F.; Drilleau, M.; Kawamura, T.; Lognonne, P. H.; Wieczorek, M. A.
2015-12-01
We present results from new Markov Chain Monte Carlo inversions of (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models anchored by crustal thicknesses under the Apollo stations and the artificial and natural impact sites. These new generation models are constrained by both the Apollo impact event seismic data arrival times and by the more recent GRAIL gravimetric data. In all models, 1-D seismic velocities are parameterized using C1 Bézier polynomials, using two independent sets to represent the crust and the underlying mantle. Other parameters of the inversions include the depth and velocity amplitude of the Bézier control points, the depth of the crust-mantle discontinuity, the thickness of the crust under each Apollo station and impact epicenter, the vp/vs ratio, as well as location-specific time delays. Inverting for station-specific crustal thicknesses and velocity delays highlights geology-related differences between stations (e.g. contrasts in megaregolith thickness, in shallow subsurface composition and structure). These differences have already been observed by other analytical methods in the past, as detailed in the literature. We also test the possibility of having a dual-layered crust. However, some of the finer structural elements might be difficult to observe with the available data and might fall within the inherent uncertainty of the dataset. We use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV booster artificial impacts, reducing that way some of the uncertainty observed in past models. Natural impact epicentral locations are relocated during the inversions. Constraints from deep and shallow moonquakes will be included in future inversions to potentially refine the velocity and crustal models. This work falls within the NASA InSight mission to Mars seismic investigation (SEIS). Accordingly, the method and analytical software developed for this study will be
NASA Astrophysics Data System (ADS)
Wawerzinek, B.; Ritter, J. R. R.; Roy, C.
2013-08-01
We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.
The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network
NASA Astrophysics Data System (ADS)
Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin
2016-03-01
This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.
3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow
NASA Astrophysics Data System (ADS)
Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J.
2015-11-01
We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface.
Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E.
2017-01-01
The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the “true” dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates. PMID:28337148
Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.
Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John
2015-01-01
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.
Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E
2017-01-01
The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the "true" dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates.
Lu, Louise; Sick, Volker; Frank, Jonathan H.
2013-09-01
The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.
NASA Astrophysics Data System (ADS)
He, J.
2015-12-01
Magnetic reconnection within current sheet has been regarded as one of the crucial dissipation and heating processes of coherent structures in the solar wind turbulence. Counter-streaming of ions is an important phenomenon in the reconnection exhaust region ranged from the ion diffusion region to the extended outflow region. It has been suggested by theoretical and numerical models that the ions are going to be picked up by the ejecting magnetic field and show larger T_perpendicular than T_parallel, if the guide field is strong enough (in other word, the shear angle is relatively low). The pick-up behavior seems to favor the heating of heavy ions with high mass-to-charge ratio, since the high M/Q ions have larger gyro-period/transit-time and tend to be non-adiabatic more easily. The above statements from theoretical models have not been thoroughly testified in the solar wind observations, though the changes in total temperature and 1D reduced velocity distribution function had been studied. Until now, it remains unclear about the difference of full 3D velocity distribution for the proton and helium ions between the upstream and the exhaust regions. Here, we will analyze the plasma measurement data from WIND/3DP to explore and compare the parallel and perpendicular heating effect of different species of ions. As a preliminary result, the proton is found to show bi-directional streams in its velocity distribution in some reconnection exhaust regions. The thermalization of the counter-streaming protons will be presented. The relation between proton T_parallel/T_perpendicular and guide field strength (or shear angle) will be studied. The velocity distributions of helium ions will be illustrated, which shows the difference of heating effect between different M/Q ratios.
NASA Astrophysics Data System (ADS)
Camacho, Antonio G.; Carmona, Enrique; García-Jerez, Antonio; Sánchez-Martos, Francisco; Prieto, Juan F.; Fernández, José; Luzón, Francisco
2015-11-01
This paper presents a gravimetric study (based on 382 gravimetric stations in an area about 32 km2) of a nearly flat basin: the Low Andarax valley. This alluvial basin, close to its river mouth, is located in the extreme south of the province of Almería and coincides with one of the existing depressions in the Betic Cordillera. The paper presents new methodological work to adapt a published inversion approach (GROWTH method) to the case of an alluvial valley (sedimentary stratification, with density increase downward). The adjusted 3D density model reveals several features in the topography of the discontinuity layers between the calcareous basement (2,700 kg/m3) and two sedimentary layers (2,400 and 2,250 kg/m3). We interpret several low density alignments as corresponding to SE faults striking about N140-145°E. Some detected basement elevations (such as the one, previously known by boreholes, in Viator village) are apparently connected with the fault pattern. The outcomes of this work are: (1) new gravimetric data, (2) new methodological options, and (3) the resulting structural conclusions.
