Science.gov

Sample records for 3d velocity measurements

  1. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  2. 3D velocity measurements in a premixed flame by tomographic PIV

    NASA Astrophysics Data System (ADS)

    Tokarev, M. P.; Sharaborin, D. K.; Lobasov, A. S.; Chikishev, L. M.; Dulin, V. M.; Markovich, D. M.

    2015-06-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV.

  3. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  4. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows.

    PubMed

    Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J

    2015-11-01

    We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed. PMID:26486364

  5. Application of Plenoptic PIV for 3D Velocity Measurements Over Roughness Elements in a Refractive Index Matched Facility

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Johnson, Kyle; Kim, Taehoon; Blois, Gianluca; Best, Jim; Christensen, Ken

    2014-11-01

    The application of Plenoptic PIV in a Refractive Index Matched (RIM) facility housed at Illinois is presented. Plenoptic PIV is an emerging 3D diagnostic that exploits the light-field imaging capabilities of a plenoptic camera. Plenoptic cameras utilize a microlens array to measure the position and angle of light rays captured by the camera. 3D/3C velocity fields are determined through application of the MART algorithm for volume reconstruction and a conventional 3D cross-correlation PIV algorithm. The RIM facility is a recirculating tunnel with a 62.5% aqueous solution of sodium iodide used as the working fluid. Its resulting index of 1.49 is equal to that of acrylic. Plenoptic PIV was used to measure the 3D velocity field of a turbulent boundary layer flow over a smooth wall, a single wall-mounted hemisphere and a full array of hemispheres (i.e. a rough wall) with a k/ δ ~ 4.6. Preliminary time averaged and instantaneous 3D velocity fields will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1235726.

  6. Analysis of non linear partially standing waves from 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.

    2003-04-01

    Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.

  7. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  8. A compact single-camera system for high-speed, simultaneous 3-D velocity and temperature measurements.

    SciTech Connect

    Lu, Louise; Sick, Volker; Frank, Jonathan H.

    2013-09-01

    The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.

  9. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  10. Loads and pressure evaluation of the flow around a flapping wing from instantaneous 3D velocity measurements

    NASA Astrophysics Data System (ADS)

    Tronchin, Thibaut; David, Laurent; Farcy, Alain

    2015-01-01

    The flow around a flapping wing is characterized by an unsteady evolution of three-dimensional vortices, which are one of the main sources of loads. The difficulty in directly measuring such low forces by means of sensors and the need of the characterization of the evolution of the flow have lead to the evaluation of loads using the integral form of the momentum equation. This paper describes methods for evaluating instantaneous loads and three-dimensional pressure fields using 3D3C velocity fields only. An evaluation of the accuracy of these methods using DNS velocity fields is presented. Loads and pressure fields are then calculated using scanning tomography PIV velocity fields, around a NACA 0012 airfoil for a flapping motion in a water tank at a Reynolds number of 1,000. The results suggest a sufficient accuracy of calculated pressure fields for a global analysis of the topology of the flow and for the evaluation of loads by integrating the calculated pressure field over the surface of the wing.

  11. Constructing a 3D Crustal Model Across the Entire Contiguous US Using Broadband Rayleigh Wave Phase Velocity and Ellipticity Measurements

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.

    2015-12-01

    Imaging the crust and lithosphere structure beneath North America is one of the primary targets for the NSF-funded EarthScope project. In this study, we apply the recently developed ambient noise and surface wave tomography methods to construct a detailed 3D crustal model across the entire contiguous US using USArray data between January 2007 and May 2015. By using both Rayleigh wave phase velocity and ellipticity measurements between 8 and 100 sec period, the shear velocity structure can be well resolved within the five crustal layers we modeled: three upper crust, one middle crust, and one lower crust. Clear correlations are observed between the resolved velocity anomalies and known geological features at all depths. In the uppermost crust, slow Vs anomalies are observed within major sedimentary environments such as the Williston Basin, Denver Basin, and Mississippi embayment, and fast Vs anomalies are observed in environments with deeply exhumed bedrock outcrops at the surface including the Laurentian Highlands, Ouachita-Ozark Interior Highlands, and Appalachian Highlands. In the deeper upper crust, slow anomalies are observed in deep sedimentary basins such as the Green River Basin, Appalachian Basin, Southern Oklahoma Aulacogen, and areas surrounding the Gulf of Mexico. Fast anomalies, on the other hand, are observed in the Colorado Plateau, within the Great Plains between the Front Ranges and Midcontinental Rift, and east of the Appalachian Mountains. At this depth, the Midcontinental Rift and Grenville Front clearly correlate well with various velocity structure boundaries. In the middle crust, slow anomalies are mostly observed in the tectonically active areas in the western US, but relatively slow anomalies are also observed southeast of the Precambrian Rift Margins. At this depth, fast anomalies are observed beneath various deep sedimentary basins such as the Southern Oklahoma Aulacogen, Appalachian Basin, and Central Valley. In the lower crust, a clear

  12. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry.

    PubMed

    Wu, Yingchun; Wu, Xuecheng; Yao, Longchao; Gréhan, Gérard; Cen, Kefa

    2015-03-20

    The 3D measurement of the particles in a gas-solid pipe flow is of great interest, but remains challenging due to curved pipe walls in various engineering applications. Because of the astigmatism induced by the pipe, concentric ellipse fringes in the hologram of spherical particles are observed in the experiments. With a theoretical analysis of the particle holography by an ABCD matrix, the in-focus particle image can be reconstructed by the modified convolution method and fractional Fourier transform. Thereafter, the particle size, 3D position, and velocity are simultaneously measured by digital holographic particle tracking velocimetry (DHPTV). The successful application of DHPTV to the particle size and 3D velocity measurement in a glass pipe's flow can facilitate its 3D diagnostics. PMID:25968543

  13. Unified system for 3D holographic displacement and velocity measurements in fluid and solid mechanics: design and construction of the recording camera and interrogation assembly

    NASA Astrophysics Data System (ADS)

    Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    This paper introduces a new approach to 3D displacement and velocity measurements that unifies the disciplines of holographic interferometry and holographic particle image velocimetry (HPIV). Equally applicable to fluid and solid mechanics, the overall system enables quantitative displacement measurements between two holographically recorded events from either particle or surface scattering sites, working with both pulsed and continuous-wave laser systems. The resulting measurements exhibit an accuracy corresponding to interferometric system, but with a dynamic range found with PIV systems. Most importantly, this paper introduces the novel use of an optical fiber to specify the measurement points, remove optical aberrations of windows, and eliminate directional ambiguity. An optical fiber is used to probe the recorded holographic image space at each 3D measurement point in order to extract the 3D displacement vectors. This fiber system also employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex optical correlation rather than 2D real digital correlation. It is therefore a simple matter to directly obtain 3D displacement and velocity measurements at precisely known 3D locations in the object space. By correlating both the amplitude and phase information in the holographic image, this system can measure spatial distributions of displacements even when the presence of severe aberrations preclude the detection of sharp images.

  14. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  15. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    NASA Astrophysics Data System (ADS)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    Ultrasonic measurements of the 3D velocity distribution of P- and S-waves were performed on a spherical sample of a biotite gneiss from the Outokumpu scientific drill hole. Measurements were done at room temperature and pressures up to 400 and 70 MPa, respectively, in a pressure vessel with oil as a pressure medium. A modified transducer/sample assembly and the installation of a new mechanical system allowed simultaneous measurements of P- and S-wave velocities in 132 independent directions of the sphere on a net in steps of 15°. Proper signals for P- and S-waves could be recorded by coating the sample surface with a high-viscosity shear wave gel and by temporal point contacting of the transmitter and receiver transducers with the sample surface during the measurements. The 3D seismic measurements revealed a strong foliation-related directional dependence (anisotropy) of P- and S-wave velocities, which is confirmed by measurements in a multi-anvil apparatus on a cube-shaped specimen of the same rock. Both experimental approaches show a marked pressure sensitivity of P- and S-wave velocities and velocity anisotropies. With increasing pressure, P- and S-wave velocities increase non-linearly due to progressive closure of micro-cracks. The reverse is true for velocity anisotropy. 3D velocity calculations based on neutron diffraction measurements of crystallographic preferred orientation (CPO) of major minerals show that the intrinsic bulk anisotropy is basically caused by the CPO of biotite constituting about 23 vol.% of the rock. Including the shape of biotite grains and oriented low-aspect ratio microcracks into the modelling increases bulk anisotropy. An important finding from this study is that the measurements on the sample sphere and on the sample cube displayed distinct differences, particularly in shear wave velocities. It is assumed that the differences are due to the different geometries of the samples and the configuration of the transducer-sample assembly

  16. Simultaneous measurement of the geometry and the internal 3D velocity field of a micron sized droplet confined in a channel using Astigmatism-PTV

    NASA Astrophysics Data System (ADS)

    Mack, Tobias; Cierpka, Christian; Kähler, Christian J.

    2012-11-01

    Astigmatism-PTV is a method that allows to measure with a single camera the fully three-dimensional, three-component velocity field. The technique is ideally suited for microfluidic velocity measurements without errors due to in-plane and out-of-plane averaging (Cierpka et al. Meas Scie Tech 21, 2010). Recently it was shown, that the interface between two fluids or the surrounding fluid and droplets or bubbles can be estimated as well with the technique (Rossi et al., Meas Scie Tech 22, 2010). In this contribution the advantages of both techniques are combined to measure the shape of a droplet inside a micro channel along with the internal 3D flow field of the droplet induced by the surrounding fluid. For the current investigation, particles were only distributed within oil-droplets. Therefore the shape of the droplet could be later reconstructed by the volumetric particle positions and the velocity can be estimated tracking the same particles in consecutive frames of the same dataset. The procedure allows the simultaneous determination of the shape and the droplet velocity as well as the inner flow field and offers a great potential for current research.

  17. Closed formulae to determine the angular velocity of a body-segment based on 3D measurements.

    PubMed

    Kocsis, L; Béda, G

    2001-01-01

    This paper suggests a simple method to determine the global coordinates of the angular velocity and the angular acceleration of a body segment determined by the coordinates of minimum three markers. There are commonly used calculations for the angular quantities basing on the "hypothesis" of planar motion. The usage of approximate methods can result in quantitative and qualitative errors that may completely disort the reality. The method mentioned here is theoretically absolutely correct and can be well used for smoothing noisy data. PMID:11811842

  18. Split view Time-resolved PIV with a CW laser for 3-D measurements of planar velocity field

    NASA Astrophysics Data System (ADS)

    Elzawawy, Amir; Andreopoulos, Yiannis

    2011-11-01

    The demand to increase the temporal resolution of Stereo-PIV systems used in the measurement of highly unsteady flow fields is limited by the low repetition rate of the pulsed lasers and cameras. The availability of high-frame-rate digital cameras and CW lasers opens new possibilities in the development of continuous PIV systems with increased temporal resolution. The present setup consists of a single high-frame-rate camera which can accommodate two simultaneous stereo view images of the deforming fluid on its CMOS sensor obtained by using four different planar mirrors, appropriately positioned This approach offers several advantages over traditional systems with two different cameras. First, it provides identical system parameters for the two views which minimize their differences and thus facilitating robust stereo matching. Second, it eliminates any need of synchronization between both cameras and the laser. And third its cost is substantially lower than the cost of a system with two cameras. The development of the technique will be described and the results of qualification tests in several wind tunnel flows will be presented and discussed. Sponsored by NSF Grant #1033117.

  19. The USGS 3D Seismic Velocity Model for Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.

    2006-12-01

    We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at

  20. Unified system for holographic measurement in fluid and solid mechanics: use of the system for 3D velocity measurement in fluids through a thick curved window

    NASA Astrophysics Data System (ADS)

    Chan, Victor S. S.; Barnhart, Donald H.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    A new holographic technique has been developed to measure displacement in solid and fluid mechanics. The method uses double exposure holograms of large numerical aperture to record the light scattered from a solid surface or seeding particles that are assumed to follow the fluid motion. Analysis of the resulting hologram is performed in a piece- wise fashion through spatial correlation of the field that passes through a sampling aperture placed in the real image. In this way it is possible to map 3D displacement of an irregular surface or map the movement of seeding throughout an extended volume of fluid. This paper discusses the cancellation of gross aberrations using a phase conjugate holographic optical element to generate a converging reference wave. Seeded flow or solid surfaces recorded with this reference wave geometry can be reconstructed efficiently using a fiber-optic probe. In addition to aberration cancelling the technique allows a method of image shifting to be introduced thus resolving the direction of the flow or surface displacement.

  1. 3D finite element simulations of high velocity projectile impact

    NASA Astrophysics Data System (ADS)

    Ožbolt, Joško; İrhan, Barış; Ruta, Daniela

    2015-09-01

    An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  2. Visualizing 3D velocity fields near contour surfaces

    SciTech Connect

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  3. Bayesian 3D velocity field reconstruction with VIRBIUS

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2016-03-01

    I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.

  4. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  5. 3D measurement using circular gratings

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  6. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    NASA Astrophysics Data System (ADS)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  7. Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Romanowicz, B.; Gung, Y.

    2001-12-01

    Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well

  8. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments. PMID:23062070

  9. Effects of 3D Velocity and Attenuation in the Tonga-Fiji Subduction Zone

    NASA Astrophysics Data System (ADS)

    Savage, B.; Wiens, D. A.; Tromp, J.

    2005-12-01

    The current understanding of a subduction zone's temperature and composition is limited. Much of our recent knowledge of subduction zones comes from earthquake locations, geochemical measurements, and lab based experiments. Recently, two studies of the Tonga-Fiji subduction zone have presented tomographic images of velocity and attenuation (Roth et al., 1999; Zhao et al., 1997). Roth et al. (2000) then combined these two tomographic models of the Tonga-Fiji subduction zone to derive an empirical relationship between changes in velocity and attenuation. This relationship agrees well with two independent, experimental data sets (Jackson et al., 1992; Sato et al., 1989). Using the tomographic velocity model and the empirical relationship between velocity and attenuation we create synthetic seismograms for the Tonga-Fiji subduction zone to test whether a simple increase in velocity accurately depicts this subduction zone. To construct the model we use the tomographic model of Zhao et al. (1997) to create a shear velocity model using a simple Vs/Vp ratio. Following Roth et al. (2000) these tomographic models are combined with the empirical relation between velocity and attenuation to create an attenuation model. The resulting synthetics are compared to recorded data to validate the tomographic velocity model and the empirical relation between velocity and attenuation. Any mismatch in this comparison will provide a basis for further refinement of the tomographic models and the velocity-attenuation relation. The synthetics are created using the SPECFEM3D global code (Komatitsch et al., 2002) with the new addition of a three-dimensional attenuation operator. Attenuation is simulated by a set of standard linear solids over the desired frequency range as described in Liu et al. (1976). Our initial results at a minimum period of 3.3 seconds suggest that the attenuation structure plays a minor role for the present source-receiver geometry. The addition of the 3D attenuation

  10. 3-D laser anemometer measurements in a labyrinth seal

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Tatterson, G. B.; Johnson, M. C.

    1988-01-01

    The flow field inside a seven cavity labyrinth seal with a 0.00127 m clearance was measured using a 3-D laser Doppler anemometer system. Through the use of this system, the mean velocity vector and the entire Reynolds stress tensor distributions were measured for the first, third, fifth, and seventh cavities of the seal. There was one large recirculation region present in the cavity for the flow condition tested, Re = 28,000 and Ta = 7,000. The axial and radial mean velocities as well as all of the Reynolds stress term became cavity independent by the third cavity. The azimuthal mean velocity varied from cavity to cavity with its magnitude increasing as the flow progressed downstream.

  11. Integrating Mach-Zehnder interferometry with TPIV to measure the time-resolved deformation of a compliant wall along with the 3D velocity field in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Cao; Miorini, Rinaldo; Katz, Joseph

    2015-11-01

    A system combining tomographic PIV (TPIV) and Mach-Zehnder interferometry (MZI) simultaneously measures the time- resolved 3D flow field and 2D distribution of wall-normal deformation in a turbulent channel flow over a transparent compliant surface. This paper focuses on the experimental techniques and data analysis procedures, but includes sample results. Standard TPIV analysis resolves the log layer of the mean velocity and the linear decrease in total shear stress with distance from the wall. Single-pixel ensemble correlations reveal the buffer layer and top of the viscous sublayer. Analysis of the MZI data consists of two steps, namely critical spatial filtering of interferograms to remove noise and phase demodulation to calculate the surface shape. A new technique to improve the filtration of noise from interferograms based on spatial correlations of small windows is introduced and optimized. Taking advantage of this enhancement, the phase/deformation distribution is calculated directly from arccosines of the intensity, which avoids edge artifacts affecting spectral calculations. Validations using synthetic noisy interferograms indicate that errors associated with correlation-based enhancement are consistently lower and much less sensitive to fringe shape than spectral band-pass filtering. The experimental wavenumber-frequency spectra show that the deformation consists of patterns that are larger than the field of view, surface waves and small-scale patterns. Some of the latter are advected at the freestream velocity, but mostly at 70 % of the freestream, the mean speed at 10 % of the channel half height. Indeed, spatial correlations of the deformation with velocity components peak at this elevation.

  12. Congruence of 3-D Whole Mantle Models of Shear Velocity

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Lekic, V.; Romanowicz, B. A.

    2012-12-01

    The range of shear velocity anomalies in published whole mantle models is considerable. This impedes drawing conclusions of importance for geodynamic modeling and for interpretation of mineral physics results. However, if one considers only the models that were built using data that are sensitive to mantle structure at all depths, these models show robust features in their power spectra as a function of depth. On this basis we propose that there are five depth intervals with distinct spectral characteristics. 1. Heterosphere (Moho - 300 km) is characterized by strong power spectrum relatively flat up to degree 6. With lateral shear wavespeed variations as large as 15%, this zone accounts for more than 50% of the entire heterogeneity in the mantle. Differences among models for different tectonic regions decrease rapidly below 300 km depth. 2. Upper mantle buffer zone (300- 500 km) has a flat spectrum and the overall power of heterogeneity drops by an order of magnitude compared to the region above. There may be still weak difference between continents and oceans, but the oceanic regions lose their age dependence. The spectral characteristics do not change across the 410 km discontinuity. 3. Transition zone (500 - 650 km) The degree 2 anomaly becomes dominant. There are long wavelength anomalies in regions of the fastest plate subduction during the last 15-20 Ma, suggesting slab ponding above the 650 km discontinuity. Several slower-than-average anomalies of unknown origin are present in this depth range. 4. Lower mantle buffer zone (650 - 2300 km) has a weak, flat spectrum without long wavelength velocity anomalies that could be interpreted as unfragmented subducted slabs. However, there are three relatively narrow and short high velocity anomalies under Peru, Tonga and Indonesia that may indicate limited slab penetration. 5 Abyssal layer (2300 - CMB) Strong spectrum dominated by degrees 2 and 3. The amplitude is the largest at the CMB and decreases rapidly up to

  13. Phase unwrapping in the dynamic 3D measurement

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Zhang, Qican

    2010-04-01

    In the dynamic 3D shape measurement phase distribution has 3D character, in which phase changes along x and y directions in space and also along t direction in time. 3D phase unwrapping plays a very important role in the dynamic 3D shape measurement. In the dynamic 3D shape measurement methods based on the structured illumination, Fourier transformation profilometry (FTP) is particularly fit for dynamic 3D measurement, because of only one fringe pattern needed and full field analysis. In this paper some 3D phase unwrapping techniques for dynamic 3D shape measurement mainly in our Lab. are presented and reviewed. The basic methods and algorithm design are introduced. The basic methods include direct 3D phase unwrapping, 3D diamond phase unwrapping, 3D phase unwrapping based on reliability ordering, 3D phase unwrapping based on marked fringe tracing. The advantage of the phase unwrapping based on reliability ordering is that the path of phase unwrapping is always along the direction from the pixel with higher reliability parameter value to the pixel with low reliability parameter value. Therefore, in the worse case the error is limited, if there is any, to local minimum areas.

  14. 3D Droplet velocities and sizes in the Ranque-Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Liew, R.; Zeegers, J. C. H.; Kuerten, J. G. M.; Michalek, W. R.

    2012-11-01

    The Ranque-Hilsch vortex tube is a known device that is used to generate spot cooling. In this study, we experimentally investigate the behavior of small water droplets in the vortex tube by means of Phase Doppler Particle Analysis. In an experimental vortex tube, droplets were injected together with a carrier gas to form a fast rotating (up to 80.000 rpm) droplet-gas mixture. Droplet sizes, 3D velocity components, and turbulent properties were measured, showing high intensity isotropic turbulence in the core region. To investigate the cause of the high intensity turbulence, a frequency analysis was applied on the measured velocity. The frequency spectrum of the velocity is presented and indicates that wobbling of the vortex axis is the cause of the high turbulence intensity. It was expected that larger droplets have a higher radial velocity because of the larger centrifugal force. Results show, however, that small and lager droplets behave similar. This research is supported by the Dutch Technology Foundation STW, which is the applied science division of NWO, and the Technology Programme of the Ministry of Economic Affairs.

  15. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  16. Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Anna, Pietro; Nunes, Joao P.; Bijeljic, Branko; Blunt, Martin J.; Juanes, Ruben

    2014-09-01

    We study the nature of non-Fickian particle transport in 3-D porous media by simulating fluid flow in the intricate pore space of real rock. We solve the full Navier-Stokes equations at the same resolution as the 3-D micro-CT (computed tomography) image of the rock sample and simulate particle transport along the streamlines of the velocity field. We find that transport at the pore scale is markedly anomalous: longitudinal spreading is superdiffusive, while transverse spreading is subdiffusive. We demonstrate that this anomalous behavior originates from the intermittent structure of the velocity field at the pore scale, which in turn emanates from the interplay between velocity heterogeneity and velocity correlation. Finally, we propose a continuous time random walk model that honors this intermittent structure at the pore scale and captures the anomalous 3-D transport behavior at the macroscale.

  17. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  18. Fast 3D shape measurements using laser speckle projection

    NASA Astrophysics Data System (ADS)

    Schaffer, Martin; Grosse, Marcus; Harendt, Bastian; Kowarschik, Richard

    2011-05-01

    3D measurement setups based on structured light projection are widely used for many industrial applications. Due to intense research in the past the accuracy is comparably high in connection with relatively low cost of the equipment. But facing higher acquisition rates in industries especially for chain assembling lines there are still hurdles to take when accelerating 3D measurements and at the same time retaining accuracies. We developed a projection technique that uses laser speckles to enable fast 3D measurements with statistically structured light patterns. In combination with a temporal correlation technique dense and accurate 3D reconstructions at nearly video rate can be achieved.

  19. Optical characterization and measurements of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Salmimaa, Marja; Järvenpää, Toni

    2008-04-01

    3D or autostereoscopic display technologies offer attractive solutions for enriching the multimedia experience. However, both characterization and comparison of 3D displays have been challenging when the definitions for the consistent measurement methods have been lacking and displays with similar specifications may appear quite different. Earlier we have investigated how the optical properties of autostereoscopic (3D) displays can be objectively measured and what are the main characteristics defining the perceived image quality. In this paper the discussion is extended to cover the viewing freedom (VF) and the definition for the optimum viewing distance (OVD) is elaborated. VF is the volume inside which the eyes have to be to see an acceptable 3D image. Characteristics limiting the VF space are proposed to be 3D crosstalk, luminance difference and color difference. Since the 3D crosstalk can be presumed to be dominating the quality of the end user experience and in our approach is forming the basis for the calculations of the other optical parameters, the reliability of the 3D crosstalk measurements is investigated. Furthermore the effect on the derived VF definition is evaluated. We have performed comparison 3D crosstalk measurements with different measurement device apertures and the effect of different measurement geometry on the results on actual 3D displays is reported.

  20. 3D-Measuring for Head Shape Covering Hair

    NASA Astrophysics Data System (ADS)

    Kato, Tsukasa; Hattori, Koosuke; Nomura, Takuya; Taguchi, Ryo; Hoguro, Masahiro; Umezaki, Taizo

    3D-Measuring is paid to attention because 3D-Display is making rapid spread. Especially, face and head are required to be measured because of necessary or contents production. However, it is a present problem that it is difficult to measure hair. Then, in this research, it is a purpose to measure face and hair with phase shift method. By using sine images arranged for hair measuring, the problems on hair measuring, dark color and reflection, are settled.

  1. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  2. Retrieving 3D Velocity Fields of Glaciers from X-band SAR Data and Comparison with GPS Observations

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Nagler, T.; Hetzenecker, M.; Palsson, F.; Scharrer, K.; Floricioiu, D.; Berthier, E.; Gudmundsson, S.; Rott, H.

    2013-12-01

    We present 3D velocity fields obtained from time series of TerraSAR-X and TanDEM-X images acquired over the ablation area of the Breidamerkurjökull outlet glacier of Vatnjökull Ice Cap (Iceland) in 2008-2012. Coherent and incoherent offset tracking is applied to repeat pass X-Band data to obtain ice displacement in cross and along track direction. Three methods are tested and compared to extract fields of the 3D ice velocity. First, the conventional surface parallel approach, which we consider as an approximation for deriving the horizontal motion rate, but does not reveal a realistic vertical motion. Second, the combination of offset tracking results from almost simultaneous observations from ascending and descending orbits measuring the glacier motion in four different directions, allowing calculation of the 3D velocity fields without any additional approximations. Third, deriving full 3D velocity fields by using the horizontal flow direction, derived from the ascending-descending combination, as constrain on offset tracking results from a single pair of SAR images. The latter two methods reveal a measurement of the vertical ice motion plus ablation, hence equivalent to the vertical motion component measured by GPS station fixed on a platform laying on the ice surface. The results from all methods are compared with such GPS measurements recorded by permanent stations on the glacier in 2008-2012 and the errors of the different methods are calculated. Additionally, we approximate the contribution of these 3D flow fields to elevation changes (emergence/submergence velocity plus net balance) and compare it with elevation changes from surface DEMs obtained in 2008 (SPIRIT), 2010 (airborne LIDAR) and 2012 (TanDEM-X).

  3. Steering knuckle diameter measurement based on optical 3D scanning

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Da-peng; Chang, Yu-lan; Xi, Jiang-tao; Guo, Qing-hua

    2014-11-01

    To achieve accurate measurements, the creating a fitting hole for internal diameter (CFHID) measurement method and the establishing multi-sectional curve for external diameter (EMCED) measurement method are proposed in this paper, which are based on computer vision principle and three-dimensional (3D) reconstruction. The methods are able to highlight the 3D characteristics of the scanned object and to achieve the accurate measurement of 3D data. It can create favorable conditions for realizing the reverse design and 3D reconstruction of scanned object. These methods can also be applied to dangerous work environment or the occasion that traditional contact measurement can not meet the demands, and they can improve the security in measurement.

  4. 3D P-Wave Velocity Structure of the Deep Galicia Rifted Margin

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy; Davy, Richard; Sawyer, Dale; Klaeschen, Dirk; Papenberg, Cord; Reston, Timothy; Shillington, Donna; Ranero, Cesar

    2015-04-01

    The combined wide-angle reflection-refraction and multi-channel seismic (MCS) experiment, Galicia 3D, was carried out in 2013 at the Galicia rifted margin in the northeast Atlantic Ocean, west of Spain. The main geological features within the 64 by 20 km (1280 km²) 3D box investigated by the survey are the peridotite ridge (PR), the fault bounded, rotated basement blocks and the S reflector, which has been interpreted to be a low angle detachment fault. 44 short period four-component ocean bottom seismometers and 28 ocean bottom hydrophones were deployed in the 3D box. 3D MCS profiles sampling the whole box were acquired with two airgun arrays of 3300 cu.in. fired alternately every 37.5 m. We present the results from 3D first-arrival time tomography that constrains the P-wave velocity in the 3D box, for the entire depth sampled by reflection data. Results are validated by synthetic tests and by the comparison with Galicia 3D MCS lines. The main outcomes are as follows: 1- The 3.5 km/s iso-velocity contour mimics the top of the acoustic basement observed on MCS profiles. Block bounding faults are imaged as velocity contrasts and basement blocks exhibit 3D topographic variations. 2- On the southern profiles, the top of the PR rises up to 5.5 km depth whereas, 20 km northward, its basement expression (at 6.5 km depth) nearly disappears. 3- The 6.5 km/s iso-velocity contour matches the topography of the S reflector where the latter is visible on MCS profiles. Within a depth interval of 0.6 km (in average), velocities beneath the S reflector increase from 6.5 km/s to 7 km/s, which would correspond to a decrease in the degree of serpentinization from ~45 % to ~30 % if these velocity variations are caused solely by variations in hydration. At the intersections between the block bounding normal faults and the S reflector, this decrease happens over a larger depth interval (> 1 km), suggesting that faults act as conduit for the water flow in the upper mantle.

  5. SALSA3D: Validating a Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Encarnacao, A.; Phillips, W. S.; Chael, E. P.; Rowe, C. A.

    2012-12-01

    We are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography to assess improvement to seismic event locations obtained using high quality 3D Earth models in lieu of 1D and 2/2.5D models. We present the most recent version of SALSA3D (SAndia LoS Alamos 3D) version 1.9, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events. Our model is derived from the latest version of the GT catalog of P/Pn travel-time picks assembled by Los Alamos National Laboratory. For this current version, we employ more robust data quality control measures than previously used, as well as additional global GT data sources. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays into representative rays. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, overlying a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant such a refinement. In previous versions, we based this refinement on velocity changes from previous model iterations. For the current version, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. In addition to the changes in grid refinement, we also employ a more robust convergence criterion between successive grid refinements, allowing a better fit to first broader

  6. About measuring velocity dispersions

    NASA Astrophysics Data System (ADS)

    Fellhauer, M.

    A lot of our knowledge about the dynamics and total masses of pressure dominated stellar systems relies on measuring the internal velocity disper- sion of the system. We assume virial equilibrium and that we are able to measure only the bound stars of the system without any contamination. This article shows how likely it is to measure the correct velocity dispersion in reality. It will show that as long as we have small samples of velocity mea- surements the distribution of possible outcomes can be very large and as soon as we have a source of error the velocity dispersion can wrong by several standard deviations especially in large samples.

  7. Coronal Outflow Velocities in a 3D Coronal Model Determined from UVCS Doppler Dimming Observations

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Panasyuk, A. V.; Dobrzycka, D.; Gibson, S.; Biesecker, D. A.; Ko, Y.-K.; Galvin, A. B.; Romoli, M.; Kohn, J. L.

    1998-04-01

    We constrain coronal outflow velocity solutions, resolved along the line-of-sight, by using Doppler dimming models of H I Lyman alpha and O VI 1032/1037 Angstrom emissivities obtained with data from the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO. The local emissivities, from heliocentric heights of 1.5 to 3.0 radii, were determined from 3-D reconstructions of line-of-sight intensities obtained during the Whole Sun Month Campaign (10 Aug. -- 8 Sep. 1996). The models use electron densities derived from polarized brightness measurements made with the visible light coronagraphs on UVCS and LASCO, supplemented with data from Mark III at NCAR/MLSO. Electron temperature profiles are derived from `freezing-in' temperatures obtained from an analysis of charge state data from SWICS/Ulysses. The work concentrates on O5+ outflow velocities which are determined from an analysis of the the O VI line ratios. This analysis is less sensitive to the uncertainties in the electron density and independent of the ionization balance and elemental abundance than the analyses which use individual spectral lines. This work is supported in part by NASA under grant NAG-3192 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency and by Swiss funding agencies.

  8. Dust particle velocity measurement

    NASA Technical Reports Server (NTRS)

    Thielman, L. O.

    1976-01-01

    A laser Doppler velocimeter was used to measure the velocity distributions for particles entering a vacuum chamber from the atmosphere through calibrated leaks. The relative number of particles per velocity interval was obtained for particulates of three size distributions and two densities passing through six different leak geometries. The velocity range 15 to 320 meters per second was investigated. Peak particle velocities were found to occur in the 15 to 150 meters per second range depending upon type of particle and leak geometry. A small fraction of the particles were found to have velocities in the 150 to 320 meters per second range.

  9. Using Adjoint Methods to Improve 3-D Velocity Models of Southern California

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.

    2006-12-01

    We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical

  10. 3-D P Wave Velocity Structure of Marmara Region Using Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Işık, S. E.; Gurbuz, C.

    2014-12-01

    The 3D P wave velocity model of upper and lower crust of the Marmara Region between 40.200- 41.200N and 26.500- 30.500E is obtained by tomographic inversion (Simulps) of 47034 P wave arrivals of local earthquakes recorded at 90 land stations between October 2009 and December 2012 and 30 OBO stations and 14162 shot arrivals recorded at 35 OBO stations (Seismarmara Survey, 2001). We first obtained a 1D minimum model with Velest code in order to obtain an initial model for 3D inversion with 648 well located earthquakes located within the study area. After several 3D inversion trials we decided to create a more adequate initial model for 3D inversion. Choosing the initial model we estimated the 3D P wave velocity model representing the whole region both for land and sea. The results are tested by making Checkerboard , Restoring Resolution and Characteristic Tests, and the reliable areas of the resulting model is defined in terms of RDE, DWS, SF and Hit count distributions. By taking cross sections from the resulting model we observed the vertical velocity change along profiles crossing both land and sea. All the profiles crossing the basins showed that the high velocities of lower crust make extensions towards the basin area which looks like the force that gives a shape to the basins. These extensions of lower crust towards the basins appeared with an average velocity of 6.3 km/s which might be the result of the deformation due the shearing in the region. It is also interpreted that the development of these high velocities coincide with the development of the basins. Thus, both the basins and the high velocity zones around them might be resulted from the entrance of the NAF into the Marmara Sea and at the same time a shear regime was dominated due to the resistance of the northern Marmara Region (Yılmaz, 2010). The seismicity is observed between 5 km and 15 km after the 3D location of the earthquakes. The locations of the earthquakes improved and the seismogenic zone

  11. UCVM: Open Source Software for Understanding and Delivering 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2014-12-01

    Physics-based ground motion simulations can calculate the propagation of earthquake waves through 3D velocity models of the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) framework to help researchers build structured or unstructured velocity meshes from 3D velocity models for use in wave propagation simulations. The UCVM software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Currently, the platform supports multiple California models, including SCEC CVM-S4 and CVM-H 11.9.1, and has been designed to support models from any region on earth. UCVM is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. In this presentation, we describe improvements to the UCVM software. The current version, UCVM 14.3.0, released in March of 2014, supports the newest Southern California velocity model, CVM-S4.26, which was derived from 26 full-3D tomographic iterations using CVM-S4 as the starting model (Lee et al., this meeting), and the Broadband 1D velocity model used in the CyberShake 14.2 study. We have ported UCVM to multiple Linux distributions and OS X. Also included in this release is the ability to add small-scale stochastic heterogeneities to extract Cartesian meshes for use in high-frequency ground motion simulations. This tool was built using the C language open-source FFT library, FFTW. The stochastic parameters (Hurst exponent, correlation length, and the horizontal/vertical aspect ratio) can be customized by the user. UCVM v14.3.0 also provides visualization scripts for constructing cross-sections, horizontal slices, basin depths, and Vs30 maps. The interface allows researchers to visually review velocity models . Also, UCVM v14.3.0 can extract

  12. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  13. UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2015-12-01

    Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small

  14. Energy cost and body centre of mass' 3D intracycle velocity variation in swimming.

    PubMed

    Figueiredo, Pedro; Barbosa, Tiago M; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2012-09-01

    The purpose of this study was to examine the relationship between the energy cost (C) and the 3D intracycle velocity variation (IVV; swimming direction--x, vertical--y and lateral--z axes) throughout the 200 m front crawl event. Ten international level swimmers performed a maximal 200 m front crawl swim followed by 50, 100 and 150 m bouts at the same pace as in the 200 m splits. Oxygen consumption was measured during the bouts and blood samples were collected before and after each one. The C was calculated for each 50 m lap as the ratio of the total energy expenditure (three energy pathways) to the distance. A respiratory snorkel and valve system with low hydrodynamic resistance was used to measure pulmonary ventilation and to collect breathing air samples. Two above water and four underwater cameras videotaped the swim bouts and thereafter APAS was used to assess the centre of mass IVV (x, y and z components). The increase in the C was significantly associated with the increase in the IVV in x for the first 50 m lap (R = -0.83, P < 0.01). It is concluded that the IVV relationship with C in a competitive event does not present the direct relationship found in the literature, revealing a great specificity, which suggests that the relation between these two parameters could not be used as a performance predictor in competitive events. PMID:22262010

  15. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  16. Analysis of the rupture process of the 1995 Kobe earthquake using a 3D velocity structure

    NASA Astrophysics Data System (ADS)

    Guo, Yujia; Koketsu, Kazuki; Ohno, Taichi

    2013-12-01

    A notable feature of the 1995 Kobe (Hyogo-ken Nanbu) earthquake is that violent ground motions occurred in a narrow zone. Previous studies have shown that the origin of such motions can be explained by the 3D velocity structure in this zone. This indicates not only that the 3D velocity structure significantly affects strong ground motions, but also that we should consider its effects in order to determine accurately the rupture process of the earthquake. Therefore, we have performed a joint source inversion of strong-motion, geodetic, and teleseismic data, where 3D Green's functions were calculated for strong-motion and geodetic data in the Osaka basin. Our source model estimates the total seismic moment to be about 2.1 × 1019 N m and the maximum slip reaches 2.9 m near the hypocenter. Although the locations of large slips are similar to those reported by Yoshida et al. (1996), there are quantitative differences between our results and their results due to the differences between the 3D and 1D Green's functions. We have also confirmed that our source model realized a better fit to the strong motion observations, and a similar fit as Yoshida et al. (1996) to the observed static displacements.

  17. 3D Simulation of Velocity Profile of Turbulent Flow in Open Channel with Complex Geometry

    NASA Astrophysics Data System (ADS)

    Kamel, Benoumessad; Ilhem, Kriba; Ali, Fourar; Abdelbaki, Djebaili

    Simulation of open channel flow or river flow presents unique challenge to numerical simulators, which is widely used in the applications of computational fluid dynamics. The prediction is extremely difficult because the flow in open channel is usually transient and turbulent, the geometry is irregular and curved, and the free-surface elevation is varying with time. The results from a 3D non-linear k- ɛ turbulence model are presented to investigate the flow structure, the velocity distribution and mass transport process in a meandering compound open channel and a straight open channel. The 3D numerical model for calculating flow is set up in cylinder coordinates in order to calculate the complex boundary channel. The finite volume method is used to disperse the governing equations and the SIMPLE algorithm is applied to acquire the coupling of velocity and pressure. The non-linear k- ɛ turbulent model has good useful value because of taking into account the anisotropy and not increasing the computational time. The main contributions of this study are developing a numerical method that can be applied to predict the flow in river bends with various bend curvatures and different width-depth ratios. This study demonstrates that the 3D non-linear k- ɛ turbulence model can be used for analyzing flow structures, the velocity distribution and pollutant transport in the complex boundary open channel, this model is applicable for real river and wetland problem.

