Science.gov

Sample records for 3d video content

  1. Examination of 3D visual attention in stereoscopic video content

    NASA Astrophysics Data System (ADS)

    Huynh-Thu, Quan; Schiatti, Luca

    2011-03-01

    Recent advances in video technology and digital cinema have made it possible to produce entertaining 3D stereoscopic content that can be viewed for an extended duration without necessarily causing extreme fatigue, visual strain and discomfort. Viewers focus naturally their attention on specific areas of interest in their visual field. Visual attention is an important aspect of perception and its understanding is therefore an important aspect for the creation of 3D stereoscopic content. Most of the studies on visual attention have focused on the case of still images or 2D video. Only a very few studies have investigated eye movement patterns in 3D stereoscopic moving sequences, and how these may differ from viewing 2D video content. In this paper, we present and discuss the results of a subjective experiment that we conducted using an eye-tracking apparatus to record observers' gaze patterns. Participants were asked to watch the same set of video clips in a free-viewing task. Each clip was shown in a 3D stereoscopic version and 2D version. Our results indicate that the extent of areas of interests is not necessarily wider in 3D. We found a very strong content dependency in the difference of density and locations of fixations between 2D and 3D stereoscopic content. However, we found that saccades were overall faster and that fixation durations were overall lower when observers viewed the 3D stereoscopic version.

  2. Video retargeting for stereoscopic content under 3D viewing constraints

    NASA Astrophysics Data System (ADS)

    Chamaret, C.; Boisson, G.; Chevance, C.

    2012-03-01

    The imminent deployment of new devices such as TV, tablet, smart phone supporting stereoscopic display creates a need for retargeting the content. New devices bring their own aspect ratio and potential small screen size. Aspect ratio conversion becomes mandatory and an automatic solution will be of high value especially if it maximizes the visual comfort. Some issues inherent to 3D domain are considered in this paper: no vertical disparity, no object having negative disparity (outward perception) on the border of the cropping window. A visual attention model is applied on each view and provides saliency maps with most attractive pixels. Dedicated 3D retargeting correlates the 2D attention maps for each view as well as additional computed information to ensure the best cropping window. Specific constraints induced by 3D experience influence the retargeted window through the map computation presenting objects that should not be cropped. The comparison with original content of 2:35 ratio having black stripes provide limited 3D experience on TV screen, while the automatic cropping and exploitation of full screen show more immersive experience. The proposed system is fully automatic, ensures a good final quality without missing fundamental parts for the global understanding of the scene. Eye-tracking data recorded on stereoscopic content have been confronted to retargeted window in order to ensure that the most attractive areas are inside the final video.

  3. Automatic 3D video format detection

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Wang, Zhe; Zhai, Jiefu; Doyen, Didier

    2011-03-01

    Many 3D formats exist and will probably co-exist for a long time even if 3D standards are today under definition. The support for multiple 3D formats will be important for bringing 3D into home. In this paper, we propose a novel and effective method to detect whether a video is a 3D video or not, and to further identify the exact 3D format. First, we present how to detect those 3D formats that encode a pair of stereo images into a single image. The proposed method detects features and establishes correspondences between features in the left and right view images, and applies the statistics from the distribution of the positional differences between corresponding features to detect the existence of a 3D format and to identify the format. Second, we present how to detect the frame sequential 3D format. In the frame sequential 3D format, the feature points are oscillating from frame to frame. Similarly, the proposed method tracks feature points over consecutive frames, computes the positional differences between features, and makes a detection decision based on whether the features are oscillating. Experiments show the effectiveness of our method.

  4. Stereoscopic 3D video games and their effects on engagement

    NASA Astrophysics Data System (ADS)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  5. Geographic Video 3d Data Model And Retrieval

    NASA Astrophysics Data System (ADS)

    Han, Z.; Cui, C.; Kong, Y.; Wu, H.

    2014-04-01

    Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.

  6. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  7. 3-D video techniques in endoscopic surgery.

    PubMed

    Becker, H; Melzer, A; Schurr, M O; Buess, G

    1993-02-01

    Three-dimensional visualisation of the operative field is an important requisite for precise and fast handling of open surgical operations. Up to now it has only been possible to display a two-dimensional image on the monitor during endoscopic procedures. The increasing complexity of minimal invasive interventions requires endoscopic suturing and ligatures of larger vessels which are difficult to perform without the impression of space. Three-dimensional vision therefore may decrease the operative risk, accelerate interventions and widen the operative spectrum. In April 1992 a 3-D video system developed at the Nuclear Research Center Karlsruhe, Germany (IAI Institute) was applied in various animal experimental procedures and clinically in laparoscopic cholecystectomy. The system works with a single monitor and active high-speed shutter glasses. Our first trials with this new 3-D imaging system clearly showed a facilitation of complex surgical manoeuvres like mobilisation of organs, preparation in the deep space and suture techniques. The 3-D-system introduced in this article will enter the market in 1993 (Opticon Co., Karlsruhe, Germany. PMID:8050009

  8. Use scenarios: mobile 3D television and video

    NASA Astrophysics Data System (ADS)

    Strohmeier, Dominik; Weitzel, Mandy; Jumisko-Pyykkö, Satu

    2009-02-01

    The focus of 3D television and video has been in technical development while hardly any attention has been paid on user expectations and needs of related applications. The object of the study is to examine user requirements for mobile 3D television and video in depth. We conducted two qualitative studies, focus groups and probe studies, to improve the understanding of user approach. Eight focus groups were carried out with altogether 46 participants focusing on use scenario development. The data-collection of the probe study was done over the period of 4 weeks in the field with nine participants to reveal intrinsic user needs and expectations. Both studies were conducted and analyzed independently so that they did not influence each other. The results of both studies provide novel aspects of users, system and content, and context of use. In the paper, we present personas as first archetype users of mobile 3D television and video. Putting these personas into contexts, we summarize the results of our studies and previous related work in the form of use scenarios to guide the user-centered development of 3D television and video.

  9. Quality assessment of adaptive 3D video streaming

    NASA Astrophysics Data System (ADS)

    Tavakoli, Samira; Gutiérrez, Jesús; García, Narciso

    2013-03-01

    The streaming of 3D video contents is currently a reality to expand the user experience. However, because of the variable bandwidth of the networks used to deliver multimedia content, a smooth and high-quality playback experience could not always be guaranteed. Using segments in multiple video qualities, HTTP adaptive streaming (HAS) of video content is a relevant advancement with respect to classic progressive download streaming. Mainly, it allows resolving these issues by offering significant advantages in terms of both user-perceived Quality of Experience (QoE) and resource utilization for content and network service providers. In this paper we discuss the impact of possible HAS client's behavior while adapting to the network capacity on enduser. This has been done through an experiment of testing the end-user response to the quality variation during the adaptation procedure. The evaluation has been carried out through a subjective test of the end-user response to various possible clients' behaviors for increasing, decreasing, and oscillation of quality in 3D video. In addition, some of the HAS typical impairments during the adaptation has been simulated and their effects on the end-user perception are assessed. The experimental conclusions have made good insight into the user's response to different adaptation scenarios and visual impairments causing the visual discomfort that can be used to develop the adaptive streaming algorithm to improve the end-user experience.

  10. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology.

  11. Efficient streaming of stereoscopic depth-based 3D videos

    NASA Astrophysics Data System (ADS)

    Temel, Dogancan; Aabed, Mohammed; Solh, Mashhour; AlRegib, Ghaassan

    2013-02-01

    In this paper, we propose a method to extract depth from motion, texture and intensity. We first analyze the depth map to extract a set of depth cues. Then, based on these depth cues, we process the colored reference video, using texture, motion, luminance and chrominance content, to extract the depth map. The processing of each channel in the YCRCB-color space is conducted separately. We tested this approach on different video sequences with different monocular properties. The results of our simulations show that the extracted depth maps generate a 3D video with quality close to the video rendered using the ground truth depth map. We report objective results using 3VQM and subjective analysis via comparison of rendered images. Furthermore, we analyze the savings in bitrate as a consequence of eliminating the need for two video codecs, one for the reference color video and one for the depth map. In this case, only the depth cues are sent as a side information to the color video.

  12. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  13. Automatic detection of artifacts in converted S3D video

    NASA Astrophysics Data System (ADS)

    Bokov, Alexander; Vatolin, Dmitriy; Zachesov, Anton; Belous, Alexander; Erofeev, Mikhail

    2014-03-01

    In this paper we present algorithms for automatically detecting issues specific to converted S3D content. When a depth-image-based rendering approach produces a stereoscopic image, the quality of the result depends on both the depth maps and the warping algorithms. The most common problem with converted S3D video is edge-sharpness mismatch. This artifact may appear owing to depth-map blurriness at semitransparent edges: after warping, the object boundary becomes sharper in one view and blurrier in the other, yielding binocular rivalry. To detect this problem we estimate the disparity map, extract boundaries with noticeable differences, and analyze edge-sharpness correspondence between views. We pay additional attention to cases involving a complex background and large occlusions. Another problem is detection of scenes that lack depth volume: we present algorithms for detecting at scenes and scenes with at foreground objects. To identify these problems we analyze the features of the RGB image as well as uniform areas in the depth map. Testing of our algorithms involved examining 10 Blu-ray 3D releases with converted S3D content, including Clash of the Titans, The Avengers, and The Chronicles of Narnia: The Voyage of the Dawn Treader. The algorithms we present enable improved automatic quality assessment during the production stage.

  14. Compact 3D flash lidar video cameras and applications

    NASA Astrophysics Data System (ADS)

    Stettner, Roger

    2010-04-01

    The theory and operation of Advanced Scientific Concepts, Inc.'s (ASC) latest compact 3D Flash LIDAR Video Cameras (3D FLVCs) and a growing number of technical problems and solutions are discussed. The solutions range from space shuttle docking, planetary entry, decent and landing, surveillance, autonomous and manned ground vehicle navigation and 3D imaging through particle obscurants.

  15. Alignment of continuous video onto 3D point clouds.

    PubMed

    Zhao, Wenyi; Nister, David; Hsu, Steve

    2005-08-01

    We propose a general framework for aligning continuous (oblique) video onto 3D sensor data. We align a point cloud computed from the video onto the point cloud directly obtained from a 3D sensor. This is in contrast to existing techniques where the 2D images are aligned to a 3D model derived from the 3D sensor data. Using point clouds enables the alignment for scenes full of objects that are difficult to model; for example, trees. To compute 3D point clouds from video, motion stereo is used along with a state-of-the-art algorithm for camera pose estimation. Our experiments with real data demonstrate the advantages of the proposed registration algorithm for texturing models in large-scale semiurban environments. The capability to align video before a 3D model is built from the 3D sensor data offers new practical opportunities for 3D modeling. We introduce a novel modeling-through-registration approach that fuses 3D information from both the 3D sensor and the video. Initial experiments with real data illustrate the potential of the proposed approach.

  16. Super deep 3D images from a 3D omnifocus video camera.

    PubMed

    Iizuka, Keigo

    2012-02-20

    When using stereographic image pairs to create three-dimensional (3D) images, a deep depth of field in the original scene enhances the depth perception in the 3D image. The omnifocus video camera has no depth of field limitations and produces images that are in focus throughout. By installing an attachment on the omnifocus video camera, real-time super deep stereoscopic pairs of video images were obtained. The deeper depth of field creates a larger perspective image shift, which makes greater demands on the binocular fusion of human vision. A means of reducing the perspective shift without harming the depth of field was found.

  17. Efficient and high speed depth-based 2D to 3D video conversion

    NASA Astrophysics Data System (ADS)

    Somaiya, Amisha Himanshu; Kulkarni, Ramesh K.

    2013-09-01

    Stereoscopic video is the new era in video viewing and has wide applications such as medicine, satellite imaging and 3D Television. Such stereo content can be generated directly using S3D cameras. However, this approach requires expensive setup and hence converting monoscopic content to S3D becomes a viable approach. This paper proposes a depth-based algorithm for monoscopic to stereoscopic video conversion by using the y axis co-ordinates of the bottom-most pixels of foreground objects. This code can be used for arbitrary videos without prior database training. It does not face the limitations of single monocular depth cues nor does it combine depth cues, thus consuming less processing time without affecting the efficiency of the 3D video output. The algorithm, though not comparable to real-time, is faster than the other available 2D to 3D video conversion techniques in the average ratio of 1:8 to 1:20, essentially qualifying as high-speed. It is an automatic conversion scheme, hence directly gives the 3D video output without human intervention and with the above mentioned features becomes an ideal choice for efficient monoscopic to stereoscopic video conversion. [Figure not available: see fulltext.