3D structural cartography based on magnetic and gravity data inversion - Case of South-West Algeria
NASA Astrophysics Data System (ADS)
Hichem, Boubekri; Mohamed, Hamoudi; Abderrahmane, Bendaoud; Ivan, Priezzhev; Karim, Allek
2015-12-01
This article presents the results of 3D aeromagnetic and gravity data inversion across the West African Craton (WAC) in South West Algeria. Although the used data have different origins and resolutions, the performed manual and automatic interpretation for each dataset shows a good correlation with some earlier geological studies of the region, major structural aspects of the locality, as well as other new structural features. Many curved faults parallel to the suture zone indicate the presence of terranes or the metacratonization of the WAC and a related fault network of great importance with NE-SW and NW-SE directions. The mega shear zones from north to south, which are visible at the surface in the Hoggar, are also observed along the Saharan Platform. The fact that these faults are observed since the Cambro-Ordovician in all crust (including the Saharan Basins) indicates that this area, which is situated on the border of the WAC, remained active during the entire period of time.
NASA Astrophysics Data System (ADS)
Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas
2013-04-01
To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with
NASA Astrophysics Data System (ADS)
Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara
2016-09-01
To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.
Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara
2016-01-01
To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time–frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.
Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian
2013-09-09
Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.
NASA Astrophysics Data System (ADS)
Kuvshinov, Alexey; Semenov, Alexey
2012-06-01
We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.
NASA Astrophysics Data System (ADS)
Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M. A.; Meghraoui, M.
2008-09-01
We analyze the aftershocks sequence of the Zemmouri thrust faulting earthquake (21 May 2003, Mw 6.8) located east of Algiers in the Tell Atlas. The seismic sequence located during ˜2 months following the mainshock is made of more than 1500 earthquakes and extends NE-SW along a ˜60-km fault rupture zone crossing the coastline. The earthquake relocation was performed using handpicked P and S phases located with the tomoDD in a detailed 3D velocity structure of the epicentral area. Contrasts between velocity patches seem to correlate with contacts between granitic-volcanic basement rocks and the sedimentary formation of the eastern Mitidja basin. The aftershock sequence exhibits at least three seismic clouds and a well-defined SE-dipping main fault geometry that reflects the complex rupture. The distribution of seismic events presents a clear contrast between a dense SW zone and a NE zone with scattered aftershocks. We observe that the mainshock locates between the SW and NE seismic zones; it also lies at the NNS-SSE contact that separates a basement block to the east and sedimentary formations to the west. The aftershock distribution also suggests fault bifurcation at the SW end of the fault rupture, with a 20-km-long ˜N 100° trending seismic cluster, with a vertical fault geometry parallel to the coastline juxtaposed. Another aftershock cloud may correspond to 75° SE dipping fault. The fault geometry and related SW branches may illustrate the interference between pre-existing fault structures and the SW rupture propagation. The rupture zone, related kinematics, and velocity contrasts obtained from the aftershocks distribution are in agreement with the coastal uplift and reflect the characteristics of an active zone controlled by convergent movements at a plate boundary.
Weng Cho Chew
2004-10-27
The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.
NASA Astrophysics Data System (ADS)
Lin, F. C.; Schmandt, B.
2015-12-01
Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear
Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent
2006-06-14
Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.
NASA Astrophysics Data System (ADS)
Tsai, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.