  18. The numerical measure of symmetry for 3D stick creatures.

    PubMed

    Jaśkowski, Wojciech; Komosinski, Maciej

    2008-01-01

    This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry. PMID:18573069

  19. Effect of catheter placement on 3-D velocity profiles in curved tubes resembling the human coronary system.

    PubMed

    Krams, R; Wentzel, J J; Cespedes, I; Vinke, R; Carlier, S; van der Steen, A F; Lancee, C T; Slager, C J

    1999-06-01

    Novel measurement techniques based on intravenous ultrasound (IVUS) technology ('IVUS-Flowmetry') require the location of a catheter inside the coronary bed. The present study quantifies disturbances in the 3-D velocity profile induced by catheter placement inside a tube, applying computational fluid dynamics. Two curved, circular meshes (radius K = 0.025 m and K = 0.035 m) with and without a catheter inside the lumen were applied. The catheter was located at the inner curve, the outer curve and at the top position. Boundary conditions were: no slip on the wall, zero stress at the outlet, uniform inflow with entrance velocities of 0.1, 0.2 and 0.4 m/s. Curvature-associated centrifugal forces shifted the maximal velocity to the outer curve and introduced two symmetrical vortices. Additional catheter placement redistributed the 3-D axial velocity field away from the catheter, which was accompanied by the appearance of multiple low-strength vortices. In addition, peak axial velocity increased, peak secondary velocities decreased, axial pressure drop increased and shear stress increased. Flow calculations simulated to resemble IVUS-based flowmetry changed by only 1% after considering secondary velocity. In conclusion, placement of a catheter inside a curved tube resembling the human coronary system changes the velocity field and reduces secondary patterns. The present study supports the usefulness of catheter-based flowmetry during resting flow conditions. During hyperemic flow conditions, flow measurements might be accompanied by large axial pressure drops because the catheter, itself, might act as a significant stenosis. PMID:10414897

  20. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.

    PubMed

    Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R

    2010-05-28

    The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. PMID:20226465

  1. Tangential velocity measurement using interferometric MTI radar

    DOEpatents

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  2. Probabilistic Seismic Hazard Maps of Seattle, Washington, Including 3D Sedimentary Basin Effects and Rupture Directivity: Implications of 3D Random Velocity Variations (Invited)

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Stephenson, W. J.; Carver, D.; Odum, J.; Williams, R. A.; Rhea, S.

    2010-12-01

    We have produced probabilistic seismic hazard maps of Seattle for 1 Hz spectral acceleration, using over five hundred 3D finite-difference simulations of earthquakes on the Seattle fault, Southern Whidbey Island fault, and Cascadia subduction zone, as well as for random deep and shallow earthquakes at various locations. The 3D velocity model was validated by modeling the observed waveforms for the 2001 M6.8 Nisqually earthquake and several smaller events in the region. At these longer periods (≥ 1 sec) that are especially important to the response of buildings of ten stories or higher, seismic waves are strongly influenced by sedimentary basins and rupture directivity. We are investigating how random spatial variations in the 3D velocity model affect the simulated ground motions for M6.7 earthquakes on the Seattle fault. A fractal random variation of shear-wave velocity with a Von Karman correlation function produces spatial variations of peak ground velocity with multiple scale lengths. We find that a 3D velocity model with a 10% standard deviation in shear-wave velocity in the top 1.5 km and 5% standard deviation from 1.5-10 km depth produces variations in peak ground velocities of as much as a factor of two, relative to the case with no random variations. The model with random variations generally reduces the peak ground velocity of the forward rupture directivity pulse for sites near the fault where basin-edge focusing of S-waves occurs. It also tends to reduce the peak velocity of localized areas where basin surface waves are focused. However, the medium with random variations also causes small-scale amplification of ground motions over distances of a few kilometers. We are also evaluating alternative methods of characterizing the aleatory uncertainty in the probabilistic hazard calculations.

  3. 3D precision surface measurement by dynamic structured light

    NASA Astrophysics Data System (ADS)

    Franke, Ernest A.; Magee, Michael J.; Mitchell, Joseph N.; Rigney, Michael P.

    2004-02-01

    This paper describes a 3-D imaging technique developed as an internal research project at Southwest Research Institute. The technique is based on an extension of structured light methods in which a projected pattern of parallel lines is rotated over the surface to be measured. A sequence of images is captured and the surface elevation at any location can then be determined from measurements of the temporal pattern, at any point, without considering any other points on the surface. The paper describes techniques for system calibration and surface measurement based on the method of projected quadric shells. Algorithms were developed for image and signal analysis and computer programs were written to calibrate the system and to calculate 3-D coordinates of points on a measured surface. A prototype of the Dynamic Structured Light (DSL) 3-D imaging system was assembled and typical parts were measured. The design procedure was verified and used to implement several different configurations with different measurement volumes and measurement accuracy. A small-parts measurement accuracy of 32 micrometers (.0012") RMS was verified by measuring the surface of a precision-machined plane. Large aircraft control surfaces were measured with a prototype setup that provided .02" depth resolution over a 4" by 8" field of view. Measurement times are typically less than three minutes for 300,000 points. A patent application has been filed.

  4. Probabilistic earthquake location and 3-D velocity models in routine earthquake location

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Husen, S.

    2003-12-01

    Earthquake monitoring agencies, such as local networks or CTBTO, are faced with the dilemma of providing routine earthquake locations in near real-time with high precision and meaningful uncertainty information. Traditionally, routine earthquake locations are obtained from linearized inversion using layered seismic velocity models. This approach is fast and simple. However, uncertainties derived from a linear approximation to a set of non-linear equations can be imprecise, unreliable, or even misleading. In addition, 1-D velocity models are a poor approximation to real Earth structure in tectonically complex regions. In this paper, we discuss the routine location of earthquakes in near real-time with high precision using non-linear, probabilistic location methods and 3-D velocity models. The combination of non-linear, global search algorithms with probabilistic earthquake location provides a fast and reliable tool for earthquake location that can be used with any kind of velocity model. The probabilistic solution to the earthquake location includes a complete description of location uncertainties, which may be irregular and multimodal. We present applications of this approach to determine seismicity in Switzerland and in Yellowstone National Park, WY. Comparing our earthquake locations to earthquake locations obtained using linearized inversion and 1-D velocity models clearly demonstrates the advantages of probabilistic earthquake location and 3-D velocity models. For example, the more complete and reliable uncertainty information of non-linear, probabilistic earthquake location greatly facilitates the identification of poorly constrained hypocenters. Such events are often not identified in linearized earthquake location, since the location uncertainties are determined with a simplified, localized and approximate Gaussian statistic.

  5. 3D velocity structure of upper crust beneath NW Bohemia/Vogtland

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mousavi, Sima; Korn, Michael; Sens-Schönfelder, Christoph; Bauer, Klaus; Rößler, Dirk

    2013-04-01

    The 3D structure of the upper crust beneath west Bohemia/Vogtland region, analyzed with travel time tomography and ambient noise surface wave tomography using existing data. This region is characterized by a series of phenomena like occurrence of repeated earthquake swarms, surface exhalation, CO2 enriched fluids, mofettes, mineral springs and enhanced heat flow, and has been proposed as an excellent location for an ICDP drilling project targeted to a better understanding of the crust in an active magmatic environment. We performed a 3D tomography using P-and S-wave travel times of local earthquakes and explosions. The data set were taken from permanent and temporary seismic networks in Germany and Czech Republic from 2000 to 2010, as well as active seismic experiments like Celebration 2000 and quarry blasts. After picking P and S wave arrival times, 399 events which were recorded by 9 or more stations and azimuthal gap<160° were selected for inversion. A simultaneous inversion of P and S wave 1D velocity models together with relocations of hypocenters and station corrections was performed. The obtained minimum 1D velocity model was used as starting model for the 3D Vp and Vp/Vs velocity models. P and S wave travel time tomography employs damped least-square method and ray tracing by pseudo-bending algorithm. For model parametrization different cell node spacings have been tested to evaluate the resolution in each node. Synthetic checkerboard tests have been done to check the structural resolution. Then Vp and Vp/Vs in the preferred 3D grid model have been determined. Earthquakes locations in iteration process change till the hypocenter adjustments and travel time residuals become smaller than the defined threshold criteria. Finally the analysis of the resolution depicts the well resolved features for interpretation. We observed lower Vp/Vs ratio in depth of 5-10 km close to the foci of earthquake swarms and higher Vp/Vs ratio is observed in Saxoturingian zone and

  6. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential. PMID:26915117

  7. 3-D crustal velocity model for Lithuania and its application to local event studies

    NASA Astrophysics Data System (ADS)

    Budraitis, M.; Kozlovskaya, E.; Janutyte, I.; Motuza, G.

    2009-12-01

    PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania and operated since June, 2006 till January, 2008. One of the main reasons of PASSEQ deployment in Lithuania is identification and characterisation of the local seismic activity. During the data acquisition period a number of local seismic events was identified and preliminary event location was made using LocSat and VELEST algorithms and 1-D velocity models. These standard procedures is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). Another problem was low quality of S-wave arrivals due to thick (up to 2 km) sediments in most part of Lithuania. In order to improve event location, we compiled a 3-D seismic velocity model of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded by controlled source experiments and calculated travel times through the 3-D velocity model. The model was converted into a density model using a special procedure, in which

  8. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  9. Full-hemisphere automatic optical 3D measurement system

    NASA Astrophysics Data System (ADS)

    Kuehmstedt, Peter; Notni, Gunther; Schreiber, Wolfgang; Gerber, Joerg

    1997-09-01

    The measurement of 3D object shapes for the purpose of digitization of CAD-models and for the complete manufacturing control of components are important tasks of modern industrial inspection. The proposed 3D measurement system using structured-light illumination has the ability to avoid illumination-caused difficulties, like shadowing and excessive light intensities by light reflection and diffraction at the surface of the object, while measuring technical surfaces. For this purpose, the object under test is successively illuminated with a periodic grating structure from at least three different directions, using a telecentric projection system. At least three linearly independent phase-measurement values are measured by gray- code techniques to calculate the 3D coordinates of the object points. The experimental setup allows the determination of phase-measurement values with illuminations from up to 16 different directions. This is connected with a simultaneous variation of the intensity of the projected grating structures. Thus, areas of shadows are `shifted' across the object surface to spots where they have no influence on the result of the measurement, and also specular effects can be suppressed. Furthermore, in order to obtain the entire surface, the object to be digitized must be covered by many overlapping views taken from different directions. To view the entire surface, the object is moved into various measuring positions, using a second rotation axis. These views are merged within an object-centered coordinate system and are automatically rearranged into a uniform grid. For this purpose, a calibration procedure has been developed to measure absolute coordinates within a defined object coordinate system, so that the combination of the particular images is simple, because all measurements are performed within the same system of object coordinates. The power of this concept has been experimentally demonstrated, for example, by measuring the complete 3D shape

  10. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  11. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    NASA Astrophysics Data System (ADS)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  12. 3d Velocity Tomography of The Kos - Nisyros Volcanic Area - East Aegean Sea

    NASA Astrophysics Data System (ADS)

    Nikolova, S.; Ilinski, D.; Makris, J.; Chonia, T.; Stavrakakis, J.

    Since June 2000, active and passive seismic observations have been carried out by IfG, GeoPro GmbH, Hamburg and Institute of Geodynamics, Athens within the frame of the project GEOWARN (Geo-Spacial Warning Systems Nisyros Volcano, Greece: An Emergency Case Study of the Volcanic Area of Nisyros) supported by the European Community. In the active experiment 48 recording seismic units were deployed and recorded more than 7000 shots in 3D array. The Nisyros volcano has been identified as an apophytic intrusion of much larger volcanic structure with a caldera of 35 km diameter, extending between the southern coasts of the islands of Kos and Nisyros. To obtain 3-D velocity structure of the area a tomographic inversion was made using 6800 rays which probed the area with a very high ray density. The method applied and the high accuracy of active tomographic data allowed to resolve the high velocity bodies in the caldera. The complex volcanic structure is identified by high velocity rocks in- truding through the upper crust and penetrating the volcanic cone to depth of approx. 1.0 km to 1.8 km below the surface. Particularly high velocity bodies were identified below the islands of Yali and the central caldera of Nisyros. The high velocity bodies at shallow depth were interpreted as high-density cumulates of solidified magma intru- sion in the caldera. These intrusions explain very high temperature of 300C observed in the lower aquifer in the caldera at 1.5 km depth as confirmed by drilling. The vol- canic edifices of Kos, Yali, Nisyros and Strongily are part of a major volcanic caldera nearly 35 km in diameter. This size of the volcanic caldera explains the large volume of ignimbrites erupted 160 000 years ago. By combining geodetic, geophysical, geo- chemical and geological observations it is intended to correlate magma movements and associated changes of physical and chemical parameters of the recent volcanism.

  13. A 3-D crustal velocity structure across the southeastern Carpathians of Romania

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Ritter, J. R. R.; Fielitz, W.; Popa, M.

    2003-04-01

    The Vrancea zone in the southeastern Carpathians is one of the most active seismic regions in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile. All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. A first ever 3-D crustal velocity model of the south-eastern Carpathians within a 115 x 235 km wide region around the Vrancea zone is presented. This model was generated by application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995). In order to enhance the model resolution, first arrival data from local earthquakes were also included. The results indicate a high-velocity structure above the Vrancea zone extending from shallow levels to depths of about 11 km. A possible relation to the Trotus and Capidava-Ovidiu faults, which converge to the north of it, is deemed unlikely. However,the existence of the outstanding high velocities may be explained by crystalline basement thrust onto the sub-Carpathian nappes. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model area extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively.

  14. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  15. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  16. Key techniques for vision measurement of 3D object surface

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Zhang, Shubi; Guo, Guangli; Liu, Chao; Yu, Ruipeng

    2006-11-01

    Digital close-range photogrammetry system and machine vision are widely used in production control, quality inspection. The main aim is to provide accurate 3D objects or reconstruction of an object surface and give an expression to an object shape. First, the key techniques of camera calibration and target image positioning for 3D object surface vision measurement were briefly reviewed and analyzed in this paper. Then, an innovative and effect method for precise space coordinates measurements was proposed. Test research proved that the thought and methods we proposed about image segmentation, detection and positioning of circular marks were effective and valid. A propriety weight value for adding parameters, control points and orientation elements in bundle adjustment with self-calibration are advantageous to gaining high accuracy of space coordinates. The RMS error of check points is less than +/-1 mm, which can meet the requirement in industrial measurement with high accuracy.

  17. Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, João.; Bezzeghoud, Mourad; Caldeira, Bento; Dias, Nuno; Borges, José; Matias, Luís.; Dorbath, Catherine; Carrilho, Fernando

    2010-05-01

    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hypoinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used "a priori". The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the

  18. A 3-D crustal velocity structure across the Variscides of southwest Ireland

    NASA Astrophysics Data System (ADS)

    Landes, M.; Readman, P. W.; O'Reilly, B. M.; Shannon, P. M.

    2003-04-01

    In the VARNET-96 experiment three seismic refraction profiles were acquired to examine the crustal structure in the south-west of Ireland. The shotpoint geometry allowed for both in-line and off-line fan shot recordings on the three profiles. Results of 3-D inversion modelling illustrate that there is pervasive lateral heterogeneity of the sedimentary and crustal velocity structure south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones beneath Dingle Bay and the Kenmare River region may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from 28-29 km at the south coast to 32-33 km beneath the Dingle-Shannon Basin. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure thus supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent offshore sedimentary basins.

  19. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  20. Development of a Regional Velocity Model Using 3D Broadband Waveform Sensitivity

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Romanowicz, B. A.; Kim, A.

    2005-12-01

    We are developing a new approach which relies on a cascade of increasingly accurate theoretical approximations for computation of the seismic wavefield to develop a model of regional seismic velocity structure for eastern Eurasia using full seismic waveforms. The selected area is particularly suitable for the purpose of this experiment, as it is highly heterogeneous, presenting a challenge for standard modeling techniques, but it is well surrounded by earthquake sources and a significant number of high quality broadband digital stations exist, for which data are readily accessible through IRIS (Incorporated Research Institutions for Seismology) and the FDSN (Federation of Digital Seismic Networks). The initial model is derived from a large database of teleseismic long period waveforms (surface waves and overtone wavepackets) using well-developed theoretical approximations, the Path Average Approximation (PAVA) and Nonlinear Asymptotic Coupling Theory (NACT). These approaches assume waveforms are only sensitive to the 1D (PAVA) and 2D (NACT) structure in the vertical plane between source and receiver, which is adequate for the development of a smooth initial 3D velocity model. We refine this model using a more accurate theoretical approach. We utilize an implementation of a 3D Born approximation, which takes into account the contribution to the waveform from single scattering throughout the model, giving full 3D waveform sensitivity kernels. We perform verification tests of this approach for synthetic models, and show that it can accurately represent the wavefield as predicted by numerical approaches in several situations where approximations such as PAVA and NACT are insufficient. The Born 3D waveform sensitivity kernels are used to perform a higher resolution inversion of regional waveforms for a smaller subregion between longitudes 90 and 150 degrees E, and latitudes 15 and 40 degrees N. To further increase the accuracy of this model, we intend to utilize a very

  1. Measurement of the mobility edge for 3D Anderson localization

    NASA Astrophysics Data System (ADS)

    Semeghini, Giulia; Landini, Manuele; Castilho, Patricia; Roy, Sanjukta; Spagnolli, Giacomo; Trenkwalder, Andreas; Fattori, Marco; Inguscio, Massimo; Modugno, Giovanni

    2016-05-01

    An outstanding problem of Anderson localization (AL) in 3D systems is the determination of the mobility edge, i.e. the energy threshold that separates localized and extended states. In our experiment we use a Bose-Einstein condensate of 39 K atoms and study its transport properties in a disordered optical potential. By tuning the inter-particle interactions to zero via magnetic Feshbach resonances, we study the single-particle phenomenon of AL. A novel technique to measure and control the atomic energy distribution allows us to measure for the first time the position of the localization threshold as a function of the disorder strength. We also study how the addition of finite repulsive or attractive interactions breaks the localized regime and triggers subdiffusive expansion of the atoms. In the future, similar experiments might also probe the existence of many-body localization in 3D.

  2. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    SciTech Connect

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  3. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    SciTech Connect

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  4. A 3-D measurement of biomagnetic field and its application

    NASA Astrophysics Data System (ADS)

    Uchikawa, Yoshinori; Kim, Bong-Soo; Kobayashi, Koichiro

    2006-09-01

    This review paper focuses in the usefulness of three-dimensional (3-D) biomagnetic field measurement for discriminating multiple sources closely located and overlapped in time. We have developed a 3-D second-order gradiometer connected to 39-channel SQUIDs for vector measurement of magnetoencephalogram (MEG), which can simultaneously detect magnetic field components perpendicular and tangential to the scalp. To assess discrimination and separation of multiple sources overlapping in time, we showed both simulation study and 3-D vector measurement of MEG as following; (a) mixed auditory evoked field (AEF) and somatosensory evoked field (SEF), (b) separating second somatosensory (SII) activity from primary somatosensory (SI) activity in SEF. The magnetic field distribution perpendicular to the scalp was not helpful for estimating the location and number of sources, owing to the lack of a dipole pattern, but the magnetic field distribution tangential to the scalp can provide information about new constraint conditions by visual inspection and singular value decomposition (SVD) method. We estimated multiple sources of mixed AEF and SEF from the MEG data of the magnetic field tangential to the scalp, and also estimated multiple sources of SI and SII activity. These results were confirmed by comparison with superimposed source locations in MRI of subject's head.

  5. A method of multi-view intraoral 3D measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Wang, Zhen; Jiang, Hongzhi; Xu, Yang; Lv, Peijun; Sun, Yunchun

    2015-02-01

    In dental restoration, its important to achieve a high-accuracy digital impression. Most of the existing intraoral measurement systems can only measure the tooth from a single view. Therfore - if we are wilng to acquire the whole data of a tooth, the scans of the tooth from multi-direction ad the data stitching based on the features of the surface are needed, which increases the measurement duration and influence the measurement accuracy. In this paper, we introduce a fringe-projection based on multi-view intraoral measurement system. It can acquire 3D data of the occlusal surface, the buccal surface and the lingual surface of a tooth synchronously, by using a senor with three mirrors, which aim at the three surfaces respectively and thus expand the measuring area. The constant relationship of the three mirrors is calibrated before measurement and can help stitch the data clouds acquired through different mirrors accurately. Therefore the system can obtain the 3D data of a tooth without the need to measure it from different directions for many times. Experiments proved the availability and reliability of this miniaturized measurement system.

  6. High-speed 3D shape measurement using array projection

    NASA Astrophysics Data System (ADS)

    Heist, Stefan; Sieler, Marcel; Breitbarth, Andreas; Kühmstedt, Peter; Notni, Gunther

    2013-04-01

    Measuring the three-dimensional (3D) surface shape of objects in real time has become an important task e.g. in industrial quality management or medical sciences. Stereo vision-based arrangements in connection with pattern projection offer high data acquisition speed and low computation time. However, these coded-light techniques are limited by the projection speed which is conventionally in the range of 200. . .250Hz. In this contribution, we present the concepts and a realized setup of a so-called 3D array projector. It is ultra-slim, but nonetheless able to project fixed patterns with high brightness and depth of focus. Furthermore, frame rates up to the 100 kHz range are achievable without any need of mechanically moving parts since the projection speed is limited mainly by the switching frequency of the used LEDs. According to the measurement requirements, type and structure of the patterns can be chosen almost freely: linear or sinusoidal fringes, binary codes such as the Gray code, square, hexagonal or random patterns and many more. First investigations on the functionality of such a 3D array projector were conducted using a prototype with a combination of Gray codes and phase-shifted sinusoidal fringes. Our contribution proves the high brightness of the proposed projector, its sharpness and the good Michelson contrast of the fringe patterns. We deal with the patterns' homogeneity and the accuracy of the phase shift between the sinusoidal patterns. Furthermore, we present first measurement results and outline future research which is, inter alia, addressed to the use of other structured light techniques with the help of new purpose-built 3D array projector prototypes.

  7. Flow measurements in a model centrifugal pump by 3-D PIV

    NASA Astrophysics Data System (ADS)

    Yang, H.; Xu, H. R.; Liu, C.

    2012-11-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity Wr appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity Wr moves from the pressure side to the suction side. At the same time, the tangential component velocity Wθ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  8. 3-D crustal velocity model for Lithuania and its application to local event studies

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, Elena; Budraitis, Mantas; Janutyte, Ilma; Motuza, Gediminas; Lazauskiene, Jurga; Passeq-Working Group

    2010-05-01

    PASSEQ 2006-2008 project (PASsive Seismic Experiment in TESZ) aimed at studying the lithosphere-asthenosphere system around the TransEuropean Suture Zone (TESZ)- the transition between old Proterozoic platform of north and east Europe and younger Phanerozoic platform in central and western Europe. The experiment was a seismic array research aiming to retrieve the structure of the crust and Earth's mantle down to the mantle transition zone, including mapping of upper mantle seismic velocity variations and discontinuities (Moho, lithosphere-asthenosphere boundary, mantle transition zone) using all available techniques. During the experiment 26 seismic stations (including four broadband stations) were installed in Lithuania. One of the main targets of PASSEQ deployment in Lithuania was identification and characterization of the local seismic activity. The PASSEQ stations in Lithuania were in operation since June, 2006 till January, 2008. During this period a number of local seismic events was recorded and preliminary event location was made using the LocSat algorithm and 1-D velocity model. This standard procedure is not enough precise for Lithuania, however, because the thickness of the crust varies significantly in the region (from 45 to 55 km). In order to improve event location, we separated the events into several groups and located each group separately using a VELEST algorithms and own 1-D velocity model for each group. We also compiled a 3-D seismic velocity of the crust down to a depth of 60 km. The model, consisting of four major layers (sediments, upper crust, middle crust, lower crust and uppermost mantle) was interpolated from 2-D velocity models along previous wide-angle reflection and refraction profiles into a regular grid. The quality of the approximation was analysed using comparison of travel times of P-waves recorded along previous controlled source profiles and synthetic travel times calculated using the 3-D velocity model. The model was converted

  9. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  10. Lapse-time dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media

    NASA Astrophysics Data System (ADS)

    Obermann, Anne; Planès, Thomas; Hadziioannou, Céline; Campillo, Michel

    2016-07-01

    In the context of seismic monitoring, recent studies made successful use of seismic coda waves to locate medium changes on the horizontal plane. Locating the depth of the changes, however, remains a challenge. In this paper, we use 3-D wavefield simulations to address two problems: firstly, we evaluate the contribution of surface and body wave sensitivity to a change at depth. We introduce a thin layer with a perturbed velocity at different depths and measure the apparent relative velocity changes due to this layer at different times in the coda and for different degrees of heterogeneity of the model. We show that the depth sensitivity can be modelled as a linear combination of body- and surface-wave sensitivity. The lapse-time dependent sensitivity ratio of body waves and surface waves can be used to build 3-D sensitivity kernels for imaging purposes. Secondly, we compare the lapse-time behavior in the presence of a perturbation in horizontal and vertical slabs to address, for instance, the origin of the velocity changes detected after large earthquakes.

  11. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  12. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  13. Flexible geometrical calibration for fringe-reflection 3D measurement.

    PubMed

    Xiao, Yong-Liang; Su, Xianyu; Chen, Wenjing

    2012-02-15

    System geometrical calibration is a challenging task in fringe-reflection 3D measurement because the fringe displayed on the LCD screen does not lie within the camera's field of view. Commonly, a flat mirror with markers can accomplish system geometrical calibration. However, the position of the markers must be precisely located by photogrammetry in advance. In this Letter, we introduce a calibration method by use of a markerless flat mirror. Experiments in phase measuring deflectometry demonstrate that the proposed method is simple and flexible. PMID:22344126

  14. 3D measurement of human face by stereophotogrammetry

    NASA Astrophysics Data System (ADS)

    Wagner, Holger; Wiegmann, Axel; Kowarschik, Richard; Zöllner, Friedrich

    2006-01-01

    The following article describes a stereophotogrammetry based technique for 3D measurement of human faces. The method was developed for function orientated diagnostics and therapy in dentistry to provide prognoses for jaw-growth or surgical procedures. The main aim of our activities was to realize both -- a rapid measurement and a dense point cloud. The setup consists of two digital cameras in a convergent arrangement and a digital projector. During the measurement a rapid sequence of about 20 statistical generated patterns were projected onto the face and synchronously captured by the two cameras. Therefore, every single pixel of the two cameras is encoded by a characteristically stack of intensity values. To find corresponding points into the image sequences a correlation technique is used. At least, the 3D reconstruction is done by triangulation. The advantages of the shown method are the possible short measurement time (< 1 second) and - in comparison to gray code and phase shift techniques - the low quality requirements of the projection unit. At present the reached accuracy is +/- 0.1mm (rms), which is sufficient for medical applications. But the demonstrated method is not restricted to evaluate the shape of human faces. Also technical objects could be measured.

  15. The 3D Space and Spin Velocities of a Gamma-ray Pulsar

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2016-04-01

    PSR J2030+4415 is a LAT-discovered 0.5My-old gamma-ray pulsar with an X-ray synchrotron trail and a rare Halpha bowshock. We have obtained GMOS IFU spectroscopic imaging of this shell, and show a sweep through the remarkable Halpha structure, comparing with the high energy emission. These data provide a unique 3D map of the momentum distribution of the relativistic pulsar wind. This shows that the pulsar is moving nearly in the plane of the sky and that the pulsar wind has a polar component misaligned with the space velocity. The spin axis is shown to be inclined some 95degrees to the Earth line of sight, explaining why this is a radio-quiet, gamma-only pulsar. Intriguingly, the shell also shows multiple bubbles that suggest that the pulsar wind power has varied substantially over the past 500 years.

  16. Automated full-3D shape measurement of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Karaszewski, Maciej; Zaluski, Wojciech; Bolewicki, Pawel

    2009-07-01

    In this paper a fully automated 3D shape measurement system is presented. It consists of rotary stage for cultural heritage objects placement, vertical linear stage with mounted robot arm (with six degrees of freedom) and structured light measurement set-up mounted to its head. All these manipulation devices are automatically controlled by collision detection and next-best-view calculation modules. The goal of whole system is to automatically (without any user attention) and rapidly (from days and weeks to hours) measure whole object. Measurement head is automatically calibrated by the system and its possible working volume starts from centimeters and ends up to one meter. We present some measurement results with different working scenarios along with discussion about its possible applications.

  17. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  18. 3D P and S Wave Velocity Structure and Tremor Locations in the Parkfield Region

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Cochran, E. S.; Harrington, R. M.

    2014-12-01

    We have assembled a new dataset to refine the 3D seismic velocity model in the Parkfield region. The S arrivals from 184 earthquakes recorded by the Parkfield Experiment to Record MIcroseismicity and Tremor array (PERMIT) during 2010-2011 were picked by a new S wave picker, which is based on machine learning. 74 blasts have been assigned to four quarries, whose locations were identified with Google Earth. About 1000 P and S wave arrivals from these blasts at permanent seismic network were also incorporated. Low frequency earthquakes (LFEs) occurring within non-volcanic tremor (NVT) are valuable for improving the precision of NVT location and the seismic velocity model at greater depths. Based on previous work (Shelley and Hardebeck, 2010), waveforms of hundreds of LFEs in same family were stacked to improve signal qualify. In a previous study (McClement et al., 2013), stacked traces of more than 30 LFE families at the Parkfileld Array Seismic Observatory (PASO) have been picked. We expanded our work to include LFEs recorded by the PERMIT array. The time-frequency Phase Weight Stacking (tf-PWS) method was introduced to improve the stack quality, as direct stacking does not produce clear S-wave arrivals on the PERMIT stations. This technique uses the coherence of the instantaneous phase among the stacked signals to enhance the signal-to-noise ratio (SNR) of the stack. We found that it is extremely effective for picking LFE arrivals (Thurber et al., 2014). More than 500 P and about 1000 S arrivals from 58 LFE families were picked at the PERMIT and PASO arrays. Since the depths of LFEs are much deeper than earthquakes, we are able to extend model resolution to lower crustal depths. Both P and S wave velocity structure have been obtained with the tomoDD method. The result suggests that there is a low velocity zone (LVZ) in the lower crust and the location of the LVZ is consistent with the high conductivity zone beneath the southern segment of the Rinconada fault that

  19. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  20. 3-D Crustal Velocity Structure Across the Vrancea Zone in Romania, Derived From Seismic Data

    NASA Astrophysics Data System (ADS)

    Landes, M.; Hauser, F.; Popa, M.

    2002-12-01

    The Vrancea zone in the south-eastern Carpathians is one of the most active seismic zones in Europe. In order to study the crustal and upper-mantle structure in this region, two seismic refraction/wide-angle reflection experiments were carried out in 1999 and 2001. The 1999 campaign comprised a 320 km long N-S profile and a 80 km long transverse profile (E-W). All shots were recorded simultaneously on both profiles. The profile conducted in 2001 extended in E-W direction from the Hungarian border across the Vrancea zone to the Black Sea. We present an application of a 3-D refraction and reflection tomography algorithm (Hole 1992, 1995), elaborating the crustal velocity and interface structure within a 115 x 235 km wide region around the Vrancea zone. In order to enhance the model resolution, first arrival data from local earthquakes of the CALIXTO-99 teleseismic project were also included. The results indicate a high-velocity structure beneath the northern part of the Vrancea zone extending from shallow levels to depths of about 11 km. This structure may be related to the Trotus and Capidava-Ovidiu faults, which converge to the north of it. The high-velocity region is surrounded by the lower velocity Focsani and Brasov basins. The sedimentary succession beneath the southern part of the model extends to 18 km depth, while in the north sediment thickness varies between 10 and 15 km. Further results of the interface modelling of prominent reflections show that the mid-crustal and Moho interfaces shallow northwards from 30 km to 22 km and from 42 km to 38 km, respectively. This correlates well with previous results of Hauser et al. (2001).

  1. 3-D Isotropic and Anisotropic S-velocity Structure in the North American Upper Mantle

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Marone, F.; Romanowicz, B.; Abt, D.; Fischer, K.

    2008-12-01

    The tectonic diversity of the North American continent has led to a number of geological, tectonic and geodynamical models, many of which can be better tested with high resolution 3-d tomographic models of the isotropic and anisotropic mantle structure of the continent. In the framework of non-linear asymptotic coupling theory (NACT), we recently developed tools to invert long period seismic waveforms combined with SKS splitting data, for both isotropic and radial and azimuthal anisotropic S-wave velocity structure in the upper mantle at the continental scale (Marone et al., 2007; Marone and Romanowicz, 2007). Striking differences in both isotropic and anisotropic velocity structure were observed: beneath the high velocity stable cratonic region a distinct two-layer anisotropic domain is present, with the bottom layer fast axis direction aligned with the absolute plate motion, and a shallower lithospheric layer with north pointing fast axis most likely showing records of past tectonic history; under the active western US the direction of tomographically inferred anisotropy is stable with depth and compatible with the absolute plate motion direction. Here we present an updated model which includes nearly five more years of data, including data from newly operative USArray stations, and a somewhat more extended frequency band. Our new model confirms our previous results, and reveals greater yet complex details of the anisotropic velocity structure beneath the western U.S.. We also show initial results of incorporating constraints on the depth to the lithosphere-asthenosphere boundary (LAB) using teleseismic receiver functions. We discuss the different anisotropic domains resolved both laterally and in depth, in the context of tectonic history of the north American continent.

  2. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  3. Three-Dimensional (3-D) Reconstructions of EISCAT IPS Velocity Data in the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Jackson, B. V.; Breen, A. R.; Dorrian, G. D.; Fallows, R. A.; Clover, J. M.; Hick, P. P.

    2010-08-01

    The European Incoherent SCATter (EISCAT) radar has been used for remote-sensing observations of interplanetary scintillation (IPS) for a quarter of a century. During the April/May 2007 observing campaign, a large number of observations of IPS using EISCAT took place to give a reasonable spatial and temporal coverage of solar wind velocity structure throughout this time during the declining phase of Solar Cycle 23. Many co-rotating and transient features were observed during this period. Using the University of California, San Diego three-dimensional (3-D) time-dependent computer assisted tomography (C.A.T.) solar-wind reconstruction analysis, we show the velocity structure of the inner heliosphere in three dimensions throughout the time interval of 20 April through 20 May 2007. We also compare to white-light remote-sensing observations of an interplanetary coronal mass ejection (ICME) seen by the STEREO Ahead spacecraft inner Heliospheric Imager on 16 May 2007, as well as to in-situ solar-wind measurements taken with near-Earth spacebourne instrumentation throughout this interval. The reconstructions show clear co-rotating regions during this period, and the time-series extraction at spacecraft locations compares well with measurements made by the STEREO, Wind, and ACE spacecraft. This is the first time such clear structures have been revealed using this 3-D technique with EISCAT IPS data as input.

  4. Imaging 3D anisotropic upper mantle shear velocity structure of Southeast Asia using seismic waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, J.; Yuan, H.; French, S. W.; Romanowicz, B. A.; Ni, S.

    2011-12-01

    Southeast Asia as a special region in the world which is seismically active and is surrounded by active tectonic belts, such as the Himalaya collision zone, western Pacific subduction zones and the Tianshan- Baikal tectonic belt. Seismic anisotropic tomography can shade light on the complex crust and upper mantle dynamics of this region, which is the subject of much debate. In this study, we applied full waveform time domain tomography to image 3D isotropic and anisotropic upper mantle shear velocity structure of Southeast Asia. Three component waveforms of teleseismic and far regional events (15 degree ≤ Δ≤ 165 degree) with magnitude ranges from Mw6.0 to Mw7.0 are collected from 91 permanent and 438 temporary broadband seismic stations in SE Asia. Wavepackets of both fundamental and overtone modes, filtered between 60 and 400 sec, are selected automatically according to the similarity between data and synthetic waveforms (Panning & Romanowicz, 2006). Wavepackets corresponding to event-station paths that sample the region considered are weighted according to path redundancy and signal to noise ratio. Higher modes and fundamental mode wavepackets are weighted separately in order to enhance the contribution of higher modes which are more sensitive to deeper structure compared to the fundamental mode. Synthetic waveforms and broadband sensitivity kernels are computed using normal mode asymptotic coupling theory (NACT, Li & Romanowicz, 1995). As a starting model, we consider a global anisotropic upper mantle shear velocity model based on waveform inversion using the Spectral Element Method (Lekic & Romanowicz, 2011), updated for more realistic crustal thickness (French et al., 2011) as our starting model, we correct waveforms for the effects of 3D structure outside of the region, and invert them for perturbations in the 3D structure of the target region only. We start with waveform inversion down to 60sec and after several iterations, we include shorter period

  5. Automated 3D measurement with the DCS200 digital camera

    NASA Astrophysics Data System (ADS)

    Van den Heuvel, Frank A.

    1994-03-01

    A digital photogrammetric system for automated 3D coordinate measurement in a production environment has been developed. For the image acquisition the Kodak DCS200 digital camera is used. This camera is based on a standard 35-mm camera. The results of the radiometric and geometric calibration of the DCS200 camera show the potential of this camera for photogrammetric applications. The software part of the system performs the detection, identification, and measurement of artificial targets present in digital images. These artificial targets are designed for automatic detection in images of a complex scene. For the identification of the targets a circular bar code is read by the image processing software. The least squares template matching method is implemented for the target image measurement. A precision better than 2% of a pixel was obtained for the target location. The 3D coordinate computation is performed by Geodelta's bundle adjustment package BINAER. It includes extensive statistical testing to assess the accuracy of the results. Tests with the DCS200 camera show a repeatability of 18 micrometer standard deviation on a test field 60 X 50 X 30 centimeter. The achieved precision is in the order of 2 (DOT) 10-5.