  18. Cylindrical 3D video display observable from all directions

    NASA Astrophysics Data System (ADS)

    Endo, Tomohiro; Kajiki, Yoshihiro; Honda, Toshio; Sato, Makoto

    2000-05-01

    We propose a 3D video displaying technique that multiple viewers can observe 3D images from 360 degrees of arc horizontally without 3D glasses. This technique uses a cylindrical parallax barrier and 1D light source array. We have developed an experimental display using this technique and have demonstrated 3D images observable form 360 degrees of arc horizontally without 3D glasses. Since this technique is based on the parallax panoramagram, the parallax number and resolution are limited by the diffraction at the parallax barrier. To avoid these limits, we improved the technique by revolving the parallax barrier. We have been developing a new experimental display using this improved technique. The display is capable of displaying cylindrical 3D video images within the diameter of 100 mm and the height of 128 mm. Images are described with the resolution of 1254 pixels circularly and 128 pixels vertically, and refreshed at 30Hz. Each pixel has the viewing angle of 60 degrees and that is divided into 70 views, therefore the angular parallax interval of each pixel is less than 1 degree. In such a case, observers may barely perceive parallax discretely. The pixels are arranged on a cylinder surface, therefore produced 3D images can be observed from all directions.

  19. The Emerging MVC Standard for 3D Video Services

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Wang, Ye-Kui; Ugur, Kemal; Hannuksela, Miska M.; Lainema, Jani; Gabbouj, Moncef

    2008-12-01

    Multiview video has gained a wide interest recently. The huge amount of data needed to be processed by multiview applications is a heavy burden for both transmission and decoding. The joint video team has recently devoted part of its effort to extend the widely deployed H.264/AVC standard to handle multiview video coding (MVC). The MVC extension of H.264/AVC includes a number of new techniques for improved coding efficiency, reduced decoding complexity, and new functionalities for multiview operations. MVC takes advantage of some of the interfaces and transport mechanisms introduced for the scalable video coding (SVC) extension of H.264/AVC, but the system level integration of MVC is conceptually more challenging as the decoder output may contain more than one view and can consist of any combination of the views with any temporal level. The generation of all the output views also requires careful consideration and control of the available decoder resources. In this paper, multiview applications and solutions to support generic multiview as well as 3D services are introduced. The proposed solutions, which have been adopted to the draft MVC specification, cover a wide range of requirements for 3D video related to interface, transport of the MVC bitstreams, and MVC decoder resource management. The features that have been introduced in MVC to support these solutions include marking of reference pictures, supporting for efficient view switching, structuring of the bitstream, signalling of view scalability supplemental enhancement information (SEI) and parallel decoding SEI.

  20. Multiple 2D video/3D medical image registration algorithm

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    2000-06-01

    In this paper we propose a novel method to register at least two vide images to a 3D surface model. The potential applications of such a registration method could be in image guided surgery, high precision radiotherapy, robotics or computer vision. Registration is performed by optimizing a similarity measure with respect to the pose parameters. The similarity measure is based on 'photo-consistency' and computes for each surface point, how consistent the corresponding video image information in each view is with a lighting model. We took four video views of a volunteer's face, and used an independent method to reconstruct a surface that was intrinsically registered to the four views. In addition, we extracted a skin surface from the volunteer's MR scan. The surfaces were misregistered from a gold standard pose and our algorithm was used to register both types of surfaces to the video images. For the reconstructed surface, the mean 3D error was 1.53 mm. For the MR surface, the standard deviation of the pose parameters after registration ranged from 0.12 to 0.70 mm and degrees. The performance of the algorithm is accurate, precise and robust.

  1. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  2. Video coding and transmission standards for 3D television — a survey

    NASA Astrophysics Data System (ADS)

    Buchowicz, A.

    2013-03-01

    The emerging 3D television systems require effective techniques for transmission and storage of data representing a 3-D scene. The 3-D scene representations based on multiple video sequences or multiple views plus depth maps are especially important since they can be processed with existing video technologies. The review of the video coding and transmission techniques is presented in this paper.

  3. Statistical bias in 3-D reconstruction from a monocular video.

    PubMed

    Roy-Chowdhury, Amit K; Chellappa, Rama

    2005-08-01

    The present state-of-the-art in computing the error statistics in three-dimensional (3-D) reconstruction from video concentrates on estimating the error covariance. A different source of error which has not received much attention is the fact that the reconstruction estimates are often significantly statistically biased. In this paper, we derive a precise expression for the bias in the depth estimate, based on the continuous (differentiable) version of structure from motion (SfM). Many SfM algorithms, or certain portions of them, can be posed in a linear least-squares (LS) framework Ax = b. Examples include initialization procedures for bundle adjustment or algorithms that alternately estimate depth and camera motion. It is a well-known fact that the LS estimate is biased if the system matrix A is noisy. In SfM, the matrix A contains point correspondences, which are always difficult to obtain precisely; thus, it is expected that the structure and motion estimates in such a formulation of the problem would be biased. Existing results on the minimum achievable variance of the SfM estimator are extended by deriving a generalized Cramer-Rao lower bound. A detailed analysis of the effect of various camera motion parameters on the bias is presented. We conclude by presenting the effect of bias compensation on reconstructing 3-D face models from rendered images. PMID:16121454

  4. Real-time 3D video conference on generic hardware

    NASA Astrophysics Data System (ADS)

    Desurmont, X.; Bruyelle, J. L.; Ruiz, D.; Meessen, J.; Macq, B.

    2007-02-01

    Nowadays, video-conference tends to be more and more advantageous because of the economical and ecological cost of transport. Several platforms exist. The goal of the TIFANIS immersive platform is to let users interact as if they were physically together. Unlike previous teleimmersion systems, TIFANIS uses generic hardware to achieve an economically realistic implementation. The basic functions of the system are to capture the scene, transmit it through digital networks to other partners, and then render it according to each partner's viewing characteristics. The image processing part should run in real-time. We propose to analyze the whole system. it can be split into different services like central processing unit (CPU), graphical rendering, direct memory access (DMA), and communications trough the network. Most of the processing is done by CPU resource. It is composed of the 3D reconstruction and the detection and tracking of faces from the video stream. However, the processing needs to be parallelized in several threads that have as little dependencies as possible. In this paper, we present these issues, and the way we deal with them.

  5. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  6. Image quality of up-converted 2D video from frame-compatible 3D video

    NASA Astrophysics Data System (ADS)

    Speranza, Filippo; Tam, Wa James; Vázquez, Carlos; Renaud, Ronald; Blanchfield, Phil

    2011-03-01

    In the stereoscopic frame-compatible format, the separate high-definition left and high-definition right views are reduced in resolution and packed to fit within the same video frame as a conventional two-dimensional high-definition signal. This format has been suggested for 3DTV since it does not require additional transmission bandwidth and entails only small changes to the existing broadcasting infrastructure. In some instances, the frame-compatible format might be used to deliver both 2D and 3D services, e.g., for over-the-air television services. In those cases, the video quality of the 2D service is bound to decrease since the 2D signal will have to be generated by up-converting one of the two views. In this study, we investigated such loss by measuring the perceptual image quality of 1080i and 720p up-converted video as compared to that of full resolution original 2D video. The video was encoded with either a MPEG-2 or a H.264/AVC codec at different bit rates and presented for viewing with either no polarized glasses (2D viewing mode) or with polarized glasses (3D viewing mode). The results confirmed a loss of video quality of the 2D video up-converted material. The loss due to the sampling processes inherent to the frame-compatible format was rather small for both 1080i and 720p video formats; the loss became more substantial with encoding, particularly for MPEG-2 encoding. The 3D viewing mode provided higher quality ratings, possibly because the visibility of the degradations was reduced.

  7. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components. PMID:27136858

  8. Coarse integral holography approach for real 3D color video displays.

    PubMed

    Chen, J S; Smithwick, Q Y J; Chu, D P

    2016-03-21

    A colour holographic display is considered the ultimate apparatus to provide the most natural 3D viewing experience. It encodes a 3D scene as holographic patterns that then are used to reproduce the optical wavefront. The main challenge at present is for the existing technologies to cope with the full information bandwidth required for the computation and display of holographic video. We have developed a dynamic coarse integral holography approach using opto-mechanical scanning, coarse integral optics and a low space-bandwidth-product high-bandwidth spatial light modulator to display dynamic holograms with a large space-bandwidth-product at video rates, combined with an efficient rendering algorithm to reduce the information content. This makes it possible to realise a full-parallax, colour holographic video display with a bandwidth of 10 billion pixels per second, and an adequate image size and viewing angle, as well as all relevant 3D cues. Our approach is scalable and the prototype can achieve even better performance with continuing advances in hardware components.

  9. The future of 3D and video coding in mobile and the internet

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2013-09-01

    The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.

  10. 3-D model-based frame interpolation for distributed video coding of static scenes.

    PubMed

    Maitre, Matthieu; Guillemot, Christine; Morin, Luce

    2007-05-01

    This paper addresses the problem of side information extraction for distributed coding of videos captured by a camera moving in a 3-D static environment. Examples of targeted applications are augmented reality, remote-controlled robots operating in hazardous environments, or remote exploration by drones. It explores the benefits of the structure-from-motion paradigm for distributed coding of this type of video content. Two interpolation methods constrained by the scene geometry, based either on block matching along epipolar lines or on 3-D mesh fitting, are first developed. These techniques are based on a robust algorithm for sub-pel matching of feature points, which leads to semi-dense correspondences between key frames. However, their rate-distortion (RD) performances are limited by misalignments between the side information and the actual Wyner-Ziv (WZ) frames due to the assumption of linear motion between key frames. To cope with this problem, two feature point tracking techniques are introduced, which recover the camera parameters of the WZ frames. A first technique, in which the frames remain encoded separately, performs tracking at the decoder and leads to significant RD performance gains. A second technique further improves the RD performances by allowing a limited tracking at the encoder. As an additional benefit, statistics on tracks allow the encoder to adapt the key frame frequency to the video motion content.

  11. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  12. Standards-based approaches to 3D and multiview video coding

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.

    2009-08-01

    The extension of video applications to enable 3D perception, which typically is considered to include a stereo viewing experience, is emerging as a mass market phenomenon, as is evident from the recent prevalence of 3D major cinema title releases. For high quality 3D video to become a commonplace user experience beyond limited cinema distribution, adoption of an interoperable coded 3D digital video format will be needed. Stereo-view video can also be studied as a special case of the more general technologies of multiview and "free-viewpoint" video systems. The history of standardization work on this topic is actually richer than people may typically realize. The ISO/IEC Moving Picture Experts Group (MPEG), in particular, has been developing interoperability standards to specify various such coding schemes since the advent of digital video as we know it. More recently, the ITU-T Visual Coding Experts Group (VCEG) has been involved as well in the Joint Video Team (JVT) work on development of 3D features for H.264/14496-10 Advanced Video Coding, including Multiview Video Coding (MVC) extensions. This paper surveys the prior, ongoing, and anticipated future standardization efforts on this subject to provide an overview and historical perspective on feasible approaches to 3D and multiview video coding.

  13. Research and Technology Development for Construction of 3d Video Scenes

    NASA Astrophysics Data System (ADS)

    Khlebnikova, Tatyana A.

    2016-06-01

    For the last two decades surface information in the form of conventional digital and analogue topographic maps has been being supplemented by new digital geospatial products, also known as 3D models of real objects. It is shown that currently there are no defined standards for 3D scenes construction technologies that could be used by Russian surveying and cartographic enterprises. The issues regarding source data requirements, their capture and transferring to create 3D scenes have not been defined yet. The accuracy issues for 3D video scenes used for measuring purposes can hardly ever be found in publications. Practicability of development, research and implementation of technology for construction of 3D video scenes is substantiated by 3D video scene capability to expand the field of data analysis application for environmental monitoring, urban planning, and managerial decision problems. The technology for construction of 3D video scenes with regard to the specified metric requirements is offered. Technique and methodological background are recommended for this technology used to construct 3D video scenes based on DTM, which were created by satellite and aerial survey data. The results of accuracy estimation of 3D video scenes are presented.