2003-12-01
The southern San Andreas fault (SAF) has produced large earthquakes in the past 1500 yrs. Burro Flats, a basin within the San Bernardino Mountains, is bounded on the southwest by the southern San Andreas fault. Burro Flats has been the site of paleoseismological investigations to determine the slip history of the fault. Additional paleoseismic studies at this location are needed to further resolve the structure and slip history of the SAF. In addition to the main trace of the SAF at Burro Flats, there are splay faults, suggesting a complex geometry for the fault. To better understand the structure of the SAF, we acquired a 3-D, combined seismic reflection/refraction profile centered on the main trace at Burro Flats. The seismic investigation included a 60 m by 70 m rectangular array. Sensors were spaced every 5 m; seismic sources, likewise with a spacing of 5 m, consisted of a combination of down-hole explosives and shallow (approximately 0.3 m) Betsy Seisgun shots. Data were recorded without acquisition filters for 5 s at a 0.5-ms sampling rate. To analyze the data for velocity structure, we used a tomographic inversion procedure to invert first-arrival refractions. Preliminary measurements from shot gathers show that near-surface velocities range between 700 m/s and 1500 m/s. We observe apparent travel-time delays of approximately 7 ms near the main surface trace of the SAF, suggesting that seismic imaging methods may be useful in identifying this and other fault traces. These results will be useful for paleoseismic investigations.
Dumas, R; Cheze, L
2008-08-01
Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.
NASA Astrophysics Data System (ADS)
Miller, Craig A.; Williams-Jones, Glyn; Fournier, Dominique; Witter, Jeff
2017-02-01
Active, large volume, silicic magma systems are potentially the most hazardous form of volcanism on Earth. Knowledge of the location, size, and physical properties of silicic magma reservoirs, is therefore important for providing context in which to accurately interpret monitoring data and make informed hazard assessments. Accordingly, we present the first geophysical image of the Laguna del Maule volcanic field magmatic system, using a novel 3D inversion of gravity data constrained by thermodynamic modelling. The joint analysis of gravity and thermodynamic data allows for a rich interpretation of the magma system, and highlights the importance of considering the full thermodynamic effects on melt density, when interpreting gravity models of active magmatic systems. We image a 30 km3, low density, volatile rich magma reservoir, at around 2 km depth, containing at least 85% melt, hosted within a broader 115 km3 body interpreted as wholly or partially crystallised (>70% crystal) cumulate mush. Our model suggests a magmatic system with shallow, crystal poor magma, overlying deeper, crystal rich magma. Even though a large density contrast (-600 kg/m3) with the surrounding crust exists, the lithostatic load is 50% greater than the magma buoyancy force, suggesting buoyancy alone is insufficient to trigger an eruption. The reservoir is adjacent to the inferred extension of the Troncoso fault and overlies the location of an intruding sill, driving present day deformation. The reservoir is in close proximity to the 2.0 km3 Nieblas (rln) eruption at 2-3 ka, which we calculate tapped approximately 7% of the magma reservoir. However, we suggest that the present day magma system is not large enough to have fed all post-glacial eruptions, and that the location, or size of the system may have migrated or varied over time, with each eruption tapping only a small aliquot of the available magma. The presence of a shallow reservoir of volatile rich, near liquidus magma, in close
NASA Astrophysics Data System (ADS)
Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam
2014-09-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath
NASA Astrophysics Data System (ADS)
Suzuki, W.; Aoi, S.; Maeda, T.; Sekiguchi, H.; Kunugi, T.