  6. Measuring Actin Flow in 3D Cell Protrusions

    PubMed Central

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Actin dynamics is important in determining cell shape, tension, and migration. Methods such as fluorescent speckle microscopy and spatial temporal image correlation spectroscopy have been used to capture high-resolution actin turnover dynamics within cells in two dimensions. However, these methods are not directly applicable in 3D due to lower resolution and poor contrast. Here, we propose to capture actin flow in 3D with high spatial-temporal resolution by combining nanoscale precise imaging by rapid beam oscillation and fluctuation spectroscopy techniques. To measure the actin flow along cell protrusions in cell expressing actin-eGFP cultured in a type I collagen matrix, the laser was orbited around the protrusion and its trajectory was modulated in a clover-shaped pattern perpendicularly to the protrusion. Orbits were also alternated at two positions closely spaced along the protrusion axis. The pair cross-correlation function was applied to the fluorescence fluctuation from these two positions to capture the flow of actin. Measurements done on nonmoving cellular protrusion tips showed no pair-correlation at two orbital positions indicating a lack of flow of F-actin bundles. However, in some protrusions, the pair-correlation approach revealed directional flow of F-actin bundles near the protrusion surface with flow rates in the range of ∼1 μm/min, comparable to results in two dimensions using fluorescent speckle microscopy. Furthermore, we found that the actin flow rate is related to the distance to the protrusion tip. We also observed collagen deformation by concomitantly detecting collagen fibers with reflectance detection during these actin motions. The implementation of the nanoscale precise imaging by rapid beam oscillation method with a cloverleaf-shaped trajectory in conjunction with the pair cross-correlation function method provides a quantitative way of capturing dynamic flows and organization of proteins during cell migration in 3D in conditions of

  7. Using Ambient Noise Data from the ALBACORE OBS Array to Determine a 3D Seismic Velocity Model Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2014-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary in order to image seismic velocities in the lithosphere. Velocities are modeled through stacked cross correlations of ambient noise data. The offshore data come primarily from the OBS array that collected 12 months of continuous data during 2010-2011, combined with Southern California Seismic Network (SCSN) station data. The cross correlations were stacked for noise correlation functions and examined using standard time- and frequency-domain methods to determine phase velocity and group velocity dispersion curves. Signals between the vertical-component OBS and co-located horizontal-component OBS observations associated with tilt noise, and pressure gauge observations associated with infragravity waves, were examined to further improve signals. The non-elastic noise was estimated by calculating the transfer functions between the vertical-to-horizontal and vertical-to-pressure components, and subtracting the coherent signal between the two from the vertical-component time series. We find that these effects are small in our dataset. We are simultaneously inverting all measureable dispersion curves to solve for 3D crustal velocity structure. Shear-wave velocities comprise the direct solution, and Vp/Vs ratios are constrained as much as the data allow. Calculations on data from 780 OBS-OBS, SCSN-SCSN, and OBS-SCSN pairs filtered around multiple narrow bands between 5 and 50 s show clear propagating waves traveling at group velocities between 1.2 and 3.5 km/s. The longer-term outcome of this work will comprise a 3D crustal and uppermost mantle velocity model with areal coverage not attainable before the deployment of the ocean bottom seismometers. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic

  8. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-08-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum, (iii) debiasing the resulting estimates. For (i), we show that removing the best-fit contaminant (mode subtraction), and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a Quadratic Maximum Likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (1994, FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants is less severe than that commonly ignored due to the survey window.

  9. Validating 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.

    2010-12-01

    As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.

  10. Characterization measurements of ASC FLASH 3D ladar

    NASA Astrophysics Data System (ADS)

    Larsson, Håkan; Gustafsson, Frank; Johnson, Bruce; Richmond, Richard; Armstrong, Ernest

    2009-09-01

    As a part of the project agreement between the Swedish Defence Research Agency (FOI) and the United States of American's Air Force Research Laboratory (AFRL), a joint field trial was performed in Sweden during two weeks in January 2009. The main purpose for this trial was to characterize AFRL's latest version of the ASC (Advanced Scientific Concepts [1]) FLASH 3D LADAR sensor. The measurements were performed essentially in FOI´s optical hall whose 100 m indoor range offers measurements under controlled conditions minimizing effects such as atmospheric turbulence. Data were also acquired outdoor in both forest and urban scenarios, using vehicles and humans as targets, with the purpose of acquiring data from more dynamic platforms to assist in further algorithm development. This paper shows examples of the acquired data and presents initial results.

  11. 3D tomographic reconstruction of the internal velocity field of an immiscible drop in a shear flow

    NASA Astrophysics Data System (ADS)

    Kerdraon, Paul; Dalziel, Stuart B.; Goldstein, Raymond E.; Landel, Julien R.; Peaudecerf, Francois J.

    2015-11-01

    We study experimentally the internal flow of a drop attached to a flat substrate and immersed in an immiscible shear flow. Transport inside the drop can play a crucial role in cleaning applications. Internal advection can enhance the mass transfer across the drop surface, thus increasing the cleaning rate. We used microlitre water-glycerol drops on a hydrophobic substrate. The drops were spherical and did not deform significantly under the shear flow. An oil phase of relative viscosity 0.01 to 1 was flowed over the drop. Typical Reynolds numbers inside the drops were of the order of 0.1 to 10. Using confocal microscopy, we performed 3D tomographic reconstruction of the flow field in the drop. The in-plane velocity field was measured using micro-PIV, and the third velocity component was computed from incompressibility. To our knowledge, this study gives the first experimental measurement of the three-dimensional internal velocity field of a drop in a shear flow. Numerical simulations and theoretical models published in the past 30 years predict a toroidal internal recirculation flow, for which the entire surface flows streamwise. However, our measurements reveal a qualitatively different picture with a two-lobed recirculation, featuring two stagnation points at the surface and a reverse surface flow closer to the substrate. This finding appears to be independent of Reynolds number and viscosity ratio in the ranges studied; we conjecture that the observed flow is due to the effect of surfactants at the drop surface.

  12. Study on portable optical 3D coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  13. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  14. 3D Seismic Velocity Structure Around Philippine Sea Slab Subducting Beneath Kii Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Shibutani, T.; Imai, M.; Hirahara, K.; Nakao, S.

    2013-12-01

    Kii Peninsula is a part of the source area of Nankai Trough megaquakes and the region through which the strong seismic waves propagate to big cities in Kansai such as Osaka, Kyoto, Nara, Kobe, and so on. Moreover, the rupture starting point is thought to be possibly at off the peninsula. Therefore, it is important for simulations of the megaquakes and the strong motions to estimate accurately the configuration of the Philippine Sea slab and the seismic velocity structure around the slab and to investigate properties and conditions of the plate boundary surface. Deep low frequency events (DLFEs) are widely distributed from western Shikoku to central Tokai at 30 - 40 km depths on the plate boundary (Obara, 2002). Results from seismic tomography and receiver function analyses revealed that the oceanic crust of the Philippine Sea plate had a low velocity and a high Vp/Vs ratio (Hirose et al., 2007; Ueno et al., 2008). Hot springs with high 3He/4He ratios are found in an area between central Kinki and Kii Peninsula despite in the forearc region (Sano and Wakita, 1985). These phenomena suggest the process that H2O subducting with the oceanic crust dehydrates at the depths, causes the DLFEs, and moves to shallower depths. We carried out linear array seismic observations in the Kii Peninsula since 2004 in order to estimate the structure of the Philippine Sea slab and the surrounding area. We have performed receiver function analyses for four profile lines in the dipping direction of the slab and two lines in the perpendicular direction so far. We estimated three dimensional shapes of seismic velocity discontinuities such as the continental Moho, the upper surface of the oceanic crust and the oceanic Moho (Imai et al., 2013, this session). In addition, we performed seismic tomography with a velocity model embedded the discontinuities and observed travel times at stations in the linear arrays, and successfully estimated 3D seismic velocity structure around the Philippine Sea

  15. Generation and use of measurement-based 3-D dose distributions for 3-D dose calculation verification.

    PubMed

    Stern, R L; Fraass, B A; Gerhardsson, A; McShan, D L; Lam, K L

    1992-01-01

    A 3-D radiation therapy treatment planning system calculates dose to an entire volume of points and therefore requires a 3-D distribution of measured dose values for quality assurance and dose calculation verification. To measure such a volumetric distribution with a scanning ion chamber is prohibitively time consuming. A method is presented for the generation of a 3-D grid of dose values based on beam's-eye-view (BEV) film dosimetry. For each field configuration of interest, a set of BEV films at different depths is obtained and digitized, and the optical densities are converted to dose. To reduce inaccuracies associated with film measurement of megavoltage photon depth doses, doses on the different planes are normalized using an ion-chamber measurement of the depth dose. A 3-D grid of dose values is created by interpolation between BEV planes along divergent beam rays. This matrix of measurement-based dose values can then be compared to calculations over the entire volume of interest. This method is demonstrated for three different field configurations. Accuracy of the film-measured dose values is determined by 1-D and 2-D comparisons with ion chamber measurements. Film and ion chamber measurements agree within 2% in the central field regions and within 2.0 mm in the penumbral regions. PMID:1620042

  16. SALSA3D - Improving Event Locations Using a Global 3D P-Velocity Model of the Earth's Crust and Mantle

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2011-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations that are more accurate and more precise than currently used 1D and 2/2.5D models, we are developing a global 3D P wave velocity model of the Earth's crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D (SAndia LoS Alamos 3D) version 1.7, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth (GT) events, compared to existing models and/or systems. Our model is derived from the latest version of the GT catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model elsewhere, over a uniform ak135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only in areas where the data warrant it. In previous versions of SALSA3D, we based this refinement on velocity changes from previous model iterations. For version 1.7, we utilize the diagonal of the model resolution matrix to control where grid refinement occurs, resulting in more consistent and continuous areas of refinement than before. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. We

  17. 3D visualization of endocardial peak velocities during systole and diastole

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Ritman, Erik L.; Robb, Richard A.

    2002-04-01

    Quantitative assessment of regional heart motion has the potential to provide diagnostic data for assessment of cardiac malfunction. Local heart motion may be obtained with various medical imaging scanners, so the goal is to provide an imaging modality-independent display/analysis technique. In this study, 3D reconstructions of a canine heart before and after infarction were obtained from the Dynamic Spatial Reconstructor (DSR) at 15 time points throughout one cardiac cycle. Deformable models of each time point were created. Through this process regional excursions and velocities in the mesh can be assigned to represent a piece of endocardium, which can be calculated for each time-point interval. These calculations are based on the distance change between a single vertex of the mesh and the model centerline from LV apex to aortic/mitral valve separation. This allows computation of color maps corresponding to regional values of contraction or dilation motion of the endocardium relative to the LV long axis (centerline) during systole and/or diastole. These color maps can be illustrated through model animations and multi view static images. Using functional parametric mappings of disturbances in regional contractility and relaxation facilitates appreciation of the effect of altered structure-to-function relationships in the myocardium.

  18. 3D ESPI and 3D shearography measurements applied to NDT and FEM analysis validation for industrial quality control

    NASA Astrophysics Data System (ADS)

    Hack, Erwin K.; Riner, Marc

    2001-10-01

    Laser interferometric methods opened the way to measure displacements and deformations of an object in a while- field, non-contact and 3D manner. Therefore, they are used in non-destructive testing and validation of 3D finite element (FE) simulation results. This paper emphasizes the fact that the process of validating an FE result comprises in turn the validation and assessment of the optical measurement method and the experimental bou8ndary condition. Application examples for FE analysis validation and NDT from machine engineering, space technology, and biomedical engineering are presented.

  19. The effect of sliding velocity on chondrocytes activity in 3D scaffolds.

    PubMed

    Wimmer, Markus A; Alini, Mauro; Grad, Sibylle

    2009-03-11

    Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated +/-25 degrees at 0.01, 0.1, and 1Hz to generate 0.28, 2.8, and 28mm/s, respectively. The median velocity of these 'open' motion trajectories was tested against 'closed' motion trajectories in that the scaffold oscillated +/-20 degrees against the ball at 1Hz, reaching 2.8mm/s. Constructs were loaded twice a day for 1h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed. Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28mm/s, while all other measured variables were considerably up-regulated at 28mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA. To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion. PMID:19152917

  20. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  1. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  2. The 3-D strain patterns in Turkey using geodetic velocity fields from the RTK-CORS (TR) network

    NASA Astrophysics Data System (ADS)

    Kutoglu, Hakan Senol; Toker, Mustafa; Mekik, Cetin

    2016-03-01

    This study presents our use of GPS data to obtain and quantify the full continuous strain tensor using a 3-D velocity field in Turkey. In this study, GPS velocities improve the estimation of short-term strain tensor fields for determining the seismic hazard of Turkey. The tensorial analysis presents different aspects of deformation, such as the normal and shear strains, including their directions, the compressional and extensional strains. This analysis is appropriate for the characterizing the state of the current seismic deformation. GPS velocity data from continuous measurements (2009-2012) to estimate deformations were processed using the GAMIT/GLOBK software. Using high-rate GPS data from permanent 146 GNSS stations (RTK-CORS-TR network), the strain distribution was determined and interpolated using a biharmonic spline technique. We show the strain field patterns within axial and plane form at several critical locations, and discuss these results within the context of the seismic and tectonic deformation of Turkey. We conclude that the knowledge of the crustal strain patterns provides important information on the location of the main faults and strain accumulation for the hazard assessment. The results show an agreement between the seismic and tectonic strains confirming that there are active crustal deformations in Turkey.

  3. 3D measurements of ignition processes at 20 kHz in a supersonic combustor

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Lei, Qingchun; Wu, Yue; Ombrello, Timothy M.; Carter, Campbell D.

    2015-05-01

    The ignition dynamics in a Mach 2 combustor were investigated using a three-dimensional (3D) diagnostic with 20 kHz temporal resolution. The diagnostic was based on a combination of tomographic chemiluminescence and fiber-based endoscopes (FBEs). Customized FBEs were employed to capture line-of-sight integrated chemiluminescence images (termed projections) of the combustor from eight different orientations simultaneously at 20 kHz. The measured projections were then used in a tomographic algorithm to obtain 3D reconstruction of the sparks, ignition kernel, and stable flame. Processing the reconstructions frame by frame resulted in 4D measurements. Key properties were then extracted to quantify the ignition processes, including 3D volume, surface area, sphericity, and velocity of the ignition kernel. The data collected in this work revealed detailed spatiotemporal dynamics of the ignition kernel, which are not obtainable with planar diagnostics, such as its growth, movement, and development into "stable" combustion. This work also illustrates the potential for obtaining quantitative 3D measurements using tomographic techniques and the practical utility of FBEs.

  4. A 3D measurement of the offset in paleoseismological studies

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Echeverria, Anna; Masana, Eulàlia; Martínez-Díaz, José J.; Sharp, Warren D.

    2016-05-01

    The slip rate of a seismogenic fault is a crucial parameter for establishing the contribution of the fault to the seismic hazard. It is calculated from measurements of the offset of linear landforms, such channels, produced by the fault combined with their age. The three-dimensional measurement of offset in buried paleochannels is subject to uncertainties that need to be quantitatively assessed and propagated into the slip rate. Here, we present a set of adapted scripts to calculate the net, lateral and vertical tectonic offset components caused by faults, together with their associated uncertainties. This technique is applied here to a buried channel identified in the stratigraphic record during a paleoseismological study at the El Saltador site (Alhama de Murcia fault, Iberian Peninsula). After defining and measuring the coordinates of the key points of a buried channel in the walls of eight trenches excavated parallel to the fault, we (a) adjusted a 3D straight line to these points and then extrapolated the tendency of this line onto a simplified fault plane; (b) repeated these two steps for the segment of the channel in the other side of the fault; and (c) measured the distance between the two resulting intersection points with the fault plane. In doing so, we avoided the near fault modification of the channel trace and obtained a three-dimensional measurement of offset and its uncertainty. This methodology is a substantial modification of previous procedures that require excavating progressively towards the fault, leading to possible underestimation of offset due to diffuse deformation near the fault. Combining the offset with numerical dating of the buried channel via U-series on soil carbonate, we calculated a maximum estimate of the net slip rate and its vertical and lateral components for the Alhama de Murcia fault.

  5. 3D measurement of human upper body for gesture recognition

    NASA Astrophysics Data System (ADS)

    Wan, Khairunizam; Sawada, Hideyuki

    2007-10-01

    Measurement of human motion is widely required for various applications, and a significant part of this task is to identify motion in the process of human motion recognition. There are several application purposes of doing this research such as in surveillance, entertainment, medical treatment and traffic applications as user interfaces that require the recognition of different parts of human body to identify an action or a motion. The most challenging task in human motion recognition is to achieve the ability and reliability of a motion capture system for tracking and recognizing dynamic movements, because human body structure has many degrees of freedom. Many attempts for recognizing body actions have been reported so far, in which gestural motions have to be measured by some sensors first, and the obtained data are processed in a computer. This paper introduces the 3D motion analysis of human upper body using an optical motion capture system for the purpose of gesture recognition. In this study, the image processing technique to track optical markers attached at feature points of human body is introduced for constructing a human upper body model and estimating its three dimensional motion.

  6. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  7. 3D track initiation in clutter using 2D measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2001-11-01

    In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.

  8. Lateral Crustal Velocity Variations across the Andean Foreland in San Juan, Argentina from the JHD Analysis and 3D P and S Velocity inversion

    NASA Astrophysics Data System (ADS)

    Asmerom, B. B.; Chiu, J.; Pujol, J.; Smalley, R.

    2010-12-01

    Lateral crustal velocity variations across the Andean Foreland in San Juan Argentina are explored by joint hypocentral determination (JHD) analysis and 3D velocity inversion. JHD results show consistent positive station corrections beneath Precordillera and negative station corrections beneath Pie de Palo, corresponding to regions of low and high velocity, respectively. These observations are supported by the results from the 3D velocity inversion. A 20% increase in velocity is observed from the Precordilleras in the west to Pie de Palo in the east. The tomography result also reveals a narrow east dipping and NNE trending high velocity anomalous zone bisecting the southern half of Pie de Palo. This anomalous zone was previously identified by a magnetic study and was interpreted to represent the structure corresponding to the Grenvillian Precordillera-Pie de Palo tectonic boundary zone. Finally, P and S station corrections are calculated from the synthetic travel time obtained by using the resultant 3D P- and S- wave velocity model. The observed pattern and magnitude of the P- and S-wave station corrections are recovered successfully from the synthetic calculation, indicating that the resultant 3D velocity model is close to the real earth structure in the Andean Foreland region. Relocation of all intermediate events from the flat subducting slab using this newly acquired 3D velocity model shows a significant change in the slab geometry. The relocated hypocenter distribution is more clustered than previous studies obtained using a 1D model. The slab is simply flat and it resumes a normal subduction angle towards the east of the study area.

  9. SALSA3D - A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Young, C. J.; Hipp, J. R.; Chang, M.; Encarnacao, A. V.; Rowe, C. A.; Phillips, W. S.; Steck, L.

    2010-12-01

    To test the hypothesis that high quality 3D Earth models will produce seismic event locations which are more accurate and more precise, we are developing a global 3D P wave velocity model of the Earth’s crust and mantle using seismic tomography. In this paper, we present the most recent version of our model, SALSA3D version 1.5, and demonstrate its ability to reduce mislocations for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. Our model is derived from the latest version of the Ground Truth (GT) catalog of P and Pn travel time picks assembled by Los Alamos National Laboratory. To prevent over-weighting due to ray path redundancy and to reduce the computational burden, we cluster rays to produce representative rays. Reduction in the total number of ray paths is ~50%. The model is represented using the triangular tessellation system described by Ballard et al. (2009), which incorporates variable resolution in both the geographic and radial dimensions.. For our starting model, we use a simplified two layer crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path changes between iterations are small. We obtain proper model smoothness by using progressive grid refinement, refining the grid only around areas with significant velocity changes from the starting model. At each grid refinement level except the last one we limit the number of iterations to prevent convergence thereby preserving aspects of broad features resolved at coarser resolutions. Our approach produces a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a distributed computing framework based on the Java Parallel Processing Framework, providing us with ~400 processors. Resolution of our model is assessed using a

  10. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  11. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    PubMed

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore. PMID:27410133

  12. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  13. A New Regional 3-D Velocity Model of the India-Pakistan Region for Improved Event Location Accuracy

    NASA Astrophysics Data System (ADS)

    Reiter, D.; Vincent, C.; Johnson, M.

    2001-05-01

    A 3-D velocity model for the crust and upper mantle (WINPAK3D) has been developed to improve regional event location in the India-Pakistan region. Results of extensive testing demonstrate that the model improves location accuracy for this region, specifically for the case of small regionally recorded events, for which teleseismic data may not be available. The model was developed by integrating the results of more than sixty previous studies related to crustal velocity structure in the region. We evaluated the validity of the 3-D model using the following methods: (1) cross validation analysis for a variety of events, (2) comparison of model determined hypocenters with known event location, and (3) comparison of model-derived and empirically-derived source-specific station corrections (SSSC) generated for the International Monitoring System (IMS) auxiliary seismic station located at Nilore. The 3-D model provides significant improvement in regional location compared to both global and regional 1-D models in this area of complex structural variability. For example, the epicenter mislocation for an event with a well known location was only 6.4 km using the 3-D model, compared with a mislocation of 13.0 km using an average regional 1-D model and 15.1 km for the IASPEI91 model. We will present these and other results to demonstrate that 3-D velocity models are essential to improving event location accuracy in regions with complicated crustal geology and structures. Such 3-D models will be a prerequisite for achieving improved location accuracies for regions of high monitoring interest.

  14. 3D Canonical Momentum Measurements During the Merging of Two Counter-Helicity Spheromaks

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; Balandin, Alexander; Tanabe, Hiroshi; Ono, Yasushi

    2009-11-01

    A pair of counter-helicity spheromaks can merge in two possible ways to form a single final compact toroid depending on their toroidal magnetic field direction. Magnetohydrodynamically, no difference should be expected but experimentally, a positive/negative merging or negative/positive merging will generate final compact toroids with different lifetimes and sizes. A pair of multichannel spectroscopic diagnostics have been installed on the TS-4 experiment with view chords designed for measuring 3D ion velocities and temperature. One set retrieves toroidal velocities and temperature from conventional Abel inversion. The second, novel arrangement retrieves poloidal velocities from 3D vector tomography reconstruction and temperature from scalar tomography. With in situ magnetic probe arrays, the ion canonical momentum is thus determined in the complete volume. The ion temperature at the reconnection plane is also evaluated [1]. Both sets of measurements are followed over several repeatable shots during the spheromak merging to also track the evolution of ion self-helicity.[0pt][1] Tanabe, You, Balandin, Ono, poster this meeting.

  15. Status of 3D Ice Shape Measurement Effort

    NASA Technical Reports Server (NTRS)

    Lee, Sam

    2011-01-01

    (1) Main goal of the Airframe Icing Technical Challenge is to achieve acceptance of experimental and computational icing simulation tools -SupercooledLarge Droplet Icing (SLD) conditions -3D airframe components including swept wings; (2) It is necessary to develop suitable means of recording and archiving fully 3D descriptions of experimental ice accretion geometry; (3) Past research has shown that commercial laser scanners have the potential to be adapted to this task; and (4) A research plan has been developed to implement and validate the use of this technology for experimental ice accretions.

  16. Angle Estimation of Simultaneous Orthogonal Rotations from 3D Gyroscope Measurements

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2011-01-01

    A 3D gyroscope provides measurements of angular velocities around its three intrinsic orthogonal axes, enabling angular orientation estimation. Because the measured angular velocities represent simultaneous rotations, it is not appropriate to consider them sequentially. Rotations in general are not commutative, and each possible rotation sequence has a different resulting angular orientation. None of these angular orientations is the correct simultaneous rotation result. However, every angular orientation can be represented by a single rotation. This paper presents an analytic derivation of the axis and angle of the single rotation equivalent to three simultaneous rotations around orthogonal axes when the measured angular velocities or their proportions are approximately constant. Based on the resulting expressions, a vector called the simultaneous orthogonal rotations angle (SORA) is defined, with components equal to the angles of three simultaneous rotations around coordinate system axes. The orientation and magnitude of this vector are equal to the equivalent single rotation axis and angle, respectively. As long as the orientation of the actual rotation axis is constant, given the SORA, the angular orientation of a rigid body can be calculated in a single step, thus making it possible to avoid computing the iterative infinitesimal rotation approximation. The performed test measurements confirm the validity of the SORA concept. SORA is simple and well-suited for use in the real-time calculation of angular orientation based on angular velocity measurements derived using a gyroscope. Moreover, because of its demonstrated simplicity, SORA can also be used in general angular orientation notation. PMID:22164090

  17. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  18. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    PubMed Central

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  19. A robust method to detect zero velocity for improved 3D personal navigation using inertial sensors.

    PubMed

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  20. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  1. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy; Kreeger, Richard; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3-D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion.The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scanrapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the moldcasting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  2. Particle Velocity Measuring System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    1998-01-01

    Method and apparatus are provided for determining the velocity of individual food particles within a liquid/solid food mixture that is cooked by an aseptic cooking method whereby the food mixture is heated as it flows through a flowline. At least one upstream and at least one downstream microwave transducer are provided to determine the minimum possible travel time of the fastest food particle through the flowline. In one embodiment, the upstream detector is not required. In another embodiment, a plurality of small dipole antenna markers are secured to a plurality of food particles to provide a plurality of signals as the markers pass the upstream and downstream transducers. The dipole antenna markers may also include a non-linear element to reradiate a harmonic frequency of a transmitter frequency. Upstream and downstream transducers include dipole antennas that are matched to the impedance of the food slurry and a signal transmission cable by various impedance matching means including unbalanced feed to the antennas.

  3. Mapping Faults from 3-D Tomographic Velocity Model using Image Processing / Computer Vision Algorithms: Application to Northern Cascadia

    NASA Astrophysics Data System (ADS)

    Ramachandran, K.

    2011-12-01

    Three dimensional velocity models constructed through seismic tomography are seldom digitally processed further for imaging structural features. A study conducted to evaluate the potential for imaging subsurface discontinuities in horizontal and vertical direction from three dimensional velocity models using image processing/computer vision techniques has provided significant results. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity model has an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. However, results from the analysis of the 3-D velocity model from northern Cascadia using Roberts, Prewitt, Sobel, and Canny operators show that subsurface faults that are not clearly interpretable from velocity model plots can be identified through this approach. This analysis resulted in inferring the locations of Tacoma Fault, Seattle Fault, Southern Whidbey Island Fault, and Darrington Devils Mountain fault much clearly. The Coast Range Boundary Fault, previously hypothesized on the basis of sedimentological and tectonic observations is inferred clearly from processed images. Many of the fault locations so imaged correlate with earthquake hypocenters indicating their seismogenic nature.

  4. Real-time 3D shape measurement with digital stripe projection by Texas Instruments Micro Mirror Devices DMD

    NASA Astrophysics Data System (ADS)

    Frankowski, Gottfried; Chen, Mai; Huth, Torsten

    2000-03-01

    The fast, contact-free and highly precise shape measurement of technical objects is of key importance in the scientific- technological area as well as the area of practical measurement technology. The application areas of contact- free surface measurement extend across widely different areas, e.g., the automation of production processes, the measurement and inspection of components in microsystem technology or the fast 3D in-vivo measurement of human skin surfaces in cosmetics and medical technology. This paper describes methodological and technological possibilities as well as measurement technology applications for fast optical 3D shape measurements using micromirror-based high-velocity stripe projection. Depending on the available projector and camera facilities, it will be possible to shoot and evaluate compete 3D surface profiles within only a few milliseconds.

  5. On the critical one-component velocity regularity criteria to 3-D incompressible MHD system

    NASA Astrophysics Data System (ADS)

    Liu, Yanlin

    2016-05-01

    Let (u , b) be a smooth enough solution of 3-D incompressible MHD system. We prove that if (u , b) blows up at a finite time T*, then for any p ∈ ] 4 , ∞ [, there holds ∫0T* (‖u3(t‧) ‖ H ˙ 1/2 +2/p p + ‖b(t‧) ‖ H ˙ 1/2 +2/p p) dt‧ = ∞. We remark that all these quantities are in the critical regularity of the MHD system.

  6. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while

  7. Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method

    NASA Astrophysics Data System (ADS)

    Podlinski, J.; Niewulis, A.; Mizeraczyk, J.

    2009-08-01

    This work was aimed at measurements of the electrohydrodynamic (EHD) secondary flow in a non-thermal plasma reactor using three-dimensional particle image velocimetry (3D PIV) method. The wide-type non-thermal plasma reactor used in this work was an acrylic box with a wire discharge electrode and two plate collecting electrodes. The positive DC voltage was applied to the wire electrode through a 10 MΩ resistor. The collecting electrodes were grounded. The voltage applied to the wire electrode was 28 kV. Air flow seeded with a cigarette smoke was blown along the reactor duct with an average velocity of 0.6 m/s. The 3D PIV velocity fields measurements were carried out in four parallel planes stretched along the reactor duct, perpendicularly to the wire electrode and plate electrodes. The measured flow velocity fields illustrate complex nature of the EHD induced secondary flow in the non-thermal plasma reactor.

  8. Temperature maps measurements on 3D surfaces with infrared thermography

    NASA Astrophysics Data System (ADS)

    Cardone, Gennaro; Ianiro, Andrea; Dello Ioio, Gennaro; Passaro, Andrea

    2012-02-01

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel.

  9. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Astrophysics Data System (ADS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III; Wiedner, Brian G.

    1992-09-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  10. 3-D Crustal Velocity Structure of Central Idaho/ Eastern Oregon from Joint Inversion of Rayleigh Wave Group and Phase Velocities Derived from Ambient Seismic Noise: Newest Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2014-12-01

    We present the latest 3-D isotropic crustal velocity model beneath central Idaho and eastern Oregon. We produced the velocity model from vertical component Rayleigh wave group and phase velocity measurements on data from the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the stacked cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith. We derived Rayleigh wave group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. 3-D checkerboard resolution tests indicate lateral resolution of better than 40 km. Preliminary results show higher S wave velocities in the western study area, and lower velocities in the lower crust on the east side of the network, consistent with Basin-and-Range style extension there. A tabular velocity anomaly juxtaposing higher above lower seismic velocities dips shallow west in the midcrust on the west side of the network.

  11. 3-D Velocity Structure of Southwestern British Columbia and Northern Washington

    NASA Astrophysics Data System (ADS)

    Ramachandran, K.; Ramachandran, K.; Spence, G. D.; Dosso, S.; Hyndman, R. D.; Hyndman, R. D.; Brocher, T. M.; Fisher, M. M.

    2001-12-01

    A seismic tomography analysis in S.W. British Columbia and N. Washington has been used to define the velocity structure of the forearc crust and underlying subducting Juan de Fuca plate, and to obtain precise earthquake locations. First arrival travel-times from earthquakes and from the large airgun array used in the `Seismic Hazards Investigation of Puget Sound' (SHIPS) 1998 experiment, were simultaneously inverted for hypocentral parameters and velocity structure. Approximately 16,000 picks from 1,400 earthquakes recorded at 46 permanent stations, and 35,000 picks from the SHIPS experiment were used in the inversion. The velocity model was parameterized in the forward/inverse step by a node/cell spacing of 3 X 3 X 3 km over a volume of 360 X 450 X 93 km depth. The starting and final RMS travel time misfits were 479 ms and 120 ms respectively. Checkerboard tests conducted on the final velocity model imply good lateral resolution ranging from 30 to 50 km. The SHIPS airgun data mainly constrained the upper ~12 km and the earthquake data the deeper structure. The high velocity mafic Crescent Terrane that dips beneath the margin is well mapped in the velocity model on a regional scale. Its thickness beneath southern Vancouver Island is interpreted to reach ~20 km. Three high velocity structures above the subducting Juan de Fuca plate, having mafic to ultramafic velocities of 7.25-7.5 km/s, occur beneath southern Vancouver Island and Puget Sound at a depth of ~25 km. They may be associated with deeper parts of the Crescent Terrane, or with structures such as seamounts on the subducting Juan de Fuca plate. At the southern tip of Vancouver Islands, the Leech River Fault, Southern Whidbey Island Fault, and the Devils Mountain Fault appear to correlate with mapped seismicity. The subducting Juan de Fuca plate is well mapped beneath southern Vancouver Island, Olympic Peninsula, Strait of Georgia, and Puget Sound. The velocity model identifies the steepening dip in the

  12. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  13. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  14. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  15. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Pusok, A. E.; Popov, A.

    2015-12-01

    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  16. 2D measurements of cup orientation are less reliable than 3D measurements

    PubMed Central

    Smyth, Niall; Cobb, Justin P; Hart, Alister J

    2015-01-01

    Background and purpose 2D analysis of metal-on-metal (MoM) hip arthroplasty (HA) has been conducted in several large series on conventional radiographs with the use of Ein Bild Roentegen Analyse (EBRA) software, but there have been no comparisons with 3D analysis in the literature. The main aim of this study was to quantify the agreement in measurements of cup version of large-diameter MoM hips obtained by EBRA and by 3D computed tomography (3D-CT). The secondary aim was to quantify the agreement for cup inclination. Lastly, we wanted to determine the inter- and intra-observer reliability of both methods. Patients and methods 87 MoM hips in 81 patients were analyzed for cup inclination and version in 2D on conventional radiographs using EBRA software. The results were compared with 3D measurements using CT. Results Cup version was underestimated by EBRA when compared to 3D-CT, by 6° on average with the pelvis supine and by 8° on average with the pelvis orientated to the anterior pelvic plane (APP). For inclination, the mean difference was no more than 1°. 53% of hips were within a 10° safe zone of 45° inclination and 20° version when measured by 3D-CT with the pelvis supine (and 54% with the pelvis in the APP). The proportion was only 24% when measured by EBRA. Inter- and intra-observer reliability of cup version is poorer using 2D analysis than when using 3D-CT. Interpretation Errors in version in 2D were due to the difficulty in delineating the cup rim, which was obscured by a large-diameter metal head of the same radio-opacity. This can be overcome with 3D analysis. The present study demonstrates that measurements using EBRA have poor agreement and are less reliable than those with 3D-CT when measuring cup version and inclination in MoM hips. PMID:25674698

  17. 3D Seismic Velocity Structure in the Rupture Area of the 2010 Maule Mw=8.8 Earthquake

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Nippress, S.; Haberland, C. A.

    2011-12-01

    The 2010 Mw=8.8 Maule, Chile earthquake is one of the largest subduction zone earthquakes ever recorded. Up to now numerous co-seismic and some post-seismic slip models have been published based entirely on seismological, geodetic, or tsunami run-up heights, or combinations of these data. Most of these models use a simplified megathrust geometry derived mainly from global earthquake catalogues, and also simplified models of seismic parameters (e.g. shear modulus). By using arrival times for a vast number of aftershocks that have been recorded on a temporary seismic array, we present a new model for the slab geometry based on earthquake locations together with a new 3D seismic velocity model of the region, for both vp and vp/vs. We analyzed 3552 aftershocks that occurred between 18 March and 24 May 2011, recorded by the International Maule Aftershock Dataset (IMAD) seismic network. Event selection from a catalogue of automatically-determined events was based on 20 or more arrival times, from which at least 10 are S-wave observations. In total over 170,000 arrival times (~125,000 and 45,000 P and S wave arrival times respectively) are used for the tomographic reconstructions. Initially, events were relocated in a 2D velocity model based on a previously published model for the southern end of the rupture area (Haberland et al., 2009). Afterwards a staggered inversion scheme is implemented, starting with a 2D inversion followed by a coarse 3D and a subsequent fine 3D inversion. Based on our preliminary inversions we conclude that aftershock seismicity is mainly concentrated between 20 and 35 km depth along the subduction interface. A second band of seismicity between 40 and 50 km depth is also observed. Low seismic velocities and an increased vp/vs ratio characterize the marine forearc. The obtained velocity model will be discussed.

  18. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity

  19. Measurement of surface velocity fields

    NASA Technical Reports Server (NTRS)

    Mann, J. A., Jr.

    1979-01-01

    A new technique for measuring surface velocity fields is briefly described. It determines the surface velocity vector as a function of location and time by the analysis of thermal fluctuations of the surface profile in a small domain around the point of interest. The apparatus now being constructed will be used in a series of experiments involving flow fields established by temperature gradients imposed along a surface.

  20. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  1. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-11-22

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  2. Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China

    USGS Publications Warehouse

    Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.

    2002-01-01

    Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.

  3. Dynamics of electronically inelastic collisions from 3D Doppler measurements

    SciTech Connect

    Suits, A.G.; de Pujo, P.; Sublemontier, O.; Visticot, J.; Berlande, J.; Cuvellier, J.; Gustavsson, T.; Mestdagh, J.; Meynadier, P. ); Lee, Y.T. )

    1991-11-25

    Flux-velocity contour maps were obtained for the inelastic collision process Ba({sup 1}{ital P}{sub 1})+O{sub 2}N{sub 2}{r arrow}Ba({sup 3}{ital P}{sub 2})+O{sub 2}N{sub 2} from Doppler scans of scattered Ba({sup 3}{ital P}{sub 2}) taken over a range of probe laser directions in a crossed-beam experiment. Collision with O{sub 2} resulted in sharply forward scattered Ba({sup 3}{ital P}{sub 2}), with efficient conversion of inital electronic energy into O{sub 2} internal energy and little momentum transfer. Collision with N{sub 2} was dominated by wide-angle scattering with most of the available electronic energy appearing in product translation. The results suggest the importance of large-impact-parameter collisions and a near-resonant energy transfer in the case of O{sub 2}, while for N{sub 2} close collisions dominate despite the presence of an analogous near-resonant channel. The results represent the first direct experimental demonstration of a near-resonant quenching process.