  14. 3D Game Content Distributed Adaptation in Heterogeneous Environments

    NASA Astrophysics Data System (ADS)

    Morán, Francisco; Preda, Marius; Lafruit, Gauthier; Villegas, Paulo; Berretty, Robert-Paul

    2007-12-01

    Most current multiplayer 3D games can only be played on a single dedicated platform (a particular computer, console, or cell phone), requiring specifically designed content and communication over a predefined network. Below we show how, by using signal processing techniques such as multiresolution representation and scalable coding for all the components of a 3D graphics object (geometry, texture, and animation), we enable online dynamic content adaptation, and thus delivery of the same content over heterogeneous networks to terminals with very different profiles, and its rendering on them. We present quantitative results demonstrating how the best displayed quality versus computational complexity versus bandwidth tradeoffs have been achieved, given the distributed resources available over the end-to-end content delivery chain. Additionally, we use state-of-the-art, standardised content representation and compression formats (MPEG-4 AFX, JPEG 2000, XML), enabling deployment over existing infrastructure, while keeping hooks to well-established practices in the game industry.

  15. A unified and efficient framework for court-net sports video analysis using 3D camera modeling

    NASA Astrophysics Data System (ADS)

    Han, Jungong; de With, Peter H. N.

    2007-01-01

    The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.

  16. Development of MPEG standards for 3D and free viewpoint video

    NASA Astrophysics Data System (ADS)

    Smolic, Aljoscha; Kimata, Hideaki; Vetro, Anthony

    2005-11-01

    An overview of 3D and free viewpoint video is given in this paper with special focus on related standardization activities in MPEG. Free viewpoint video allows the user to freely navigate within real world visual scenes, as known from virtual worlds in computer graphics. Suitable 3D scene representation formats are classified and the processing chain is explained. Examples are shown for image-based and model-based free viewpoint video systems, highlighting standards conform realization using MPEG-4. Then the principles of 3D video are introduced providing the user with a 3D depth impression of the observed scene. Example systems are described again focusing on their realization based on MPEG-4. Finally multi-view video coding is described as a key component for 3D and free viewpoint video systems. MPEG is currently working on a new standard for multi-view video coding. The conclusion is that the necessary technology including standard media formats for 3D and free viewpoint is available or will be available in the near future, and that there is a clear demand from industry and user side for such applications. 3DTV at home and free viewpoint video on DVD will be available soon, and will create huge new markets.

  17. Improving calibration of 3-D video oculography systems.

    PubMed

    Schreiber, Kai; Haslwanter, Thomas

    2004-04-01

    Eye movement recordings with video-based techniques have become very popular, as long as they are restricted to the horizontal and vertical movements of the eye. Reliable measurement of the torsional component of eye movements, which is especially important in the diagnosis and investigation of pathologies, has remained a coveted goal. One of the main reasons is unresolved technical difficulties in the analysis of video-based images of the eye. Based on simulations, we present solutions to two of the primary problems: a robust and reliable calibration of horizontal and vertical eye movement recordings, and the extraction of suitable iris patterns for the determination of the torsional eye position component.

  18. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    PubMed Central

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  19. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    PubMed

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  20. Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Helferty, James P.; Padfield, Dirk R.

    2003-05-01

    Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.

  1. Does training with 3D videos improve decision-making in team invasion sports?

    PubMed

    Hohmann, Tanja; Obelöer, Hilke; Schlapkohl, Nele; Raab, Markus

    2016-01-01

    We examined the effectiveness of video-based decision training in national youth handball teams. Extending previous research, we tested in Study 1 whether a three-dimensional (3D) video training group would outperform a two-dimensional (2D) group. In Study 2, a 3D training group was compared to a control group and a group trained with a traditional tactic board. In both studies, training duration was 6 weeks. Performance was measured in a pre- to post-retention design. The tests consisted of a decision-making task measuring quality of decisions (first and best option) and decision time (time for first and best option). The results of Study 1 showed learning effects and revealed that the 3D video group made faster first-option choices than the 2D group, but differences in the quality of options were not pronounced. The results of Study 2 revealed learning effects for both training groups compared to the control group, and faster choices in the 3D group compared to both other groups. Together, the results show that 3D video training is the most useful tool for improving choices in handball, but only in reference to decision time and not decision quality. We discuss the usefulness of a 3D video tool for training of decision-making skills outside the laboratory or gym.

  2. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  3. Moving Human Path Tracking Based on Video Surveillance in 3d Indoor Scenarios

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zlatanova, Sisi; Wang, Zhe; Zhang, Yeting; Liu, Liu

    2016-06-01

    Video surveillance systems are increasingly used for a variety of 3D indoor applications. We can analyse human behaviour, discover and avoid crowded areas, monitor human traffic and so forth. In this paper we concentrate on use of surveillance cameras to track and reconstruct the path a person has followed. For the purpose we integrated video surveillance data with a 3D indoor model of the building and develop a single human moving path tracking method. We process the surveillance videos to detected single human moving traces; then we match the depth information of 3D scenes to the constructed 3D indoor network model and define the human traces in the 3D indoor space. Finally, the single human traces extracted from multiple cameras are connected with the help of the connectivity provided by the 3D network model. Using this approach, we can reconstruct the entire walking path. The provided experiments with a single person have verified the effectiveness and robustness of the method.

  4. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  5. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  6. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    NASA Astrophysics Data System (ADS)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  7. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  8. Effect of 3D animation videos over 2D video projections in periodontal health education among dental students

    PubMed Central

    Dhulipalla, Ravindranath; Marella, Yamuna; Katuri, Kishore Kumar; Nagamani, Penupothu; Talada, Kishore; Kakarlapudi, Anusha

    2015-01-01

    Background: There is limited evidence about the distinguished effect of 3D oral health education videos over conventional 2 dimensional projections in improving oral health knowledge. This randomized controlled trial was done to test the effect of 3 dimensional oral health educational videos among first year dental students. Materials and Methods: 80 first year dental students were enrolled and divided into two groups (test and control). In the test group, 3D animation and in the control group, regular 2D video projections pertaining to periodontal anatomy, etiology, presenting conditions, preventive measures and treatment of periodontal problems were shown. Effect of 3D animation was evaluated by using a questionnaire consisting of 10 multiple choice questions given to all participants at baseline, immediately after and 1month after the intervention. Clinical parameters like Plaque Index (PI), Gingival Bleeding Index (GBI), and Oral Hygiene Index Simplified (OHI-S) were measured at baseline and 1 month follow up. Results: A significant difference in the post intervention knowledge scores was found between the groups as assessed by unpaired t-test (p<0.001) at baseline, immediate and after 1 month. At baseline, all the clinical parameters in the both the groups were similar and showed a significant reduction (p<0.001)p after 1 month, whereas no significant difference was noticed post intervention between the groups. Conclusion: 3D animation videos are more effective over 2D videos in periodontal disease education and knowledge recall. The application of 3D animation results also demonstrate a better visual comprehension for students and greater health care outcomes. PMID:26759805

  9. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  10. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  11. 3D filtering technique in presence of additive noise in color videos implemented on DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Palacios, Alfredo

    2014-05-01

    A filtering method for color videos contaminated by additive noise is presented. The proposed framework employs three filtering stages: spatial similarity filtering, neighboring frame denoising, and spatial post-processing smoothing. The difference with other state-of- the-art filtering methods, is that this approach, based on fuzzy logic, analyses basic and related gradient values between neighboring pixels into a 7 fi 7 sliding window in the vicinity of a central pixel in each of the RGB channels. Following, the similarity measures between the analogous pixels in the color bands are taken into account during the denoising. Next, two neighboring video frames are analyzed together estimating local motions between the frames using block matching procedure. In the final stage, the edges and smoothed areas are processed differently in a current frame during the post-processing filtering. Numerous simulations results confirm that this 3D fuzzy filter perform better than other state-of-the- art methods, such as: 3D-LLMMSE, WMVCE, RFMDAF, FDARTF G, VBM3D and NLM, in terms of objective criteria (PSNR, MAE, NCD and SSIM) as well as subjective perception via human vision system in the different color videos. An efficiency analysis of the designed and other mentioned filters have been performed on the DSPs TMS320 DM642 and TMS320DM648 by Texas Instruments through MATLAB and Simulink module showing that the novel 3D fuzzy filter can be used in real-time processing applications.

  12. 3D MPEG-2 video transmission over broadband network and broadcast channels

    NASA Astrophysics Data System (ADS)

    Gagnon, Gilles; Subramaniam, Suganthan; Vincent, Andre

    2001-06-01

    This paper explores the transmission of MPEG-2 compressed stereoscopic (3-D) video over broadband networks and digital television (DTV) broadcast channels. A system has been developed to perform 3-D (stereoscopic) MPEG-2 video encoding, transmission and decoding over broadband networks in real- time. Such a system can benefit applications where a depiction of the relative positions of objects in 3-dimensional space is critical, by providing visual cues along the sight axis. Applications such as tele-medicine, remote surveillance, tele- education, entertainment and others could benefit from such a system since it conveys an added viewing experience. For simplicity and cost efficiency the system is kept as simple as possible while offering a certain degree of control over the encoding and decoding platforms. Data exchange is done with TCP/IP for control between the server and client and with UDP/IP for the MPEG-2 transport streams delivered to the client. Parameters such as encoding rate can be set independently for the left and right viewing channels to satisfy network bandwidth restrictions, while maintaining satisfactory quality. Using this system, transmission of stereoscopic MPEG-2 transport streams (video and audio) has been performed over a 155 Mbps ATM network shared with other video transactions between server and clients. Preliminary results have shown that the system is reasonably robust to network impairments making it useable in relatively loaded networks. An innovative technique for broadcasting Standard Definition Television 3-D video using an ATSC compatible encoding and broadcasting system is also presented. This technique requires a simple video multiplexer before the ATSC encoding process, and a slight modification at the receiver after the ATSC decoding.

  13. 3D high-efficiency video coding for multi-view video and depth data.

    PubMed

    Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas

    2013-09-01

    This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools. PMID:23715605

  14. 3D high-efficiency video coding for multi-view video and depth data.

    PubMed

    Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas

    2013-09-01

    This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools.

  15. 3D video analysis of the novel object recognition test in rats.

    PubMed

    Matsumoto, Jumpei; Uehara, Takashi; Urakawa, Susumu; Takamura, Yusaku; Sumiyoshi, Tomiki; Suzuki, Michio; Ono, Taketoshi; Nishijo, Hisao

    2014-10-01

    The novel object recognition (NOR) test has been widely used to test memory function. We developed a 3D computerized video analysis system that estimates nose contact with an object in Long Evans rats to analyze object exploration during NOR tests. The results indicate that the 3D system reproducibly and accurately scores the NOR test. Furthermore, the 3D system captures a 3D trajectory of the nose during object exploration, enabling detailed analyses of spatiotemporal patterns of object exploration. The 3D trajectory analysis revealed a specific pattern of object exploration in the sample phase of the NOR test: normal rats first explored the lower parts of objects and then gradually explored the upper parts. A systematic injection of MK-801 suppressed changes in these exploration patterns. The results, along with those of previous studies, suggest that the changes in the exploration patterns reflect neophobia to a novel object and/or changes from spatial learning to object learning. These results demonstrate that the 3D tracking system is useful not only for detailed scoring of animal behaviors but also for investigation of characteristic spatiotemporal patterns of object exploration. The system has the potential to facilitate future investigation of neural mechanisms underlying object exploration that result from dynamic and complex brain activity. PMID:24991752

  16. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  17. Highly accurate video coordinate generation for automatic 3-D trajectory calculation

    NASA Astrophysics Data System (ADS)

    Macleod, A.; Morris, Julian R. W.; Lyster, M.