2013-12-01
Source inversion analysis using near-source strong-motion records with an assumption of 1-D underground structure models has revealed the overall characteristics of the rupture process of the 2011 Tohoku-Oki mega-thrust earthquake. This assumption for the structure model is acceptable because the seismic waves radiated during the Tohoku-Oki event were rich in the very-low-frequency contents lower than 0.05 Hz, which are less affected by the small-scale heterogeneous structure. The analysis using more reliable Green's functions even in the higher-frequency range considering complex structure of the subduction zone will illuminate more detailed rupture process in space and time and the transition of the frequency dependence of the wave radiation for the Tohoku-Oki earthquake. In this study, we calculate the near-source Green's functions using a 3-D underground structure model and perform the source inversion analysis using them. The 3-D underground structure model used in this study is the Japan Integrated Velocity Structure Model (Headquarters for Earthquake Research Promotion, 2012). A curved fault model on the Pacific plate interface is discretized into 287 subfaults at ~20 km interval. The Green's functions are calculated using GMS (Aoi et al., 2004), which is a simulation program package for the seismic wave field by the finite difference method using discontinuous grids (Aoi and Fujiwara, 1999). Computational region is 136-146.2E in longitude, 34-41.6N in latitude, and 0-100 km in depth. The horizontal and vertical grid intervals are 200 m and 100 m, respectively, for the shallower region and those for the deeper region are tripled. The number of the total grids is 2.1 billion. We derive 300-s records by calculating 36,000 steps with a time interval of 0.0083 second (120 Hz sampling). It takes nearly one hour to compute one case using 48 Graphics Processing Units (GPU) on TSUBAME2.0 supercomputer owned by Tokyo Institute of Technology. In total, 574 cases are
NASA Astrophysics Data System (ADS)
Zhou, Wei; Brossier, Romain; Operto, Stéphane; Virieux, Jean
2015-09-01
Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models from the full wavefield, which includes diving waves, post-critical reflections and short-spread reflections. Most successful applications of FWI are driven by the information carried by diving waves and post-critical reflections to build the long-to-intermediate wavelengths of the velocity structure. Alternative approaches, referred to as reflection waveform inversion (RWI), have been recently revisited to retrieve these long-to-intermediate wavelengths from short-spread reflections by using some prior knowledge of the reflectivity and a scale separation between the velocity macromodel and the reflectivity. This study presents a unified formalism of FWI, named as Joint FWI, whose aim is to efficiently combine the diving and reflected waves for velocity model building. The two key ingredients of Joint FWI are, on the data side, the explicit separation between the short-spread reflections and the wide-angle arrivals and, on the model side, the scale separation between the velocity macromodel and the short-scale impedance model. The velocity model and the impedance model are updated in an alternate way by Joint FWI and waveform inversion of the reflection data (least-squares migration), respectively. Starting from a crude velocity model, Joint FWI is applied to the streamer seismic data computed in the synthetic Valhall model. While the conventional FWI is stuck into a local minimum due to cycle skipping, Joint FWI succeeds in building a reliable velocity macromodel. Compared with RWI, the use of diving waves in Joint FWI improves the reconstruction of shallow velocities, which translates into an improved imaging at deeper depths. The smooth velocity model built by Joint FWI can be subsequently used as a reliable initial model for conventional FWI to increase the high-wavenumber content of the velocity model.
Use of traveltime skips in refraction analysis to delineate velocity inversion
Tewari, H.C.; Dixit, M.M.; Murty, P.R.K.
1995-08-01
First arrival refraction data does not normally provide any indication of the velocity inversion problem. However, under certain favorable circumstances, when the low-velocity layer (LVL) is considerably thicker than the overlying higher-velocity layer (HVL), the velocity inversion can be seen in the form of a traveltime skip. Model studies show that in such cases the length of the HVL traveltime branch can be used to determine the thickness of the HVL and the magnitude of the traveltime skip in order to determine the thickness of the LVL. This is also applicable in the case of field data.
NASA Astrophysics Data System (ADS)
Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.
2013-12-01
Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in
Wave-equation migration velocity inversion using passive seismic sources
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2015-12-01
Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.
Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico
2015-01-01
Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288
Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method
NASA Astrophysics Data System (ADS)
Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji
2002-06-01
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright
NASA Astrophysics Data System (ADS)
Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa
2016-04-01
The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative
NASA Astrophysics Data System (ADS)
McNulty, David; Geaney, Hugh; Carroll, Elaine; Garvey, Shane; Lonergan, Alex; O’Dwyer, Colm
2017-02-01
Engineering Co3O4 nanoparticles into highly ordered, 3D inverse opal (IO) structures is shown to significantly improve their performance as more efficient conversion mode Li-ion anode materials. By comparison with Co3O4 microparticles, the advantages of the porous anode architecture are clearly shown. The inverse opal material markedly enhances specific capacity and capacity retention. The impact of various C rates on the rate of the initial charge demonstrates that higher rate charging (10 C) was much less destructive to the inverse opal structure than charging at a slow rate (0.1 C). Slower C rates that affect the IO structure resulted in higher specific capacities (more Li2O) as well as improved capacity retention. The IO structures cycle as CoO, which improves Coulombic efficiency and limits volumetric changes, allowing rate changes more efficiently. This work demonstrates how 3D IOs improve conversion mode anode material performance in the absence of additive or binders, thus enhancing mass transport of Li2O charge–discharge product through the open structure. This effect mitigates clogging by structural changes at slow rates (high capacity) and is beneficial to the overall electrochemical performance.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
Pecher, I.A.; Minshull, T.A.; Singh, S.C.; Von Huene, R.