  4. On the location of microseismic sources in instable rock slope areas: heterogeneous vs. homogenous 3D velocity models

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Manconi, Andrea; Occhiena, Cristina; Arattano, Massimo; Scavia, Claudio

    2013-04-01

    Rock-falls are one of the most common and hazardous phenomena occurring in mountainous areas. The formation of cracks in rocks is often accompanied by a sudden release of energy, which propagates in form of elastic waves and can be detected by a suitable transducer array. Therefore, geophones are among the most effective monitoring devices to investigate eventual precursors of rock-fall phenomena. However, the identification of an efficient procedure to forecast rock-fall occurrence in space and time is still an open challenge. In this study, we aim at developing an efficient procedure to locate microseismic sources relevant to cracking mechanisms, and thus gather indications on eventual precursors of rock-fall phenomena. Common seismic location tools usually implement homogeneous or multilayered velocity models but, in case of high slope gradients and heavily fractured rock masses, these simplifications may lead to errors on the correct estimation of the source location. Thus, we analyzed how the consideration of 3D material properties on the propagation medium may influence the location. In the framework of the Alcotra 2007-2013 Project MASSA (Medium And Small Size rock-fall hazard Assessment), a monitoring system composed by 8 triaxial geophones was installed in 2010 at the J.A. Carrel hut (3829 m a.s.l., Matterhorn, NW Italian Alps) and during the first year of operation the network recorded more than 600 natural events that exceeded a fixed threshold [1]. Despite the harsh environmental conditions of the study area, eighteen points distributed as uniformly as possible in space were selected for hammering. The artificial source dataset of known coordinates was used to constrain a 3D heterogeneous velocity model through a Simultaneous Iterative Reconstructive Technique. In order to mitigate the intrinsic uncertainties of the inversion procedure, bootstrapping was performed to extend the dataset and a statistical analysis was issued to improve the model

  5. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  6. Perceptual quality measurement of 3D images based on binocular vision.

    PubMed

    Zhou, Wujie; Yu, Lu

    2015-07-20

    Three-dimensional (3D) technology has become immensely popular in recent years and widely adopted in various applications. Hence, perceptual quality measurement of symmetrically and asymmetrically distorted 3D images has become an important, fundamental, and challenging issue in 3D imaging research. In this paper, we propose a binocular-vision-based 3D image-quality measurement (IQM) metric. Consideration of the 3D perceptual properties of the primary visual cortex (V1) and the higher visual areas (V2) for 3D-IQM is the major technical contribution to this research. To be more specific, first, the metric simulates the receptive fields of complex cells (V1) using binocular energy response and binocular rivalry response and the higher visual areas (V2) using local binary patterns features. Then, three similarity scores of 3D perceptual properties between the reference and distorted 3D images are measured. Finally, by using support vector regression, three similarity scores are integrated into an overall 3D quality score. Experimental results for two public benchmark databases demonstrate that, in comparison with most current 2D and 3D metrics, the proposed metric achieves significantly higher consistency in alignment with subjective fidelity ratings. PMID:26367842

  7. The modeling of portable 3D vision coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Huang, Fengshan; Peng, Kai

    2005-02-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  8. 3D Velocity and Hypocentre Distribution About a Cone-Volcano: Mt Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Sherburn, S.; White, R.

    2003-12-01

    Mt Taranaki is a 2518 m andesite cone-volcano (last eruption AD1755) within an oil-bearing sedimentary basin approximately 50 km west of the deepest part of the Benioff zone beneath the North Island of New Zealand. It is the most recent of a series of volcanoes that have erupted in the Taranaki region in the last 1.7 million years. Although a permanent six-station seismic network monitors Mt Taranaki for signs of unrest, little is known of the structure at the depths earthquakes occur and magma maybe stored. This information is vital for interpreting precursors to any future eruption. For nine months in 2001-2002, a temporary network of 75 three-component, broadband (0.03 - 50 Hz) seismographs (area c. 100 km by 100 km) was used to collect data to image crustal structure and accurately locate earthquakes in the Taranaki region. Three hundred and eighty-nine earthquakes were located using more than 15,000 phase picks (55% P and 45% S). A joint inversion for 1D Vp, Vs and hypocentres was undertaken using Velest followed by a 3D inversion for Vp, Vp/Vs ratio and hypocentres using Simul2000. The base of the seismogenic zone increases gradually from a depth of 20 km immediately west of Mt Taranaki to 35 km deep 100 km to the east, corresponding to a previously observed increase in crustal thickness. The area close to Mt Taranaki is anomalous in that there are few earthquakes and all are shallower than 10 km. Within the upper 5-10 km of the crust Vp is closely related to surface geology, being high beneath Mt Taranaki, low beneath the surrounding sedimentary basin, and very high to the east of the basin. We present the Vp and Vp/Vs structure and hypocentre distribution of the Taranaki region and discuss features that can be attributed to volcanism at Mt Taranaki and older volcanic centres.

  9. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  10. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-03-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  11. On the Velocity Field and the 3D Structure of the Galactic Soccer Ball Abell 43

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas; Werner, Klaus; Ercolano, Barbara; Köppen, Joachim

    2005-11-01

    Planetary nebulae (PNe) and their central stars (CSs) are ideal tools to test evolutionary theory: photospheric properties of their exciting stars give stringent constraints for theoretical predictions of stellar evolution. The nebular abundances display the star's photosphere chemical composition at the time of the nebula's ejection which allows to look back into the history of stellar evolution. More importantly, they even provide a possibility to investigate on the chemical evolution of our Galaxy because most of the nuclear processed material goes back into the interstellar medium via PNe. The recent developments in observation techniques and the new three-dimensional photoionization code MOCASSIN (Ercolano et al. 2003) enable us to analyze PNe properties accurately by the construction of consistent models of PNe and CSs. In addition to PNe imaging and spectroscopy, detailed information about the velocity field within the PNe is a pre-requisite to employ de-projection techniques in modeling the physical structure of the PNe.

  12. General approach for the description of optical 3D measuring systems

    NASA Astrophysics Data System (ADS)

    Andrae, Peter; Jueptner, Werner P. O.; Kebbel, Volker; Osten, Wolfgang

    1997-07-01

    In this paper a general geometric description of the optical methods for 3D coordinate measurement is presented. Similar to holographic interferometry this new approach is based on the concept of measuring sensitivity. As a special case the derived basic relation is applied to the fringe projection technique using a physical model of this measurement method. Moreover a geometric 3D model that contributes to a dramatic reduction of systematic distortions of measured 3D coordinates is presented. On the one hand this model is sufficiently general but on the other hand still easy to handle. It permits an explicit and direct determination of 3D coordinates from primary measuring data as well as a calibration of the measuring set-up using linear identification methods mainly. The described 3D model can be applied also with advantage to multiview registration tasks.

  13. 3-D velocity structure around tehri region of the garhwal lesser himalaya: constraints on geometry of the underthrusting indian plate

    NASA Astrophysics Data System (ADS)

    Kanaujia, Jyotima; Kumar, Ashwani; Gupta, S. C.

    2016-02-01

    We investigate the upper crustal velocity structure beneath the Tehri region of the Garhwal Himalaya. The investigated region is situated within the 700-km-long central seismic gap of the Himalaya that has experienced three gap-filling earthquakes since 1991 including the recent 2015 Nepal earthquake (Mw 7.8). The local tomographic inversion is based on a dataset of 1365 events collected from January 2008 to December 2012 by a 12-station local network that covers an area of about 100 × 80 km around Tehri Dam. We perform a simultaneous inversion for P- and S-wave velocity anomalies. Tomograms are interpreted in the backdrop of the regional geological and tectonic framework of the region. The spatial distribution of relocated events from the 3- D velocity model has shed new light on the pattern of seismicity in the vicinity of the Main Central thrust (MCT), and has elucidated the structure of the underthrusting Indian plate. Our model exhibits a significant negative velocity anomaly up to ˜5 per cent beneath the central part of the Garhwal Inner Lesser Himalaya, and a P-wave low velocity anomaly near the Chamoli region. The seismicity zone around the Chamoli region may be attributed to the presence of fluid filled rocks. Furthermore, an area with˜3-4 per cent positive velocity anomaly is delineated to the northwest of the Uttarkashi thrust in the vicinity of the MCT. Significant findings of the study include: a flat-ramp-flat type sub-surface geometry of the underthrusting Indian plate below the Garhwal Himalaya, high velocity images representing the trend and configuration of Delhi-Haridwar-ridge below the Sub Himalaya and Lesser Himalaya, and a seismically active zone representing geometrical asperity on the basement thrust in the vicinity of the MCT.

  14. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  15. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  16. Numerical Modeling of seismic wave propagation on Etna Volcano (Italy): Construction of 3D realistic velocity structures

    NASA Astrophysics Data System (ADS)

    Trovato, Claudio; Aochi, Hideo; De Martin, Florent

    2014-05-01

    Understanding the source mechanism of long-period (LP) seismic signals on volcanoes is an important key point in volcanology and for the hazard forecasting. In the last decades, moment tensor inversions have led to various descriptions of the kinematic source mechanism. These inversions suppose a relatively simple structure of the medium. However, the seismic wave propagation in a realistic 3-D volcano model should be taken into account for understanding the complicated physical processes of magma and gas behaviors at depth. We are studying Etna volcano, Italy, to understand the volcanic processes during different stages of activity. We adopt a spectral element method (SEM), a code EFISPEC3D (De Martin, BSSA, 2011), which shows a good accuracy and numerical stability in the simulations of seismic wave propagation. First we construct the geometrical model. We use a digital elevation model (DEM) to generate finite element meshes with a spacing of 50 m on the ground surface. We aim to calculate the ground motions until 3 Hz for the shallowest layer with Vs = ~500 m/s. The minimal size of the hexahedral elements is required to be around 100 m, with a total number of elements n = ~2 10 ^ 6 for the whole model. We compare different velocity structure configurations. We start with a homogeneous medium and add complexities taking in account the shallow low velocity structure. We also introduce a velocity gradient towards depth. Simulations performed in the homogeneous medium turn in approximately 20 hours for calculations parallelized on 16 CPUs. Complex velocity models should take approximately the same time of computation. We then try to simulate the ground motion from the LP sources (0.1-1.5 Hz) obtained by the inversion for the Etna volcano in 2008 (De Barros, GRL, 2009 and De Barros, JGR, 2011). Some vertical and horizontal structures can be added to reproduce injected dikes or sills respectively.

  17. Instrument remotely measures wind velocities

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Mccleese, D. J.; Seaman, C. H.; Shumate, M. S.

    1980-01-01

    Doppler-shift spectrometer makes remote satellite measurements of atmospheric wind velocity and temperature at specified altitudes. As in correlation spectrometer, spectrum of gas in reference cell and spectrum of same gas in atmosphere are correlated both in emission and absorption.

  18. Characterization of linearity and uniformity of fiber-based endoscopes for 3D combustion measurements.

    PubMed

    Kang, MinWook; Lei, Qingchun; Ma, Lin

    2014-09-10

    This work reports the application of fiber-based endoscopes (FBEs) for instantaneous three-dimensional (3D) flow and combustion measurements, with an emphasis on characterizing the linearity and uniformity of the FBEs and exploring their potential for obtaining quantitative measurements. Controlled experiments were performed using a uniform illuminator to characterize the linearity and uniformity of the FBEs. Based on such characterization, 3D instantaneous measurements of flames were demonstrated by a combined use of FBEs and tomography. To obtain 3D flame measurement, 3D tomographic reconstructions were made from multiple projections of the target flames collected from various orientations by the FBEs. The results illustrate the potential of FBEs to obtain quantitative 3D flow and combustion measurements and also the advantages FBEs offer, including overcoming optical access restrictions and equipment cost. PMID:25321676

  19. Calibration of 3-D wind measurements on a single-engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  20. Calibration of 3-D wind measurements on a single engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  1. Measurements of the solid-body rotation of anisotropic particles in 3D turbulence

    NASA Astrophysics Data System (ADS)

    Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A.

    2014-10-01

    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four video images of their motion in a turbulent flow between oscillating grids with {{R}λ } = 91. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of axisymmetric ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, < {{\\dot{p}}i}{{\\dot{p}}i}> , confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of a unit vector defining the orientation of crosses with the direction of their solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients in a turbulent flow.

  2. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  3. Anisotropic 3-D Crustal Velocity Structure of Idaho/ Oregon from a Joint Inversion of Group and Phase Velocities of Love and Rayleigh Waves from Ambient Seismic Noise: Results from the IDOR Project

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.; Russo, R.; Mocanu, V. I.; Stanciu, A. C.; Torpey, M. E.; Hongsresawat, S.; VanDecar, J. C.

    2015-12-01

    We present new 3-D radially anisotropic and isotropic crustal velocity models beneath central Idaho and eastern Oregon. We produced the velocity models from Love and horizontal component Rayleigh wave group and phase velocity measurements on the IDaho/ORegon (IDOR) Passive seismic network, 86 broadband seismic stations, dataset using ambient noise tomography and the methods of Gallego et. al (2010) and Lin et. al (2008). We calculated inter-station group/phase velocities in narrow frequency bands from travel-time measurements of the rotated stacked horizontal component cross-correlations (bandpass filtered between 2 and 30 seconds), which we used to invert for velocity structure beneath the network. We derived group and phase velocity maps for each frequency band using the damped least-squares inversion method of Tarantola (2005), and then jointly inverted for velocity with depth. Moho depths are prescribed in the joint inversions based on receiver functions, also from the IDOR seismic data, and provides a starting crustal velocity model. Goals of our work include refining models of crustal structure in the accreted Blue Mountain terranes in the western study area; determining the depth extent of the Salmon River Suture/West Idaho Shear Zone (WISZ), which crosses north-south through the middle of the network; determining the architecture of the Idaho batholith, an extensive largely crustal-derived pluton; and examining the nature of the autochthonous (?) North American crust and lithosphere beneath and east of the batholith.

  4. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  5. 3-D velocity heterogeneity in earthquake swarm area of NW Bohemia/Vogtland (German-Czech border region)

    NASA Astrophysics Data System (ADS)

    Mousavi, Sima; Bauer, Klaus; Korn, Michael

    2014-05-01

    3-D Vp and Vp/Vs structure of the geodynamically active NW Bohemia/Vogtland area, located at the border region between Germany and Czech republic, has been determined from local earthquake tomography using 543 earthquakes which have been recorded during 2000 to 2010. This region is known for the occurrence of earthquake swarms that are supposed to be triggered by fluid upwelling in the crust, although fluid behaviour and migration paths in the subsurface of NW Bohemia is still poorly known. The events used in this study were selected based on a minimum 12 P and S phase observations and an azimuthal gap less than 160º. This data set is employed to derive a minimum 1-D velocity model and to relocate the hypocenters. The minimum 1-D velocity model is then used as an initial model in non-linear inversion to derive 3-D P-velocity and Vp/Vs ratio. Using synthetic tests, it can be shown that a high resolution is obtained in the central part of the studied region with the given source and receiver configuration. Two branches of high Vp/Vs ratio anomalies have been detected above the swarm quakes' focal zone. These anomalies support the existence of two main fluid passages toward Bad Brambach and Bublak moffette. Another interesting result is a high Vp/Vs line-like anomaly along Mariánské Lázně fault where most of the swarm quakes occur, which could be due to a fluid saturated area around the cracked zone of the fault plain. Hypocenters in the swarm region are located in a low Vp and Vp/Vs anomaly. The correlation between the detected Vp and Vp/Vs anomalies and the location of earthquake swarm suggests a model in which CO2 as part of magmatic fluids exist in a vast area beneath NW Bohemia and frequently migrate up to the surface.

  6. Measurement of retinal blood velocity

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W., Jr.; Chou, Nee-Yin

    2006-02-01

    A fundus camera was modified to illuminate the retina of a rabbit model with low power laser light in order to obtain laser speckle images. A fast-exposure charge-coupled device (CCD) camera was used to capture laser speckle images of the retina. Image acquisition was synchronized with the arterial pulses of the rabbit to ensure that all images are obtained at the same point in the cardiac cycle. The rabbits were sedated and a speculum was inserted to prevent the eyelid from closing. Both albino (New Zealand; pigmented (Dutch belted) rabbits were used in the study. The rabbit retina is almost avascular. The measurements are obtained for choroidal tissue as well as retinal tissue. Because the retina is in a region of high metabolism, blood velocity is strongly affected by blood oxygen saturation. Measurements of blood velocity obtained over a wide range of O II saturations (58%-100%) showed that blood velocity increases with decreasing O II saturation. For most experiments, the left eye of the rabbit was used for laser measurements whereas the right eye served as a control. No observable difference between pre- and post-experimented eye was noted. Histological examinations of retinal tissue subjected to repeated laser measurements showed no indication of tissue damage.

  7. 3D shape measurements for non-diffusive objects using fringe projection techniques

    NASA Astrophysics Data System (ADS)

    Su, Wei-Hung; Tseng, Bae-Heng; Cheng, Nai-Jen

    2013-09-01

    A scanning approach using holographic techniques to perform the 3D shape measurement for a non-diffusive object is proposed. Even though the depth discontinuity on the inspected surface is pretty high, the proposed method can retrieve the 3D shape precisely.

  8. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  9. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    PubMed Central

    2011-01-01

    Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material

  10. Constraints on Crustal Shear Wave Velocity Structure beneath Central Tibet from 3-D Multi-scale Finite-frequency Rayleigh Wave Travel-time Tomography

    NASA Astrophysics Data System (ADS)

    Jheng, Y.; Hung, S.; Zhou, Y.; Chang, Y.

    2012-12-01

    Surface wave travel-time tomography has been widely used as a powerful strategy to image shear wave velocity structure of the Earth's crust and upper mantle, providing comparable information other than body wave tomography. Traditionally, lateral variations of dispersive phase velocities are first obtained at multiple frequencies and then used to invert for shear wave velocity with 1-D depth-dependent sensitivity kernels. However, this approach runs short on considering the directional- and depth-dependence of scattering while surface wave propagating through laterally heterogeneous Earth. To refrain from these shortcomings, we here provide a fully 3-D finite-frequency method based on the Born scattering theory formulated with surface wave mode summation, and apply it to regional fundamental Rayleigh wave travel-time tomography in central Tibet. Our data were collected from Project Hi-CLIMB, which deployed an N-S trending linear array of over 100 broadband seismic stations with a large aperture of 800 km and very dense spacing of ~3-8 km across the Lhasa and Qiangtang terranes during 2004-2005. We follow a standard procedure of ambient noise cross correlation to extract empirical Green's functions of fundamental Rayleigh waves at 10-33 s between station pairs. A multi-taper method is employed to measure the phase differences as a function of period between observed and synthetic Rayleigh waves as well as the corresponding sensitivity kernels for the measured phase delays to 3-D shear wave velocity perturbations in a spherically-symmetric model suitable for central Tibet. A wavelet-based, multi-scale parameterization is invoked in the tomographic inversion to deal with the intrinsically multi-scale nature of unevenly distributed data and resolve the structure with data-adaptive spectral and spatial resolutions. The preliminary result shows that to the north of the Banggong-Nujiang suture (BNS), the crustal shear wave velocity beneath the Qiangtang terrane is

  11. Large bulk-yard 3D measurement based on videogrammetry and projected contour aiding

    NASA Astrophysics Data System (ADS)

    Ou, Jianliang; Zhang, Xiaohu; Yuan, Yun; Zhu, Xianwei

    2011-07-01

    Fast and accurate 3D measurement of large stack-yard is important job in bulk load-and-unload and logistics management. Stack-yard holds its special characteristics as: complex and irregular shape, single surface texture and low material reflectivity, thus its 3D measurement is quite difficult to be realized by traditional non-contacting methods, such as LiDAR(LIght Detecting And Ranging) and photogrammetry. Light-section is good at the measurement of small bulk-flow but not suitable for large-scale bulk-yard yet. In the paper, an improved method based on stereo cameras and laser-line projector is proposed. The due theoretical model is composed from such three key points: corresponding point of contour edge matching in stereo imagery based on gradient and epipolar-line constraint, 3D point-set calculating for stereo imagery projected-contour edge with least square adjustment and forward intersection, then the projected 3D-contour reconstructed by RANSAC(RANdom SAmpling Consensus) and contour spatial features from 3D point-set of single contour edge. In this way, stack-yard surface can be scanned easily by the laser-line projector, and certain region's 3D shape can be reconstructed automatically by stereo cameras on an observing position. Experiment proved the proposed method is effective for bulk-yard 3D measurement in fast, automatic, reliable and accurate way.

  12. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  13. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  14. 3-D P- and S-wave velocity structure and low-frequency earthquake locations in the Parkfield, California region

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangfang; Thurber, Clifford H.; Shelly, David R.; Harrington, Rebecca M.; Cochran, Elizabeth S.; Bennington, Ninfa L.; Peterson, Dana; Guo, Bin; McClement, Kara

    2016-09-01

    To refine the 3-D seismic velocity model in the greater Parkfield, California region, a new data set including regular earthquakes, shots, quarry blasts and low-frequency earthquakes (LFEs) was assembled. Hundreds of traces of each LFE family at two temporary arrays were stacked with time-frequency domain phase weighted stacking method to improve signal-to-noise ratio. We extend our model resolution to lower crustal depth with LFE data. Our result images not only previously identified features but also low velocity zones (LVZs) in the area around the LFEs and the lower crust beneath the southern Rinconada Fault. The former LVZ is consistent with high fluid pressure that can account for several aspects of LFE behaviour. The latter LVZ is consistent with a high conductivity zone in magnetotelluric studies. A new Vs model was developed with S picks that were obtained with a new autopicker. At shallow depth, the low Vs areas underlie the strongest shaking areas in the 2004 Parkfield earthquake. We relocate LFE families and analyse the location uncertainties with the NonLinLoc and tomoDD codes. The two methods yield similar results.

  15. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    SciTech Connect

    Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian

    2013-09-09

    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  16. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  17. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment for LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-05-23

    Fast cookoff is of interest in the areas of fire hazard reduction and the development of directed energy systems for defense. During a fast cookoff (thermal explosion), high heat fluxes cause rapid temperature increases and ignition in thin boundary layers. We are developing ALE3D models to describe the thermal, chemical, and mechanical behavior during the heating, ignition, and explosive phases. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. Fast cookoff measurements were made in a Scaled-Thermal-Explosion-eXperiment (STEX) for LX-10 (94.7% HMX, 5.3% Viton A) confined in a 4130 steel tube with reinforced end caps. Gaps were present at the side and top of the explosive charge to allow for thermal expansion. The explosive was heated until explosion using radiant heaters. Temperatures were measured using thermocouples positioned on the tube wall and in the explosive. During the explosion, the tube expansion and fragment velocities were measured with strain gauges, Photonic-Doppler-Velocimeters (PDVs), and micropower radar units. A fragment size distribution was constructed from fragments captured in Lexan panels. ALE3D models for chemical, thermal, and mechanical behavior were developed for the heating and explosive processes. A multi-step chemical kinetics model is employed for the HMX while a one-step model is used for the Viton. A pressure-dependent deflagration model is employed during the expansion. A Steinberg-Guinan model represents the mechanical behavior of the solid constituents while polynomial and gamma-law expressions are used for the equation of state of the solid and gas species, respectively. Parameters for the kinetics model were specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate were employed to determine parameters in the burn front model. The simulations include radiative and conductive transport across the dynamic gaps between the

  18. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  19. Development of 3D Image Measurement System and Stereo-matching Method, and Its Archeological Measurement

    NASA Astrophysics Data System (ADS)

    Kochi, Nobuo; Ito, Tadayuki; Kitamura, Kazuo; Kaneko, Syun'ichi

    The three dimensional measurement & modeling system with digital cameras on PC is now making progress and its need and hope is increasingly felt in terrestrial (close-range) photogrammetry for such sectors as cultural heritage preservation, architecture, civil engineering, manufacturing, measurement etc. Therefore, we have developed a system to improve the accuracy of stereo-matching, which is the very core of 3D measurement. As for stereo-matching method, in order to minimize the mismatching and to be robust in geometric distortions, occlusion, as well as brightness change, we invented Coarse-to-Fine Strategy Method by integrating OCM (Orientation Code Matching) with LSM (Least Squares Matching). Thus this system could attain the accuracy of 0.26mm, when we experimented on a mannequin. And when we actually experimented on the archeological ruins in Greece and Turkey, the accuracy was within the range of 1cm, compared with their blue-print plan. Besides, formally workers used to take at least 1.5 month for this kind of survey operation with the existing method, but now workers need only 3 or 4 days. Thus, its practicality and efficiency was confirmed. This paper demonstrates our new system of 3D measurement and stereo-matching with some concrete examples as its practical application.

  20. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry.

    PubMed

    Tang, Yan; Su, Xianyu; Liu, Yuankun; Jing, Hailong

    2008-09-15

    An advanced Phase Measuring Deflectometry(PMD) is proposed to measure the three dimensional (3D) shape of the aspheric mirror. In the measurement process, a liquid crystal display(LCD)screen displaying sinusoidal fringe patterns and a camera observing the fringe patterns reflected via the tested mirror, are moved along the tested mirror optical axis, respectively. At each movement position, the camera records the fringe patterns of the screen located at two different positions. Using these fringe patterns, every camera pixels can find a corresponding point on the tested mirror and gets its coordinate and slope. By integrating, the 3D shape of the tested mirror can be reconstructed. Compared with the traditional PMD, this method doesn???t need complex calibration and can measure the absolute height of the aspheric mirror which has large range of surface geometries unambiguously. Furthermore, this method also has strong anti-noise ability. Computer simulations and preliminary experiment validate the feasibility of this method. PMID:18795046

  1. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.

    PubMed

    Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin

    2015-03-20

    This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics. PMID:25968497

  2. Zemmouri earthquake rupture zone (Mw 6.8, Algeria): Aftershocks sequence relocation and 3D velocity model

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Dorbath, C.; Ousadou, F.; Maouche, S.; Chikh, M.; Bounif, M. A.; Meghraoui, M.

    2008-09-01

    We analyze the aftershocks sequence of the Zemmouri thrust faulting earthquake (21 May 2003, Mw 6.8) located east of Algiers in the Tell Atlas. The seismic sequence located during ˜2 months following the mainshock is made of more than 1500 earthquakes and extends NE-SW along a ˜60-km fault rupture zone crossing the coastline. The earthquake relocation was performed using handpicked P and S phases located with the tomoDD in a detailed 3D velocity structure of the epicentral area. Contrasts between velocity patches seem to correlate with contacts between granitic-volcanic basement rocks and the sedimentary formation of the eastern Mitidja basin. The aftershock sequence exhibits at least three seismic clouds and a well-defined SE-dipping main fault geometry that reflects the complex rupture. The distribution of seismic events presents a clear contrast between a dense SW zone and a NE zone with scattered aftershocks. We observe that the mainshock locates between the SW and NE seismic zones; it also lies at the NNS-SSE contact that separates a basement block to the east and sedimentary formations to the west. The aftershock distribution also suggests fault bifurcation at the SW end of the fault rupture, with a 20-km-long ˜N 100° trending seismic cluster, with a vertical fault geometry parallel to the coastline juxtaposed. Another aftershock cloud may correspond to 75° SE dipping fault. The fault geometry and related SW branches may illustrate the interference between pre-existing fault structures and the SW rupture propagation. The rupture zone, related kinematics, and velocity contrasts obtained from the aftershocks distribution are in agreement with the coastal uplift and reflect the characteristics of an active zone controlled by convergent movements at a plate boundary.

  3. Hydrokinetic canal measurements: inflow velocity, wake flow velocity, and turbulence

    DOE Data Explorer

    Gunawan, Budi

    2014-06-11

    The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.

  4. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  5. High-resolution, real-time simultaneous 3D surface geometry and temperature measurement.

    PubMed

    An, Yatong; Zhang, Song

    2016-06-27

    This paper presents a method to simultaneously measure three-dimensional (3D) surface geometry and temperature in real time. Specifically, we developed 1) a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system even though these two sensors do not share the same wavelength; and 2) a computational framework to determine the sub-pixel corresponding temperature for each 3D point as well as discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time: we developed a hardware system that can achieve real-time 3D geometry and temperature measurement at 26 Hz with 768 × 960 points per frame. PMID:27410608

  6. Vorticity, turbulence production, and turbulence induced accelerations in a rectangular jet as measured using 3-D LDA

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    The flow field of a rectangular jet with a 4:1 aspect ratio (50.4 x 12.7 mm) was studied at a Reynolds number of 100,000 (Mach number 0.09) using a 3-D laser Doppler anemometer system. Measurements were performed along the major and minor axis planes and at various downstream cross-sections of the jet. The mean velocity vector and entire Reynolds stress tensor were measured and presented in a previous publication. The present work presents the vorticity vector, turbulence production, and turbulence induced acceleration vector distributions which were calculated from the previously presented data.

  7. Identification of source velocities on 3D structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; Totaro, N.; Guyader, J.-L.

    2010-08-01

    In noise control, identification of the source velocity field remains a major problem open to investigation. Consequently, methods such as nearfield acoustical holography (NAH), principal source projection, the inverse frequency response function and hybrid NAH have been developed. However, these methods require free field conditions that are often difficult to achieve in practice. This article presents an alternative method known as inverse patch transfer functions, designed to identify source velocities and developed in the framework of the European SILENCE project. This method is based on the definition of a virtual cavity, the double measurement of the pressure and particle velocity fields on the aperture surfaces of this volume, divided into elementary areas called patches and the inversion of impedances matrices, numerically computed from a modal basis obtained by FEM. Theoretically, the method is applicable to sources with complex 3D geometries and measurements can be carried out in a non-anechoic environment even in the presence of other stationary sources outside the virtual cavity. In the present paper, the theoretical background of the iPTF method is described and the results (numerical and experimental) for a source with simple geometry (two baffled pistons driven in antiphase) are presented and discussed.

  8. Simulating binocular vision for no-reference 3D visual quality measurement.

    PubMed

    Zhou, Wu-Jie; Yu, Lu; Wu, Ming-Wei

    2015-09-01

    Perceptual quality measurement of three-dimensional (3D) visual signals has become a fundamental challenge in 3D imaging fields. This paper proposes a novel no-reference (NR) 3D visual quality measurement (VQM) metric that uses simulations of the primary visual cortex (V1) of binocular vision. As the major technical contribution of this study, perceptual properties of simple and complex cells are considered for NR 3D-VQM. More specifically, the metric simulates the receptive fields of simple cells (one class of V1 neurons) using Gaussian derivative functions, and the receptive fields of complex cells (the other class of V1 neurons) using disparity energy responses and binocular rivalry responses. Subsequently, various quality-aware features are extracted from the primary visual cortex; these will change in the presence of distortions. Finally, those features are mapped to the subjective quality score of the distorted 3D visual signal by using support vector regression (SVR). Experiments on two publicly available 3D databases confirm the effectiveness of our proposed metric, compared to the relevant full-reference (FR) and NR metrics. PMID:26368467

  9. Qualitative and quantitative comparative analyses of 3D lidar landslide displacement field measurements

    NASA Astrophysics Data System (ADS)

    Haugen, Benjamin D.

    Landslide ground surface displacements vary at all spatial scales and are an essential component of kinematic and hazards analyses. Unfortunately, survey-based displacement measurements require personnel to enter unsafe terrain and have limited spatial resolution. And while recent advancements in LiDAR technology provide the ability remotely measure 3D landslide displacements at high spatial resolution, no single method is widely accepted. A series of qualitative metrics for comparing 3D landslide displacement field measurement methods were developed. The metrics were then applied to nine existing LiDAR techniques, and the top-ranking methods --Iterative Closest Point (ICP) matching and 3D Particle Image Velocimetry (3DPIV) -- were quantitatively compared using synthetic displacement and control survey data from a slow-moving translational landslide in north-central Colorado. 3DPIV was shown to be the most accurate and reliable point cloud-based 3D landslide displacement field measurement method, and the viability of LiDAR-based techniques for measuring 3D motion on landslides was demonstrated.

  10. Global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity

    NASA Astrophysics Data System (ADS)

    Zhai, Cuili; Zhang, Ting

    2015-09-01

    In this article, we consider the global well-posedness to the 3-D incompressible inhomogeneous Navier-Stokes equations with a class of large velocity. More precisely, assuming a 0 ∈ B˙ q , 1 /3 q ( R 3 ) and u 0 = ( u0 h , u0 3 ) ∈ B˙ p , 1 - 1 + /3 p ( R 3 ) for p, q ∈ (1, 6) with sup ( /1 p , /1 q ) ≤ /1 3 + inf ( /1 p , /1 q ) , we prove that if C a↑0↑ B˙q1/3 q α (↑u0 3↑ B˙ p , 1 - 1 + /3 p/μ + 1 ) ≤ 1 , /C μ (↑u0 h↑ B˙ p , 1 - 1 + /3 p + ↑u03↑ B˙ p , 1 - 1 + /3 p 1 - α ↑u0h↑ B˙ p , 1 - 1 + /3 p α) ≤ 1 , then the system has a unique global solution a ∈ C ˜ ( [ 0 , ∞ ) ; B˙ q , 1 /3 q ( R 3 ) ) , u ∈ C ˜ ( [ 0 , ∞ ) ; B˙ p , 1 - 1 + /3 p ( R 3 ) ) ∩ L 1 ( R + ; B˙ p , 1 1 + /3 p ( R 3 ) ) . It improves the recent result of M. Paicu and P. Zhang [J. Funct. Anal. 262, 3556-3584 (2012)], where the exponent form of the initial smallness condition is replaced by a polynomial form.

  11. 3-D velocity structures, seismicity patterns, and their tectonic implications across the Andean Foreland of San Juan Argentina

    NASA Astrophysics Data System (ADS)

    Asmerom, Biniam Beyene

    Three-dimensional velocity structures and seismicity patterns have been studied across the Andean Foreland of San Juan Argentina using data acquired by PANDA deployment. Distinct velocity variations are revealed between Precordillera in the west and Pie de Palo in the east. The low velocity anomaly beneath Precordillera is associated with the presence of thick sedimentary rocks and thick sediment cover of Matagusanos valley. Similarly, the high velocity anomaly east of Eastern Precordillera is correlated with the presence of basement rocks. These anomalies are observed from the station corrections of Joint Hypocentral Determination (JHD) analysis. A northeast trending west dipping high velocity anomaly is imaged beneath the southern half of Pie de Palo. This anomaly represents a Grenvillian suture zone formed when Pie de Palo collided with the Precordillera. Relocated seismicity using 3-D Vp and Vs models obtained in this study revealed crustal scale buried faults beneath the Eastern Precordillera and Sierra Pie de Palo. The fault defined by the seismicity extend down to a depth of ˜ 40 km and ~35 km beneath Precordillera and Pie de Palo, respectively, defining the lower bound of the brittle to ductile transition of the crust. These results confirm that present day active crustal thickening involves the entire crust in the tectonic process and results in thick-skinned deformation beneath both the Eastern Precordillera and Pie de Palo. Based on the seismicity pattern, geomorphology, and velocity structures, Sierra Pie de Palo, a basement uplift block, can be divided into two separate semi-blocks separated by a northeast trending fracture zone. The northern block is characterized by a well-defined west dipping fault and low Vp/Vs ratio particularly at a depth of 12 to 16 km, while the southern block shows a poorly-defined east dipping fault with high Vp/Vs ratio at a depth of 20 to 26 km. Spatial distribution of the well-relocated crustal earthquakes along these

  12. Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)

    NASA Astrophysics Data System (ADS)

    Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.

    2003-07-01

    Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.

  13. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  14. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  15. Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2013-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds

  16. 3D imaging in volumetric scattering media using phase-space measurements.

    PubMed

    Liu, Hsiou-Yuan; Jonas, Eric; Tian, Lei; Zhong, Jingshan; Recht, Benjamin; Waller, Laura

    2015-06-01

    We demonstrate the use of phase-space imaging for 3D localization of multiple point sources inside scattering material. The effect of scattering is to spread angular (spatial frequency) information, which can be measured by phase space imaging. We derive a multi-slice forward model for homogenous volumetric scattering, then develop a reconstruction algorithm that exploits sparsity in order to further constrain the problem. By using 4D measurements for 3D reconstruction, the dimensionality mismatch provides significant robustness to multiple scattering, with either static or dynamic diffusers. Experimentally, our high-resolution 4D phase-space data is collected by a spectrogram setup, with results successfully recovering the 3D positions of multiple LEDs embedded in turbid scattering media. PMID:26072807

  17. Cell force measurements in 3D microfabricated environments based on compliant cantilevers.

    PubMed

    Marelli, Mattia; Gadhari, Neha; Boero, Giovanni; Chiquet, Matthias; Brugger, Jürgen

    2014-01-21

    We report the fabrication, functionalization and testing of microdevices for cell culture and cell traction force measurements in three-dimensions (3D). The devices are composed of bent cantilevers patterned with cell-adhesive spots not lying on the same plane, and thus suspending cells in 3D. The cantilevers are soft enough to undergo micrometric deflections when cells pull on them, allowing cell forces to be measured by means of optical microscopy. Since individual cantilevers are mechanically independent of each other, cell traction forces are determined directly from cantilever deflections. This proves the potential of these new devices as a tool for the quantification of cell mechanics in a system with well-defined 3D geometry and mechanical properties. PMID:24217771

  18. Quantitative wound healing measurement and monitoring system based on an innovative 3D imaging system

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Yang, Arthur; Yin, Gongjie; Wen, James

    2011-03-01

    In this paper, we report a novel three-dimensional (3D) wound imaging system (hardware and software) under development at Technest Inc. System design is aimed to perform accurate 3D measurement and modeling of a wound and track its healing status over time. Accurate measurement and tracking of wound healing enables physicians to assess, document, improve, and individualize the treatment plan given to each wound patient. In current wound care practices, physicians often visually inspect or roughly measure the wound to evaluate the healing status. This is not an optimal practice since human vision lacks precision and consistency. In addition, quantifying slow or subtle changes through perception is very difficult. As a result, an instrument that quantifies both skin color and geometric shape variations would be particularly useful in helping clinicians to assess healing status and judge the effect of hyperemia, hematoma, local inflammation, secondary infection, and tissue necrosis. Once fully developed, our 3D imaging system will have several unique advantages over traditional methods for monitoring wound care: (a) Non-contact measurement; (b) Fast and easy to use; (c) up to 50 micron measurement accuracy; (d) 2D/3D Quantitative measurements;(e) A handheld device; and (f) Reasonable cost (< $1,000).

  19. A Global 3D P-Velocity Model of the Earth's Crust and Mantle for Improved Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Young, C. J.; Hipp, J. R.; Chang, M.; Lewis, J.; Begnaud, M. L.; Rowe, C. A.

    2009-12-01

    further refinement takes place around adjusted nodes to form a new model, and the process is repeated until no more improvement can be obtained. We thus produce a smooth, multi-resolution model with node density appropriate to both ray coverage and the velocity gradients required by the data. This scheme is computationally expensive, so we use a Java-based distributed computing framework developed by Sandia National Laboratories (SNL), providing us with 300+ processors having an efficiency of better than 90% for the calculations. We evaluate our model both in terms of travel time residual variance reduction and in location improvement for GT events. For the latter, we use a new multi-threaded version of the SNL-developed LocOO code modified to use 3D velocity models.