    1990-08-01

    Most TV-based motion analysis systems, including the original version of 1/ICON, produce 3D coordinates by combining pre-tracked 2D trajectories from each camera. The latest version of the system, VICON-VX, uses totally automatic 3D trajectory calculation using the Geometric Self Identification (GSI) technique. This is achieved by matching unsorted 2D image coordinates from all cameras, looking for intersecting marker 'rays', and matching intersections into 3D trajectories. Effective GSI, with low false-positive intersection rates is only possible with highly accurate 2D data, produced by stable, high-resolution coordinate generators, and incorporating appropriate compensation for lens distortions. Data capture software and hardware have been completely redesigned to achieve this accuracy, together with higher throughput rates and better resistance to errors. In addition, a new ADC facility has been incorporated to allow very high speed analog data acquisition, synchronised with video measurements.

  18. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  19. Visual storytelling in 2D and stereoscopic 3D video: effect of blur on visual attention

    NASA Astrophysics Data System (ADS)

    Huynh-Thu, Quan; Vienne, Cyril; Blondé, Laurent

    2013-03-01

    Visual attention is an inherent mechanism that plays an important role in the human visual perception. As our visual system has limited capacity and cannot efficiently process the information from the entire visual field, we focus our attention on specific areas of interest in the image for detailed analysis of these areas. In the context of media entertainment, the viewers' visual attention deployment is also influenced by the art of visual storytelling. To this date, visual editing and composition of scenes in stereoscopic 3D content creation still mostly follows those used in 2D. In particular, out-of-focus blur is often used in 2D motion pictures and photography to drive the viewer's attention towards a sharp area of the image. In this paper, we study specifically the impact of defocused foreground objects on visual attention deployment in stereoscopic 3D content. For that purpose, we conducted a subjective experiment using an eyetracker. Our results bring more insights on the deployment of visual attention in stereoscopic 3D content viewing, and provide further understanding on visual attention behavior differences between 2D and 3D. Our results show that a traditional 2D scene compositing approach such as the use of foreground blur does not necessarily produce the same effect on visual attention deployment in 2D and 3D. Implications for stereoscopic content creation and visual fatigue are discussed.

  20. ROI-preserving 3D video compression method utilizing depth information

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Xu, Guodong; Guan, Yudong; Teng, Yidan

    2015-09-01

    Efficiently transmitting the extra information of three dimensional (3D) video is becoming a key issue of the development of 3DTV. 2D plus depth format not only occupies the smaller bandwidth and is compatible transmission under the condition of the existing channel, but also can provide technique support for advanced 3D video compression in some extend. This paper proposes an ROI-preserving compression scheme to further improve the visual quality at a limited bit rate. According to the connection between the focus of Human Visual System (HVS) and depth information, region of interest (ROI) can be automatically selected via depth map progressing. The main improvement from common method is that a meanshift based segmentation is executed to the depth map before foreground ROI selection to keep the integrity of scene. Besides, the sensitive areas along the edges are also protected. The Spatio-temporal filtering adapting to H.264 is used to the non-ROI of both 2D video and depth map before compression. Experiments indicate that, the ROI extracted by this method is more undamaged and according with subjective feeling, and the proposed method can keep the key high-frequency information more effectively while the bit rate is reduced.

  1. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  2. Virtual bronchoscopic approach for combining 3D CT and endoscopic video

    NASA Astrophysics Data System (ADS)

    Sherbondy, Anthony J.; Kiraly, Atilla P.; Austin, Allen L.; Helferty, James P.; Wan, Shu-Yen; Turlington, Janice Z.; Yang, Tao; Zhang, Chao; Hoffman, Eric A.; McLennan, Geoffrey; Higgins, William E.

    2000-04-01

    To improve the care of lung-cancer patients, we are devising a diagnostic paradigm that ties together three-dimensional (3D) high-resolution computed-tomographic (CT) imaging and bronchoscopy. The system expands upon the new concept of virtual endoscopy that has seen recent application to the chest, colon, and other anatomical regions. Our approach applies computer-graphics and image-processing tools to the analysis of 3D CT chest images and complementary bronchoscopic video. It assumes a two-stage assessment of a lung-cancer patient. During Stage 1 (CT assessment), the physician interacts with a number of visual and quantitative tools to evaluate the patient's 'virtual anatomy' (3D CT scan). Automatic analysis gives navigation paths through major airways and to pre-selected suspect sites. These paths provide useful guidance during Stage-1 CT assessment. While interacting with these paths and other software tools, the user builds a multimedia Case Study, capturing telling snapshot views, movies, and quantitative data. The Case Study contains a report on the CT scan and also provides planning information for subsequent bronchoscopic evaluation. During Stage 2 (bronchoscopy), the physician uses (1) the original CT data, (2) software graphical tools, (3) the Case Study, and (4) a standard bronchoscopy suite to have an augmented vision for bronchoscopic assessment and treatment. To use the two data sources (CT and bronchoscopic video) simultaneously, they must be registered. We perform this registration using both manual interaction and an automated matching approach based on mutual information. We demonstrate our overall progress to date using human CT cases and CT-video from a bronchoscopy- training device.

  3. Three dimensional template matching segmentation method for motile cells in 3D+t video sequences.

    PubMed

    Pimentel, J A; Corkidi, G

    2010-01-01

    In this work, we describe a segmentation cell method oriented to deal with experimental data obtained from 3D+t microscopical volumes. The proposed segmentation technique takes advantage of the pattern of appearances exhibited by the objects (cells) from different focal planes, as a result of the object translucent properties and its interaction with light. This information allows us to discriminate between cells and artifacts (dust an other) with equivalent size and shape that are present in the biological preparation. Using a simple correlation criteria, the method matches a 3D video template (extracted from a sample of cells) with the motile cells contained into the biological sample, obtaining a high rate of true positives while discarding artifacts. In this work, our analysis is focused on sea urchin spermatozoa cells but is applicable to many other microscopical structures having the same optical properties. PMID:21096252

  4. Dense 3D Reconstruction from High Frame-Rate Video Using a Static Grid Pattern.

    PubMed

    Sagawa, Ryusuke; Furukawa, Ryo; Kawasaki, Hiroshi

    2014-09-01

    Dense 3D reconstruction of fast moving objects could contribute to various applications such as body structure analysis, accident avoidance, and so on. In this paper, we propose a technique based on a one-shot scanning method, which reconstructs 3D shapes for each frame of a high frame-rate video capturing the scenes projected by a static pattern. To avoid instability of image processing, we restrict the number of colors used in the pattern to less than two. The proposed technique comprises (1) an efficient algorithm to eliminate ambiguity of projected parallel-line patterns by using intersection points, (2) a batch reconstruction algorithm of multiple frames by using spatio-temporal constraints, and (3) an efficient detection method of color-encoded grid pattern based on de Bruijn sequence. In the experiments, the line detection algorithm worked effectively and the dense reconstruction algorithm produces accurate and robust results. We also show the improved results by using temporal constraints. Finally, the dense reconstructions of fast moving objects in a high frame-rate video are presented. PMID:26352228

  5. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  6. MOEMS-based time-of-flight camera for 3D video capturing

    NASA Astrophysics Data System (ADS)

    You, Jang-Woo; Park, Yong-Hwa; Cho, Yong-Chul; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Lee, Seung-Wan

    2013-03-01

    We suggest a Time-of-Flight (TOF) video camera capturing real-time depth images (a.k.a depth map), which are generated from the fast-modulated IR images utilizing a novel MOEMS modulator having switching speed of 20 MHz. In general, 3 or 4 independent IR (e.g. 850nm) images are required to generate a single frame of depth image. Captured video image of a moving object frequently shows motion drag between sequentially captured IR images, which results in so called `motion blur' problem even when the frame rate of depth image is fast (e.g. 30 to 60 Hz). We propose a novel `single shot' TOF 3D camera architecture generating a single depth image out of synchronized captured IR images. The imaging system constitutes of 2x2 imaging lens array, MOEMS optical shutters (modulator) placed on each lens aperture and a standard CMOS image sensor. The IR light reflected from object is modulated by optical shutters on the apertures of 2x2 lens array and then transmitted images are captured on the image sensor resulting in 2x2 sub-IR images. As a result, the depth image is generated with those simultaneously captured 4 independent sub-IR images, hence the motion blur problem is canceled. The resulting performance is very useful in the applications of 3D camera to a human-machine interaction device such as user interface of TV, monitor, or hand held devices and motion capturing of human body. In addition, we show that the presented 3D camera can be modified to capture color together with depth image simultaneously on `single shot' frame rate.

  7. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  8. Monitoring an eruption fissure in 3D: video recording, particle image velocimetry and dynamics

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2015-04-01

    The processes during an eruption are very complex. To get a better understanding several parameters are measured. One of the measured parameters is the velocity of particles and patterns, as ash and emitted magma, and of the volcano itself. The resulting velocity field provides insights into the dynamics of a vent. Here we test our algorithm for 3 dimensional velocity fields on videos of the second fissure eruption of Bárdarbunga 2014. There we acquired videos from lava fountains of the main fissure with 2 high speed cameras with small angles between the cameras. Additionally we test the algorithm on videos from the geyser Strokkur, where we had 3 cameras and larger angles between the cameras. The velocity is calculated by a correlation in the Fourier space of contiguous images. Considering that we only have the velocity field of the surface smaller angles result in a better resolution of the existing velocity field in the near field. For general movements also larger angles can be useful, e.g. to get the direction, height and velocity of eruption clouds. In summary, it can be stated that 3D velocimetry can be used for several application and with different setup due to the application.

  9. Subjective and Objective Video Quality Assessment of 3D Synthesized Views With Texture/Depth Compression Distortion.

    PubMed

    Liu, Xiangkai; Zhang, Yun; Hu, Sudeng; Kwong, Sam; Kuo, C-C Jay; Peng, Qiang

    2015-12-01

    The quality assessment for synthesized video with texture/depth compression distortion is important for the design, optimization, and evaluation of the multi-view video plus depth (MVD)-based 3D video system. In this paper, the subjective and objective studies for synthesized view assessment are both conducted. First, a synthesized video quality database with texture/depth compression distortion is presented with subjective scores given by 56 subjects. The 140 videos are synthesized from ten MVD sequences with different texture/depth quantization combinations. Second, a full reference objective video quality assessment (VQA) method is proposed concerning about the annoying temporal flicker distortion and the change of spatio-temporal activity in the synthesized video. The proposed VQA algorithm has a good performance evaluated on the entire synthesized video quality database, and is particularly prominent on the subsets which have significant temporal flicker distortion induced by depth compression and view synthesis process. PMID:26292342

  10. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play. PMID:24110125

  11. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play.

  12. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  13. A quality assessment of 3D video analysis for full scale rockfall experiments

    NASA Astrophysics Data System (ADS)

    Volkwein, A.; Glover, J.; Bourrier, F.; Gerber, W.

    2012-04-01

    Main goal of full scale rockfall experiments is to retrieve a 3D trajectory of a boulder along the slope. Such trajectories then can be used to calibrate rockfall simulation models. This contribution presents the application of video analysis techniques capturing rock fall velocity of some free fall full scale rockfall experiments along a rock face with an inclination of about 50 degrees. Different scaling methodologies have been evaluated. They mainly differ in the way the scaling factors between the movie frames and the reality and are determined. For this purpose some scale bars and targets with known dimensions have been distributed in advance along the slope. The single scaling approaches are briefly described as follows: (i) Image raster is scaled to the distant fixed scale bar then recalibrated to the plane of the passing rock boulder by taking the measured position of the nearest impact as the distance to the camera. The distance between the camera, scale bar, and passing boulder are surveyed. (ii) The image raster was scaled using the four nearest targets (identified using frontal video) from the trajectory to be analyzed. The average of the scaling factors was finally taken as scaling factor. (iii) The image raster was scaled using the four nearest targets from the trajectory to be analyzed. The scaling factor for one trajectory was calculated by balancing the mean scaling factors associated with the two nearest and the two farthest targets in relation to their mean distance to the analyzed trajectory. (iv) Same as previous method but with varying scaling factors during along the trajectory. It has shown that a direct measure of the scaling target and nearest impact zone is the most accurate. If constant plane is assumed it doesn't account for the lateral deviations of the rock boulder from the fall line consequently adding error into the analysis. Thus a combination of scaling methods (i) and (iv) are considered to give the best results. For best results

  14. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  15. Miniature stereoscopic video system provides real-time 3D registration and image fusion for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Bar-Zohar, Meir; Horesh, Nadav

    2007-02-01

    Sophisticated surgeries require the integration of several medical imaging modalities, like MRI and CT, which are three-dimensional. Many efforts are invested in providing the surgeon with this information in an intuitive & easy to use manner. A notable development, made by Visionsense, enables the surgeon to visualize the scene in 3D using a miniature stereoscopic camera. It also provides real-time 3D measurements that allow registration of navigation systems as well as 3D imaging modalities, overlaying these images on the stereoscopic video image in real-time. The real-time MIS 'see through tissue' fusion solutions enable the development of new MIS procedures in various surgical segments, such as spine, abdomen, cardio-thoracic and brain. This paper describes 3D surface reconstruction and registration methods using Visionsense camera, as a step toward fully automated multi-modality 3D registration.