1996-01-01
Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.
Peeling linear inversion of upper mantle velocity structure with receiver functions
NASA Astrophysics Data System (ADS)
Shen, Xuzhang; Zhou, Huilan
2012-02-01
A peeling linear inversion method is presented to study the upper mantle (from Moho to 800 km depth) velocity structures with receiver functions. The influences of the crustal and upper mantle velocity ratio error on the inversion results are analyzed, and three valid measures are taken for its reduction. This method is tested with the IASP91 and the PREM models, and the upper mantle structures beneath the stations GTA, LZH, and AXX in northwestern China are then inverted. The results indicate that this inversion method is feasible to quantify upper mantle discontinuities, besides the discontinuities between 3 h M ( h M denotes the depth of Moho) and 5 h M due to the interference of multiples from Moho. Smoothing is used to overcome possible false discontinuities from the multiples and ensure the stability of the inversion results, but the detailed information on the depth range between 3 h M and 5 h M is sacrificed.
Chajon, Enrique; Dumas, Isabelle; Touleimat, Mahmoud B.Sc.; Magne, Nicolas; Coulot, Jeremy; Verstraet, Rodolfe; Lefkopoulos, Dimitri; Haie-Meder, Christine
2007-11-01
Purpose: The purpose of this study was to evaluate the inverse planning simulated annealing (IPSA) software for the optimization of dose distribution in patients with cervix carcinoma treated with MRI-based pulsed-dose rate intracavitary brachytherapy. Methods and Materials: Thirty patients treated with a technique using a customized vaginal mold were selected. Dose-volume parameters obtained using the IPSA method were compared with the classic manual optimization method (MOM). Target volumes and organs at risk were delineated according to the Gynecological Brachytherapy Group/European Society for Therapeutic Radiology and Oncology recommendations. Because the pulsed dose rate program was based on clinical experience with low dose rate, dwell time values were required to be as homogeneous as possible. To achieve this goal, different modifications of the IPSA program were applied. Results: The first dose distribution calculated by the IPSA algorithm proposed a heterogeneous distribution of dwell time positions. The mean D90, D100, and V100 calculated with both methods did not differ significantly when the constraints were applied. For the bladder, doses calculated at the ICRU reference point derived from the MOM differed significantly from the doses calculated by the IPSA method (mean, 58.4 vs. 55 Gy respectively; p = 0.0001). For the rectum, the doses calculated at the ICRU reference point were also significantly lower with the IPSA method. Conclusions: The inverse planning method provided fast and automatic solutions for the optimization of dose distribution. However, the straightforward use of IPSA generated significant heterogeneity in dwell time values. Caution is therefore recommended in the use of inverse optimization tools with clinical relevance study of new dosimetric rules.
Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials
NASA Astrophysics Data System (ADS)
Vaulina, O. S.; Koss, X. G.
2016-03-01
The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.
Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes
NASA Astrophysics Data System (ADS)
Kamei, R.; Lumley, D.