  20. Early pregnancy placental bed and fetal vascular volume measurements using 3-D virtual reality.

    PubMed

    Reus, Averil D; Klop-van der Aa, Josine; Rifouna, Maria S; Koning, Anton H J; Exalto, Niek; van der Spek, Peter J; Steegers, Eric A P

    2014-08-01

    In this study, a new 3-D Virtual Reality (3D VR) technique for examining placental and uterine vasculature was investigated. The validity of placental bed vascular volume (PBVV) and fetal vascular volume (FVV) measurements was assessed and associations of PBVV and FVV with embryonic volume, crown-rump length, fetal birth weight and maternal parity were investigated. One hundred thirty-two patients were included in this study, and measurements were performed in 100 patients. Using V-Scope software, 100 3-D Power Doppler data sets of 100 pregnancies at 12 wk of gestation were analyzed with 3D VR in the I-Space Virtual Reality system. Volume measurements were performed with semi-automatic, pre-defined parameters. The inter-observer and intra-observer agreement was excellent with all intra-class correlation coefficients >0.93. PBVVs of multiparous women were significantly larger than the PBVVs of primiparous women (p = 0.008). In this study, no other associations were found. In conclusion, V-Scope offers a reproducible method for measuring PBVV and FVV at 12 wk of gestation, although we are unsure whether the volume measured represents the true volume of the vasculature. Maternal parity influences PBVV. PMID:24798392

  1. Inexpensive Time-of-Flight Velocity Measurements.

    ERIC Educational Resources Information Center

    Everett, Glen E.; Wild, R. L.

    1979-01-01

    Describes a circuit designed to measure time-of-flight velocity and shows how to use it to determine bullet velocity in connection with the ballistic pendulum demonstration of momentum conservation. (Author/GA)

  2. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  3. Quick and low cost measurement of soil parameters using a Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    Hut, R.; Van De Giesen, N.; Hagenaars, R.

    2013-12-01

    Retrieval of basic soil parameters such as bulk density and soil moisture from soil samples is a costly and time-consuming activity. Although indirect methods (heat or electromagnetic probes, radar backscatter, etc) are abundant, field truth measurement of soil parameters will remain important, if only to calibrate these other methods. We present a quick, field mountable setup to make 3D scans of surfaces up to 30 x 30 cm using a Kinect 3D scanner. By making scans before and after samples are taken, parameters such as bulk density and moisture content can easily be calculated.

  4. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  5. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  6. Combination 3D TOP with 2D PC MRA Techique for cerebral blood flow volume measurement.

    PubMed

    Guo, G; Wu, R H; Zhang, Y P; Guan, J T; Guo, Y L; Cheng, Y; terBrugge, K; Mikulis, D J

    2006-01-01

    To demonstrate the discrepancy of cerebral blood flow volume (BFV) estimation with 2D phase-contrast (2D PC) MRA guided with 3D time-of-flight (3D TOF) MR localization by using an "internal" standard. 20 groups of the common (CCA), internal (ICA), and external (ECA) carotid arteries in 10 healthy subjects were examined with 2D PC MRA guided by 3D TOF MR angiograms. The sum BFV of the internal and external carotid arteries was then compared with the ipsilateral common carotid artery flow. An accurate technique would demonstrate no difference. The difference was therefore a measure of accuracy of the method. 3D TOF MRA localization is presented to allow the determination of a slice orientation to improve the accuracy of 2D PC MRA in estimate the BFV. By using the combined protocols, there was better correlation in BFV estimate between the sum of ICA+ECA with the ipsilateral CCA (R2=0.729, P=0.000). The inconsistency (mean +/- SD) was found to be 6.95 +/- 5.95% for estimate the BFV in ICA+ECA and ipsilateral CCA. The main inconsistency was contributed to the ECA and its branches. Guided with 3D TOF MRA localization, 2D PC MRA is more accurate in the determination of blood flow volume in the carotid arteries. PMID:17946401

  7. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  8. Multi-scale Finite-Frequency Travel-time Tomography Applied to Imaging 3-D Velocity Structure of the Upper Mantle Beneath the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hung, S.

    2007-12-01

    Seismic tomographic imaging has played a key component to unravel the deep processes that caused the surface morphology and rift magmatism in the southwest United States. Several studies used teleseismic body- wave arrivals recorded by the La Ristra experiment, a dense broadband array of 950-km in length deployed during 1999-2001 and run through the Great Plains, the Rio Grande Rift, and the Colorado Plateau, to construct a 2-D tomographic image of the upper mantle structure beneath this linear array (e.g., Gao et al., 2004). However, because of the inevitable smoothing and damping imposed in the tomographic model, the resulting velocity contrast is too weak to explain distinct P and S waveform changes across the array (Song and Helmberger, 2007). In this study, we include all the data from the La Ristra and available nearby arrays and reexamine finite- frequency travel time delays measured by inter-station cross correlation of waveforms at both high- (0.3-2 Hz for P and 0.1-0.5 Hz for S) and low-frequencies (0.03-0.125 Hz for P and 0.03-0.1 Hz for S). Differing from the previous models that rely on classical ray theory and simple grid parameterization, our inversion considers more realistic 3-D sensitivity kernels for relative travel-time delays and a wavelet-based, multi-scale parameterization that enables to yield robust features with spatially-varying resolutions. Our preliminary P-wave model reveals a prominent low-velocity zone extending from near surface to the depth of 300 km beneath the Rio Grande Rift, while the upper mantle which underlies the Great Plains and the Colorado Plateau is seismically fast. We will demonstrate the difference and improvement of 3-D tomographic models through the use of finite-frequency kernels and multi-scale parameterization.

  9. 3D shape measurement of shoeprint impression with structured illumination and fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Cao, Yiping; Xiang, Liqun; Chen, Wenjing

    2002-06-01

    The shoeprint impressions of suspect left at the crime scene can sometimes tell investigators what type of shoes to be looked for. These shoeprint impressions as one of the important evidence are useful in the detection of criminals. In this paper we propose a novel technique for identifying and analyzing the 3D characteristics of shoeprint impressions. We also design 3D shoeprint impression analysis system based on the combination the 3D shape measurement with structured illumination and fringe pattern analysis. We give a detail discussion on the principle and configuration of the system. Laboratory experiments show the technique is efficient in the detection of shoeprint and in the offering the reference for judicial evidence.

  10. Shot noise limit of the optical 3D measurement methods for smooth surfaces

    NASA Astrophysics Data System (ADS)

    Pavliček, Pavel; Pech, Miroslav

    2016-03-01

    The measurement uncertainty of optical 3D measurement methods for smooth surfaces caused by shot noise is investigated. The shot noise is a fundamental property of the quantum nature of light. If all noise sources are eliminated, the shot noise represents the ultimate limit of the measurement uncertainty. The measurement uncertainty is calculated for several simple model methods. The analysis shows that the measurement uncertainty depends on the wavelength of used light, the number of photons used for the measurement, and on a factor that is connected with the geometric arrangement of the measurement setup.

  11. High-speed 3D face measurement based on color speckle projection

    NASA Astrophysics Data System (ADS)

    Xue, Junpeng; Su, Xianyu; Zhang, Qican

    2015-03-01

    Nowadays, 3D face recognition has become a subject of considerable interest in the security field due to its unique advantages in domestic and international. However, acquiring color-textured 3D faces data in a fast and accurate manner is still highly challenging. In this paper, a new approach based on color speckle projection for 3D face data dynamic acquisition is proposed. Firstly, the projector-camera color crosstalk matrix that indicates how much each projector channel influences each camera channel is measured. Secondly, the reference-speckle-sets images are acquired with CCD, and then three gray sets are separated from the color sets using the crosstalk matrix and are saved. Finally, the color speckle image which is modulated by face is captured, and it is split three gray channels. We measure the 3D face using multi-sets of speckle correlation methods with color speckle image in high-speed similar as one-shot, which greatly improves the measurement accuracy and stability. The suggested approach has been implemented and the results are supported by experiments.

  12. 3D nonrigid medical image registration using a new information theoretic measure

    NASA Astrophysics Data System (ADS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  13. Real-time, high-accuracy 3D imaging and shape measurement.

    PubMed

    Nguyen, Hieu; Nguyen, Dung; Wang, Zhaoyang; Kieu, Hien; Le, Minh

    2015-01-01

    In spite of the recent advances in 3D shape measurement and geometry reconstruction, simultaneously achieving fast-speed and high-accuracy performance remains a big challenge in practice. In this paper, a 3D imaging and shape measurement system is presented to tackle such a challenge. The fringe-projection-profilometry-based system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display. Experiments have shown that the proposed system can acquire and display high-quality 3D reconstructed images and/or video stream at a speed of 45 frames per second with relative accuracy of 0.04% or at a reduced speed of 22.5 frames per second with enhanced accuracy of 0.01%. The 3D imaging and shape measurement system shows great promise of satisfying the ever-increasing demands of scientific and engineering applications. PMID:25967028

  14. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS. PMID:27083978

  15. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  16. Measuring Ultrasonic Shear-Wave Velocity

    NASA Technical Reports Server (NTRS)

    Nummelin, J.

    1983-01-01

    New technique improves accuracy of measurements of ultrasonic shearwave velocity. Technique eliminates need to measure incident sound angle. Technique contains groove in which steel sphere is placed. Sphere act as reference point for measuring path lengths and propagation times. Velocity measurements are within 1 percent of published data.

  17. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    NASA Astrophysics Data System (ADS)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    Seismic tomography is currently evolving towards 3D earth models that satisfy full seismic waveforms at increasingly high frequencies. This evolution is possible thanks to the advent of powerful numerical methods such as the Spectral Element Method (SEM) that allow accurate computation of the seismic wavefield in complex media, and the drastic increase of computational resources. However, the production of such models requires handling complex misfit functions with more than one local minimum. Standard linearized inversion methods (such as gradient methods) have two main drawbacks: 1) they produce solution models highly dependent on the starting model; 2) they do not provide a means of estimating true model uncertainties. However, these issues can be addressed with stochastic methods that can sample the space of possible solutions efficiently. Such methods are prohibitively challenging computationally in 3D, but increasingly accessible in 1D. In previous work (Yuan and Romanowicz, 2010; Yuan et al., 2011) we developed a continental scale anisotropic upper mantle model of north America based on a combination of long period seismic waveforms and SKS splitting measurements, showing the pervasive presence of layering of anisotropy in the cratonic lithosphere with significant variations in depth of the mid-lithospheric boundary. The radial anisotropy part of the model has been recently updated using the spectral element method for forward wavefield computations and waveform data from the latest deployments of USarray (Yuan and Romanowicz, 2013). However, the long period waveforms (periods > 40s) themselves only provide a relatively smooth view of the mantle if the starting model is smooth, and the mantle discontinuities necessary for geodynamical interpretation are not imaged. Increasing the frequency of the computations to constrain smaller scale features is possible, but challenging computationally, and at the risk of falling in local minima of the misfit function. In

  18. Holographic measurement of wall stress distribution and 3D flow over a surface textured by microfibers

    NASA Astrophysics Data System (ADS)

    Bocanegra, Humberto; Gorumlu, Seder; Aksak, Burak; Castillo, Luciano; Sheng, Jian

    2015-11-01

    Understanding how fluid flow interacts with micro-textured surfaces is crucial for a broad range of key biological processes and engineering applications including particle dispersion, pathogenic infections, and drag manipulation by surface topology. Existing methods, such as μPIV, suffers from low spatial resolution and fail to track tracer particle motion very close to a rough surface and within roughness elements. In this paper, we present a technique that combines high speed digital holographic microscopy (DHM) with a correlation based de-noising algorithm to overcome the optical interference generated by surface roughness and to capture a large number of 3D particle trajectories. It allows us to obtain a 3D velocity field with an uncertainty of 0.01% and 2D wall shear stress distribution at the resolution of ~ 65 μPa. Applying the technique to a microfluidics with a surface textured by microfibers, we find that the flow is three-dimensional and complex. While the microfibers affect the velocity flow field locally, their presence is felt globally in terms of wall shear stresses. The study of effect of microfiber patterns and flow characteristics on skin frictions are ongoing and will be reported.

  19. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  20. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing

    NASA Astrophysics Data System (ADS)

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is +/-0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  1. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  2. Fully automated measurement of field-dependent AMS using MFK1-FA Kappabridge equipped with 3D rotator

    NASA Astrophysics Data System (ADS)

    Chadima, Martin; Studynka, Jan

    2013-04-01

    Low-field magnetic susceptibility of paramagnetic and diamagnetic minerals is field-independent by definition being also field-independent in pure magnetite. On the other hand, in pyrrhotite, hematite and high-Ti titanomagnetite it may be clearly field-dependent. Consequently, the field-dependent AMS enables the magnetic fabric of the latter group of minerals to be separated from the whole-rock AMS. The methods for the determination of the field-dependent AMS consist of separate measurements of each specimen in several fields within the Rayleigh Law range and subsequent processing in which the field-independent and field-dependent AMS components are calculated. The disadvantage of this technique is that each specimen must be measured several times, which is relatively laborious and time consuming. Recently, a new 3D rotator was developed for the MFK1-FA Kappabridge, which rotates the specimen simultaneously about two axes with different velocities. The measurement is fully automated in such a way that, once the specimen is inserted into the rotator, it requires no additional manipulation to measure the full AMS tensor. Consequently, the 3D rotator enables to measure the AMS tensors in the pre-set field intensities without any operator interference. Whole procedure is controlled by newly developed Safyr5 software; once the measurements are finished, the acquired data are immediately processed and can be visualized in a standard way.

  3. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  4. ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Nelson, Andrew J.

    2004-10-01

    Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.

  5. Segmentation of Hypocenters and 3-D Velocity Structure around the Kii Peninsula Revealed by Onshore and Offshore Seismic Observations

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Mochizuki, K.; Nakahigashi, K.; Yamada, T.; Shinohara, M.; Sakai, S.; Kanazawa, T.; Uehira, K.; Shimizu, H.

    2013-12-01

    The Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~4 cm/year along the Nankai Trough, southwest of Japan. Around the Kii Peninsula, the rupture boundary of the historical Tonankai and Nankai large earthquakes is located, and previous researches have revealed along-strike segmentation of hypocenters [Mochizuki et al., 2010], P-wave anisotropy [Ishise et al., 2009], low frequency earthquake (LFE) distribution [e.g., Obara, 2010] and subduction depth of the Philippine Sea (PHS) Plate, or there may exist a split in the PHS Plate [Ide et al., 2010]. To investigate such segmentation, in our previous work we determined 3-D velocity structure and hypocenters using P- and S-wave arrival times of earthquakes recorded by both ocean bottom seismometers (OBSs) that were deployed from 2003 to 2007 and on-land stations [Akuhara et al., 2013]. As a result, it was discovered that Vp/Vs ratio is also segmented within the oceanic crust and at the bottom of the overriding plate, which coincides with the LFE distribution: segment A is located along the Kii Channel, segment B around the western Kii Peninsula, and segment C around the eastern Kii Peninsula. In segment B, Vp/Vs ratio is low within the oceanic crust and LFE cluster characterized by an anomalously small amount of cumulative slip, compared to the other LFE clusters around the Kii Peninsula, is located [Obara, 2010]. The difference of Vp/Vs ratio and LFE activity among segments were interpreted as difference of pore fluid pressure. In fact, similar segmentation can be seen in hypocenters: Segment A with concentrated seismicity in the oceanic mantle, segment B with that in the oceanic crust, and segment C with little seismicity. To derive characteristic patterns of the hypocenters, we conducted a cluster analysis of earthquakes based on waveform similarity represented by cross-correlation coefficients (CCs) [e.g., Cattaneo, 1999], in which we took varying structural site effects among the OBS stations

  6. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  7. System crosstalk measurement of a time-sequential 3D display using ideal shutter glasses

    NASA Astrophysics Data System (ADS)

    Chen, Fu-Hao; Huang, Kuo-Chung; Lin, Lang-Chin; Chou, Yi-Heng; Lee, Kuen

    2011-03-01

    The market of stereoscopic 3D TV grows up fast recently; however, for 3D TV really taking off, the interoperability of shutter glasses (SG) to view different TV sets must be solved, so we developed a measurement method with ideal shutter glasses (ISG) to separate time-sequential stereoscopic displays and SG. For measuring the crosstalk from time-sequential stereoscopic 3D displays, the influences from SG must be eliminated. The advantages are that the sources to crosstalk are distinguished, and the interoperability of SG is broadened. Hence, this paper proposed ideal shutter glasses, whose non-ideal properties are eliminated, as a platform to evaluate the crosstalk purely from the display. In the ISG method, the illuminance of the display was measured in time domain to analyze the system crosstalk SCT of the display. In this experiment, the ISG method was used to measure SCT with a high-speed-response illuminance meter. From the time-resolved illuminance signals, the slow time response of liquid crystal leading to SCT is visualized and quantified. Furthermore, an intriguing phenomenon that SCT measured through SG increases with shortening view distance was observed, and it may arise from LC leakage of the display and shutter leakage at large view angle. Thus, we measured how LC and shutter leakage depending on view angle and verified our argument. Besides, we used the ISG method to evaluate two displays.

  8. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Philip H.; SDO HMI Team

    2016-05-01

    The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) measures sets of filtergrams which are converted into velocity and magnetic field maps each 45-seconds with its front camera and each 12 minutes with its side camera. In addition to solar phototspheric motions the velocity measurements include a direct component from the line-of-sight component of the SDO orbit. Since the magnetic field is computed as the difference between the velocity measured in left and right circular polarization the orbit velocity is canceled only if the celocity is properly calibrated. When the orbit component of the velocity is subtracted for each pixel the remaining "solar" velocity shows a residual signal which is equal to about 2% of the c. +- 3000 m/s orbit velocity in a nearly linear relationship. This implies an error in our knowledge of some of the details of as-built filter components. The model instrument transmission profile is required for calibration of all HMI level 1.5 “observable” quantities. This systematic error is very likely the source of 12- and 24-hour variations in most HMI data products. Over the years since launch a substantial effort has been dedicated to understanding the origin of this problem. While the instrument as presently calibrated (Couvidat et al. 2012 and 2016) meets all of the “Level-1” mission requirements it fails to meet the stated goal of 10 m/s accuracy for velocity data products and some not stated but generally assumed goals for other products. For the velocity measurements this has not been a significant problem since the prime HMI goals of obtaining data for helioseismology are not affected by this systematic error. However the orbit signal leaking into the magnetograms and vector magnetograms degrades the ability to accomplish some of the mission science goals at the expected levels of accuracy. This poster presents the current state of understanding of the source of this systematic error and

  9. Assessment of eye fatigue caused by 3D displays based on multimodal measurements.

    PubMed

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  10. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    PubMed Central

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  11. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.

    PubMed

    Cole, Brendan C; Marcus, Guy G; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A

    2016-01-01

    Experimental methods are presented for measuring the rotational and translational motion of anisotropic particles in turbulent fluid flows. 3D printing technology is used to fabricate particles with slender arms connected at a common center. Shapes explored are crosses (two perpendicular rods), jacks (three perpendicular rods), triads (three rods in triangular planar symmetry), and tetrads (four arms in tetrahedral symmetry). Methods for producing on the order of 10,000 fluorescently dyed particles are described. Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four synchronized videos of their motion in a turbulent flow between oscillating grids with Rλ = 91. In this relatively low-Reynolds number flow, the advected particles are small enough that they approximate ellipsoidal tracer particles. We present results of time-resolved 3D trajectories of position and orientation of the particles as well as measurements of their rotation rates. PMID:27404898

  12. 3D measurement of the position of gold particles via evanescent digital holographic particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Satake, Shin-ichi; Unno, Noriyuki; Nakata, Shuichiro; Taniguchi, Jun

    2016-08-01

    A new technique based on digital holography and evanescent waves was developed for 3D measurements of the position of gold nanoparticles in water. In this technique, an intensity profile is taken from a holographic image of a gold particle. To detect the position of the gold particle with high accuracy, its holographic image is recorded on a nanosized step made of MEXFLON, which has a refractive index close to that of water, and the position of the particle is reconstructed by means of digital holography. The height of the nanosized step was measured by using a profilometer and the digitally reconstructed height of the glass substrate had good agreement with the measured value. Furthermore, this method can be used to accurately track the 3D position of a gold particle in water.

  13. 3D shape measurement for moving scenes using an interlaced scanning colour camera

    NASA Astrophysics Data System (ADS)

    Cao, Senpeng; Cao, Yiping; Lu, Mingteng; Zhang, Qican

    2014-12-01

    A Fourier transform deinterlacing algorithm (FTDA) is proposed to eliminate the blurring and dislocation of the fringe patterns on a moving object captured by an interlaced scanning colour camera in phase measuring profilometry (PMP). Every frame greyscale fringe from three colour channels of every colour fringe is divided into even and odd field fringes respectively, each of which is respectively processed by FTDA. All of the six frames deinterlaced fringes from one colour fringe form two sets of three-step phase-shifted greyscale fringes, with which two 3D shapes corresponding to two different moments are reconstructed by PMP within a frame period. The deinterlaced fringe is identical with the exact frame fringe at the same moment theoretically. The simulation and experiments show its feasibility and validity. The method doubles the time resolution, maintains the precision of the traditional phase measurement profilometry, and has potential applications in the moving and online object’s 3D shape measurements.

  14. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions

    NASA Astrophysics Data System (ADS)

    Berg, Mark A.; Darvin, Jason R.

    2016-08-01

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  15. The effect of motion on IMRT - looking at interplay with 3D measurements

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Yan, H.; Oldham, M.; Juang, T.; Adamovics, J.; Yin, F. F.

    2013-06-01

    Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

  16. The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D

    SciTech Connect

    Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim

    2006-07-01

    Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)

  17. The Utility of 3D Left Atrial Volume and Mitral Flow Velocities as Guides for Acute Volume Resuscitation

    PubMed Central

    Santosa, Claudia M.; Rose, David D.; Fleming, Neal W.

    2015-01-01

    Left ventricular end-diastolic pressure (LVEDP) is the foundation of cardiac function assessment. Because of difficulties and risks associated with its direct measurement, correlates of LVEDP derived by pulmonary artery (PA) catheterization or transesophageal echocardiography (TEE) are commonly adopted. TEE has the advantage of being less invasive; however TEE-based estimation of LVEDP using correlates such as left ventricular end-diastolic volume (LVEDV) has technical difficulties that limit its clinical usefulness. Using intraoperative acute normovolemic hemodilution (ANH) as a controlled hemorrhagic model, we examined various mitral flow parameters and three-dimensional reconstructions of left atrial volume as surrogates of LVEDP. Our results demonstrate that peak E wave velocity and left atrial end-diastolic volume (LAEDV) correlated with known changes in intravascular volume associated with ANH. Although left atrial volumetric analysis was done offline in our study, recent advances in echocardiographic software may allow for continuous display and real-time calculation of LAEDV. Along with the ease and reproducibility of acquiring Doppler images of flow across the mitral valve, these two correlates of LVEDP may justify a more widespread use of TEE to optimize intraoperative fluid management. The clinical applicability of peak E wave velocity and LAEDV still needs to be validated during uncontrolled resuscitation. PMID:26236733

  18. Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology

    PubMed Central

    El-Hamidi, Hamid; Celli, Jonathan P.

    2014-01-01

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  19. A comparison of the 3D kinematic measurements obtained by single-plane 2D-3D image registration and RSA.

    PubMed

    Muhit, Abdullah A; Pickering, Mark R; Ward, Tom; Scarvell, Jennie M; Smith, Paul N

    2010-01-01

    3D computed tomography (CT) to single-plane 2D fluoroscopy registration is an emerging technology for many clinical applications such as kinematic analysis of human joints and image-guided surgery. However, previous registration approaches have suffered from the inaccuracy of determining precise motion parameters for out-of-plane movements. In this paper we compare kinematic measurements obtained by a new 2D-3D registration algorithm with measurements provided by the gold standard Roentgen Stereo Analysis (RSA). In particular, we are interested in the out-of-plane translation and rotations which are difficult to measure precisely using a single plane approach. Our experimental results show that the standard deviation of the error for out-of-plane translation is 0.42 mm which compares favourably to RSA. It is also evident that our approach produces very similar flexion/extension, abduction/adduction and external knee rotation angles when compared to RSA. PMID:21097358

  20. Constructing 3D isotropic and azimuthally anisotropic crustal models across USArray using Rayleigh wave phase velocity and ellipticity: inferring continental stress field

    NASA Astrophysics Data System (ADS)

    Lin, F. C.; Schmandt, B.; Tsai, V. C.

    2014-12-01

    The EarthScope USArray Transportable Array (TA) has provided a great opportunity for imaging the detailed lithospheric structure beneath the continental US. In this presentation, we will report our recent progress on constructing detailed 3D isotropic and anisotropic crustal models of the contiguous US using Rayleigh wave phase velocity and ellipticity measurements across TA. In particular, we will discuss our recent methodology development of extracting short period Rayleigh wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, using multicomponent noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. Measurements from all available station pairs are used to determine isotropic and directionally dependent Rayleigh-wave H/V ratios at each location between 8- and 24-second period. The isotropic H/V ratio maps, combined with previous longer period Rayleigh-wave H/V ratio maps from earthquakes and Rayleigh-wave phase velocity maps from both ambient noise and earthquakes, are used to invert for a new 3-D isotropic crustal and upper-mantle model in the western United States. The new model has an outstanding vertical resolution in the upper crust and tradeoffs between different parameters are mitigated. A clear 180-degree periodicity is observed in the directionally dependent H/V ratio measurements for many locations where upper crustal anisotropy is likely strong. Across the US, good correlation is observed between the inferred fast directions in the upper crust and documented maximum

  1. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data

    NASA Astrophysics Data System (ADS)

    GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.

    2012-09-01

    We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.

  2. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues

    PubMed Central

    Legant, Wesley R.; Pathak, Amit; Yang, Michael T.; Deshpande, Vikram S.; McMeeking, Robert M.; Chen, Christopher S.

    2009-01-01

    Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues. PMID:19541627

  3. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals. PMID:21503074

  4. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  5. Can we trace the eastern Gondwanan margin in Australia? New perspectives from transdimensional inversion of ambient noise for 3D shear velocity structure

    NASA Astrophysics Data System (ADS)

    Pilia, S.; Rawlinson, N.; Direen, N. G.

    2013-12-01

    Although the notion of Rodinia is quite well accepted in the geoscience community, the location and nature of the eastern continental margin of the Gondwana fragment in Australia is still vague and remains one of the most hotly debated topics in Australian geology. Moreover, most post-Rodinian reconstructions models choose not to tackle the ';Tasmanian challenge', and focus only on the tectonic evolution of mainland southeast Australia, thereby conveniently ignoring the wider tectonic implications of Tasmania's complex geological history. One of the chief limitations of the tectonic reconstructions in this region is a lack of information on Paleozoic (possibly Proterozoic) basement structures. Vast Mesozoic-Cainozoic sedimentary and volcanic cover sequences obscure older outcrops and limit the power of direct observational techniques. In response to these challenges, our effort is focused on ambient seismic noise for imaging 3D crustal shear velocity structure using surface waves, which is capable of illuminating basement structure beneath younger cover. The data used in this study is sourced from the WOMBAT transportable seismic array, which is compounded by around 650 stations spanning the majority of southeastern Australia, including Tasmania and several islands in Bass Strait. To produce the highest quality Green's functions, careful processing of the data has been performed, after which group velocity dispersion measurements have been carried out using a frequency-time analysis method on the symmetric component of the empirical Green's functions (EGFs). Group dispersion measurements from the EGFs have been inverted using a novel hierarchical, transdimensional, Bayesian algorithm to obtain Rayleigh-wave group velocity maps at different periods from 2 to 30 s. The new approach has several advantages in that the number and distribution of model parameters are implicitly controlled by the data, in which the noise is treated as unknown in the inversion. This

  6. 3D optical measurement of relative displacement for the tuberosities in the shoulder prosthesis

    NASA Astrophysics Data System (ADS)

    Yao, XueFeng; Meng, LiBo; Yu, LiuPing; Zhu, YiMing; Jiang, ChunYan

    2011-04-01

    In this paper, a binocular 3-D computer vision measurement system is used to measure the relative displacement for the greater and lesser tuberosities in the shoulder prosthesis. The basic principles of binocular optical measurement are introduced in detail, and the loading apparatus is designed for external rotation and anteflexion of the shoulder prosthesis. Both the motion of external rotation and anteflexion of the shoulder are measured, and the corresponding displacement values for the greater and lesser tuberosities are extracted. These results will play an important role in evaluating the stability of humeral tuberosity in the shoulder prosthesis.

  7. Fast error simulation of optical 3D measurements at translucent objects

    NASA Astrophysics Data System (ADS)

    Lutzke, P.; Kühmstedt, P.; Notni, G.

    2012-09-01

    The scan results of optical 3D measurements at translucent objects deviate from the real objects surface. This error is caused by the fact that light is scattered in the objects volume and is not exclusively reflected at its surface. A few approaches were made to separate the surface reflected light from the volume scattered. For smooth objects the surface reflected light is dominantly concentrated in specular direction and could only be observed from a point in this direction. Thus the separation either leads to measurement results only creating data for near specular directions or provides data from not well separated areas. To ensure the flexibility and precision of optical 3D measurement systems for translucent materials it is necessary to enhance the understanding of the error forming process. For this purpose a technique for simulating the 3D measurement at translucent objects is presented. A simple error model is shortly outlined and extended to an efficient simulation environment based upon ordinary raytracing methods. In comparison the results of a Monte-Carlo simulation are presented. Only a few material and object parameters are needed for the raytracing simulation approach. The attempt of in-system collection of these material and object specific parameters is illustrated. The main concept of developing an error-compensation method based on the simulation environment and the collected parameters is described. The complete procedure is using both, the surface reflected and the volume scattered light for further processing.

  8. 3D measurement method based on combined temporal encoding structured light

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoyang; Wang, Yang; Yu, Shuang; Cheng, Hao; Sun, Xiaoming; Yu, Shuchun; Chen, Deyun

    2013-10-01

    Three-dimensional (3D) vision measurement technology based on encoding structured light plays an important role and has become the main development trend in the field of 3D non-contact measurement. However, how to synthetically improve measurement speed, accuracy and sampling density is still a difficult problem. Thus in the present work, a novel 3D measurement method based on temporal encoding structured light by combining trapezoidal phase-shifting pattern and cyclic code pattern is proposed. Due to trapezoidal phase-shifting has the advantages of high sampling density and high-speed, the proposed method can maintain these advantages by using cyclic code to expand the range of trapezoidal phase-shifting. In addition, the correction scheme is designed to solve the problem of cycle dislocation. Finally, simulation experimental platform is built with 3ds max and MATLAB. Experimental analyses and results show that, the maximal error is less than 3 mm in the range from 400 mm to 1100 mm, cycle dislocation correction has a good effect.

  9. Visualization of anthropometric measures of workers in computer 3D modeling of work place.

    PubMed

    Mijović, B; Ujević, D; Baksa, S

    2001-12-01

    In this work, 3D visualization of a work place by means of a computer-made 3D-machine model and computer animation of a worker have been performed. By visualization of 3D characters in inverse kinematic and dynamic relation with the operating part of a machine, the biomechanic characteristics of worker's body have been determined. The dimensions of a machine have been determined by an inspection of technical documentation as well as by direct measurements and recordings of the machine by camera. On the basis of measured body height of workers all relevant anthropometric measures have been determined by a computer program developed by the authors. By knowing the anthropometric measures, the vision fields and the scope zones while forming work places, exact postures of workers while performing technological procedures were determined. The minimal and maximal rotation angles and the translation of upper and lower arm which are basis for the analysis of worker burdening were analyzed. The dimensions of the seized space of a body are obtained by computer anthropometric analysis of movement, e.g. range of arms, position of legs, head, back. The influence of forming of a work place on correct postures of workers during work has been reconsidered and thus the consumption of energy and fatigue can be reduced to a minimum. PMID:11811295

  10. Optical fiber sensor system for oil contamination measurement based on 3D fluorescence spectrum parameterization

    NASA Astrophysics Data System (ADS)

    Shang, Liping; Shi, Jinshan

    2000-10-01

    In recent years oil contamination in water is more serious and destroys the mode of life and relation to water body environments. Excitation fluorescence method is one of the main approaches to monitor oil contamination on line. But average intensity of oil fluorescence only indicates its density, not indicates the type of contamination oil. Two-dimensional fluorescence spectrum is more difficult to determine the kind of oil, because the different oil has fluorescence spectrum overlapping to a great extent. In this paper, the 3D fluorescence spectrum parameterization is introduced. It can extract several characteristic parameters to measure the kid of oil to be measured. A prototype of optical fiber 3D fluorescence spectrum meter we developed carries out the identification of different oil types, such as crude oil, diesel oil and kerosene. The experiment arrangement conceived to measure pulse xenon lamp induced of oil component in water. The experiment results state clearly that the 3D fluorescence spectrum parameterization and software are successful to measure oil density and identify the type of oil in situ.

  11. 3D real-time measurement system of seam with laser

    NASA Astrophysics Data System (ADS)

    Huang, Min-shuang; Huang, Jun-fen

    2014-02-01

    3-D Real-time Measurement System of seam outline based on Moiré Projection is proposed and designed. The system is composed of LD, grating, CCD, video A/D, FPGA, DSP and an output interface. The principle and hardware makeup of high-speed and real-time image processing circuit based on a Digital Signal Processor (DSP) and a Field Programmable Gate Array (FPGA) are introduced. Noise generation mechanism in poor welding field conditions is analyzed when Moiré stripes are projected on a welding workpiece surface. Median filter is adopted to smooth the acquired original laser image of seam, and then measurement results of a 3-D outline image of weld groove are provided.

  12. Measurement error analysis of the 3D four-wheel aligner

    NASA Astrophysics Data System (ADS)

    Zhao, Qiancheng; Yang, Tianlong; Huang, Dongzhao; Ding, Xun

    2013-10-01

    Positioning parameters of four-wheel have significant effects on maneuverabilities, securities and energy saving abilities of automobiles. Aiming at this issue, the error factors of 3D four-wheel aligner, which exist in extracting image feature points, calibrating internal and exeternal parameters of cameras, calculating positional parameters and measuring target pose, are analyzed respectively based on the elaborations of structure and measurement principle of 3D four-wheel aligner, as well as toe-in and camber of four-wheel, kingpin inclination and caster, and other major positional parameters. After that, some technical solutions are proposed for reducing the above error factors, and on this basis, a new type of aligner is developed and marketed, it's highly estimated among customers because the technical indicators meet requirements well.

  13. Experimental comparison of laser speckle projection and array projection for high-speed 3D measurements

    NASA Astrophysics Data System (ADS)

    Heist, Stefan; Lutzke, Peter; Dietrich, Patrick; Kühmstedt, Peter; Notni, Gunther

    2015-05-01

    In many application areas, stereo vision-based active triangulation systems are used to reconstruct the three-dimensional (3-D) surface shape of measurement objects. Typically, in order to solve the correspondence problem and increase the accuracy of the pixel assignment, a sequence of patterns is projected onto the object's surface and simultaneously recorded by two cameras. Most 3-D measurement systems are limited to static objects. In order to enhance their speed, it is necessary to use fast cameras as well as fast projection systems. Although high-speed camera systems are available, pattern projection at high frame rates is a difficult task and only a few techniques exist at the moment. In this contribution, we compare two different projection approaches, a laser-based speckle projection unit and an LED-based multi-aperture projection system, with regard to the achievable point cloud completeness and accuracy.

  14. a Multiple Data Set Joint Inversion Global 3d P-Velocity Model of the Earth's Crust and Mantle for Improved Seismic Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.

    2013-12-01

    SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.

  15. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  16. Measuring the correlation between cell mechanics and myofibroblastic differentiation during maturation of 3D microtissues

    NASA Astrophysics Data System (ADS)

    Zhao, Ruogang; Wang, Weigang; Boudou, Thomas; Chen, Christopher; Reich, Daniel

    2013-03-01

    Tissue stiffness and cellular contractility are two of the most important biomechanical factors regulating pathological transitions of encapsulated cells, such as the differentiation of fibroblasts into myofibroblasts - a key event contributing to tissue fibrosis. However, a quantitative correlation between tissue stiffness and cellular contraction and myofibroblast differentiation has not yet been established in 3D environments, mainly due to the lack of suitable 3D tissue culture models that allow both tissue remodeling and simultaneous measurement of the cell/tissue mechanics. To address this, we have developed a magnetic microtissue tester system that allows the remodeling of arrays of cell-laden 3D collagen microtissues and the measurement of cell and tissue mechanics using magnetically actuated elastomeric microcantilevers. By measuring the development of cell/tissue mechanical properties and the expression level of α-smooth muscle actin (α-SMA, a marker for myofibroblast differentiation) during a 6 day culture period, we found microtissue stiffness increased by 45% and α-SMA expression increased by 38%, but tissue contraction forces only increased by 10%, indicating that tissue stiffness may be the predominant mechanical factor for regulation of myofibroblast differentiation. This study provides new quantitative insight into the regulatory effect of cell and tissue mechanics on cellular function. Supported in part by NIH grant HL090747

  17. Small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Hayashi, Takumi; Fujigaki, Motoharu; Murata, Yorinobu

    2014-07-01

    3-D shape measurement systems by contactless method are required in the quality inspections of metal molds and electronic parts in industrial fields. A grating projection method with phase-shifting method has advantages of high precision and high speed. Recently, the size of a BGA (ball grid array) becomes smaller. So the pitch of a grating pattern projected onto the specimen should be smaller. In conventional method, fringe pattern is projected using an imaging lens. The focal depth becomes smaller in the case of reduced projection. It is therefore difficult to project a grating pattern with small pitch onto an object with large incident angles. Authors recently proposed a light source stepping method using a linear LED device. It is easy to shrink the projected grating pitch with a lens because this projection method does not use an imaging lens. The pitch of the projected grating depends on the width of the light source. There is a limit to shrink the projected grating pitch according to the size of the LED chip. In this paper, a small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement is proposed. The width of the fiber array is 30μm. It is one digit smaller than the width of the LED chip. The experimental result of 3-D shape measurement with small pitch projection with large incident angles is shown.

  18. The 3-D LDV Measurements on a 30-Degree Swept Wing with a Simulated Ice Accretion

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Kerho, Michael K.