  16. Depth enhancement of S3D content and the psychological effects

    NASA Astrophysics Data System (ADS)

    Hirahara, Masahiro; Shiraishi, Saki; Kawai, Takashi

    2012-03-01

    Stereoscopic 3D (S3D) imaging technologies are widely used recently to create content for movies, TV programs, games, etc. Although S3D content differs from 2D content by the use of binocular parallax to induce depth sensation, the relationship between depth control and the user experience remains unclear. In this study, the user experience was subjectively and objectively evaluated in order to determine the effectiveness of depth control, such as an expansion or reduction or a forward or backward shift in the range of maximum parallactic angles in the cross and uncross directions (depth bracket). Four types of S3D content were used in the subjective and objective evaluations. The depth brackets of comparison stimuli were modified in order to enhance the depth sensation corresponding to the content. Interpretation Based Quality (IBQ) methodology was used for the subjective evaluation and the heart rate was measured to evaluate the physiological effect. The results of the evaluations suggest the following two points. (1) Expansion/reduction of the depth bracket affects preference and enhances positive emotions to the S3D content. (2) Expansion/reduction of the depth bracket produces above-mentioned effects more notable than shifting the cross/uncross directions.

  17. Rapid 3-D delineation of cell nuclei for high-content screening platforms.

    PubMed

    Gertych, Arkadiusz; Ma, Zhaoxuan; Tajbakhsh, Jian; Velásquez-Vacca, Adriana; Knudsen, Beatrice S

    2016-02-01

    High-resolution three-dimensional (3-D) microscopy combined with multiplexing of fluorescent labels allows high-content analysis of large numbers of cell nuclei. The full automation of 3-D screening platforms necessitates image processing algorithms that can accurately and robustly delineate nuclei in images with little to no human intervention. Imaging-based high-content screening was originally developed as a powerful tool for drug discovery. However, cell confluency, complexity of nuclear staining as well as poor contrast between nuclei and background result in slow and unreliable 3-D image processing and therefore negatively affect the performance of studying a drug response. Here, we propose a new method, 3D-RSD, to delineate nuclei by means of 3-D radial symmetries and test it on high-resolution image data of human cancer cells treated by drugs. The nuclei detection performance was evaluated by means of manually generated ground truth from 2351 nuclei (27 confocal stacks). When compared to three other nuclei segmentation methods, 3D-RSD possessed a better true positive rate of 83.3% and F-score of 0.895±0.045 (p-value=0.047). Altogether, 3D-RSD is a method with a very good overall segmentation performance. Furthermore, implementation of radial symmetries offers good processing speed, and makes 3D-RSD less sensitive to staining patterns. In particular, the 3D-RSD method performs well in cell lines, which are often used in imaging-based HCS platforms and are afflicted by nuclear crowding and overlaps that hinder feature extraction.

  18. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  19. Hierarchical temporal video segmentation and content characterization

    NASA Astrophysics Data System (ADS)

    Gunsel, Bilge; Fu, Yue; Tekalp, A. Murat

    1997-10-01

    This paper addresses the segmentation of a video sequence into shots, specification of edit effects and subsequent characterization of shots in terms of color and motion content. The proposed scheme uses DC images extracted from MPEG compressed video and performs an unsupervised clustering for the extraction of camera shots. The specification of edit effects, such as fade-in/out and dissolve is based on the analysis of distribution of mean value for the luminance components. This step is followed by the representation of visual content of temporal segments in terms of key frames selected by similarity analysis of mean color histograms. For characterization of the similar temporal segments, motion and color characteristics are classified into different categories using a set of different features derived from motion vectors of triangular meshes and mean histograms of video shots.

  20. High efficient methods of content-based 3D model retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Yuanhao; Tian, Ling; Li, Chenggang

    2013-03-01

    Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.

  1. An analysis of brightness as a factor in visual discomfort caused by watching stereoscopic 3D video

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Woo; Kang, Hang-Bong

    2015-05-01

    Even though various research has examined the factors that cause visual discomfort in watching stereoscopic 3D video, the brightness factor has not been dealt with sufficiently. In this paper, we analyze visual discomfort under various illumination conditions by considering eye-blinking rate and saccadic eye movement. In addition, we measure the perceived depth before and after watching 3D stereoscopic video by using our own 3D depth measurement instruments. Our test sequences consist of six illumination conditions for background. The illumination is changed from bright to dark or vice-versa, while the illumination of the foreground object is constant. Our test procedure is as follows: First, the subjects are rested until a baseline of no visual discomfort is established. Then, the subjects answer six questions to check their subjective pre-stimulus discomfort level. Next, we measure perceived depth for each subject, and the subjects watch 30-minute stereoscopic 3D or 2D video clips in random order. We measured eye-blinking and saccadic movements of the subject using an eye-tracking device. Then, we measured perceived depth for each subject again to detect any changes in depth perception. We also checked the subject's post-stimulus discomfort level, and measured the perceived depth after a 40-minute post-experiment resting period to measure recovery levels. After 40 minutes, most subjects returned to normal levels of depth perception. From our experiments, we found that eye-blinking rates were higher with a dark to light video progression than vice-versa. Saccadic eye movements were a lower with a dark to light video progression than viceversa.

  2. 3D UHDTV contents production with 2/3-inch sensor cameras

    NASA Astrophysics Data System (ADS)

    Hamacher, Alaric; Pardeshi, Sunil; Whangboo, Taeg-Keun; Kim, Sang-Il; Lee, Seung-Hyun

    2015-03-01

    Most UHDTV content is presently created using single large CMOS sensor cameras as opposed to 2/3-inch small sensor cameras, which is the standard for HD content. The consequence is a technical incompatibility that does not only affect the lenses and accessories of these cameras, but also the content creation process in 2D and 3D. While UHDTV is generally acclaimed for its superior image quality, the large sensors have introduced new constraints in the filming process. The camera sizes and lens dimensions have also introduced new obstacles for their use in 3D UHDTV production. The recent availability of UHDTV broadcast cameras with traditional 2/3-inch sensors can improve the transition towards UHDTV content creation. The following article will evaluate differences between the large-sensor UHDTV cameras and the 2/3-inch 3 CMOS solution and address 3D-specific considerations, such as possible artifacts like chromatic aberration and diffraction, which can occur when mixing HD and UHD equipment. The article will further present a workflow with solutions for shooting 3D UHDTV content on the basis of the Grass Valley LDX4K compact camera, which is the first available UHDTV camera with 2/3-inch UHDTV broadcast technology.

  3. A new multimodal interactive way of subjective scoring of 3D video quality of experience

    NASA Astrophysics Data System (ADS)

    Kim, Taewan; Lee, Kwanghyun; Lee, Sanghoon; Bovik, Alan C.

    2014-03-01

    People that watch today's 3D visual programs, such as 3D cinema, 3D TV and 3D games, experience wide and dynamically varying ranges of 3D visual immersion and 3D quality of experience (QoE). It is necessary to be able to deploy reliable methodologies that measure each viewers subjective experience. We propose a new methodology that we call Multimodal Interactive Continuous Scoring of Quality (MICSQ). MICSQ is composed of a device interaction process between the 3D display and a separate device (PC, tablet, etc.) used as an assessment tool, and a human interaction process between the subject(s) and the device. The scoring process is multimodal, using aural and tactile cues to help engage and focus the subject(s) on their tasks. Moreover, the wireless device interaction process makes it possible for multiple subjects to assess 3D QoE simultaneously in a large space such as a movie theater, and at di®erent visual angles and distances.

  4. On the comparison of visual discomfort generated by S3D and 2D content based on eye-tracking features

    NASA Astrophysics Data System (ADS)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2014-03-01

    The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.

  5. VideoANT: Extending Online Video Annotation beyond Content Delivery

    ERIC Educational Resources Information Center

    Hosack, Bradford

    2010-01-01

    This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…

  6. What factors are related to understanding a stereoscopic 3D diabetes educational video in seniors?

    PubMed

    Liu, Chiung-ju; William, Albert

    2014-10-01

    The rise of three-dimensional imaging technology and products offers a new avenue for patient education to older adults. This study investigated older adults' perception of a three-dimensional health education video on diabetes, and factors associated with understanding the video. Twenty-one older adults without a history of diabetes watched a short diabetes educational video on a stereoscopic display. They perceived the video as helpful, valuable, and exciting, but too fast. Better understanding of the video is associated with having higher background knowledge of diabetes and greater vocabulary. Ethnicity is also a potential factor. Older adults may choose narrative information over graphic information to process a three-dimensional multimedia presentation.

  7. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  8. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    NASA Astrophysics Data System (ADS)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  9. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Stilla, U.

    2014-11-01

    Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

  10. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.

    PubMed

    Jacob, J Augustin; Kumar, N Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation.

  11. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression

    PubMed Central

    Jacob, J. Augustin; Kumar, N. Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  12. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.

    PubMed

    Jacob, J Augustin; Kumar, N Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  13. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction. PMID:25122851

  14. Real-Depth imaging: a new (no glasses) 3D imaging technology with video/data projection applications

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1997-05-01

    Floating Images, Inc. has developed the software and hardware for anew, patent pending, 'floating 3D, off-the- screen-experience' display technology. This technology has the potential to become the next standard for home and arcade video games, computers, corporate presentations, Internet/Intranet viewing, and television. Current '3D Graphics' technologies are actually flat on screen. Floating Images technology actually produce images at different depths from any display, such as CRT and LCD, for television, computer, projection, and other formats. In addition, unlike stereoscopic 3D imaging, no glasses, headgear, or other viewing aids are used. And, unlike current autostereoscopic imaging technologies, there is virtually no restriction on where viewers can sit to view the images, with no 'bad' or 'dead' zones, flipping, or pseudoscopy. In addition to providing traditional depth cues such as perspective and background image occlusion, the new technology also provides both horizontal and vertical binocular parallax and accommodation which coincides with convergence. Since accommodation coincides with convergence, viewing these images doesn't produce headaches, fatigue, or eye-strain, regardless of how long they are viewed. The imagery must either be formatted for the Floating Images platform when written, or existing software can be reformatted without much difficult. The optical hardware system can be made to accommodate virtually any projection system to produce Floating Images for the Boardroom, video arcade, stage shows, or the classroom.

  15. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  16. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  17. 3-D Computer Animation vs. Live-Action Video: Differences in Viewers' Response to Instructional Vignettes

    ERIC Educational Resources Information Center

    Smith, Dennie; McLaughlin, Tim; Brown, Irving

    2012-01-01

    This study explored computer animation vignettes as a replacement for live-action video scenarios of classroom behavior situations previously used as an instructional resource in teacher education courses in classroom management strategies. The focus of the research was to determine if the embedded behavioral information perceived in a live-action…

  18. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  19. Evaluating the Role of Content in Subjective Video Quality Assessment

    PubMed Central

    Vrgovic, Petar

    2014-01-01

    Video quality as perceived by human observers is the ground truth when Video Quality Assessment (VQA) is in question. It is dependent on many variables, one of them being the content of the video that is being evaluated. Despite the evidence that content has an impact on the quality score the sequence receives from human evaluators, currently available VQA databases mostly comprise of sequences which fail to take this into account. In this paper, we aim to identify and analyze differences between human cognitive, affective, and conative responses to a set of videos commonly used for VQA and a set of videos specifically chosen to include video content which might affect the judgment of evaluators when perceived video quality is in question. Our findings indicate that considerable differences exist between the two sets on selected factors, which leads us to conclude that videos starring a different type of content than the currently employed ones might be more appropriate for VQA. PMID:24523643

  20. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.