2017-02-01
Seismic monitoring provides valuable information regarding the time-varying changes in subsurface physical properties caused by natural or man-made processes. However, the resulting changes in the earth's subsurface properties are often small both in terms of magnitude and spatial extent, leading to minimal time-lapse differences in seismic amplitude or traveltime. In order to better extract information from the time-lapse data, we show that exploiting the full seismic waveform information can be critical. In this study, we develop and test methods of full waveform inversion that estimate an optimal subsurface model of time-varying elastic properties in order to fit the observed time-lapse seismic data with predicted waveforms based on numerical solutions of the wave equation. Time-lapse full waveform inversion is non-linear and non-unique, and depends on the knowledge of the baseline velocity model before a change, and (non-)repeatability of earthquake source and sensor parameters, and of ambient and cultural noise. We propose to use repeating earthquake data sets acquired with permanent arrays of seismic sensors to enhance the repeatability of source and sensor parameters. We further develop and test time-lapse parallel, double-difference and bootstrapping inversion strategies to mitigate the dependence on the baseline velocity model. The parallel approach uses a time-invariant full waveform inversion method to estimate velocity models independently of the different source event times. The double-difference approach directly estimates velocity changes from time-lapse waveform differences, requiring excellent repeatability. The bootstrapping approach inverts for velocity models sequentially in time, implicitly constraining the time-lapse inversions, while relaxing an explicit requirement for high data repeatability. We assume that prior to the time-lapse inversion, we can estimate the true source locations and the origin time of the events, and also we can also
2008-09-01
nonunique properties of inversion methods, we may often find a solution for one data type, but we must acknowledge that, although it can predict behavior...of density prisms and a suite of 1D fundamental mode group velocities. (a) A single cell with its input geographic coordinate system . (b) For a...H. K., H. Kanamori, P. C. Jennings, and C. Kissling (Eds.) (2002). International Handbook of Earthquake and Engineering Seismology (CD-ROM
NASA Astrophysics Data System (ADS)
Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.
2014-10-01
We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.
NASA Astrophysics Data System (ADS)
Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo
2016-09-01
This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.
NASA Astrophysics Data System (ADS)
Bertrand, E. A.; Caldwell, G.; Bannister, S. C.; Hill, G.; Bennie, S.
2013-12-01
The Taupo Volcanic Zone (TVZ), located in the central North Island of New Zealand, is a rifted arc that contains more than 20 liquid-dominated high-temperature geothermal systems, which together discharge ~4.2 GW of heat at the surface. The shallow (upper ~500 m) extent of these geothermal systems is marked by low-resistivity, mapped by tens-of-thousands of DC resistivity measurements collected throughout the 1970's and 80's. Conceptual models of heat transport through the brittle crust of the TVZ link these low-resistivity anomalies to the tops of vertically ascending plumes of convecting hydrothermal fluid. Recently, data from a 40-site array of broadband seismometers with ~4 km station spacing, and an array of 270 broadband magnetotelluric (MT) measurements with ~2 km station spacing, have been collected in the south-eastern part of the TVZ in an experiment to image the deep structure (or roots) of the geothermal systems in this region. Unlike DC resistivity, these MT measurements are capable of resolving the resistivity structure of the Earth to depths of 10 km or more. 2-D and 3-D models of subsets of these MT data have been used to provide the first-ever images of quasi-vertical low-resistivity zones (at depths of 3-7 km) that connect with the near-surface geothermal fields. These low-resistivity zones are interpreted to represent convection plumes of high-temperature fluids ascending within fractures, which supply heat to the overlying geothermal fields. At the Rotokawa, Ngatamariki and Ohaaki geothermal fields, these plumes extend to a broad layer of low-resistivity, inferred to represent a magmatic, basal heat source located below the seismogenic zone (at ~7-8 km depth) that drives convection in the brittle crust above. Little is known about the mechanisms that transfer heat into the hydrothermal regime. However, at Rotokawa, new 3-D resistivity models image a vertical low-resistivity zone that lies directly beneath the geothermal field. The top of this
Speidel, M; Hatt, C; Tomkowiak, M; Raval, A; Funk, T
2014-06-15
Purpose: To develop a method for the fusion of 3D echocardiography and Scanning-Beam Digital X-ray (SBDX) fluoroscopy to assist with catheter device and soft tissue visualization during interventional procedures. Methods: SBDX is a technology for low-dose inverse geometry x-ray fluoroscopy that performs digital tomosynthesis at multiple planes in real time. In this study, transesophageal echocardiography (TEE) images were fused with SBDX images by estimating the 3D position and orientation (the “pose”) of the TEE probe within the x-ray coordinate system and then spatially transforming the TEE image data to match this pose. An initial pose estimate was obtained through tomosynthesis-based 3D localization of points along the probe perimeter. Position and angle estimates were then iteratively refined by comparing simulated projections of a 3D probe model against SBDX x-ray images. Algorithm performance was quantified by imaging a TEE probe in different known orientations and locations within the x-ray field (0-30 degree tilt angle, up to 50 mm translation). Fused 3D TEE/SBDX imaging was demonstrated by imaging a tissue-mimicking polyvinyl alcohol cylindrical cavity as a catheter was navigated along the cavity axis. Results: Detected changes in probe tilt angle agreed with the known changes to within 1.2 degrees. For a 50 mm translation along the source-detector axis, the detected translation was 50.3 mm. Errors for in-plane translations ranged from 0.1 to 0.9 mm. In a fused 3D TEE/SBDX display, the catheter device was well visualized and coincident with the device shadow in the TEE images. The TEE images portrayed phantom boundaries that were not evident under x-ray. Conclusion: Registration of soft tissue anatomy derived from TEE imaging and device imaging from SBDX x-ray fluoroscopy is feasible. The simultaneous 3D visualization of these two modalities may be useful in interventional procedures involving the navigation of devices to soft tissue anatomy.