    1994-01-01

    Three dimensional flowfield measurements have been obtained for a semispan 30-degree swept wing with a simulated glaze ice accretion. The model tested has a NACA 0012 section perpendicular to the leading edge. Measurements were made using a two-component laser Doppler velocimeter (LDV) system. Mean velocity measurements were obtained for all three velocity components. Streamwise turbulence intensities were also obtained. All measurements were taken in the University of Illinois 3 by 4 foot subsonic wind tunnel at a Reynolds number of 1 million and 8 degrees angle of attack. The data is presented in tabular form.

  19. 3D shape and eccentricity measurements of fast rotating rough objects by two mutually tilted interference fringe systems

    NASA Astrophysics Data System (ADS)

    Czarske, J. W.; Kuschmierz, R.; Günther, P.

    2013-06-01

    Precise measurements of distance, eccentricity and 3D-shape of fast moving objects such as turning parts of lathes, gear shafts, magnetic bearings, camshafts, crankshafts and rotors of vacuum pumps are on the one hand important tasks. On the other hand they are big challenges, since contactless precise measurement techniques are required. Optical techniques are well suitable for distance measurements of non-moving surfaces. However, measurements of laterally fast moving surfaces are still challenging. For such tasks the laser Doppler distance sensor technique was invented by the TU Dresden some years ago. This technique has been realized by two mutually tilted interference fringe systems, where the distance is coded in the phase difference between the generated interference signals. However, due to the speckle effect different random envelopes and phase jumps of the interference signals occur. They disturb the phase difference estimation between the interference signals. In this paper, we will report on a scientific breakthrough on the measurement uncertainty budget which has been achieved recently. Via matching of the illumination and receiving optics the measurement uncertainty of the displacement and distance can be reduced by about one magnitude. For displacement measurements of a recurring rough surface a standard deviation of 110 nm were attained at lateral velocities of 5 m / s. Due to the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects is calculated. The three-dimensional shape can be conducted by employment of a line camera. Since the measurement uncertainty of the displacement, vibration, distance, eccentricity, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects. Especially it can be advantageously used for the quality control of workpieces inside of a lathe towards the reduction of process tolerances, installation times and

  20. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    NASA Astrophysics Data System (ADS)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  1. 3D nonrigid medical image registration using a new information theoretic measure.

    PubMed

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-21

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy. PMID:26528821

  2. Precision and accuracy of 3D lower extremity residua measurement systems

    NASA Astrophysics Data System (ADS)

    Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.; Hildebolt, Charles F.; Pilgram, Thomas K.

    1996-04-01

    Accurate and reproducible geometric measurement of lower extremity residua is required for custom prosthetic socket design. We compared spiral x-ray computed tomography (SXCT) and 3D optical surface scanning (OSS) with caliper measurements and evaluated the precision and accuracy of each system. Spiral volumetric CT scanned surface and subsurface information was used to make external and internal measurements, and finite element models (FEMs). SXCT and OSS were used to measure lower limb residuum geometry of 13 below knee (BK) adult amputees. Six markers were placed on each subject's BK residuum and corresponding plaster casts and distance measurements were taken to determine precision and accuracy for each system. Solid models were created from spiral CT scan data sets with the prosthesis in situ under different loads using p-version finite element analysis (FEA). Tissue properties of the residuum were estimated iteratively and compared with values taken from the biomechanics literature. The OSS and SXCT measurements were precise within 1% in vivo and 0.5% on plaster casts, and accuracy was within 3.5% in vivo and 1% on plaster casts compared with caliper measures. Three-dimensional optical surface and SXCT imaging systems are feasible for capturing the comprehensive 3D surface geometry of BK residua, and provide distance measurements statistically equivalent to calipers. In addition, SXCT can readily distinguish internal soft tissue and bony structure of the residuum. FEM can be applied to determine tissue material properties interactively using inverse methods.

  3. Design and verification of an ultra-precision 3D-coordinate measuring machine with parallel drives

    NASA Astrophysics Data System (ADS)

    Bos, Edwin; Moers, Ton; van Riel, Martijn

    2015-08-01

    An ultra-precision 3D coordinate measuring machine (CMM), the TriNano N100, has been developed. In our design, the workpiece is mounted on a 3D stage, which is driven by three parallel drives that are mutually orthogonal. The linear drives support the 3D stage using vacuum preloaded (VPL) air bearings, whereby each drive determines the position of the 3D stage along one translation direction only. An exactly constrained design results in highly repeatable machine behavior. Furthermore, the machine complies with the Abbé principle over its full measurement range and the application of parallel drives allows for excellent dynamic behavior. The design allows a 3D measurement uncertainty of 100 nanometers in a measurement range of 200 cubic centimeters. Verification measurements using a Gannen XP 3D tactile probing system on a spherical artifact show a standard deviation in single point repeatability of around 2 nm in each direction.

  4. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  5. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  6. Novel high speed method using gray level vector modulation for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wen; Li, Dong; Tian, Jin-Dong

    2014-11-01

    Binocular Vision Technique is widely used in three-dimensional (3-D) measurement. Matching of pictures captured from two cameras is the most critical and difficult step in 3-D shape reconstruction. The method combines codedstructured light and spatial phase is usually adopted. However, being time consuming in matching, this method could not meet the requirements of real-time 3-D vision. In order to satisfy the high speed characteristic of real-time measurement, a novel method using gray level vector modulation is introduced. Combining binary code with gray coding principle, new coding patterns using gray level vector method is designed and projected onto the object surface. Each pixel corresponds to the designed sequence of gray values as a feature vector. The unique gray level vector is then dimensionally reduced to a resulting value which could be used as characteristic information for binocular matching. Experimental results further demonstrated the correctness and feasibility of the proposed method with fewer component patterns and less computational time.

  7. 3D surface roughness measurement for scaliness scoring of psoriasis lesions.

    PubMed

    Ahmad Fadzil, M Hani; Prakasa, Esa; Asirvadam, Vijanth Sagayan; Nugroho, Hermawan; Affandi, Azura Mohd; Hussein, Suraiya Hani

    2013-11-01

    Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement). PMID:24054912

  8. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  9. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    NASA Astrophysics Data System (ADS)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  10. Simultaneous 3D-vibration measurement using a single laser beam device

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  11. Low-Velocity Measurement in Water

    NASA Astrophysics Data System (ADS)

    Ellis, Christopher; Stefan, Heinz G.

    1986-09-01

    Water velocities in the centimeter per second range or less are measurable by only a few instruments. Experimental laboratory studies frequently require such measurements. A review of low water velocity measurement methods is presented. An inexpensive optical hydrogen bubble-tracing technique is described for velocity measurements in the range 0.5 to 8 cm/s. Modification to a thymol blue (pH) tracer method extends its applicability to the range 0.1 to 1.0 cm/s. Design and operational characteristics of the hydrogen bubble/thymol blue current meter are described.

  12. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  13. 3D measurement of the human body for apparel mass customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Lin, Sheng; Chen, Tong

    2000-12-01

    An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body-scanning system using the multi-line triangulation technique, and methods for body size extraction and body modeling. The scanning system can rapidly acquire the surface data of a body, provide accurate body dimensions, many of which are not measurable with conventional methods, and also construct a body form based on the scanned data as a digital model of the body for 3D garment design and for virtual try-on of a designed garment.

  14. A new 3D shape measurement method using digital fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Jiarui; Zhang, Yingjie; Yu, Mingrang; Xiang, Dehu

    2015-10-01

    This paper proposes a novel optical three-dimensional (3D) measurement method using the traditional space-time stereo system. In the proposed method, the projector not only shoots fringe pattern onto the measurement object to achieve precise matching, but also plays a vital role in the 3D information calculation. With the combination of two cameras and a projector, two digital fringe projection (DFP) measurement systems and one traditional space-time stereo measurement system can be obtained. In another word, the measurand will be measured three times simultaneously, which results in three independent point clouds of the same region of the object to be measured. So it is necessary to register these three sets of points for obtaining one final data set. The iterative closest points (ICP) method, which is known as the most popular registration approach, is sensitive to the initial estimation of the transformation between the two sets of points to be matched. Thus, a robust rough registration, which is introduced from Natasha, is useful for ICP to realize accurate registration. After registration, a scattered point set with redundant and errors, which are caused by overlapping, is obtained. Then some local surfaces are constructed for those overlapping regions using the moving least squares (MLS) method, and the points extracted from those surfaces are used to replace the points of the overlapping regions. Finally, a simplified, precise point cloud can be obtained.

  15. Skin-friction measurements in a 3-D, supersonic shock-wave/boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Wideman, Jeffrey Kenneth

    An experimental study has been conducted in a three-dimensional, supersonic shockwave/boundary-layer interaction (3-D SW/BLI) with the intent of providing accurate experimental data for turbulence modeling and computational fluid dynamics (CFD) code validation. The experiment was performed in the High Reynolds Channel 1 (HRCI) wind tunnel at NASA Ames Research Center. The test was conducted at a Mach number of M(sub infinity) = 2.89 and at a Reynolds number of Re = 15 x 106/m. The model consisted of a sting-supported cylinder aligned with the tunnel axis and a 20 deg half-angle conical flare offset 1.27 cm from the cylinder centerline. The generated shock system was verified to be steady by schlieren visualization. The highlight of the study was the acquisition of 3-D skin-friction data by a laser interferometric skin friction (LISF) meter. Surface pressure measurements were obtained in 15 deg intervals around the cylinder and flare. Additional measurements included surface oil flow and laser light sheet illumination which were used to document the flow topology. Skin-friction measurements are proving to be a very challenging test of a CFD code predictive capability. However, at the present time there is a very limited amount of accurate skin-friction data in complex flows such as in 3-D SW/BLI. The LISF technique is advantageous as compared to other skin-friction measurement techniques for application in complex flows like the present since it is non-intrusive and is capable of performing measurements in flows with large shear and pressure gradients where the reliability of other techniques is questionable. Thus, the prevent skin-friction data will prove valuable to turbulence modeling and CFD code validation efforts.

  16. Automatic 3D image registration using voxel similarity measurements based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Sullivan, John M., Jr.; Kulkarni, Praveen; Murugavel, Murali

    2006-03-01

    An automatic 3D non-rigid body registration system based upon the genetic algorithm (GA) process is presented. The system has been successfully applied to 2D and 3D situations using both rigid-body and affine transformations. Conventional optimization techniques and gradient search strategies generally require a good initial start location. The GA approach avoids the local minima/maxima traps of conventional optimization techniques. Based on the principles of Darwinian natural selection (survival of the fittest), the genetic algorithm has two basic steps: 1. Randomly generate an initial population. 2. Repeated application of the natural selection operation until a termination measure is satisfied. The natural selection process selects individuals based on their fitness to participate in the genetic operations; and it creates new individuals by inheritance from both parents, genetic recombination (crossover) and mutation. Once the termination criteria are satisfied, the optimum is selected from the population. The algorithm was applied on 2D and 3D magnetic resonance images (MRI). It does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. To evaluate the performance of the GA registration, the results were compared with results of the Automatic Image Registration technique (AIR) and manual registration which was used as the gold standard. Results showed that our GA implementation was a robust algorithm and gives very close results to the gold standard. A pre-cropping strategy was also discussed as an efficient preprocessing step to enhance the registration accuracy.

  17. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    PubMed Central

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  18. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    NASA Astrophysics Data System (ADS)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  19. The image adaptive method for solder paste 3D measurement system

    NASA Astrophysics Data System (ADS)

    Xiaohui, Li; Changku, Sun; Peng, Wang

    2015-03-01

    The extensive application of Surface Mount Technology (SMT) requires various measurement methods to evaluate the circuit board. The solder paste 3D measurement system utilizing laser light projecting on the printed circuit board (PCB) surface is one of the critical methods. The local oversaturation, arising from the non-consistent reflectivity of the PCB surface, will lead to inaccurate measurement. The paper reports a novel optical image adaptive method of remedying the local oversaturation for solder paste measurement. The liquid crystal on silicon (LCoS) and image sensor (CCD or CMOS) are combined as the high dynamic range image (HDRI) acquisition system. The significant characteristic of the new method is that the image after adjustment is captured by specially designed HDRI acquisition system programmed by the LCoS mask. The formation of the LCoS mask, depending on a HDRI combined with the image fusion algorithm, is based on separating the laser light from the local oversaturated region. Experimental results demonstrate that the method can significantly improve the accuracy for the solder paste 3D measurement system with local oversaturation.

  20. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    PubMed

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  1. Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure

    PubMed Central

    Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian

    2013-01-01

    Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future. PMID:24287538

  2. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    PubMed

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-01-01

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given. PMID:26703624

  3. Development of an algorithm to measure defect geometry using a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Kilambi, S.; Tipton, S. M.

    2012-08-01

    Current fatigue life prediction models for coiled tubing (CT) require accurate measurements of the defect geometry. Three-dimensional (3D) laser imaging has shown promise toward becoming a nondestructive, non-contacting method of surface defect characterization. Laser imaging provides a detailed photographic image of a flaw, in addition to a detailed 3D surface map from which its critical dimensions can be measured. This paper describes algorithms to determine defect characteristics, specifically depth, width, length and projected cross-sectional area. Curve-fitting methods were compared and implicit algebraic fits have higher probability of convergence compared to explicit geometric fits. Among the algebraic fits, the Taubin circle fit has the least error. The algorithm was able to extract the dimensions of the flaw geometry from the scanned data of CT to within a tolerance of about 0.127 mm, close to the tolerance specified for the laser scanner itself, compared to measurements made using traveling microscopes. The algorithm computes the projected surface area of the flaw, which could previously only be estimated from the dimension measurements and the assumptions made about cutter shape. Although shadows compromised the accuracy of the shape characterization, especially for deep and narrow flaws, the results indicate that the algorithm with laser scanner can be used for non-destructive evaluation of CT in the oil field industry. Further work is needed to improve accuracy, to eliminate shadow effects and to reduce radial deviation.

  4. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices

    PubMed Central

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-01-01

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given. PMID:26703624

  5. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  6. Mining 3D patterns from gene expression temporal data: a new tricluster evaluation measure.

    PubMed

    Gutiérrez-Avilés, David; Rubio-Escudero, Cristina

    2014-01-01

    Microarrays have revolutionized biotechnological research. The analysis of new data generated represents a computational challenge due to the characteristics of these data. Clustering techniques are applied to create groups of genes that exhibit a similar behavior. Biclustering emerges as a valuable tool for microarray data analysis since it relaxes the constraints for grouping, allowing genes to be evaluated only under a subset of the conditions. However, if a third dimension appears in the data, triclustering is the appropriate tool for the analysis. This occurs in longitudinal experiments in which the genes are evaluated under conditions at several time points. All clustering, biclustering, and triclustering techniques guide their search for solutions by a measure that evaluates the quality of clusters. We present an evaluation measure for triclusters called Mean Square Residue 3D. This measure is based on the classic biclustering measure Mean Square Residue. Mean Square Residue 3D has been applied to both synthetic and real data and it has proved to be capable of extracting groups of genes with homogeneous patterns in subsets of conditions and times, and these groups have shown a high correlation level and they are also related to their functional annotations extracted from the Gene Ontology project. PMID:25143987

  7. Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure

    PubMed Central

    2014-01-01

    Microarrays have revolutionized biotechnological research. The analysis of new data generated represents a computational challenge due to the characteristics of these data. Clustering techniques are applied to create groups of genes that exhibit a similar behavior. Biclustering emerges as a valuable tool for microarray data analysis since it relaxes the constraints for grouping, allowing genes to be evaluated only under a subset of the conditions. However, if a third dimension appears in the data, triclustering is the appropriate tool for the analysis. This occurs in longitudinal experiments in which the genes are evaluated under conditions at several time points. All clustering, biclustering, and triclustering techniques guide their search for solutions by a measure that evaluates the quality of clusters. We present an evaluation measure for triclusters called Mean Square Residue 3D. This measure is based on the classic biclustering measure Mean Square Residue. Mean Square Residue 3D has been applied to both synthetic and real data and it has proved to be capable of extracting groups of genes with homogeneous patterns in subsets of conditions and times, and these groups have shown a high correlation level and they are also related to their functional annotations extracted from the Gene Ontology project. PMID:25143987

  8. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.

    PubMed

    Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2013-10-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  9. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio

    2016-02-01

    The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment

  10. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.

    PubMed

    Ma, Lin; Wu, Yue; Xu, Wenjiang; Hammack, Stephen D; Lee, Tonghun; Carter, Campbell D

    2016-07-10

    The goal of this work was to contrast and compare the 2D and 3D flame topography of a turbulent flame. The 2D measurements were obtained using CH-based (methylidyne radical-based) planar laser-induced fluorescence (PLIF), and the 3D measurements were obtained through a tomographic chemiluminescence (TC) technique. Both PLIF and TC were performed simultaneously on a turbulent premixed Bunsen flame. The PLIF measurements were then compared to a cross section of the 3D TC measurements, both to provide a validation to the 3D measurements and also to illustrate the differences in flame structures inferred from the 2D and 3D measurements. PMID:27409304

  11. 2D and 3D Shear-Wave Velocity Structure to >1 Km Depth from Ambient and Active Surface Waves: Three "Deep Remi" Case Studies

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pancha, A.; Pullammanappallil, S. K.

    2014-12-01

    Refraction microtermor routinely assesses 1D and 2D velocity-depth profiles to shallow depths of approximately 100 m primarily for engineering applications. Estimation of both shallow and deep (>100 m) shear-velocity structure are key elements in the assessment of urban areas for potential earthquake ground shaking, damage, and the calibration of recorded ground motions. Three independent studies investigated the ability of the refraction microtremor technology to image deep velocity structure, to depths exceeding 1 km (Deep ReMi). In the first study, we were able to delineate basin thicknesses of up to 900 m and the deep-basin velocity structure beneath the Reno-area basin. Constraints on lateral velocity changes in 3D as well as on velocity profiles extended down to 1500 m, and show a possible fault offset. This deployment used 30 stand-alone wireless instruments mated to 4.5 Hz geophones, along each of five arrays 2.9 to 5.8 km long. Rayleigh-wave dispersion was clear at frequencies as low as 0.5 Hz using 120 sec ambient urban noise records. The results allowed construction of a 3D velocity model, vetted by agreement with gravity studies. In a second test, a 5.8 km array delimited the southern edge of the Tahoe Basin, with constraints from gravity. There, bedrock depth increased by 250 m in thickness over a distance of 1600 m, with definition of the velocity of the deeper basin sediments. The third study delineated the collapse region of an underground nuclear explosion within a thick sequence of volcanic extrusives, using a shear-wave minivibe in a radial direction, and horizontal geophones. Analysis showed the cavity extends to 620 m depth, with a width of 180 m and a height of 220 m. Our results demonstrate that deep velocity structure can be recovered using ambient noise. This technique offers the ability to define 2D and 3D structural representations essential for seismic hazard evaluation.

  12. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  13. CAD/CAM/CAE representation of 3D objects measured by fringe projection

    NASA Astrophysics Data System (ADS)

    Pancewicz, Tomasz; Kujawinska, Malgorzata

    1998-07-01

    In the paper the creation of a virtual object on the base of optical measurement of 3D object by fringe projection technique coupled with the capabilities of CAD systems is presented. Basic stages of that task, being the most important part of the reverse engineering process, are discussed and the procedure is formulated by terms and definitions of theory of optimal algorithms. The quality criteria of a virtual object are defined and the influence of consecutive stages of the task on the quality of the virtual object is discussed.

  14. Dimensional measurement of 3D microstruture based on white light interferometer

    NASA Astrophysics Data System (ADS)

    Thian, S. C. H.; Feng, W.; Wong, Y. S.; Fuh, J. Y. H.; Loh, H. T.; Tee, K. H.; Tang, Y.; Lu, L.

    2007-07-01

    Dimensional metrology for micro/nano structure is crucial for addressing quality issues and understanding the performance of micro-fabricated products and micro-fabrication processes. Most of the established methods are based on optical microscopy for planar dimensions and stylus profilometry for out-of-plane dimensions. Contact profilers suffer from slow speed of measurement for three-dimensional profiles and are not suitable for delicate surfaces and parts. Advanced systems using white light interferometer are equipped with CCD cameras and interfaced with a microscope to conduct an array of measurements ranging from two-dimensional to three-dimensional profiles and surface roughness analysis. This paper presents a methodology based on white light interferometer for the dimensional measurement of 3D micro-structures, demonstrated on micro-gears and moulds produced by UV lithography and vacuum casting, respectively. Physical artifacts, such as gauge blocks, are also utilized to verify and validate the measurements on the microcomponents.

  15. A 3-D shear velocity model of the southern North America and the Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2014-10-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  16. Real-time multicamera system for measurement of 3D coordinates by pattern projection

    NASA Astrophysics Data System (ADS)

    Sainov, Ventseslav; Stoykova, Elena; Harizanova, Jana

    2007-06-01

    The report describes a real-time pattern-projection system for measurement of 3D coordinates with simultaneous illumination and recording of four phase-shifted fringe patterns which are projected at four different wavelengths and captured by four synchronized CCD cameras. This technical solution overcomes the main drawback of the temporal phase-shifting profilometry in which the pattern acquisition is made successively in time. The work considers the use of a sinusoidal phase grating as a projection element which is made by analysis of the frequency content of the projected fringes in the Fresnel diffraction zone and by test measurements of relative 3D coordinates that are performed with interferometrically recorded sinusoidal phase gratings on holographic plates. Finally, operation of a four-wavelength profilometric system with four spatially phase-shifted at π/2 sinusoidal phase gratings illuminated with four diode lasers at wavelengths 790 nm, 810 nm, 850 nm and 910 nm is simulated and the systematical error of the profilometric measurement is evaluated.

  17. Using the auxiliary camera for system calibration of 3D measurement by digital speckle

    NASA Astrophysics Data System (ADS)

    Xue, Junpeng; Su, Xianyu; Zhang, Qican

    2014-06-01

    The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.

  18. Achromatic Emission Velocity Measurements in Luminous Flows

    NASA Technical Reports Server (NTRS)

    Schneider, S. J.; Fulghum, S. F.; Rostler, P. S.

    1997-01-01

    A new velocity measurement instrument for luminous flows was developed by Science Research Laboratory for NASA. The SIEVE (Segmented Image Emission VElocimeter) instrument uses broadband light emitted by the flow for the velocity measurement. This differs from other velocimetry techniques in that it does not depend on laser illumination and/or light scattering from particles in the flow. The SIEVE is a passive, non-intrusive diagnostic. By moving and adjusting the imaging optics, the SIEVE can provide three-dimensional mapping of a flow field and determine turbulence scale size. A SIEVE instrument was demonstrated on an illuminated rotating disk to evaluate instrument response and noise and on an oxy-acetylene torch to measure flame velocities. The luminous flow in rocket combustors and plumes is an ideal subject for the SIEVE velocity measurement technique.

  19. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    PubMed

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables. PMID:26617403

  20. 3-D Measurement and Visualization of Electrical Propagation on Heart Surface

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Wikswo, John P.

    1997-11-01

    Optical recording of the cardiac transmembrane potential (Vm) has recently become a powerful tool to reveal patterns of electrical wave front dynamics on the heart surface. The optical mapping techniques have been previously applied to observe a portion of the heart due to its 3-D geometry. We extended our 2-D optical mapping technique to include one front view and two back mirror views for measuring and visualizing the transmembrane potential distribution simultaneously over entire surface of an isolated rabbit heart. The heart was illuminated with an argon laser delivered through an optical fiber bundle consisting of seven 1-mm fibers. These fibers were positioned around the heart to induce a near-uniform fluorescence intensity distribution on the heart surface. A single high-speed CCD camera with a long depth of field recorded the laser-stimulated epifluorescence from all three views in a single frame. Sequences of 100 to 600 frames of 12-bit/pixel digital images were recorded during regular pacing or induced ventricular fibrillation at 335 frames/second. Image processing then yielded the Vm distribution at a resolution of 128x64 pixels/frame. The propagating wave front images were obtained by subtracting two subsequent Vm images. The geometry of the heart was obtained by profilometry. The wave front information obtained from image processing could be texture-mapped to the heart geometry for visualization. Our 3-D imaging technique provides simultaneous, dynamic information of wave front activation and propagation over entire heart surface, and thereby can offer a more complete knowledge of wave front dynamics in a whole heart model. Future work involves automatic procedure for digitizing the heart shape and measuring the wave front dimensions using the 3-D geometry.

  1. Measuring mandibular asymmetry in Class I normal subjects using 3D novel coordinate system

    PubMed Central

    Kheir, Nadia Abou; Kau, Chung How

    2014-01-01

    Introduction: Orthodontic treatment plays a major role in cosmetic dentistry. A harmonious facial balance is normally the end point in comprehensive orthodontic outcomes. In order to achieve this goal, correct diagnosis of asymmetry should be done starting from the outer facial morphology forms and progressively moving to the dental occlusion. The prime importance of measuring mandibular asymmetry is its tremendous effect on the occlusion. Objective: The aim of this study was to measure mandibular asymmetry in a cohort Class I molar relationship comparing right and left sides using new three-dimensions (3D) imaging technique with the aid of 3D software (in vivo 5.2.3 [San Jose, CA]). Materials and Methods: 35 DICOM files were initially collected retrospectively and seven were excluded due to (1) condylar resorption, (2) history of trauma and (3) unclear DICOM file. A new coordinate system was set for the mid-sagittal plane (MSP), Frankfort horizontal plane and frontal plane (FP). Each cone beam computed tomography (CBCT) was appraised using 16 evaluation criteria bilaterally. Five mandibular landmarks were selected: Condylion_R, Gonion_R, Menton, Gonion_L and Condylion_L. Using these points, the mandible was further divided into four parts: (1) Ramus length right side, body of the mandible right side, body of the Ramus left side and Ramus length left side. The angles between each line and the three different planes were acquired in order to compare each line from a 3D aspect. Mean and standard deviation were calculated for the 28 CBCTs. Results: Significant bilateral differences were reported in the angle between the ramus length and MSP and the ramus length and the FP (P < 0.05). Significant lateroanterior shift of the mandibular ramus on the left side in comparison with the right side. Conclusion: Viewing an object using three different angles between the four parts of the mandible and each plane is a valid method to replicate the actual object. PMID:24987596

  2. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    SciTech Connect

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-05-15

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period ({rho}) to R-waves (R) detected in the patient's ECG and found a mean difference of 14{+-}80 ms. Two simultaneous angular positions were acquired and {rho} was detected for each position. There was no statistically significant difference (P=0.79) between {rho} in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC

  3. Generating synthetic 3D density fluctuation data to verify two-point measurement of parallel correlation length

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Ghim, Young-Chul; Nuclear Fusion and Plasma Lab Team

    2014-10-01

    A BES (beam emission spectroscopy) system and an MIR (Microwave Imaging Reflectometer) system installed in KSTAR measure 2D (radial and poloidal) density fluctuations at two different toroidal locations. This gives a possibility of measuring the parallel correlation length of ion-scale turbulence in KSTAR. Due to lack of measurement points in toroidal direction and shorter separation distance between the diagnostics compared to an expected parallel correlation length, it is necessary to confirm whether a conventional statistical method, i.e., using a cross-correlation function, is valid for measuring the parallel correlation length. For this reason, we generated synthetic 3D density fluctuation data following Gaussian random field in a toroidal coordinate system that mimic real density fluctuation data. We measure the correlation length of the synthetic data by fitting a Gaussian function to the cross-correlation function. We observe that there is disagreement between the measured and actual correlation lengths, and the degree of disagreement is a function of at least, correlation length, correlation time and advection velocity of synthetic data. We identify the cause of disagreement and propose an appropriate method to measure correct correlation length.

  4. Superhilac real-time velocity measurements

    SciTech Connect

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor.

  5. 3D Simultaneous Traveltime Inversion for Velocity Structure, Hypocenter Locations, and Reflector Geometry Using Multiple Classes of Arrivals

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Huang, Guo-jiao; Li, Xing-wang; Greenhalgh, Stewart

    2015-10-01

    Traditionally, traveltime tomography entails inversion of either the velocity field and the reflector geometry sequentially, or the velocity field and the hypocenter locations simultaneously or in a cascaded fashion, but seldom are all three types (velocities, geometry of reflectors, and source locations) updated simultaneously because of the compromise between the different classes of model variable and the lack of different seismic phases to constrain these variables. By using a state-of-the-art ray-tracing algorithm for the first and later arrivals combined with a popular linearized inversion solver, it is possible to simultaneously recover the three classes of model variables. In the work discussed in this paper we combined the multistage irregular shortest-path ray-tracing algorithm with a subspace inversion solver to achieve simultaneous inversion of multi-class variables, using arrival times for different phases to concurrently obtain the velocity field, the reflector shapes, and the hypocenter locations. Simulation and comparison tests for two sets of source-receiver arrangements (one the ideal case and the other an approximated real case) indicate that the combined triple-class inversion algorithm is capable of obtaining nearly the same results as the double-class affect inversion scheme (velocity and reflector geometry, or velocity and source locations) even if a lower ray density and irregular source-receiver geometry are used to simulate the real situation. In addition, the new simultaneous inversion method is not sensitive to a modest amount of picking error in the traveltime data and reasonable uncertainty in earthquake hypocenter locations, which shows it to be a feasible and promising approach in real applications.

  6. A New Approach to Sap Flow Measurement Using 3D Printed Gauges and Open-source Electronics

    NASA Astrophysics Data System (ADS)

    Ham, J. M.; Miner, G. L.; Kluitenberg, G. J.

    2015-12-01

    A new type of sap flow gauge was developed to measure transpiration from herbaceous plants using a modified heat pulse technique. Gauges were fabricated using 3D-printing technology and low-cost electronics to keep the materials cost under $20 (U.S.) per sensor. Each gauge consisted of small-diameter needle probes fastened to a 3D-printed frame. One needle contained a resistance heater to provide a 6 to 8 second heat pulse while the other probes measured the resultant temperature increase at two distances from the heat source. The data acquisition system for the gauges was built from a low-cost Arduino microcontroller. The system read the gauges every 10 minutes and stored the results on a SD card. Different numerical techniques were evaluated for estimating sap velocity from the heat pulse data - including analytical solutions and parameter estimation approaches . Prototype gauges were tested in the greenhouse on containerized corn and sunflower. Sap velocities measured by the gauges were compared to independent gravimetric measurements of whole plant transpiration. Results showed the system could measure daily transpiration to within 3% of the gravimetric measurements. Excellent agreement was observed when two gauges were attached the same stem. Accuracy was not affected by rapidly changing transpiration rates observed under partly cloudy conditions. The gauge-based estimates of stem thermal properties suggested the system may also detect the onset of water stress. A field study showed the gauges could run for 1 to 2 weeks on a small battery pack. Sap flow measurements on multiple corn stems were scaled up by population to estimate field-scale transpiration. During full canopy cover, excellent agreement was observed between the scaled-up sap flow measurements and reference crop evapotranspiration calculated from weather data. Data also showed promise as a way to estimate real-time canopy resistance required for model verification and development. Given the low

  7. A new method using orthogonal two-frequency grating in online 3D measurement

    NASA Astrophysics Data System (ADS)

    Peng, Kuang; Cao, Yiping; Wu, Yingchun; Lu, Mingteng

    2016-09-01

    In online 3D measurement, a new method using orthogonal two-frequency grating based on Phase Measuring Profilometry(PMP) is proposed. The modulation of the entire measured object is used to match pixels and this proposed method successfully resolves the contradiction of the demand for different frequency fringes between the extraction of the modulation information and the phase unwrapping. The high-frequency fringe is used to catch the better modulation patterns for pixel matching, and the low-frequency fringe is used to calculate the phase distribution and avoid phase unwrapping error. In addition, to extract the better modulation patterns for pixel matching, the flat filtering window replaces the circular filtering window to avoid the spectrum aliasing phenomenon. The simulations and experiments show its feasibility.

  8. Registration of Feature-Poor 3D Measurements from Fringe Projection

    PubMed Central

    von Enzberg, Sebastian; Al-Hamadi, Ayoub; Ghoneim, Ahmed

    2016-01-01

    We propose a novel method for registration of partly overlapping three-dimensional surface measurements for stereo-based optical sensors using fringe projection. Based on two-dimensional texture matching, it allows global registration of surfaces with poor and ambiguous three-dimensional features, which are common to surface inspection applications. No prior information about relative sensor position is necessary, which makes our approach suitable for semi-automatic and manual measurement. The algorithm is robust and works with challenging measurements, including uneven illumination, surfaces with specular reflection as well as sparsely textured surfaces. We show that precisions of 1 mm and below can be achieved along the surfaces, which is necessary for further local 3D registration. PMID:26927106

  9. Registration of Feature-Poor 3D Measurements from Fringe Projection.

    PubMed

    von Enzberg, Sebastian; Al-Hamadi, Ayoub; Ghoneim, Ahmed

    2016-01-01

    We propose a novel method for registration of partly overlapping three-dimensional surface measurements for stereo-based optical sensors using fringe projection. Based on two-dimensional texture matching, it allows global registration of surfaces with poor and ambiguous three-dimensional features, which are common to surface inspection applications. No prior information about relative sensor position is necessary, which makes our approach suitable for semi-automatic and manual measurement. The algorithm is robust and works with challenging measurements, including uneven illumination, surfaces with specular reflection as well as sparsely textured surfaces. We show that precisions of 1 mm and below can be achieved along the surfaces, which is necessary for further local 3D registration. PMID:26927106

  10. Developing on-machine 3D profile measurement for deterministic fabrication of aspheric mirrors.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Ye, Xu; Tam, Hon-Yuen

    2014-08-01

    Three-dimensional profile measurement is perceived as an indispensable process for deterministic fabrication of aspheric mirrors. In this work, we develop on-machine 3D profile measurement on a subaperture polishing machine, namely, JR-1800. The influences of mechanical errors, misalignments, output stability, temperature variation, and natural vibration are investigated in detail by calibration, mechanical alignment, and finite-element analysis. Two quantitative methods are presented for aligning the turntable, length gauge, and workpiece into together. An error compensation model is also developed for further eliminating misalignments. For feasibility validation, two prototypical workpieces are measured by JR-1800 and an interferometer. The results indicate that JR-1800 has an RMS repeatability of ~λ/30 (λ=632.8  nm). The data provided by the two systems are highly coincident. Direct subtractions of the results from the two systems indicate that the RMS deviations for both segments are less than 0.07 μm. PMID:25090332

  11. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  12. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  13. 3D face recognition using simulated annealing and the surface interpenetration measure.

    PubMed

    Queirolo, Chauã C; Silva, Luciano; Bellon, Olga R P; Segundo, Maurício Pamplona

    2010-02-01

    This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature. PMID:20075453

  14. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-02-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14%, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31%) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's aeroelastic wing (53%), as well as sudden changes in wing loading (16%) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95% confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square deviation) of ≈0.4 m s-1 for the horizontal and ≍0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable eddy-covariance flux measurements.

  15. Measuring the 3-D wind vector with a weight-shift microlight aircraft

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Junkermann, W.; Butterbach-Bahl, K.; Schmid, H. P.; Foken, T.

    2011-07-01

    This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. Therefore we draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s-1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s-1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s-1 for the horizontal and ≈0.3 m s-1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s-1) or true airspeed (ranging from 23-30 m s-1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

  16. Measuring Fracture Properties of Meteorites: 3D Scans and Disruption Experiments.

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Morris, Melissa A.; Garvie, Laurence

    2014-11-01

    The Arizona State University (ASU) Center for Meteorite Studies (CMS) houses over 30,000 specimens that represent almost every known meteorite type. A number of these are available for fragmentation experiments in small samples, but in most cases non-destructive experiments are desired in order to determine the fundamental mechanical properties of meteorites, and by extension, the Near-Earth Asteroids (NEAs) and other planetary bodies they derive from. We present results from an ongoing suite of measurements and experiments, featuring automated 3D topographic scans of a comprehensive suite of meteorites in the CMS collection, basic mechanical studies, and culminating in catastrophic fragmentation of four representative meteorites: Tamdakht (H5), Allende (CV3), Northwest Africa 869 (L3-6) and Chelyabinsk (LL5). Results will include high-resolution 3D color-shape models of meteorites, including specimens such as the 349g oriented and fusion crusted Martian (shergottite) Tissint, and the delicately fusion crusted and oriented 131g Whetstone Mountains (H5) ordinary chondrite. The 3D color-shape models will allow us to obtain basic physical properties (such as volume to derive density) and to derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of the material, to macroscopic optical properties, and to rubble friction and cohesion. Freshly fractured surfaces of fragments that will result from catastrophic hypervelocity impact experiments will be subsequently scanned and analyzed in order to determine whether fractal dimension is preserved or if it changes with surface maturation.

  17. Simultaneous, accurate measurement of the 3D position and orientation of single molecules

    PubMed Central

    Backlund, Mikael P.; Lew, Matthew D.; Backer, Adam S.; Sahl, Steffen J.; Grover, Ginni; Agrawal, Anurag; Piestun, Rafael; Moerner, W. E.