    PubMed

    Lee, W; Kim, T-S; Cho, M; Lee, S

    2005-01-01

    In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.

  1. Correlation between a perspective distortion in a S3D content and the visual discomfort perceived

    NASA Astrophysics Data System (ADS)

    Doyen, D.; Sacré, J.-J.; Blondé, L.

    2012-03-01

    Perspective distortion will occur in stereoscopic 3D (S3D) when the relative disparity between elements generates a depth not in accordance with the relative size of the presented objects. Subjective tests have been conducted using test sequences where shooting parameters are perfectly known and where vergence/accommodation conflict is not predominant. Perspective distortions will occur with some of the sequences, depending on viewing conditions. People were asked to qualify sequences in term of naturalness and visual comfort. Results of test revealed a clear correlation between perspective conflict and visual discomfort perceived. Whatever the shooting condition, parallel or toed-in cameras, results are similar. A factor between depth and perspective can be calculated for each shooting configuration and viewing condition. This factor seems a relevant indicator to evaluate the comfort of S3D content perception. Subjective tests allowed to better understand the link between perspective conflicts and visual comfort. Next, studies will be conducted to extend these tests to cinema conditions were the range of viewing conditions is larger.

  2. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  3. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  4. Fast phase-added stereogram algorithm for generation of photorealistic 3D content.

    PubMed

    Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi

    2016-01-20

    A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945

  5. Creating 3D realistic head: from two orthogonal photos to multiview face contents

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Lin, Qian; Tang, Feng; Tang, Liang; Lim, Sukhwan; Wang, Shengjin

    2011-03-01

    3D Head models have many applications, such as virtual conference, 3D web game, and so on. The existing several web-based face modeling solutions that can create a 3D face model from one or two user uploaded face images, are limited to generating the 3D model of only face region. The accuracy of such reconstruction is very limited for side views, as well as hair regions. The goal of our research is to develop a framework for reconstructing the realistic 3D human head based on two approximate orthogonal views. Our framework takes two images, and goes through segmentation, feature points detection, 3D bald head reconstruction, 3D hair reconstruction and texture mapping to create a 3D head model. The main contribution of the paper is that the processing steps are applies to both the face region as well as the hair region.

  6. Content-based management service for medical videos.

    PubMed

    Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre

    2013-01-01

    Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access. PMID:23270313

  7. Content-based management service for medical videos.

    PubMed

    Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre

    2013-01-01

    Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access.

  8. Soil water content variability in the 3D 'support-spacing-extent' space of scale metrics

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Martinez, Gonzalo; Vereecken, Harry

    2014-05-01

    Knowledge of soil water content variability provides important insight into soil functioning, and is essential in many applications. This variability is known to be scale-dependent, and divergent statements about the change of the variability magnitude with scale can be found in literature. We undertook a systematic review to see how the definition of scale can affect conclusions about the scale-dependence in soil water content variability. Support, spacing, and extent are three metrics used to characterize scale in hydrology. Available data sets describe changes in soil moisture variability with changes in one or more of these scale metrics. We found six types of experiments with the scale change. With data obtained without a change in extent, the scale change in some cases consisted in the simultaneous change of support and spacing. This was done with remote sensing data, and the power law decrease in variance with support increase was found. Datasets that were collected with different support or sample volumes for the same extent and spacing showed the decrease of variance as the sample size increased. A variance increase was common when the scale change consisted in change in spacing without the change in supports and extents. An increase in variance with the extent of the study area was demonstrated with data an evolution of variability with increasing size of the area under investigation (extent) without modification of support. The variance generally increased with the extent when the spacing was changed so that the change in variability at areas of different sizes was studied with the same number of samples with equal support. Finally, there are remote sensing datasets that document decrease in variability with a change in extent for a given support without modification of spacing. Overall, published information on the effect of scale on soil water content variability in the 3D space of scale metrics did not contain controversies in qualitative terms

  9. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field.

  10. High-content 3D multicolor super-resolution localization microscopy.

    PubMed

    Pereira, Pedro M; Almada, Pedro; Henriques, Ricardo

    2015-01-01

    Super-resolution (SR) methodologies permit the visualization of cellular structures at near-molecular scale (1-30 nm), enabling novel mechanistic analysis of key events in cell biology not resolvable by conventional fluorescence imaging (∼300-nm resolution). When this level of detail is combined with computing power and fast and reliable analysis software, high-content screenings using SR becomes a practical option to address multiple biological questions. The importance of combining these powerful analytical techniques cannot be ignored, as they can address phenotypic changes on the molecular scale and in a statistically robust manner. In this work, we suggest an easy-to-implement protocol that can be applied to set up a high-content 3D SR experiment with user-friendly and freely available software. The protocol can be divided into two main parts: chamber and sample preparation, where a protocol to set up a direct STORM (dSTORM) sample is presented; and a second part where a protocol for image acquisition and analysis is described. We intend to take the reader step-by-step through the experimental process highlighting possible experimental bottlenecks and possible improvements based on recent developments in the field. PMID:25640426

  11. Highlight detection for video content analysis through double filters

    NASA Astrophysics Data System (ADS)

    Sun, Zhonghua; Chen, Hexin; Chen, Mianshu

    2005-07-01

    Highlight detection is a form of video summarization techniques aiming at including the most expressive or attracting parts in the video. Most video highlights selection research work has been performed on sports video, detecting certain objects or events such as goals in soccer video, touch down in football and others. In this paper, we present a highlight detection method for film video. Highlight section in a film video is not like that in sports video that usually has certain objects or events. The methods to determine a highlight part in a film video can exhibit as three aspects: (a) locating obvious audio event, (b) detecting expressive visual content around the obvious audio location, (c) selecting the preferred portion of the extracted audio-visual highlight segments. We define a double filters model to detect the potential highlights in video. First obvious audio location is determined through filtering the obvious audio features, and then we perform the potential visual salience detection around the potential audio highlight location. Finally the production from the audio-visual double filters is compared with a preference threshold to determine the final highlights. The user study results indicate that the double filters detection approach is an effective method for highlight detection for video content analysis.

  12. Content-based retrieval in videos from laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Schoeffmann, Klaus; Beecks, Christian; Lux, Mathias; Uysal, Merih Seran; Seidl, Thomas

    2016-03-01

    In the field of medical endoscopy more and more surgeons are changing over to record and store videos of their endoscopic procedures for long-term archival. These endoscopic videos are a good source of information for explanations to patients and follow-up operations. As the endoscope is the "eye of the surgeon", the video shows the same information the surgeon has seen during the operation, and can describe the situation inside the patient much more precisely than an operation report would do. Recorded endoscopic videos can also be used for training young surgeons and in some countries the long-term archival of video recordings from endoscopic procedures is even enforced by law. A major challenge, however, is to efficiently access these very large video archives for later purposes. One problem, for example, is to locate specific images in the videos that show important situations, which are additionally captured as static images during the procedure. This work addresses this problem and focuses on contentbased video retrieval in data from laparoscopic surgery. We propose to use feature signatures, which can appropriately and concisely describe the content of laparoscopic images, and show that by using this content descriptor with an appropriate metric, we are able to efficiently perform content-based retrieval in laparoscopic videos. In a dataset with 600 captured static images from 33 hours recordings, we are able to find the correct video segment for more than 88% of these images.

  13. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan P.; Rizvi, Imran; Blanden, Adam R.; Massodi, Iqbal; Glidden, Michael D.; Pogue, Brian W.; Hasan, Tayyaba

    2014-01-01

    While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.

  14. Image and video compression for HDR content

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Reinhard, Erik; Agrafiotis, Dimitris; Bull, David R.

    2012-10-01

    High Dynamic Range (HDR) technology can offer high levels of immersion with a dynamic range meeting and exceeding that of the Human Visual System (HVS). A primary drawback with HDR images and video is that memory and bandwidth requirements are significantly higher than for conventional images and video. Many bits can be wasted coding redundant imperceptible information. The challenge is therefore to develop means for efficiently compressing HDR imagery to a manageable bit rate without compromising perceptual quality. In this paper, we build on previous work of ours and propose a compression method for both HDR images and video, based on an HVS optimised wavelet subband weighting method. The method has been fully integrated into a JPEG 2000 codec for HDR image compression and implemented as a pre-processing step for HDR video coding (an H.264 codec is used as the host codec for video compression). Experimental results indicate that the proposed method outperforms previous approaches and operates in accordance with characteristics of the HVS, tested objectively using a HDR Visible Difference Predictor (VDP). Aiming to further improve the compression performance of our method, we additionally present the results of a psychophysical experiment, carried out with the aid of a high dynamic range display, to determine the difference in the noise visibility threshold between HDR and Standard Dynamic Range (SDR) luminance edge masking. Our findings show that noise has increased visibility on the bright side of a luminance edge. Masking is more consistent on the darker side of the edge.

  15. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  16. Depth enhanced and content aware video stabilization

    NASA Astrophysics Data System (ADS)

    Lindner, A.; Atanassov, K.; Goma, S.

    2015-03-01

    We propose a system that uses depth information for video stabilization. The system uses 2D-homographies as frame pair transforms that are estimated with keypoints at the depth of interest. This makes the estimation more robust as the points lie on a plane. The depth of interest can be determined automatically from the depth histogram, inferred from user input such as tap-to-focus, or selected by the user; i.e., tap-to-stabilize. The proposed system can stabilize videos on the fly in a single pass and is especially suited for mobile phones with multiple cameras that can compute depth maps automatically during image acquisition.

  17. Automatic video shot detection and characterization for content-based video retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Cui, Songye; Xu, Xing; Luo, Ying

    2001-09-01

    In this paper, firstly, several video shot detection technologies have been discussed. An edited video consists of two kinds of shot boundaries have been known as straight cuts and optical cuts. Experimental result using a variety of videos are presented to demonstrate that moving window detection algorithm and 10-step difference histogram comparison algorithm are effective for detection of both kinds of shot cuts. After shot isolation, methods for shot characterization were investigated. We present a detailed discussion of key-frame extraction and review the visual features, particularly the color feature based on HSV model, of key-frames. Video retrieval methods based on key-frames have been presented at the end of this section. This paper also present an integrated system solution for computer- assisted video parsing and content-based video retrieval. The application software package was programmed on Visual C++ development platform.

  18. Arcade Video Games: Proxemic, Cognitive and Content Analyses.

    ERIC Educational Resources Information Center

    Braun, Claude M. J.; Giroux, Josette

    1989-01-01

    A study was designed to determine psychological complexity and reinforcement characteristics of popular arcade video games, including sex differences in game content, clientele social structure, human-to-human interaction contingencies, and value content. Results suggest a need for public control of children's access to the games and the video…

  19. Reading Function and Content Words in Subtitled Videos

    ERIC Educational Resources Information Center

    Krejtz, Izabela; Szarkowska, Agnieszka; Loginska, Maria

    2016-01-01

    In this study, we examined how function and content words are read in intra- and interlingual subtitles. We monitored eye movements of a group of 39 deaf, 27 hard of hearing, and 56 hearing Polish participants while they viewed English and Polish videos with Polish subtitles. We found that function words and short content words received less…

  20. Deriving video content type from HEVC bitstream semantics

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos; Goma, Sergio R.