NASA Astrophysics Data System (ADS)
An, Zhiguo; Di, Qingyun
2016-12-01
The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.
NASA Astrophysics Data System (ADS)
Uzkeda, Hodei; Bulnes, Mayte; Poblet, Josep; García-Ramos, José Carlos; Piñuela, Laura
2016-09-01
We constructed a geological map, a 3D model and cross-sections, carried out a structural analysis, determined the stress fields and tectonic transport vectors, restored a cross section and performed a subsidence analysis to unravel the kinematic evolution of the NE emerged portion of the Asturian Basin (NW Iberian Peninsula), where Jurassic rocks crop out. The major folds run NW-SE, normal faults exhibit three dominant orientations: NW-SE, NE-SW and E-W, and thrusts display E-W strikes. After Upper Triassic-Lower Jurassic thermal subsidence, Middle Jurassic doming occurred, accompanied by normal faulting, high heat flow and basin uplift, followed by Upper Jurassic high-rate basin subsidence. Another extensional event, possibly during Late Jurassic-Early Cretaceous, caused an increment in the normal faults displacement. A contractional event, probably of Cenozoic age, led to selective and irregularly distributed buttressing and fault reactivation as reverse or strike-slip faults, and folding and/or offset of some previous faults by new generation folds and thrusts. The Middle Jurassic event could be a precursor of the Bay of Biscay and North Atlantic opening that occurred from Late Jurassic to Early Cretaceous, whereas the Cenozoic event would be responsible for the Pyrenean and Cantabrian ranges and the partial closure of the Bay of Biscay.
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Prieto, G. A.; Zhang, H.; Ammon, C. J.
2014-12-01
Joint inversions of geophysical data recover models that simultaneously fit multiple types of constraints while playing upon the various sensitivities of each data type. Here, we combine body wave arrival times with surface wave dispersion measurements and gravity observations to develop a combined 3D P- and S-wave velocity model for the crust and upper mantle of Colombia. P- and S-wave arrival times were obtained for local earthquakes from instruments in the Colombian National Seismic Network. Rayleigh wave dispersion curves were inverted for using a subset of network stations and larger local earthquakes. Gravity observations were extracted from the global satellite-based model EGM2008. Preliminary results using body waves only show reduced velocities beneath the volcanic arc in the upper 25 km of the crust. Crustal velocities are also reduced from the 1D starting model beneath the Eastern Cordillera in the northern half of the country. Relocations of intermediate-depth seismicity clearly indicate a discontinuity in the slab centered 5° N latitude, where the southern portion of the slab is ~200 km trenchward of the northern portion, coincident with the termination of arc volcanism and in recent years interpreted as due to a slab tear [Vargas and Mann, 2013]. Seismicity below 100 km depth in the southern portion of the subduction zone is surrounded by a ~100-km-thick region of elevated velocities, associated with the subduction of the Nazca Plate, and embedded within a broader region of reduced velocities. The northern portion of the subduction zone at 100 km depth and below is characterized by a broad region of elevated velocities, which may be consistent with a slab of an old, thickened Caribbean Plate origin. The overlapping of the edges of the Nazca and Caribbean slabs may contribute to the seismicity of the Bucaramanga nest.
NASA Astrophysics Data System (ADS)
Pilz, Marco; Parolai, Stefano; Woith, Heiko
2017-01-01