    2012-01-01

    Recently, single molecule-based superresolution fluorescence microscopy has surpassed the diffraction limit to improve resolution to the order of 20 nm or better. These methods typically use image fitting that assumes an isotropic emission pattern from the single emitters as well as control of the emitter concentration. However, anisotropic single-molecule emission patterns arise from the transition dipole when it is rotationally immobile, depending highly on the molecule’s 3D orientation and z position. Failure to account for this fact can lead to significant lateral (x, y) mislocalizations (up to ∼50–200 nm). This systematic error can cause distortions in the reconstructed images, which can translate into degraded resolution. Using parameters uniquely inherent in the double-lobed nature of the Double-Helix Point Spread Function, we account for such mislocalizations and simultaneously measure 3D molecular orientation and 3D position. Mislocalizations during an axial scan of a single molecule manifest themselves as an apparent lateral shift in its position, which causes the standard deviation (SD) of its lateral position to appear larger than the SD expected from photon shot noise. By correcting each localization based on an estimated orientation, we are able to improve SDs in lateral localization from ∼2× worse than photon-limited precision (48 vs. 25 nm) to within 5 nm of photon-limited precision. Furthermore, by averaging many estimations of orientation over different depths, we are able to improve from a lateral SD of 116 (∼4× worse than the photon-limited precision; 28 nm) to 34 nm (within 6 nm of the photon limit). PMID:23129640

  18. Review and comparison of temporal- and spatial-phase shift speckle pattern interferometry for 3D deformation measurement

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Yang, Lianxiang; Chen, Xu; Xu, Nan; Wang, Yonghong

    2013-10-01

    High accuracy full field three dimensional (3D) deformation measurements have always been an essential problem for the manufacturing, instrument, and aerospace industry. 3D deformations, which can be translated further into 3D strain and stress, are the key parameter for design, manufacturing and quality control. Due to the fast development of the manufacturing industry, especially in the automobile and airspace industry, rapid design and optimization concepts have already widely accepted. These concepts all require the support of rapid, high sensitive and accuracy 3D deformation measurement. Advanced optical methods are gaining widely acceptance for deformation and stain measurement by industry due to the advantages of non-contact, full-field and high measurement sensitivity. Of these methods, Electronic Speckle Pattern Interferometry (ESPI) is the most sensitive and accurate method for 3D deformation measurement in micro and sub micro-level. ESPI measures deformation by evaluating the phase difference of two recorded speckle interferograms under different loading conditions. Combined with a phase shift technique, ESPI systems can measure the 3D deformation with dozens of nanometer level sensitivity. Cataloged by phase calculation methods, ESPI systems can be divided into temporal phase shift ESPI systems and spatial phase shift ESPI system. This article provides a review and a comparison of temporal and spatial phase shift speckle pattern interferometry for 3D deformation measurement. After an overview of the fundamentals of ESPI theory, temporal phase-shift and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI which is suited well for static measurement and by the spatial phase-shift ESPI which is particularly useful for dynamic measurement will be discussed in detail. Basic theory, brief derivation and different optical layouts for the two systems will be presented. The potentials and limitations of the both ESPI

  19. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  20. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  1. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  2. Numerical and measured data from the 3D salt canopy physical modeling project

    SciTech Connect

    Bradley, C.; House, L.; Fehler, M.; Pearson, J.; TenCate, J.; Wiley, R.

    1997-11-01

    The evolution of salt structures in the Gulf of Mexico have been shown to provide a mechanism for the trapping of significant hydrocarbon reserves. Most of these structures have complex geometries relative to the surrounding sedimentary layers. This aspect in addition to high velocities within the salt tend to scatter and defocus seismic energy and make imaging of subsalt lithology extremely difficult. An ongoing program the SEG/EAEG modeling project (Aminzadeh et al. 1994a: Aminzadeh et al. 1994b: Aminzadeh et al. 1995), and a follow-up project funded as part of the Advanced Computational Technology Initiative (ACTI) (House et al. 1996) have sought to investigate problems with imaging beneath complex salt structures using numerical modeling and more recently, construction of a physical model patterned after the numerical subsalt model (Wiley and McKnight. 1996). To date, no direct comparison of the numerical and physical aspects of these models has been attempted. We present the results of forward modeling a numerical realization of the 3D salt canopy physical model with the French Petroleum Institute (IFP) acoustic finite difference algorithm used in the numerical subsalt tests. We compare the results from the physical salt canopy model, the acoustic modeling of the physical/numerical model and the original numerical SEG/EAEG Salt Model. We will be testing the sensitivity of migration to the presence of converted shear waves and acquisition geometry.

  3. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements. PMID:22051087

  4. 3D-DIP-Chip: a microarray-based method to measure genomic DNA damage

    PubMed Central

    Powell, James Rees; Bennett, Mark Richard; Evans, Katie Ellen; Yu, Shirong; Webster, Richard Michael; Waters, Raymond; Skinner, Nigel; Reed, Simon Huw

    2015-01-01

    Genotoxins cause DNA damage, which can result in genomic instability. The genetic changes induced have far-reaching consequences, often leading to diseases such as cancer. A wide range of genotoxins exists, including radiations and chemicals found naturally in the environment, and in man-made forms created by human activity across a variety of industries. Genomic technologies offer the possibility of unravelling the mechanisms of genotoxicity, including the repair of genetic damage, enhancing our ability to develop, test and safely use existing and novel materials. We have developed 3D-DIP-Chip, a microarray-based method to measure the prevalence of genomic genotoxin-induced DNA damage. We demonstrate the measurement of both physical and chemical induced DNA damage spectra, integrating the analysis of these with the associated changes in histone acetylation induced in the epigenome. We discuss the application of the method in the context of basic and translational sciences. PMID:25609656

  5. Rapid and automatic 3D body measurement system based on a GPU-Steger line detector.

    PubMed

    Liu, Xingjian; Zhao, Hengshuang; Zhan, Guomin; Zhong, Kai; Li, Zhongwei; Chao, Yuhjin; Shi, Yusheng

    2016-07-20

    This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body. A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the computation cost, a GPU-Steger line detector was proposed to more rapidly detect the center of the laser pattern and at subpixel level. The processing time of line detection is significantly shortened by the GPU-Steger line detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and the experimental results are presented in this paper to illustrate the performance of the proposed system. The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin, and clothes with rich texture. PMID:27463902

  6. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  7. Calibration algorithm in robotic remanufacturing measurement system based on 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Shen, C. D.; Zhu, S.; Li, C.; Liang, Y. Y.

    2009-07-01

    In robotic remanufacturing measurement system, the 3D laser scanner is arranged by the robot and the object scanned is mounted on a turntable. This paper deals with the algorithm of calibrating the relationship between the scanner coordinate and the robot Tool0, and furthermore locating the center axis of the turntable. The data of Tool0 can be directly obtained denoting its relationship with the robot base coordinate. So, the coordinate transformation problems are effectively solved and the measuring data which relative to the robot base coordinate could be congruously saved. This paper detailed explains the basic algorithm theory, computing method and the result data analysis, and etc. The calibration algorithm is deduced under the orthogonal coordinate.

  8. Gray coded trapezoidal fringes for 3-D surface-shape measurement

    NASA Astrophysics Data System (ADS)

    Pérez, Oscar G.; Flores, Jorge L.; García-Torales, G.; Muñoz-G, J. A.; Soto, Horacio; Balderas, Sandra E.

    2014-09-01

    We propose a two-step trapezoidal-pattern phase-shifting method for 3-D surface-shape measurements. Shape measurements by trapezoidal phase-shifting methods require high-quality trapezoidal patterns. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations, we propose a method for synthesizing trapezoidal intensity fringes as a way to solve the problems caused by projector/camera gamma nonlinearity. The fringe generation technique consists of projecting and acquiring a temporal sequence of strictly binary color patterns (Gray code), whose (adequately weighted) average leads to trapezoidal fringe patterns with the required number of bits, which allows a reliable three-dimensional profile reconstruction using phase-shifting methods. Validation experiments are presented.

  9. Study of the 3D geometry of tangential discontinuities based on simultaneous STEREO and Ulysses measurements

    NASA Astrophysics Data System (ADS)

    Facsko, Gabor; Reshetnyk, Volodymyr; Agapitov, Oleksiy; Opitz, Andrea; Szabo, Adam; McComas, David

    Tangential discontinuties (TDs) are usually considered as thin planar current sheets frozen in the solar wind flow. Previous studies based on the magnetic field measurements onboard of ACE, Wind, and STEREO A, and B proved that this hypotesis is not valid. The curvature of the TDs were determined in several cases. After applying minimum variance and the cross product methods for Ulysses, ACE and STEREO A and B magnetometer measurements, numerous TDs are identified in 2008 and 2009. The time shift of the TD observations is determinated by correlation analysis of the solar wind speed and the magnetic field variations. The 3D topology of the TD is then determinated in some special cases when the four spacecraft are on the same side of the Sun. After fitting a simple model, the location of the TD formation region can be outlined.

  10. Velocity measurements on highly turbulent free surface flow using ADV

    NASA Astrophysics Data System (ADS)

    Cea, L.; Puertas, J.; Pena, L.

    2007-03-01

    The 3D instantaneous velocity recorded with an acoustic Doppler velocimeter (ADV) in a highly turbulent free surface flow is analysed using several filters in order to eliminate the corrupted data from the sample. The filters used include the minimum/maximum threshold, the acceleration threshold, and the phase-space threshold. Following some ideas of the phase-space filter, a new method based on the 3D velocity cross-correlation is proposed and tested. A way of computing the constants of the acceleration threshold method is proposed, so no parameters need to be fixed by the user, which makes the filtering process simpler, more objective and more efficient. All the samples analysed are highly turbulent. Nevertheless, the turbulence intensity and the air entrainment vary widely in the flow under study, which produces data records of different quality depending on the measurement point. The performance of the filtering methods when applied to samples of different quality, and the effects of the filtering process in the mean velocity, turbulent kinetic energy and frequency spectra are discussed.

  11. Measurement of the photoionization cross section from the laser-populated 3D metastable levels in barium

    NASA Technical Reports Server (NTRS)

    Carlsten, J. L.; Mcilrath, T. J.; Parkinson, W. H.

    1974-01-01

    Measurements of the absolute photoionization cross section from the 6s5d 3D metastable level of barium are presented. The 3D levels were selectively populated with a high-power tuneable dye laser. The number density was determined by observing the resulting depopulation of the ground state when pumping occurred.

  12. SERAPIS project - 3D imaging of the Campi Flegrei caldera (southern Italy) : high resolution P-wave velocity tomography

    NASA Astrophysics Data System (ADS)

    Judenherc, S.; Zollo, A.; Auger, E.; Boschi, L.; Satriano, C.; Serapis Working Group

    2003-04-01

    In September 2001, the SERAPIS project was carried out as an extended active seismic survey in the gulfs of Naples and Pozzuoli. A dense array of 60 three-component on-land stations and 72 sea bottom seismographs (OBS) have been deployed to record more than 5000 air gun shots at a spacing of about 125~m. As a preliminary analysis, the first P-arrival times of a the small offset data in the central part of the region has been inverted using the codes of H.M. Benz. The linearized iterative inversion of 38000 arrival times provided a >80% variance reduction with a node spacing of 250m. At the first order, our model shows a 2-layer structure : low velocity volcanic sediments (2.5-3.5km/s) lying on an inclined high velocity limestone platform (>6km/s). The caldera itself is very well identified, the rim is characterized by a 500-1000m upward shift of the velocity isolines. The whole dataset is expected to provide a wider image with the same resolution (250m). It includes the detailed shape of the refractor beneath the caldera as well as its irregularities out of the bay which have been observered in the seismic sections.

  13. Measuring the impact of 3D data geometric modeling on spatial analysis: Illustration with Skyview factor

    NASA Astrophysics Data System (ADS)

    Brasebin, M.; Perret, J.; Mustière, S.; Weber, C.

    2012-10-01

    The increased availability of 3D urban data reflects a growing interest in 3D spatial analysis. As 3D spatial analysis often uses complex 3D data, studies of the potential gains of using more detailed 3D urban databases for specific uses is an important issue. First, more complex data implies an increase in time and memory usage for the analysis (and calls for more research on the efficiency of the algorithms used). Second, detailed 3D urban data are complex to produce, expensive and it is important to be well informed in order to decide whether of not to invest in such data. Currently, many studies have been led about the fitness for use of 2D data but they are very scarce concerning 3D data. This article presents a method to determine the influence of 3D modeling on the results of 3D analysis by isolating the potential sources of errors (such as roof modeling and geometric accuracy). This method is applied on two 3D datasets (LOD1 and LOD2) and a 3D indicator (the sky view factor or SVF). The results show that the significant influence of roof modeling is globally compensated by the difference in geometric modeling but that important local variations are noticed. Nevertheless, for 75% of the SVF processed the difference between the results using these two databases is lower than 2%.

  14. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    The main objective of this paper is to establish a procedural method for measuring and cataloguing antlers through the use of laser scanner and of a 3D reconstruction of complex modeling. The deer's antlers have been used as a test and subjected to capture and measurement. For this purpose multiple data sources techniques have been studied and compared, (also considering low-cost sensors) estimating the accuracy and its errors in order to demonstrate the validity of the process. A further development is the comparison of results with applications of digital photogrammetry, considering also cloud computing software. The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH. The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison. It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID - which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different

  15. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.

    PubMed

    Steinle, Patrick

    2016-01-01

    Emissions from a desktop 3D printer based on fused deposition modeling (FDM) technology were measured in a test chamber and indoor air was monitored in office settings. Ultrafine aerosol (UFA) emissions were higher while printing a standard object with polylactic acid (PLA) than with acrylonitrile butadiene styrene (ABS) polymer (2.1 × 10(9) vs. 2.4 × 10(8) particles/min). Prolonged use of the printer led to higher emission rates (factor 2 with PLA and 4 with ABS, measured after seven months of occasional use). UFA consisted mainly of volatile droplets, and some small (100-300 nm diameter) iron containing and soot-like particles were found. Emissions of inhalable and respirable dust were below the limit of detection (LOD) when measured gravimetrically, and only slightly higher than background when measured with an aerosol spectrometer. Emissions of volatile organic compounds (VOC) were in the range of 10 µg/min. Styrene accounted for more than 50% of total VOC emitted when printing with ABS; for PLA, methyl methacrylate (MMA, 37% of TVOC) was detected as the predominant compound. Two polycyclic aromatic hydrocarbons (PAH), fluoranthene and pyrene, were observed in very low amounts. All other analyzed PAH, as well as inorganic gases and metal emissions except iron (Fe) and zinc (Zn), were below the LOD or did not differ from background without printing. A single 3D print (165 min) in a large, well-ventilated office did not significantly increase the UFA and VOC concentrations, whereas these were readily detectable in a small, unventilated room, with UFA concentrations increasing by 2,000 particles/cm(3) and MMA reaching a peak of 21 µg/m(3) and still being detectable in the room even 20 hr after printing. PMID:26550911

  16. 3-D ice shape measurements using mid-infrared laser scanning.

    PubMed

    Gong, Xiaoliang; Bansmer, Stephan

    2015-02-23

    A general approach based on mid-infrared (MIR) laser scanning is proposed to measure the 3-D ice shape no matter whether the ice is composed of clear ice, rime ice, mixed ice, or even supercooled water droplets or films. This is possible because MIR radiation penetrates ice and water only within a depth of less than 10 micrometers. First, an MIR laser point scanning technique is implemented and verified on transparent glass and clear ice. Then, to improve efficiency, an MIR laser line scanning method is developed and validated on different models. At last, several sequential MIR laser line scans are applied to trace the 3-D shape evolution of the continuous ice accretion on an airfoil in an icing wind tunnel. The ice growth process can be well observed in the results. The MIR scan shows a good agreement with the traditional visible laser scan on a plastic replication of the final ice shape made by the mold and casting method. PMID:25836526

  17. A dual 3D DIC-system application for DSL strain and displacement measurements

    NASA Astrophysics Data System (ADS)

    Raurova, I.; Berggreen, C.; Eriksen, R.

    2010-06-01

    This paper describes a dual 3D Digital Image Correlation (DIC) system application for DLS strain and displacement measurements, where two 3D DIC-systems are used in parallel. The bonded specimens were tested to failure under monotonic loading in a uni-axial tensile testing machine at ambient temperature. Both surface inplane strain and full-field displacement values were recorded using two DIC systems: high speed (HS) and high resolution (HR). The HS system was used in a parallel setup with the HR system in order to detect the initial failure location and crack propagation rate during the brittle failure mechanism, where an interface crack is propagating between the straps and the inner adherent. Using two inherently different DIC systems involve a number of problems. This involves synchronization of the HS and HR systems, a common illumination level and speckle pattern. This paper therefore describes guidelines for a mutual system setup, applied in an experimental study of steel/epoxy DLS joints under pure tension.

  18. Error analysis in stereo vision for location measurement of 3D point

    NASA Astrophysics Data System (ADS)

    Li, Yunting; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.

  19. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGESBeta

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  20. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    SciTech Connect

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished through the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.

  1. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  2. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  3. Coupling the 3D hydro-morphodynamic model Telemac-3D-sisyphe and seismic measurements to estimate bedload transport rates in a small gravel-bed river.

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Krein, Andreas; Barrière, Julien

    2014-05-01

    Coupling the 3D hydro-morphodynamic model Telemac-3D-sisyphe and seismic measurements to estimate bedload transport rates in a small gravel-bed river. Renaud Hostache, Andreas Krein, Julien Barrière During flood events, amounts of river bed material are transported via bedload. This causes problems, like the silting of reservoirs or the disturbance of biological habitats. Some current bedload measuring techniques have limited possibilities for studies in high temporal resolutions. Optical systems are usually not applicable because of high turbidity due to concentrated suspended sediment transported. Sediment traps or bedload samplers yield only summative information on bedload transport with low temporal resolution. An alternative bedload measuring technique is the use of seismological systems installed next to the rivers. The potential advantages are observations in real time and under undisturbed conditions. The study area is a 120 m long reach of River Colpach (21.5 km2), a small gravel bed river in Northern Luxembourg. A combined approach of hydro-climatological observations, hydraulic measurements, sediment sampling, and seismological measurements is used in order to investigate bedload transport phenomena. Information derived from seismic measurements and results from a 3-dimensional hydro-morphodynamic model are exemplarily discussed for a November 2013 flood event. The 3-dimensional hydro-morphodynamic model is based on the Telemac hydroinformatic system. This allows for dynamically coupling a 3D hydrodynamic model (Telemac-3D) and a morphodynamic model (Sisyphe). The coupling is dynamic as these models exchange their information during simulations. This is a main advantage as it allows for taking into account the effects of the morphologic changes of the riverbed on the water hydrodynamic and the bedload processes. The coupled model has been calibrated using time series of gauged water depths and time series of bed material collected sequentially (after

  4. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  5. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  6. The static accuracy and calibration of inertial measurement units for 3D orientation.

    PubMed

    Brodie, M A; Walmsley, A; Page, W

    2008-12-01

    Inertial measurement units (IMUs) are integrated electronic devices that contain accelerometers, magnetometers and gyroscopes. Wearable motion capture systems based on IMUs have been advertised as alternatives to optical motion capture. In this paper, the accuracy of five different IMUs of the same type in measuring 3D orientation in static situations, as well as the calibration of the accelerometers and magnetometers within the IMUs, has been investigated. The maximum absolute static orientation error was 5.2 degrees , higher than the 1 degrees claimed by the vendor. If the IMUs are re-calibrated at the time of measurement with the re-calibration procedure described in this paper, it is possible to obtain an error of less than 1 degrees , in agreement with the vendor's specifications (XSens Technologies B.V. 2005. Motion tracker technical documentation Mtx-B. Version 1.03. Available from: www.xsens.com). The new calibration appears to be valid for at least 22 days providing the sensor is not exposed to high impacts. However, if several sensors are 'daisy chained' together changes to the magnetometer bias can cause heading errors of up to 15 degrees . The results demonstrate the non-linear relationship between the vendor's orthogonality claim of < 0.1 degrees and the accuracy of 3D orientation obtained from factory calibrated IMUs in static situations. The authors hypothesise that the high magnetic dip (64 degrees ) in our laboratory may have exacerbated the errors reported. For biomechanical research, small relative movements of a body segment from a calibrated position are likely to be more accurate than large scale global motion that may have an error of up to 9.8 degrees . PMID:18688763

  7. A high resolution 3D velocity model beneath the Tokyo Metropolitan area by MeSO-net

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Honda, R.; Kimura, H.; Hirata, N.

    2015-12-01

    Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes devastating mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating serious loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 23,000 fatalities and 95 trillion yen (about 1 trillion US$) economic loss. We have launched the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters in collaboration with scientists, engineers, and social-scientists in nationwide institutions since 2012. We analyze data from the dense seismic array called Metropolitan Seismic Observation network (MeSO-net), which has 296 seismic stations with spacing of 5 km (Sakai and Hirata, 2009; Kasahara et al., 2009). We applied the double-difference tomography method (Zhang and Thurber, 2003) and estimated the velocity structure and the upper boundary of PSP (Nakagawa et al., 2010). The 2011 Tohoku-oki earthquake (M9.0) has activated seismicity also in Kanto region, providing better coverage of ray paths for tomographic analysis. We obtain much higher resolution velocity models from whole dataset observed by MeSO-net between 2008 and 2015. A detailed image of tomograms shows that PSP contacts Pacific plate at a depth of 50 km beneath northern Tokyo bay. A variation of velocity along the oceanic crust suggests dehydration reaction to produce seismicity in a slab, which may related to the M7+ earthquake. Acknowledgement: This study was supported by the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters of MEXT, Japan and the Earthquake Research Institute cooperative research program.

  8. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  9. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  10. 3D maps of the local ISM from inversion of individual color excess measurements

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Vergely, J.-L.; Valette, B.; Puspitarini, L.; Eyer, L.; Casagrande, L.

    2014-01-01

    Aims: Three-dimensional (3D) maps of the Galactic interstellar matter (ISM) are a potential tool of wide use, but accurate and detailed maps are still lacking. One of the ways to construct the maps is to invert individual distance-limited ISM measurements, a method we have applied here to measurements of stellar color excess in the optical. Methods: We assembled color excess data together with the associated parallax or photometric distances to constitute a catalog of ≃23 000 sightlines for stars within 2.5 kpc. The photometric data are taken from Strömgren catalogs, the Geneva photometric database, and the Geneva-Copenhagen survey. We also included extinctions derived towards open clusters. We applied an inversion method based on a regularized Bayesian approach to this color excess dataset, a method previously used for mapping at closer distances. Results: We show the dust spatial distribution resulting from the inversion by means of planar cuts through the differential opacity 3D distribution, and by means of 2D maps of the integrated opacity from the Sun up to various distances. The mapping assigns locations to the nearby dense clouds and represents their distribution at the spatial resolution that is allowed by the dataset properties, i.e. ≃10 pc close to the Sun and increasing to ≃100 pc beyond 1 kpc. Biases toward nearby and/or weakly extincted stars make this dataset particularly appropriate to mapping the local and neighboring cavities and to locating faint, extended nearby clouds, which are both goals that are difficult or impossible with other mapping methods. The new maps reveal a ≃1 kpc wide empty region in the third quadrant in the continuation of the so-called CMa tunnel of the Local Cavity, a cavity that we identify as the Superbubble GSH238+00+09 detected in radio emission maps and that is found to be bounded by the Orion and Vela clouds. The maps also show an extended narrower tunnel in the opposite direction (l ≃ 70°) that also extends

  11. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  12. Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Fleta, C.; Esteban, S.; Quirion, D.; Pellegrini, G.; Lozano, M.; Prezado, Y.; Dos Santos, M.; Guardiola, C.; Montarou, G.; Prieto-Pena, J.; Pardo-Montero, Juan

    2016-06-01

    The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.

  13. 3D-PTV measurement of the phototactic movement of algae in shear flow

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami

    2012-11-01

    Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.

  14. Accuracy of velocities from repeated GPS measurements

    NASA Astrophysics Data System (ADS)

    Akarsu, V.; Sanli, D. U.; Arslan, E.

    2015-04-01

    Today repeated GPS measurements are still in use, because we cannot always employ GPS permanent stations due to a variety of limitations. One area of study that uses velocities/deformation rates from repeated GPS measurements is the monitoring of crustal motion. This paper discusses the quality of the velocities derived using repeated GPS measurements for the aim of monitoring crustal motion. From a global network of International GNSS Service (IGS) stations, we processed GPS measurements repeated monthly and annually spanning nearly 15 years and estimated GPS velocities for GPS baseline components latitude, longitude and ellipsoidal height. We used web-based GIPSY for the processing. Assuming true deformation rates can only be determined from the solutions of 24 h observation sessions, we evaluated the accuracy of the deformation rates from 8 and 12 h sessions. We used statistical hypothesis testing to assess the velocities derived from short observation sessions. In addition, as an alternative control method we checked the accuracy of GPS solutions from short observation sessions against those of 24 h sessions referring to statistical criteria that measure the accuracy of regression models. Results indicate that the velocities of the vertical component are completely affected when repeated GPS measurements are used. The results also reveal that only about 30% of the 8 h solutions and about 40% of 12 h solutions for the horizontal coordinates are acceptable for velocity estimation. The situation is much worse for the vertical component in which none of the solutions from campaign measurements are acceptable for obtaining reliable deformation rates.

  15. Dust attenuation in z ~ 1 galaxies from Herschel and 3D-HST Hα measurements

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Rodighiero, G.; Franceschini, A.; Talia, M.; Cimatti, A.; Baronchelli, I.; Daddi, E.; Renzini, A.; Schawinski, K.; Mancini, C.; Silverman, J.; Gruppioni, C.; Lutz, D.; Berta, S.; Oliver, S. J.

    2016-02-01

    We combined the spectroscopic information from the 3D-HST survey with Herschel data to characterize the Hα dust attenuation properties of a sample of 79 main sequence star-forming galaxies at z ~ 1 in the GOODS-S field. The sample was selected in the far-IR at λ = 100 and/or 160 μm and only includes galaxies with a secure Hα detection (S/N > 3). From the low resolution 3D-HST spectra we measured the redshifts and the Hα fluxes for the whole sample. (A factor of 1/1.2 was applied to the observed fluxes to remove the [NII] contamination.) The stellar masses (M⋆), infrared (LIR), and UV luminosities (LUV) were derived from the spectral energy distributions by fitting multiband data from GALEX near-UV to SPIRE 500 μm. We estimated the continuum extinction Estar(B-V) from both the IRX = LIR/LUV ratio and the UV-slope, β, and found excellent agreement between the two. The nebular extinction was estimated from comparison of the observed SFRHα and SFRUV. We obtained f = Estar(B-V) /Eneb(B-V) = 0.93 ± 0.06, which is higher than the canonical value of f = 0.44 measured in the local Universe. Our derived dust correction produces good agreement between the Hα and IR+UV SFRs for galaxies with SFR ≳ 20M⊙/yr and M⋆ ≳ 5 × 1010M⊙, while objects with lower SFR and M⋆ seem to require a smaller f-factor (i.e. higher Hα extinction correction). Our results then imply that the nebular extinction for our sample is comparable to extinction in the optical-UV continuum and suggest that the f-factor is a function of both M⋆ and SFR, in agreement with previous studies.

  16. 3D structural measurements of the proximal femur from 2D DXA images using a statistical atlas

    NASA Astrophysics Data System (ADS)

    Ahmad, Omar M.; Ramamurthi, Krishna; Wilson, Kevin E.; Engelke, Klaus; Bouxsein, Mary; Taylor, Russell H.

    2009-02-01

    A method to obtain 3D structural measurements of the proximal femur from 2D DXA images and a statistical atlas is presented. A statistical atlas of a proximal femur was created consisting of both 3D shape and volumetric density information and then deformably registered to 2D fan-beam DXA images. After the registration process, a series of 3D structural measurements were taken on QCT-estimates generated by transforming the registered statistical atlas into a voxel volume. These measurements were compared to the equivalent measurements taken on the actual QCT (ground truth) associated with the DXA images for each of 20 human cadaveric femora. The methodology and results are presented to address the potential clinical feasibility of obtaining 3D structural measurements from limited angle DXA scans and a statistical atlas of the proximal femur in-vivo.

  17. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  18. Antarctica: Measuring glacier velocity from satellite images

    USGS Publications Warehouse

    Lucchitta, B.K.; Ferguson, H.M.

    1986-01-01

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  19. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  20. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  1. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.

    PubMed

    Brennan, A; Zhang, J; Deluzio, K; Li, Q

    2011-07-01

    This study quantified the accuracy of inertial sensors in 3D anatomical joint angle measurement with respect to an instrumented gimbal. The gimbal rotated about three axes and directly measured the angles in the ISB recommended knee joint coordinate system. Through the use of sensor attachment devices physically fixed to the gimbal, the joint angle estimation error due to sensor attachment (the inaccuracy of the sensor attachment matrix) was essentially eliminated, leaving only error due to the inertial sensors. The angle estimation error (RMSE) corresponding to the sensor was found to be 3.20° in flexion/extension, 3.42° in abduction/adduction and 2.88° in internal/external rotation. Bland-Altman means of maximum absolute value were -1.63° inflexion/extension, 3.22° in abduction/adduction and -2.61° in internal/external rotation. The magnitude of the errors reported in this study imply that even under ideal conditions irreproducible in human gait studies, inertial angle measurement will be subject to errors of a few degrees. Conversely, the reported errors are smaller than those reported previously in human gait studies, which suggest that the sensor attachment is also significant source of error in inertial gait measurement. The proposed apparatus and methodology could be used to quantify the performance of different sensor systems and orientation estimation algorithms, and to verify experimental protocols before human experimentation. PMID:21715167

  2. 3D density imaging with muons flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Cabrera, Justo; Marteau, Jacques

    2016-04-01

    Atmospheric muons flux measurements provide information on sub-surface density distribution, giving insights on the medium structure. We measured the muons flux from the underground galleries of the Tournemire experimental platform to image the medium between the galleries and the surface. The experiment aimed at evaluating the capacity of the method to detect the presence of discontinuities produced either by secondary strike-slip faults that present small vertical displacements or by a karstic network may be present at the level of an upper aquifer. Measurements were performed from three different sites so the trajectories of detected muons paths intersect in the medium. Such a configuration provided complementary information on the density distribution, offering the possibility to seek density variations at different depths. A specific calibration method was applied in order to interpolate the data acquired at different times with the same muons sensor. Muons flux measurements variations were then processed through a non-linear inversion, producing a 3D image of the density together with an evaluation of the different distinguished targets reliability. The density distribution showed the presence of a very low density region at the level of the upper aquifer, suggesting the presence of a karstic network hosting locally cavities. The trace of secondary strike-slip faults did not appear clearly on the image as the density contrast they produce might be too low compared to the signal to noise ratio present in the muons flux data. We propose different strategies to improve the density image accuracy.

  3. 2D and 3D endoanal and translabial ultrasound measurement variation in normal postpartum measurements of the anal sphincter complex

    PubMed Central

    MERIWETHER, Kate V.; HALL, Rebecca J.; LEEMAN, Lawrence M.; MIGLIACCIO, Laura; QUALLS, Clifford; ROGERS, Rebecca G.

    2015-01-01

    Introduction Women may experience anal sphincter anatomy changes after vaginal or Cesarean delivery. Therefore, accurate and acceptable imaging options to evaluate the anal sphincter complex (ASC) are needed. ASC measurements may differ between translabial (TL-US) and endoanal ultrasound (EA-US) imaging and between 2D and 3D ultrasound. The objective of this analysis was to describe measurement variation between these modalities. Methods Primiparous women underwent 2D and 3D TL-US imaging of the ASC six months after a vaginal birth (VB) or Cesarean delivery (CD). A subset of women also underwent EA-US measurements. Measurements included the internal anal sphincter (IAS) thickness at proximal, mid, and distal levels and the external anal sphincter (EAS) at 3, 6, 9, and 12 o’clock positions as well as bilateral thickness of the pubovisceralis muscle (PVM). Results 433 women presented for US: 423 had TL-US and 64 had both TL-US and EA-US of the ASC. All IAS measurements were significantly thicker on TL-US than EA-US (all p<0.01), while EAS measurements were significantly thicker on EA-US (p<0.01). PVM measurements with 3D or 2D imaging were similar (p>0.20). On both TL-US and EA-US, there were multiple sites where significant asymmetry existed in left versus right measurements. Conclusion The ultrasound modality used to image the ASC introduces small but significant changes in measurements, and the direction of the bias depends on the muscle and location being imaged. PMID:25344221

  4. Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor

    NASA Astrophysics Data System (ADS)

    Van Vliet, E.; Van Bergen, S. M.; Derksen, J. J.; Portela, L. M.; Van den Akker, H. E. A.

    A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially ``skewed'' during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.

  5. Measuring flying object velocity with CCD sensors

    NASA Astrophysics Data System (ADS)

    Ricny, Vaclav; Mikulec, Jiri

    1994-06-01

    An autonomous optoelectronic method of measuring the flying objects track velocity vector (TVV) using digital signal two-line CCD sensors has been developed and simulated at the Department of Radioelectronics at the Faculty of Electrical Engineering of the Technical University of Brno, Czech Republic. The principle of the method, the computer simulation of measuring device operations, the application of statistic estimates for the precision of values measured, and the presentation of the results achieved are described.

  6. Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements

    NASA Astrophysics Data System (ADS)

    Alizadeh, Mohamad Mahdi; Schuh, Harald; Schmidt, Michael

    2015-06-01

    For space geodetic techniques, operating in microwave band, ionosphere is a dispersive medium; thus, signals traveling through this medium are in the first approximation, affected proportional to the inverse of the square of their frequencies. This effect allows gaining information about the parameters of the ionosphere in terms of total electron content (TEC) or the electron density (Ne). Making use of this phenomenon, space geodetic techniques have turned into a capable tool for studying the ionosphere in the last decades. Up to now, two-dimensional (2-D) models of Vertical TEC (VTEC) have been widely developed and used by different communities; however, due to the fact that these models provide information about the integral of the whole electron content along the vertical or slant raypath, these maps are not useful when information about the ionosphere at different altitude is required. This paper presents a recent study which aims at developing a global 3-D model of the electron density, using measurements from Global Navigation Satellite Systems and by applying the ray tracing technique to the upper atmosphere. The developed modeling approach represents the horizontal variations of the electron density, with two sets of spherical harmonic expansions of degree and order 15. The height dependency of the electron density is represented by a multilayered Chapman profile function for the bottomside and topside ionosphere, and an appropriate model for the plasmasphere. In addition to the geodetic applications of the developed models, within this study, the 3-D models of electron density can include geophysical parameters like maximum electron density and its corresponding height. High-resolution modeling of these parameters allows an improved geophysical interpretation, which is essential in all studies of the upper atmosphere, space weather, and for the solar-terrestrial environment.

  7. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    NASA Astrophysics Data System (ADS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  8. Wave Measurements Using GPS Velocity Signals

    PubMed Central

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves. PMID:22346618

  9. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    NASA Astrophysics Data System (ADS)

    Shiddiqi, Hasbi Ash; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono, Sutiyono, Handayani, Titi; Nugroho, Hendro

    2015-04-01

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  10. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    SciTech Connect

    Shiddiqi, Hasbi Ash E-mail: h.a.shiddiqi@gmail.com; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono,; Sutiyono,; Handayani, Titi; Nugroho, Hendro

    2015-04-24

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  11. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  12. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  13. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  14. Development of portable 3D optical measuring system using structured light projection method

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroshi

    2014-05-01

    Three-dimensional (3D) scanners are becoming increasingly common in many industries. However most of these scanning technologies have drawbacks for practical use due to size, weight, accessibility, and ease-of-use. Depending on the application, speed, flexibility and portability can often be deemed more important than accuracy. We have developed a solution to address this market requirement and overcome the aforementioned limitations. To counteract shortcomings such as heavy weight and large size, an optical sensor is used that consists of a laser projector, a camera system, and a multi-touch screen. Structured laser light is projected onto the measured object with a newly designed laser projector employing a single Micro Electro Mechanical Systems (MEMS) mirror. The optical system is optimized for the combination of a Laser Diode (LD), the MEMS mirror and the size of measurement area to secure the ideal contrast of structured light. Also, we developed a new calibration algorithm for this sensor with MEMS laser projector that uses an optical camera model for point cloud calculation. These technical advancements make the sensor compact, save power consumption, and reduce heat generation yet still allows for rapid calculation. Due to the principle of the measurement, structured light triangulation utilizing phase-shifting technology, resolution is improved. To meet requirements for practical applications, the optics, electronics, image processing, display and data management capabilities have been integrated into a single compact unit.

  15. Calculation of three-dimensional (3-D) internal flow by means of the velocity-vorticity formulation on a staggered grid

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1995-01-01

    A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.

  16. The LLNL-G3D global P-wave velocity model and the significance of the BayesLoc multiple-event location procedure

    NASA Astrophysics Data System (ADS)

    Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2011-12-01

    LLNL-G3D is a global-scale model of P-wave velocity designed to accurately predict seismic travel times at regional and teleseismic distances simultaneously. The underlying goal of the model is to provide enhanced seismic event location capabilities. Previous versions of LLNL-G3D (versions 1 and 2) provide substantial improvements in event location accuracy via 3-D ray tracing. The latest models are based on ~2.7 million P and Pn arrivals that are re-processed using our global multi-event locator known as BayesLoc. Bayesloc is a formulation of the joint probability distribution across multiple-event location parameters, including hypocenters, travel time corrections, pick precision, and phase labels. Modeling the whole multiple-event system results in accurate locations and an internally consistent data set that is ideal for tomography. Our recently developed inversion approach (called Progressive Multi-level Tessellation Inversion or PMTI) captures regional trends and fine details where data warrant. Using PMTI, we model multiple heterogeneity scale lengths without defining parameter grids with variable densities based on some ad hoc criteria. LLNL-G3Dv3 (version 3) is produced with data generated with the BayesLoc procedure, recently modified to account for localized travel time trends via a multiple event clustering technique. We demonstrate the significance of BayesLoc processing, the impact on the resulting tomographic images, and the application of LLNL-G3D to seismic event location. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-491805.

  17. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  18. The 3-D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu; Obana, Koichiro; Yamamoto, Yojiro; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-05-01

    waves at high frequencies (>1 Hz) show collapsed and broadened wave trains caused by multiple scattering in the lithosphere. This study analyzed the envelopes of direct S waves in southwestern Japan and on the western side of the Nankai trough and estimated the spatial distribution of random inhomogeneities by assuming a von Kármán type power spectral density function (PSDF). Strongly inhomogeneous media have been mostly imaged at shallow depth (0-20 km depth) in the onshore area of southwestern Japan, and their PSDF is represented as P(m) ≈ 0.05m-3.7 km3, with m being the spatial wave number, whereas most of the other area shows weak inhomogeneities of which PSDF is P(m) ≈ 0.005m-4.5 km3. At Hyuga-nada in Nankai trough, there is an anomaly of inhomogeneity of which PSDF is estimated as P(m) ≈ 0.01m-4.5 km3. This PSDF has the similar spectral gradient with the weakly inhomogeneous media, but has larger power spectral density than other offshore areas. This anomalous region is broadly located in the subducted Kyushu Palau ridge, which was identified by using velocity structures and bathymetry, and it shows no clear correlation with the fault zones of large earthquakes in past decades. These spatial correlations suggest that possible origins of inhomogeneities at Hyuga-nada are ancient volcanic activity in the oceanic plate or deformed structures due to the subduction of the Kyushu Palau ridge.

  19. Acoustic Measurement of Potato Cannon Velocity

    ERIC Educational Resources Information Center

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  20. LABORATORY MEASUREMENT OF SULFUR DIOXIDE DEPOSITION VELOCITIES

    EPA Science Inventory

    Measurements of sulfur dioxide deposition velocities have been carried out in the laboratory with the use of a cylindrical flow reaction. Analysis of data from these experiments was performed with models that specifically account for diffusive transport in the system. Consequentl...