    2014-05-01

    As network service providers seek to improve customer satisfaction and retention levels, they are increasingly moving from traditional quality of service (QoS) driven delivery models to customer-centred quality of experience (QoE) delivery models. QoS models only consider metrics derived from the network however, QoE models also consider metrics derived from within the video sequence itself. Various spatial and temporal characteristics of a video sequence have been proposed, both individually and in combination, to derive methods of classifying video content either on a continuous scale or as a set of discrete classes. QoE models can be divided into three broad categories, full reference, reduced reference and no-reference models. Due to the need to have the original video available at the client for comparison, full reference metrics are of limited practical value in adaptive real-time video applications. Reduced reference metrics often require metadata to be transmitted with the bitstream, while no-reference metrics typically operate in the decompressed domain at the client side and require significant processing to extract spatial and temporal features. This paper proposes a heuristic, no-reference approach to video content classification which is specific to HEVC encoded bitstreams. The HEVC encoder already makes use of spatial characteristics to determine partitioning of coding units and temporal characteristics to determine the splitting of prediction units. We derive a function which approximates the spatio-temporal characteristics of the video sequence by using the weighted averages of the depth at which the coding unit quadtree is split and the prediction mode decision made by the encoder to estimate spatial and temporal characteristics respectively. Since the video content type of a sequence is determined by using high level information parsed from the video stream, spatio-temporal characteristics are identified without the need for full decoding and can

  1. Motion feature extraction scheme for content-based video retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Chuan; He, Yuwen; Zhao, Li; Zhong, Yuzhuo

    2001-12-01

    This paper proposes the extraction scheme of global motion and object trajectory in a video shot for content-based video retrieval. Motion is the key feature representing temporal information of videos. And it is more objective and consistent compared to other features such as color, texture, etc. Efficient motion feature extraction is an important step for content-based video retrieval. Some approaches have been taken to extract camera motion and motion activity in video sequences. When dealing with the problem of object tracking, algorithms are always proposed on the basis of known object region in the frames. In this paper, a whole picture of the motion information in the video shot has been achieved through analyzing motion of background and foreground respectively and automatically. 6-parameter affine model is utilized as the motion model of background motion, and a fast and robust global motion estimation algorithm is developed to estimate the parameters of the motion model. The object region is obtained by means of global motion compensation between two consecutive frames. Then the center of object region is calculated and tracked to get the object motion trajectory in the video sequence. Global motion and object trajectory are described with MPEG-7 parametric motion and motion trajectory descriptors and valid similar measures are defined for the two descriptors. Experimental results indicate that our proposed scheme is reliable and efficient.

  2. A content-based news video retrieval system: NVRS

    NASA Astrophysics Data System (ADS)

    Liu, Huayong; He, Tingting

    2009-10-01

    This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.

  3. 2D and 3D stereoscopic videos used as pre-anatomy lab tools improve students' examination performance in a veterinary gross anatomy course.

    PubMed

    Al-Khalili, Sereen M; Coppoc, Gordon L

    2014-01-01

    The hypothesis for the research described in this article was that viewing an interactive two-dimensional (2D) or three-dimensional (3D) stereoscopic pre-laboratory video would improve efficiency and learning in the laboratory. A first-year DVM class was divided into 21 dissection teams of four students each. Primary variables were method of preparation (2D, 3D, or laboratory manual) and dissection region (thorax, abdomen, or pelvis). Teams were randomly assigned to a group (A, B, or C) in a crossover design experiment so that all students experienced each of the modes of preparation, but with different regions of the canine anatomy. All students were instructed to study normal course materials and the laboratory manual, the Guide, before coming to the laboratory session and to use them during the actual dissection as usual. Video groups were given a DVD with an interactive 10-12 minute video to view for the first 30 minutes of the laboratory session, while non-video groups were instructed to review the Guide. All groups were allowed 45 minutes to dissect the assigned section and find a list of assigned structures, after which all groups took a post-dissection quiz and attitudinal survey. The 2D groups performed better than the Guide groups (p=.028) on the post-dissection quiz, despite the fact that only a minority of the 2D-group students studied the Guide as instructed. There was no significant difference (p>.05) between 2D and 3D groups on the post-dissection quiz. Students preferred videos over the Guide. PMID:24418924

  4. 2D and 3D stereoscopic videos used as pre-anatomy lab tools improve students' examination performance in a veterinary gross anatomy course.

    PubMed

    Al-Khalili, Sereen M; Coppoc, Gordon L

    2014-01-01

    The hypothesis for the research described in this article was that viewing an interactive two-dimensional (2D) or three-dimensional (3D) stereoscopic pre-laboratory video would improve efficiency and learning in the laboratory. A first-year DVM class was divided into 21 dissection teams of four students each. Primary variables were method of preparation (2D, 3D, or laboratory manual) and dissection region (thorax, abdomen, or pelvis). Teams were randomly assigned to a group (A, B, or C) in a crossover design experiment so that all students experienced each of the modes of preparation, but with different regions of the canine anatomy. All students were instructed to study normal course materials and the laboratory manual, the Guide, before coming to the laboratory session and to use them during the actual dissection as usual. Video groups were given a DVD with an interactive 10-12 minute video to view for the first 30 minutes of the laboratory session, while non-video groups were instructed to review the Guide. All groups were allowed 45 minutes to dissect the assigned section and find a list of assigned structures, after which all groups took a post-dissection quiz and attitudinal survey. The 2D groups performed better than the Guide groups (p=.028) on the post-dissection quiz, despite the fact that only a minority of the 2D-group students studied the Guide as instructed. There was no significant difference (p>.05) between 2D and 3D groups on the post-dissection quiz. Students preferred videos over the Guide.

  5. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  6. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  7. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  8. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  9. Evaluation of vision training using 3D play game

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Kwon, Soon-Chul; Son, Kwang-Chul; Lee, Seung-Hyun

    2015-03-01

    The present study aimed to examine the effect of the vision training, which is a benefit of watching 3D video images (3D video shooting game in this study), focusing on its accommodative facility and vergence facility. Both facilities, which are the scales used to measure human visual performance, are very important factors for man in leading comfortable and easy life. This study was conducted on 30 participants in their 20s through 30s (19 males and 11 females at 24.53 ± 2.94 years), who can watch 3D video images and play 3D game. Their accommodative and vergence facility were measured before and after they watched 2D and 3D game. It turned out that their accommodative facility improved after they played both 2D and 3D games and more improved right after they played 3D game than 2D game. Likewise, their vergence facility was proved to improve after they played both 2D and 3D games and more improved soon after they played 3D game than 2D game. In addition, it was demonstrated that their accommodative facility improved to greater extent than their vergence facility. While studies have been so far conducted on the adverse effects of 3D contents, from the perspective of human factor, on the imbalance of visual accommodation and convergence, the present study is expected to broaden the applicable scope of 3D contents by utilizing the visual benefit of 3D contents for vision training.

  10. Content-based analysis and indexing of sports video

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Bai, Xuesheng; Xu, Guang-you

    2001-12-01

    An explosion of on-line image and video data in digital form is already well underway. With the exponential rise in interactive information exploration and dissemination through the World-Wide Web, the major inhibitors of rapid access to on-line video data are the management of capture and storage, and content-based intelligent search and indexing techniques. This paper proposes an approach for content-based analysis and event-based indexing of sports video. It includes a novel method to organize shots - classifying shots as close shots and far shots, an original idea of blur extent-based event detection, and an innovative local mutation-based algorithm for caption detection and retrieval. Results on extensive real TV programs demonstrate the applicability of our approach.

  11. Practical life log video indexing based on content and context

    NASA Astrophysics Data System (ADS)

    Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu

    2006-01-01

    Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.

  12. Making Web3D Less Scary: Toward Easy-to-Use Web3D e-Learning Content Development Tools for Educators

    ERIC Educational Resources Information Center

    de Byl, Penny

    2009-01-01

    Penny de Byl argues that one of the biggest challenges facing educators today is the integration of rich and immersive three-dimensional environments with existing teaching and learning materials. To empower educators with the ability to embrace emerging Web3D technologies, the Advanced Learning and Immersive Virtual Environment (ALIVE) research…

  13. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    PubMed

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  14. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    SciTech Connect

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high-content

  15. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  16. 3D scene reconstruction based on multi-view distributed video coding in the Zernike domain for mobile applications

    NASA Astrophysics Data System (ADS)

    Palma, V.; Carli, M.; Neri, A.

    2011-02-01

    In this paper a Multi-view Distributed Video Coding scheme for mobile applications is presented. Specifically a new fusion technique between temporal and spatial side information in Zernike Moments domain is proposed. Distributed video coding introduces a flexible architecture that enables the design of very low complex video encoders compared to its traditional counterparts. The main goal of our work is to generate at the decoder the side information that optimally blends temporal and interview data. Multi-view distributed coding performance strongly depends on the side information quality built at the decoder. At this aim for improving its quality a spatial view compensation/prediction in Zernike moments domain is applied. Spatial and temporal motion activity have been fused together to obtain the overall side-information. The proposed method has been evaluated by rate-distortion performances for different inter-view and temporal estimation quality conditions.

  17. Reading while Watching Video: The Effect of Video Content on Reading Comprehension and Media Multitasking Ability

    ERIC Educational Resources Information Center

    Lin, Lin; Lee, Jennifer; Robertson, Tip

    2011-01-01

    Media multitasking, or engaging in multiple media and tasks simultaneously, is becoming an increasingly popular phenomenon with the development and engagement in social media. This study examines to what extent video content affects students' reading comprehension in media multitasking environments. One hundred and thirty university students were…

  18. Interaction and behaviour imaging: a novel method to measure mother-infant interaction using video 3D reconstruction.

    PubMed

    Leclère, C; Avril, M; Viaux-Savelon, S; Bodeau, N; Achard, C; Missonnier, S; Keren, M; Feldman, R; Chetouani, M; Cohen, D

    2016-05-24

    Studying early interaction is essential for understanding development and psychopathology. Automatic computational methods offer the possibility to analyse social signals and behaviours of several partners simultaneously and dynamically. Here, 20 dyads of mothers and their 13-36-month-old infants were videotaped during mother-infant interaction including 10 extremely high-risk and 10 low-risk dyads using two-dimensional (2D) and three-dimensional (3D) sensors. From 2D+3D data and 3D space reconstruction, we extracted individual parameters (quantity of movement and motion activity ratio for each partner) and dyadic parameters related to the dynamics of partners heads distance (contribution to heads distance), to the focus of mutual engagement (percentage of time spent face to face or oriented to the task) and to the dynamics of motion activity (synchrony ratio, overlap ratio, pause ratio). Features are compared with blind global rating of the interaction using the coding interactive behavior (CIB). We found that individual and dyadic parameters of 2D+3D motion features perfectly correlates with rated CIB maternal and dyadic composite scores. Support Vector Machine classification using all 2D-3D motion features classified 100% of the dyads in their group meaning that motion behaviours are sufficient to distinguish high-risk from low-risk dyads. The proposed method may present a promising, low-cost methodology that can uniquely use artificial technology to detect meaningful features of human interactions and may have several implications for studying dyadic behaviours in psychiatry. Combining both global rating scales and computerized methods may enable a continuum of time scale from a summary of entire interactions to second-by-second dynamics.

  19. Interaction and behaviour imaging: a novel method to measure mother–infant interaction using video 3D reconstruction

    PubMed Central

    Leclère, C; Avril, M; Viaux-Savelon, S; Bodeau, N; Achard, C; Missonnier, S; Keren, M; Feldman, R; Chetouani, M; Cohen, D

    2016-01-01

    Studying early interaction is essential for understanding development and psychopathology. Automatic computational methods offer the possibility to analyse social signals and behaviours of several partners simultaneously and dynamically. Here, 20 dyads of mothers and their 13–36-month-old infants were videotaped during mother–infant interaction including 10 extremely high-risk and 10 low-risk dyads using two-dimensional (2D) and three-dimensional (3D) sensors. From 2D+3D data and 3D space reconstruction, we extracted individual parameters (quantity of movement and motion activity ratio for each partner) and dyadic parameters related to the dynamics of partners heads distance (contribution to heads distance), to the focus of mutual engagement (percentage of time spent face to face or oriented to the task) and to the dynamics of motion activity (synchrony ratio, overlap ratio, pause ratio). Features are compared with blind global rating of the interaction using the coding interactive behavior (CIB). We found that individual and dyadic parameters of 2D+3D motion features perfectly correlates with rated CIB maternal and dyadic composite scores. Support Vector Machine classification using all 2D–3D motion features classified 100% of the dyads in their group meaning that motion behaviours are sufficient to distinguish high-risk from low-risk dyads. The proposed method may present a promising, low-cost methodology that can uniquely use artificial technology to detect meaningful features of human interactions and may have several implications for studying dyadic behaviours in psychiatry. Combining both global rating scales and computerized methods may enable a continuum of time scale from a summary of entire interactions to second-by-second dynamics. PMID:27219342

  20. Multiscale content extraction and representation for video indexing

    NASA Astrophysics Data System (ADS)

    Ferman, Ahmet M.; Tekalp, A. Murat

    1997-10-01

    This paper presents a general multiscale framework for extraction and representation of video content. The approach exploits the inherent multiscale nature of many TV and film productions to delineate an input stream effectively and to construct consistent scenes reliably. The method first utilizes basic signal processing techniques, and unsupervised clustering to determine shot boundaries in the video sequence. Similarity comparison using shot representative histograms and clustering to determine shot boundaries in the video sequence. Similarity comparison using shot representative histograms and clustering is then carried out within each shot to automatically select representative key frames. Finally, a model that takes into account the filmic structure of the input stream is discussed and developed to efficiently merge individual shots into coherent, meaningful segments, i.e. scenes.