  1. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    SciTech Connect

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.; Hanson, J. D.

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  2. Comparison of clinical bracket point registration with 3D laser scanner and coordinate measuring machine

    PubMed Central

    Nouri, Mahtab; Farzan, Arash; Baghban, Ali Reza Akbarzadeh; Massudi, Reza

    2015-01-01

    OBJECTIVE: The aim of the present study was to assess the diagnostic value of a laser scanner developed to determine the coordinates of clinical bracket points and to compare with the results of a coordinate measuring machine (CMM). METHODS: This diagnostic experimental study was conducted on maxillary and mandibular orthodontic study casts of 18 adults with normal Class I occlusion. First, the coordinates of the bracket points were measured on all casts by a CMM. Then, the three-dimensional coordinates (X, Y, Z) of the bracket points were measured on the same casts by a 3D laser scanner designed at Shahid Beheshti University, Tehran, Iran. The validity and reliability of each system were assessed by means of intraclass correlation coefficient (ICC) and Dahlberg's formula. RESULTS: The difference between the mean dimension and the actual value for the CMM was 0.0066 mm. (95% CI: 69.98340, 69.99140). The mean difference for the laser scanner was 0.107 ± 0.133 mm (95% CI: -0.002, 0.24). In each method, differences were not significant. The ICC comparing the two methods was 0.998 for the X coordinate, and 0.996 for the Y coordinate; the mean difference for coordinates recorded in the entire arch and for each tooth was 0.616 mm. CONCLUSION: The accuracy of clinical bracket point coordinates measured by the laser scanner was equal to that of CMM. The mean difference in measurements was within the range of operator errors. PMID:25741826

  3. Countermovement jump performance assessment using a wearable 3D inertial measurement unit.

    PubMed

    Picerno, Pietro; Camomilla, Valentina; Capranica, Laura

    2011-01-01

    The aim of this study was to validate a wearable inertial measurement unit (IMU), containing a 3D accelerometer and gyroscope, for the estimation of countermovement jump height. The absolute vertical acceleration of the IMU positioned on the back of the participant at L5 level, compensated for trunk rotations, was used to obtain jump height by applying the equation of free-fall to the motion of the IMU. The methodology was tested on 28 participants performing five countermovement jumps each. A reference value for this quantity was obtained using stereophotogrammetry (35.4 cm, s = 4.9). Jump height scores obtained using the proposed methodology (35.9 cm, s = 5.5) presented no significant difference with respect to stereophotogrammetry (P = 0.61). A low bias of 0.6 cm confirmed the accuracy of the estimate, which also showed a high (r = 0.87) and significant (P < 0.0001) correlation with reference values. Furthermore, without compensating accelerations for trunk rotation, jump height was largely underestimated (P < 0.0001) (bias: -12.7 cm) and poorly associated (r = 0.31) with stereophotogrammetry. The results of this study show that the estimation of jump height using inertial sensors leads to accurate results when the measured accelerations are corrected for trunk rotations. PMID:21120742

  4. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  5. Test of high-resolution 3D P-wave velocity model of Poland by back-azimuthal sections of teleseismic receiver function

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2015-04-01

    Geological and seismic structure under area of Poland is well studied by over one hundred thousand boreholes, over thirty deep seismic refraction and wide angle reflection profiles and by vertical seismic profiling, magnetic, gravity, magnetotelluric and thermal methods. Compilation of these studies allowed to create a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Polkowski et al. 2014). Model also provides details about the geometry of main layers of sediments (Tertiary and Quaternary, Cretaceous, Jurassic, Triassic, Permian, old Paleozoic), consolidated/crystalline crust (upper, middle and lower) and uppermost mantle. This model gives an unique opportunity for calculation synthetic receiver function and compering it with observed receiver function calculated for permanent and temporary seismic stations. Modified ray-tracing method (Langston, 1977) can be used directly to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. So, 3D P-wave velocity model has been interpolated to 2.5D P-wave velocity model beneath each seismic station and back-azimuthal sections of components of receiver function have been calculated. Vp/Vs ratio is assumed to be 1.8, 1.67, 1.73, 1.77 and 1.8 in the sediments, upper/middle/lower consolidated/crystalline crust and uppermost mantle, respectively. Densities were calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Additionally, to test a visibility of the lithosphere-asthenosphere boundary phases at receiver function sections models have been extended to 250 km depth based on P4-mantle model (Wilde-Piórko et al., 2010). National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284 and by NCN grant UMO-2011/01/B/ST10/06653.

  6. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  7. Quantifying bone weathering stages using the average roughness parameter Ra measured from 3D data

    NASA Astrophysics Data System (ADS)

    Vietti, Laura A.

    2016-09-01

    Bone surface texture is known to degrade in a predictable fashion due to subaerial exposure, and can thus act as a relative proxy for estimating temporal information from modern and ancient bone assemblages. To date, the majority of bone weathering data is collected on a categorical scale based on descriptive terms. While this qualitative classification of weathering data is well established, textural analyses of bone surfaces may provide means to quantify weathering stages but have yet to be tested. Here, I examined the suitability of textural analyses for bone weathering studies by first establishing bone surface regions most appropriate for weathering analyses. I then measured and compared the roughness texture of weathered bones at different stages. To establish regions of bone most suitable for textural analyses, Ra was measured from 3D scans of dorsal ribs of four adult ungulate taxa. Results indicate that the rib-shafts from unweathered ungulate skeletons were similar and are likely good candidates because differences in surface texture will not be due to differences in initial bone texture. To test if textural measurements could reliably characterize weathering stages, the average roughness values (Ra) were measured from weathered ungulate rib-shafts assigned to four descriptive weathering stages. Results from analyses indicate that the Ra was statistically distinct for each weathering stage and that roughness positively correlates with the degree of weathering. As such, results suggest that textural analyses may provide the means for quantifying bone-weathering stages. Using Ra and other quantifiable texture parameters may enable more reliable and comparative taphonomic analyses by reducing inter-observer variations and by providing numerical data more compatible for multivariate statistics.

  8. Relocation of the Waldkirch seismic event, December 5, 2004, with regional 1D- and 3D-velocity models in the presence of upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Muench, Thomas; Koch, Manfred; Schlittenhard, Jörg

    2010-05-01

    On December 5, 2004 a strong earthquake occurred near the city of Waldkirch, about 30 km's north of Freiburg, with a local magnitude of ML = 5.4. This seismic event was one of the strongest observed since the ML = 5.7 'Schwäbische Alb' event of September 3, 1978, 30 years before. In the aftermath of the event several institutions (Bens, BGR, LGBR, LED, SED and NEIC) have attempted to relocate this earthquake that came up with a hypocentral depth range of 9 - 12 km which. In fact, as the exact hypocentral location of the Waldkirch - and other events in the area - namely, the seismic depths, are of utmost importance for the further understanding of the seismotectonics as well as of the seismic hazard in the upper Rhinegraben area, one cannot over stress the necessity for a hypocenter relocation as best as possible. This requires a careful analysis of all factors that may impede an unbiased relocation of such an event. In the present talk we put forward the question whether the Waldkirch seismic event can be relocated with sufficient accuracy by a regional network when, additionally, improved regional 1D- and 3D seismic velocity models for the crust and upper mantle that take into consideration Pn-anisotropy of the upper mantle beneath Germany are employed in the hypocentral determination process. The seismological work starts with a comprehensive analysis of the dataset available for the relocation of the event. By means of traveltime curves a reevaluation of the observed phases is done and it is shown that some of the big observed traveltime residuals are most likely the consequence of wrongly associated phases as well as of the neglect of the anisotropic Pn traveltime correction for the region. Then hypcocenter relocations are done for 1D vertically inhomogeneous and 3D laterally inhomogeneous seismic velocity models, without and with the anisotropic Pn-traveltime correction included. The effects of the - often not well-known - Moho depth and of the VP

  9. 3D shape measurements of fast moving rough surfaces by two tilted interference fringe systems

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Günther, Philipp; Czarske, Jürgen W.

    2013-04-01

    Shape measurement of moving, especially rotating objects is an important task in the field of process control. The Laser Doppler Distance Sensor was invented for this purpose. It is realized by two tilted interference fringe systems and enables the simultaneous measurement of the surface velocity and profile. The distance is coded in the phase difference between the generated interference signals of two photo detectors. In order to achieve a distance uncertainty of below 1μm a steep calibration function is necessary. This can be achieved by increasing the tilting angle. However, due to the speckle effect at rough surfaces, random envelopes and phase jumps occur disturbing the phase difference estimation with increasing tilting angle. This problem was overcome recently by employing a receiving optics matching reducing the distance uncertainty by about one magnitude. By evaluating the Doppler frequencies of the two fringe systems the surface velocity and thereby the objects mean diameter can be calculated as well as angular misalignment of the sensor can be detected.

  10. Calibrating Phase Delay Measurements and Comparison of 3-D Waveform Kernels with and without Near-field Terms

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.

    2012-12-01

    We present the calibration of an automated scheme to properly window the fundamental surface wave mode of an event record. Multi-taper fundamental mode phase delay measurements were made on a synthetic dataset. Measurement errors are reduced when minimal over tone energy is included in the window. The time window is calibrated by simply varying the minimum and maximum surface wave velocities used to determine the beginning and ending window times with source-receiver distance, as opposed to constant velocities. We compare phase delay measurements with and without calibration against measurements made manually. Manual window setting of a small representative subset of event seismograms are used to adjust these minimum and maximum surface wave velocities. The orthogonal 2.5π-prolate spheroidal wave function eigentapers (Slepian tapers) used in multi-taper methods reduce noise biasing, and can provide error estimates in phase delay measurements. Additionally, we examine the effects of excluding near-field terms in the calculation of 3-D finite-frequency waveform kernels for Rayleigh and Love waves on a synthetic dataset. Two methods of kernel calculation based on the single scatterer Born approximation are compared, that of Panning and Nolet (2008) and Zhao and Chevrot (2011). The Panning and Nolet (2008) method calculates the strain Green's tensors for the source-scatterer and scatterer-receiver paths by the summation of asymptotic surface wave modes, which is an inherently far-field approximation. Waveform kernels are then found by convolution (in the time domain) of these strain Green's tensors. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. The Zhao and Chevrot (2011) method creates a database of the set of strain Green's tensors for the source-scatterer (two-sided strain Green's tensor) and scatterer-receiver (one-sided strain Green's tensor) paths, and is calculated by normal mode summation. The full-wave waveform

  11. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    SciTech Connect

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  12. A high-resolution 3D seismic velocity model of the 2010 Mw 8.8 Maule, Chile earthquake rupture zone using land & OBS networks

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Miller, M.; Lee, C.

    2013-12-01

    Knowledge of seismic properties along a subduction megathrust can shed light on the composition and structure of rocks along the fault. By comparing seismic velocity structure with models of interseismic locking, co-seismic slip and afterslip, we can begin to understand how physical properties may affect fault dynamics throughout the subduction seismic cycle. The Maule earthquake, which hit the coast of central Chile in 2010, is the 6th largest earthquake ever recorded, rupturing a 500 x 80 km area of the Chilean megathrust. Published models demonstrate a complex bilateral rupture, with most co-seismic slip occurring to the north of the mainshock epicentre, although significant slip likely stopped short of the trench and the continental Moho. Here, we show a new high-resolution 3D velocity model (vp and vp/vs ratio) of the central Chilean margin Our velocity model is based on manually picked P- and S-wave arrival times from 670 aftershocks recorded by the International Maule Aftershock Deployment (IMAD) network. Seismic properties of the marine forearc are poorly understood in subduction zones, but by incorporating picks from two ocean-bottom seismometer (OBS) networks, we can resolve the velocity structure of the megathrust as far as the trench. In total, the catalogue used for the tomographic inversion yields a total of ~50,000 high quality P- and S-wave picks. We analyse the quality of our model by analysis of the resolution matrix and by testing characteristic models. The 3D velocity model shows the main structures associated within a subduction forearc: the marine forearc basin (vp < 6.0 km/s), continental mantle (vp > 7.5 km/s), and subducting oceanic crust (vp ~ 7.7 km/s). The plate interface is well defined by relocated aftershock seismicity. P-wave velocities along the megathrust range from 6.5 km/s beneath the marine forearc to 7.7 km/s at the intersection of the megathrust with the continental Moho. We infer several high vp anomalies within the South

  13. Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information

    PubMed Central

    Heo, Hwan; Lee, Won Oh; Shin, Kwang Yong; Park, Kang Ryoung

    2014-01-01

    We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD), stereoscopic disparity (SD), frame cancellation effect (FCE), and edge component (EC) of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors. PMID:24834910

  14. 3-D P-wave velocity structure and seismicity in Central Costa Rica from Local Earthquake Tomography using an amphibic network

    NASA Astrophysics Data System (ADS)

    Arroyo, I.; Husen, S.; Flueh, E.; Alvarado, G. E.

    2008-12-01

    The Central Pacific sector of the erosional margin in Costa Rica shows a high seismicity rate, coincident with the subduction of rough-relief ocean floor, and generates earthquakes up to Mw 7. Precise earthquake locations and detailed knowledge of the 3-D velocity structure provide key insights into the dynamics of subduction zones. To this end, we performed a 3-D Local Earthquake Tomography using P-wave traveltimes from 595 selected events recorded by a seismological network of off- and onshore stations, deployed for 6 months in the area. The results reflect the complexity associated to subduction of bathymetric highs and the transition from normal to thickened oceanic crust (Cocos Ridge). The slab is imaged as a high-velocity anomaly with a band of low velocities (LVB) on top enclosing the intraslab events deeper than ~30 km. Below the margin slope, the LVB is locally thickened by at least two seamounts. We observe an abrupt, eastward widening of the LVB, preceded by a low-velocity anomaly under the continental shelf, which we interpret as a big seamount. The thickening coincides with an inverted basin at the inner forearc and a low-velocity anomaly under it. The latter appears in a sector where blocks of inner forearc are uplifted, possibly by underplating of eroded material against the base of the crust. The anomaly promotes seismicity by high-friction with the upper plate, and could be linked to a Mw 6.4 earthquake in 2004. In the west part of the area, the interplate seismicity forms a cluster beneath the continental shelf. Its updip limit coincides with the 150° C isotherm and an increase in Vp along the plate boundary. This further supports a proposed model in which the seismicity onset along the plate interface is mainly due to a decrease in the abundance of the fluids released by subducted sediments. Higher seismicity rates locally concur with seamounts present at the seismogenic zone, while seamounts under the margin slope may shallow the onset of

  15. 3D Equilibrium Reconstruction with Internal Measurements on Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Koliner, J. J.; Chapman, B. E.; Sarff, J. S.; Anderson, J. K.; Munaretto, S.; Capecchi, W.; Lin, L.; Hanson, J. D.; Cianciosa, M. R.

    2014-10-01

    Plasmas in the MST reversed field pinch (RFP) bifurcate to a helical equilibrium, forming a single helical axis (SHAx) at high plasma current (Ip ~ 500 kA) and low density (ne ~ 0.5 - 1019 m-3) . In order to understand the physics of confinement and self-organization in SHAx, 3D equilibrium reconstruction is needed. The V3FIT equilibrium reconstruction code is applied using measurements from the 11-chord interferometer-polarimeter, 22-point Thomson scattering system, 4-camera soft x-ray probes, and magnetics. Equilibria have been generated using a fixed plasma boundary with no external currents. Model signals fit well to observed signals, χ2 ~ 1, and the zero crossing of line-averaged neBz from Faraday rotation is matched by the model. External magnetics are shown to be an inadequate equilibrium constraint with the VMEC model, due to possible shear in the poloidal phase of the helical structure, as well as strong contribution to the edge magnetic field from currents in the conducting shell. To address this shortcoming, a filament current model has been created to simulate the conducting shell with many external currents for a free plasma boundary. Axisymmetric equilibria have been reconstructed using the filament model and compared to solutions obtained with the MSTFIT axisymmetric equilibrium reconstruction code. The filament model has been extended to allow reconstruction of helical equilibria. Supported by DoE.

  16. Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes.

    PubMed

    Gómez, F; Fleta, C; Esteban, S; Quirion, D; Pellegrini, G; Lozano, M; Prezado, Y; Dos Santos, M; Guardiola, C; Montarou, G; Prieto-Pena, J; Pardo-Montero, Juan

    2016-06-01

    The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a (12)C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices. PMID:27163881

  17. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  18. Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images.

    PubMed

    Stull, Kyra E; Tise, Meredith L; Ali, Zabiullah; Fowler, David R

    2014-05-01

    Forensic pathologists commonly use computed tomography (CT) images to assist in determining the cause and manner of death as well as for mass disaster operations. Even though the design of the CT machine does not inherently produce distortion, most techniques within anthropology rely on metric variables, thus concern exists regarding the accuracy of CT images reflecting an object's true dimensions. Numerous researchers have attempted to validate the use of CT images, however the comparisons have only been conducted on limited elements and/or comparisons were between measurements taken from a dry element and measurements taken from the 3D-CT image of the same dry element. A full-body CT scan was performed prior to autopsy at the Office of the Chief Medical Examiner for the State of Maryland. Following autopsy, the remains were processed to remove all soft tissues and the skeletal elements were subject to an additional CT scan. Percent differences and Bland-Altman plots were used to assess the accuracy between osteometric variables obtained from the dry skeletal elements and from CT images with and without soft tissues. An additional seven crania were scanned, measured by three observers, and the reliability was evaluated by technical error of measurement (TEM) and relative technical error of measurement (%TEM). Average percent differences between the measurements obtained from the three data sources ranged from 1.4% to 2.9%. Bland-Altman plots illustrated the two sets of measurements were generally within 2mm for each comparison between data sources. Intra-observer TEM and %TEM for three observers and all craniometric variables ranged between 0.46mm and 0.77mm and 0.56% and 1.06%, respectively. The three-way inter-observer TEM and %TEM for craniometric variables was 2.6mm and 2.26%, respectively. Variables that yielded high error rates were orbital height, orbital breadth, inter-orbital breadth and parietal chord. Overall, minimal differences were found among the

  19. Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-09-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H,H2+, CH4+ and N2+ is stronger than in the previous simulations when O + ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfvén wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  20. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  1. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of our galaxies. We are able to fit the full range of surface brightness profiles found in our sample, and in addition we reproduce the results of state-of-the-art photometry in the literature with residuals of 0.04 mag. We utilize these photometric models and SAURON integral-field spectroscopy, combined with Jeans dynamical modelling, to determine the local Vesc derived from the surface brightness. We find that the local Vesc is tightly correlated with the Mg b and Fe5015 line strengths and optical colours, and anti-correlated with the Hβ line strength. In the case of the Mg b and colour-Vesc relations we find that the relation within individual galaxies follows the global relation between different galaxies. We intentionally ignored any uncertain contribution due to dark matter since we are seeking an empirical description of stellar population gradients in early-type galaxies that is ideal for quantitative comparison with model predictions. We also make use of single stellar population (SSP) modelling to transform our line strength index measurements into the SSP-equivalent parameters age (t), metallicity ([Z/H]) and α-enhancement [α/Fe]. The residuals from the relation are correlated with age, [α/Fe], molecular gas mass and local environmental density. We identify a population of galaxies that occur only at low Vesc that exhibit negative gradients in the Mg b- and Colour-Vesc relations. These galaxies typically have young central stellar populations and contain significant amounts of molecular gas and dust. Combining these results with N-body simulations of binary mergers we use the Mg b-Vesc relation to constrain the possible number of dry mergers experienced by

  2. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  3. Vertical Velocity Measurements in Warm Stratiform Clouds

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Kollias, P.

    2013-12-01

    Measurements of vertical air motion in warm boundary layer clouds are key for quantitatively describing cloud-scale turbulence and for improving our understanding of cloud and drizzle microphysical processes. Recently, a new technique that produces seamless measurements of vertical air velocity in the cloud and sub-cloud layers for both drizzling and non-drizzling stratocumulus clouds has been developed. The technique combines radar Doppler spectra-based retrievals of vertical air motion in cloud and light drizzle conditions with a novel neural network analysis during heavily drizzling periods. Observations from Doppler lidars are used to characterize sub-cloud velocities and to evaluate the performance of the technique near the cloud base. The technique is applied to several cases of stratiform clouds observed by the ARM Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign in Cape Cod. The observations clearly illustrate coupling of the sub-cloud and cloud layer turbulent structures.

  4. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography

    NASA Astrophysics Data System (ADS)

    Wawerzinek, B.; Ritter, J. R. R.; Roy, C.

    2013-08-01

    We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.

  5. Nano-Structural Elucidation in Carbon Black Loaded NR Vulcanizate by 3D-TEM and In Situ WAXD Measurements

    SciTech Connect

    Ikeda,Y.; Kato, A.; Shimanuki, J.; Kohjiya, S.; Tosaka, M.; Poompradub, S.; Toki, S.; Hsiao, B.

    2007-01-01

    Three dimensional (3D) visualization of nanometer structure of carbon black dispersion in rubbery matrix has successfully been studied and reported in this paper. Use of 3D-TEM, which is computerized tomography combined with transmission electron microscopy (TEM), enabled us to reconstruct 3D images of carbon black aggregates in natural rubber (NR) matrix. The TEM measurements were conducted by a bright-field method on thin samples without any electron staining. The sample was subject to uni-axial tilting (+65 degree to -65 degree with 2 degree increment) in the sample chamber, and 66 TEM images were taken on each sample. These TEM images were used for computerized tomography to reconstruct the 3D image. This technique is designated as 3D-TEM. The nano-structural features observed by 3D-TEM were in conformity with the electron-conductivity results, and the percolation behavior was recognized. These results were further supplemented by in situ wide-angle X-ray diffraction (WAXD), i.e., simultaneous WAXD and tensile measurements on the sample to observe the strain-induced crystallization in NR vulcanizate. Upon tensile elongation, the crystallization was clearly observed in WAXD in the presence of carbon black, and it contributed to the tensile properties. In order to understand the performances of filled NR vulcanizates, it surely is necessary to know the structural states of the mixed nano-filler and the crystallites produced upon elongation.

  6. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  7. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system.

    PubMed

    Tao, Tianyang; Chen, Qian; Da, Jian; Feng, Shijie; Hu, Yan; Zuo, Chao

    2016-09-01

    In recent years, fringe projection has become an established and essential method for dynamic three-dimensional (3-D) shape measurement in different fields such as online inspection and real-time quality control. Numerous high-speed 3-D shape measurement methods have been developed by either employing high-speed hardware, minimizing the number of pattern projection, or both. However, dynamic 3-D shape measurement of arbitrarily-shaped objects with full sensor resolution without the necessity of additional pattern projections is still a big challenge. In this work, we introduce a high-speed 3-D shape measurement technique based on composite phase-shifting fringes and a multi-view system. The geometry constraint is adopted to search the corresponding points independently without additional images. Meanwhile, by analysing the 3-D position and the main wrapped phase of the corresponding point, pairs with an incorrect 3-D position or a considerable phase difference are effectively rejected. All of the qualified corresponding points are then corrected, and the unique one as well as the related period order is selected through the embedded triangular wave. Finally, considering that some points can only be captured by one of the cameras due to the occlusions, these points may have different fringe orders in the two views, so a left-right consistency check is employed to eliminate those erroneous period orders in this case. Several experiments on both static and dynamic scenes are performed, verifying that our method can achieve a speed of 120 frames per second (fps) with 25-period fringe patterns for fast, dense, and accurate 3-D measurement. PMID:27607632

  8. A 3-D velocity structure in and around the Miura peninsula, Japan, using a 3-component off-line seismographic array.

    NASA Astrophysics Data System (ADS)

    Kawamura, T.; Hirata, N.; Sato, H.; Onishi, M.; Noda, K.; Saito, H.

    2004-12-01

    A deep seismic profiling around the Metropolitan Tokyo region, the Kanto district, started in 2002 under the project titled as the Regional Characterization of the Crust in Metropolitan Areas for Prediction of Strong Ground Motion. The deep seismic profiling, Tokyo Bay 2003, was performed along the major axis of the Tokyo Bay. Because the seismic line in the Miura peninsula passes through a densely populated area, we have a low signal-to-noise ratio data due to the cultural noise. Thus, in addition to the conventional reflection profiling, we deployed 51 off-line recorders with a 3-compornent geophone of 4.5 Hz at carefully selected, quiet receiver points. During 90 days, we had continuous records including many shot signals produced by vibrators on land and air-guns at the bay area. These data provided far-offset first arrival signals and wide angle reflections. We focus on the common receiver gather records of the Tokyo Bay 2003 off-line stations data to identify first arrival and wide angle phases. We applied the first arrival tomography method using a finite difference travel time solver (Hole, 1992) to those data to obtain a 3-D P-wave velocity structure of the uppermost crust along the profile. We obtained a velocity model in and around the Miura peninsula as follows: Across the Tokyo Bay, near surface is a layer with velocities of 2.0-2.5 km/s. A low velocity area corresponds to the fore-arc basin sediment (post Early Miocene) which extends to a depth of approximately 4 km. High velocity patches are located at a depth of approximately 6 km under the Miura peninsula, which we interpreted as Pre-Neogene basement rocks. Finally, the velocity structure obtained by the tomography analysis is used to improve the processing of the reflection profiling data to clarify the deeper structure in the peninsula, including a good velocity constraint for a pre-stack migration of the reflection profiling data.

  9. Contribution of a 3D velocity model and of beam forming method for the location of microseismic sources generated in soft rock landslides

    NASA Astrophysics Data System (ADS)

    Provost, Floriane; Malet, Jean-Philippe; Helmstetter, Agnès; Doubre, Cécile; Gance, Julien

    2016-04-01

    Microseismicity monitoring has proven to be an important tool for a better understanding of the deformation occurring in slow-sliding landslides. However locating the seismic sources generated by a landslide remains a challenging problem due to (1) the small sizes of the landslide, (b) the heterogenous and time-changing petro-physical properties of the landslide material, (c) the complexity of the recorded signals with unclear discriminations of the wave onsets, and (d) the difficulties to install and maintain a dense seismological network on-site close to the seismic sources. We studied the seismic sources generated by the deformation of the clay-rich Super-Sauze landslide (South French Alps). Previous studies show that the most active zone is the uphill part of the landslide within a zone of 300x300m2. Two seismic antennas have been installed on the sides of this zone and a seismic campaign was conducted to build a 3D velocity model of the area. Calibration shots were performed to test the performance of the location method. We show that the use of a 3D velocity model integrated in a beam forming location method slightly improves the accuracy of the shot location epicenter. However, this approach does not help to interpret with confidence the location of the natural events because the horizontal error remains larger than 50m for more than 50% of the shots. Nevertheless, adding station corrections and constraining the grid search area with additional informations based on the signal and the landslide behavior such as SNR, seismic event typology, and surface kinematics of the landslide allow obtaining reliable results. More than 70% of the calibration shots could be located with a horizontal error of less than 40m. The lack of sensor installed in depth as well as the the lack of calibration shots realized at different depths does not permit us to identify the depth of the sources.

  10. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  11. Using twelve years of USGS refraction lines to calibrate the Brocher and others (1997) 3D velocity model of the Bay Area

    USGS Publications Warehouse

    Boatwright, John; Blair, Luke; Catchings, Rufus; Goldman, Mark; Perosi, Fabio; Steedman, Clare

    2004-01-01

    Campbell (1983) demonstrated that site amplification correlates with depths to the 1.0, 1.5, and 2.5 km/s S-wave velocity horizons. To estimate these depths for the Bay Area stations in the PEER/NGA database, we compare the depths to the 3.2 and 4.4 km/s P-wave velocities in the Brocher and others (1997) 3D velocity model with the depths to these horizons determined from 6 refraction lines shot in the Bay Area from 1991 to 2003. These refraction lines range from two recent 20 km lines that extend from Los Gatos to downtown San Jose, and from downtown San Jose into Alum Rock Park, to two older 200 km lines than run axially from Hollister up the San Francisco Peninsula to Inverness and from Hollister up the East Bay across San Pablo Bay to Santa Rosa. Comparison of these cross-sections with the Brocher and others (1997) model indicates that the 1.5 km/s S-wave horizon, which we correlate with the 3.2 km/s P-wave horizon, is the most reliable horizon that can be extracted from the Brocher and others (1997) velocity model. We determine simple adjustments to bring the Brocher and others (1997) 3.2 and 4.4 km/s P-wave horizons into an average agreement with the refraction results. Then we apply these adjustments to estimate depths to the 1.5 and 2.5 km/s S-wave horizons beneath the strong motion stations in the PEER/NGA database.

  12. Planar velocity measurements in compressible mixing layers

    NASA Astrophysics Data System (ADS)

    Urban, William David

    1999-10-01

    The efficiency of high-Mach number airbreathing propulsion devices is critically dependent upon the mixing of gases in turbulent shear flows. However, compressibility is known to suppress the growth rates of these mixing layers, posing a problem of both practical and scientific interest. In the present study, particle image velocimetry (PIV) is used to obtain planar, two- component velocity fields for Planar gaseous shear layers at convective Mach numbers Mc of 0.25, 0.63, and 0.76. The experiments are performed in a large-scale blowdown wind tunnel, with high-speed freestream Mach numbers up to 2.25 and shear-layer Reynolds numbers up to 106 . The instantaneous data are analyzed to produce maps of derived quantities such as vorticity, and ensemble averaged to provide turbulence statistics. Specific issues relating to the application of PIV to supersonic flows are addressed. In addition to the fluid- velocity measurements, we present double-pulsed scalar visualizations, permitting inference of the convective velocity of the large-scale structures, and examine the interaction of a weak wave with the mixing layer. The principal change associated with compressibility is seen to be the development of multiple high-gradient regions in the instantaneous velocity field, disrupting the spanwise-coherent `roller' structure usually associated with incompressible layers. As a result, the vorticity peaks reside in multiple thin sheets, segregated in the transverse direction. This suggests a decrease in cross-stream communication and a disconnection of the entrainment processes at the two interfaces. In the compressible case, steep-gradient regions in the instantaneous velocity field often correspond closely with the local sonic line, suggesting a sensitivity to lab-frame disturbances; this could in turn explain the effectiveness of sub-boundary layer mixing enhancement strategies in this flow. Large- ensemble statistics bear out the observation from previous single

  13. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  14. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  15. Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Weekes, Ben; Ewins, David

    2015-06-01

    Continuous scan laser Doppler vibrometry (CSLDV) is a technique which has been described and explored in the literature for over two decades, but remains niche compared to SLDV inspection by a series of discrete-point measurements. This is in part because of the unavoidable phenomenon of laser speckle, which deteriorates signal quality when velocity data is captured from a moving spot measurement. Further, applicability of CSLDV has typically been limited to line scans and rectangular areas by the application of sine, step, or ramp functions to the scanning mirrors which control the location of the measurement laser spot. In this paper it is shown that arbitrary functions to scan any area can easily be derived from a basic calibration routine, equivalent to the calibration performed in conventional discrete-point laser vibrometry. This is extended by performing the same scan path upon a test surface from three independent locations of the laser head, and decomposing the three sets of one-dimensional deflection shapes into a single set of three-dimensional deflection shapes. The test was performed with multi-sine excitation, yielding 34 operating deflection shapes from each scan.

  16. Ultrasound velocities for axial eye length measurement.

    PubMed

    Hoffer, K J

    1994-09-01

    Since 1974, I have used individual sound velocities for each eye condition encountered for axial length measurement. The calculation results in 1,555 M/sec for the average phakic eye. A slower speed of 1,549 M/sec was found for an extremely long (30 mm) eye and a higher speed of 1,561 M/sec was noted for an extremely short (20 mm) eye. This inversely proportional velocity change can best be adjusted for by measuring the phakic eye at 1,532 M/sec and correcting the result by dividing the square of the measured axial length (AL1,532)2 by the difference of the measured axial length (AL1,532) minus 0.35 mm. A velocity of 1,534 M/sec was found for all aphakic eyes regardless of their length, and correction is clinically significant. The velocity of an eye containing a poly(methyl methacrylate) intraocular lens is not different from an average phakic eye but it does magnify the effect of axial length change. I recommend measuring the pseudophakic eye at 1,532 M/sec and adding to the result (AL1,532), + 0.04 + 44% of the IOL thickness. The speed for an eye with a silicone IOL was found to be 1,476 M/sec (or AL1,532 + 0.04 - 56% of IOL thickness) and for glass, 1,549 M/sec (or AL1,532 + 0.04 + 75% of IOL thickness). A speed of 1,139 M/sec was found for a phakic eye with silicone oil filling most of the vitreous cavity and 1,052 M/sec for an aphakic eye filled with oil. For varying volumes of oil, each eye should be calculated individually. The speed was 534 M/sec for phakic eyes filled with gas. Eyes containing a silicone IOL or oil or gas will create clinically significant errors (3 to 10 diopters) if the sound velocity is not corrected. PMID:7996413

  17. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  18. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

    PubMed Central

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-01-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments. PMID:26203364

  19. Measurement of neutrino masses from relative velocities.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek; Yu, Yu

    2014-09-26

    We present a new technique to measure neutrino masses using their flow field relative to dark matter. Present day streaming motions of neutrinos relative to dark matter and baryons are several hundred km/s, comparable with their thermal velocity dispersion. This results in a unique dipole anisotropic distortion of the matter-neutrino cross power spectrum, which is observable through the dipole distortion in the cross correlation of different galaxy populations. Such a dipole vanishes if not for this relative velocity and so it is a clean signature for neutrino mass. We estimate the size of this effect and find that current and future galaxy surveys may be sensitive to these signature distortions. PMID:25302878

  20. Measurements of non-target organ doses using MOSFET dosemeters for selected IMRT and 3D CRT radiation treatment procedures.

    PubMed

    Wang, Brian; Xu, X George

    2008-01-01

    Many expressed concerns about the potential increase in second cancer risk from the widespread shift to intensity-modulated radiation therapy (IMRT) techniques from traditional 3-D conformal radiation treatment (3D CRT). This paper describes the study on in-phantom measurements of radiation doses in organ sites away from the primary tumour target. The measurements involved a RANDO((R)) phantom and Metal Oxide Semiconductor Field Effect Transistor dosemeters for selected 3D CRT and IMRT treatment plans. Three different treatment plans, 4-field 3D CRT, 6-field 3D CRT and 7-field IMRT for the prostate, were considered in this study. Steps to reconstruct organ doses from directly measured data were also presented. The dosemeter readings showed that the doses decrease as the distances increase for all treatment plans. At 40 cm from the prostate target, doses were <1% of the therapeutic dose. At this location, however, the IMRT plan resulted in an absorbed dose from photons, that is a factor of 3-5 higher than the 3D CRT treatment plans. This increase on absorbed dose is due to the increased exposure time for delivering the IMRT plan. The total monitor unit (MU) was 2850 for the IMRT case, while the MU was 1308 and 1260 for 6-field and 4-field 3D CRT cases, respectively. Findings from this case study involving the prostate treatments agree with those from previous studies that IMRT indeed delivers higher photon doses to locations that are away from the primary target. PMID:17627959

  1. Unified system for holographic measurement in fluid and solid mechanics: use of the system for 3D displacement measurement on surfaces

    NASA Astrophysics Data System (ADS)

    Barnhart, Donald H.; Chan, Victor S. S.; Halliwell, Neil A.; Coupland, Jeremy M.

    1999-10-01

    This paper reports the use of a new holographic measurement system in the study of 3D surface displacements. Although equally applicable to fluid and solid mechanics, the aim of this report is to demonstrate the system's use in quantitative surface displacement measurements with a classical cantilever experiment, using a continuous-wave diode-pumped YAG laser system. The reported results exhibit an accuracy corresponding to other interferometric systems, but with a much larger displacement range. The measurement system employs a novel optical image shifting method to eliminate the problem of directional ambiguity. In addition, the reported system uses 3D complex correlation rather than 2D real correlation, thereby offering a direct method for measuring 3D displacement in 3D space. FInally, with the novel use of an optical fiber to probe the recorded holographic image space, it is found to be a simple matter to directly obtain 3D displacement measurements at precisely known surface locations.

  2. 3D velocity structure of the outer forearc of the Colombia-Ecuador subduction zone; implications for the 1958 megathrust earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Galve, A.; Charvis, P.; Garcia Cano, L.; Marcaillou, B.

    2013-12-01

    In 2005, we conducted an onshore-offshore 3D refraction and wide-angle reflection seismic experiment over the rupture zone of the 1958 subduction earthquake that occurred near the border between Colombia and Ecuador. This earthquake was part of a sequence of 3 large ruptures (1942, Mw=7.8; 1958, Mw=7.7; 1979, Mw=8.2), which successively broke from south to north the segments of the megathrust that had been ruptured in 1906 by a single, very large magnitude (8.8) earthquake. Using first arrival traveltime inversion, we constructed a well-defined Vp velocity model of the plate boundary and of the upper and lower plates, down to 25 km depth. The model reveals a 5-km thick, low velocity zone in the upper plate, located immediately above the interplate contact. Because similar low-velocity zones are commonly observed along margins made of oceanic or island-arc accreted terranes, we suggest that the low-velocity zone might result from the alteration and hydration of mafic and ultramafic rocks in the upper plate basement, rather than from hydrofracturing alone. Sediments underplated beneath the inner wedge might contribute to the low-velocity zone but it is unlikely that they are several kilometers thick. Nevertheless, fluids expelled by the compaction and dehydration of those underplated sediments possibly favor the alteration of the overlying rocks. The low-velocity zone is spatially coincident with the 1958 rupture area. Near the toe of the margin, the model shows a low velocity gradient in the outer wedge that we interpret as a zone of highly faulted and fractured rocks or of poorly consolidated sediments. This low velocity/low gradient region forms the oceanward limit of the rupture zones of both the 1958 and the 1979 earthquakes. We suggest that the two earthquake ruptures were arrested by the low velocity zone because its low rigidity contributed to dissipate most of the seismic energy and of the coseismic strain/stress. This might be the reason why the 1958

  3. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    SciTech Connect

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M.

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  4. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice

  5. Obstacle classification and 3D measurement in unstructured environments based on ToF cameras.

    PubMed

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-01-01

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient. PMID:24945679

  6. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras

    PubMed Central

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-01-01

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient. PMID:24945679

  7. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  8. Fast optical 3D form measurement of aspheres including determination of thickness and wedge and decenter errors

    NASA Astrophysics Data