  1. Content-based video indexing and searching with wavelet transformation

    NASA Astrophysics Data System (ADS)

    Stumpf, Florian; Al-Jawad, Naseer; Du, Hongbo; Jassim, Sabah

    2006-05-01

    Biometric databases form an essential tool in the fight against international terrorism, organised crime and fraud. Various government and law enforcement agencies have their own biometric databases consisting of combination of fingerprints, Iris codes, face images/videos and speech records for an increasing number of persons. In many cases personal data linked to biometric records are incomplete and/or inaccurate. Besides, biometric data in different databases for the same individual may be recorded with different personal details. Following the recent terrorist atrocities, law enforcing agencies collaborate more than before and have greater reliance on database sharing. In such an environment, reliable biometric-based identification must not only determine who you are but also who else you are. In this paper we propose a compact content-based video signature and indexing scheme that can facilitate retrieval of multiple records in face biometric databases that belong to the same person even if their associated personal data are inconsistent. We shall assess the performance of our system using a benchmark audio visual face biometric database that has multiple videos for each subject but with different identity claims. We shall demonstrate that retrieval of relatively small number of videos that are nearest, in terms of the proposed index, to any video in the database results in significant proportion of that individual biometric data.

  2. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.

    2011-12-01

    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  3. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions.

    PubMed

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions.

  4. Statistical models of video structure for content analysis and characterization.

    PubMed

    Vasconcelos, N; Lippman, A

    2000-01-01

    Content structure plays an important role in the understanding of video. In this paper, we argue that knowledge about structure can be used both as a means to improve the performance of content analysis and to extract features that convey semantic information about the content. We introduce statistical models for two important components of this structure, shot duration and activity, and demonstrate the usefulness of these models with two practical applications. First, we develop a Bayesian formulation for the shot segmentation problem that is shown to extend the standard thresholding model in an adaptive and intuitive way, leading to improved segmentation accuracy. Second, by applying the transformation into the shot duration/activity feature space to a database of movie clips, we also illustrate how the Bayesian model captures semantic properties of the content. We suggest ways in which these properties can be used as a basis for intuitive content-based access to movie libraries.

  5. Effects of scene content and layout on the perceived light direction in 3D spaces.

    PubMed

    Xia, Ling; Pont, Sylvia C; Heynderickx, Ingrid

    2016-08-01

    The lighting and furnishing of an interior space (i.e., the reflectance of its materials, the geometries of the furnishings, and their arrangement) determine the appearance of this space. Conversely, human observers infer lighting properties from the space's appearance. We conducted two psychophysical experiments to investigate how the perception of the light direction is influenced by a scene's objects and their layout using real scenes. In the first experiment, we confirmed that the shape of the objects in the scene and the scene layout influence the perceived light direction. In the second experiment, we systematically investigated how specific shape properties influenced the estimation of the light direction. The results showed that increasing the number of visible faces of an object, ultimately using globally spherical shapes in the scene, supported the veridicality of the estimated light direction. Furthermore, symmetric arrangements in the scene improved the estimation of the tilt direction. Thus, human perception of light should integrally consider materials, scene content, and layout. PMID:27548091

  6. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  7. Automatic indexing of news video for content-based retrieval

    NASA Astrophysics Data System (ADS)

    Yang, Myung-Sup; Yoo, Cheol-Jung; Chang, Ok-Bae

    1998-06-01

    Since it is impossible to automatically parse a general video, we investigated an integrated solution for the content-based news video indexing and the retrieval. Thus, a specific structural video such as news video is parsed, because it is included both temporal and spatial characteristics that the news event with an anchor-person is iteratively appeared, a news icon and a caption are involved in some frame, respectively. To extract automatically the key frames by using the structured knowledge of news, the model used in this paper is consisted of the news event segmentation, caption recognition and search browser module. The following are three main modules represented in this paper: (1) The news event segmentation module (NESM) for both the recognition and the division of an anchor-person shot. (2) The caption recognition module (CRM) for the detection of the caption-frames in a news event, the extraction of their caption region in the frame by using split-merge method, and the recognition of the region as a text with OCR software. 3) The search browser module (SBM) for the display of the list of news events and news captions, which are included in selected news event. However, the SBM can be caused various searching mechanisms.

  8. Educational use of 3D models and photogrammetry content: the Europeana space project for Cypriot UNESCO monuments

    NASA Astrophysics Data System (ADS)

    Ioannides, M.; Chatzigrigoriou, P.; Bokolas, V.; Nikolakopoulou, V.; Athanasiou, V.

    2016-08-01

    Digital heritage data are now more accessible through crowdsourcing platforms, social media and blogs. At the same time, evolving technology on 3D modelling, laser scanning and 3D reconstruction is constantly upgrading and multiplying the information that we can use from heritage digitalisation. The question of reusing the information in different aspects rises. Educators and students are potential users of the digital content; developing for them an adaptable environment for applications and services is our challenge. One of the main objective of the EU Europeana Space project is the development of a holistic approach for educating people (grown ups and kids) on Monuments that are listed at UNESCO world heritage list, in Cyprus. The challenge was the use of Europeana Data (Pictures and the 3D objects) in a way that the information on the platform would be comprehensible by the users. Most of the data have little metadata information and they lack history and cultural value description (semantics). The proposed model ction is based on the cross cultural approach which responds to the multicultural features of present era but at the same time to the contemporary pedagogical and methodological directions. The system uses all innovative digital heritage resources, in order to help the user, in a UX friendly way, to learn about the different phases of the monument, the history, the pathology state, the architectural value and the conservation stage. The result is a responsive platform, accessible through smart devices and desktop computers, (in the frame of "Bring Your Own Device" a.k.a. BYOD) where every Monument is a different course and every course is addressed to different age groups (from elementary level to adults' vocational training).

  9. Semi-automatic 2D-to-3D conversion of human-centered videos enhanced by age and gender estimation

    NASA Astrophysics Data System (ADS)

    Fard, Mani B.; Bayazit, Ulug

    2014-01-01

    In this work, we propose a feasible 3D video generation method to enable high quality visual perception using a monocular uncalibrated camera. Anthropometric distances between face standard landmarks are approximated based on the person's age and gender. These measurements are used in a 2-stage approach to facilitate the construction of binocular stereo images. Specifically, one view of the background is registered in initial stage of video shooting. It is followed by an automatically guided displacement of the camera toward its secondary position. At the secondary position the real-time capturing is started and the foreground (viewed person) region is extracted for each frame. After an accurate parallax estimation the extracted foreground is placed in front of the background image that was captured at the initial position. So the constructed full view of the initial position combined with the view of the secondary (current) position, form the complete binocular pairs during real-time video shooting. The subjective evaluation results present a competent depth perception quality through the proposed system.

  10. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents.

    PubMed

    Scholten, Hanneke; Malmberg, Monique; Lobel, Adam; Engels, Rutger C M E; Granic, Isabela

    2016-01-01

    Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138) was conducted to test the effectiveness of a biofeedback video game (Dojo) for adolescents with elevated levels of anxiety. Adolescents (11-15 years old) were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape). Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the "at-risk" cut-off on the Spence Children Anxiety Survey were eligible. Adolescents' anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents' anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms) in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants' expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues. PMID:26816292

  11. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents.

    PubMed

    Scholten, Hanneke; Malmberg, Monique; Lobel, Adam; Engels, Rutger C M E; Granic, Isabela

    2016-01-01

    Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138) was conducted to test the effectiveness of a biofeedback video game (Dojo) for adolescents with elevated levels of anxiety. Adolescents (11-15 years old) were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape). Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the "at-risk" cut-off on the Spence Children Anxiety Survey were eligible. Adolescents' anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents' anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms) in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants' expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues.

  12. A Randomized Controlled Trial to Test the Effectiveness of an Immersive 3D Video Game for Anxiety Prevention among Adolescents

    PubMed Central

    Scholten, Hanneke; Malmberg, Monique; Lobel, Adam; Engels, Rutger C. M. E.; Granic, Isabela

    2016-01-01

    Adolescent anxiety is debilitating, the most frequently diagnosed adolescent mental health problem, and leads to substantial long-term problems. A randomized controlled trial (n = 138) was conducted to test the effectiveness of a biofeedback video game (Dojo) for adolescents with elevated levels of anxiety. Adolescents (11–15 years old) were randomly assigned to play Dojo or a control game (Rayman 2: The Great Escape). Initial screening for anxiety was done on 1,347 adolescents in five high schools; only adolescents who scored above the “at-risk” cut-off on the Spence Children Anxiety Survey were eligible. Adolescents’ anxiety levels were assessed at pre-test, post-test, and at three month follow-up to examine the extent to which playing Dojo decreased adolescents’ anxiety. The present study revealed equal improvements in anxiety symptoms in both conditions at follow-up and no differences between Dojo and the closely matched control game condition. Latent growth curve models did reveal a steeper decrease of personalized anxiety symptoms (not of total anxiety symptoms) in the Dojo condition compared to the control condition. Moderation analyses did not show any differences in outcomes between boys and girls nor did age differentiate outcomes. The present results are of importance for prevention science, as this was the first full-scale randomized controlled trial testing indicated prevention effects of a video game aimed at reducing anxiety. Future research should carefully consider the choice of control condition and outcome measurements, address the potentially high impact of participants’ expectations, and take critical design issues into consideration, such as individual- versus group-based intervention and contamination issues. PMID:26816292

  13. Fully Automated One-Step Production of Functional 3D Tumor Spheroids for High-Content Screening.

    PubMed

    Monjaret, François; Fernandes, Mathieu; Duchemin-Pelletier, Eve; Argento, Amelie; Degot, Sébastien; Young, Joanne

    2016-04-01

    Adoption of spheroids within high-content screening (HCS) has lagged behind high-throughput screening (HTS) due to issues with running complex assays on large three-dimensional (3D) structures.To enable multiplexed imaging and analysis of spheroids, different cancer cell lines were grown in 3D on micropatterned 96-well plates with automated production of nine uniform spheroids per well. Spheroids achieve diameters of up to 600 µm, and reproducibility was experimentally validated (interwell and interplate CV(diameter) <5%). Biphoton imaging confirmed that micropatterned spheroids exhibit characteristic cell heterogeneity with distinct microregions. Furthermore, central necrosis appears at a consistent spheroid size, suggesting standardized growth.Using three reference compounds (fluorouracil, irinotecan, and staurosporine), we validated HT-29 micropatterned spheroids on an HCS platform, benchmarking against hanging-drop spheroids. Spheroid formation and imaging in a single plate accelerate assay workflow, and fixed positioning prevents structures from overlapping or sticking to the well wall, augmenting image processing reliability. Furthermore, multiple spheroids per well increase the statistical confidence sufficiently to discriminate compound mechanisms of action and generate EC50 values for endpoints of cell death, architectural change, and size within a single-pass read. Higher quality data and a more efficient HCS work chain should encourage integration of micropatterned spheroid models within fundamental research and drug discovery applications.

  14. A novel 3D high-content assay identifies compounds that prevent fibroblast invasion into tissue surrogates.

    PubMed

    Wenzel, Carsten; Otto, Saskia; Prechtl, Stefan; Parczyk, Karsten; Steigemann, Patrick

    2015-11-15

    Invasion processes underlie or accompany several pathological processes but only a limited number of high-throughput capable phenotypic models exist to test anti-invasive compounds in vitro. We here evaluated 3D co-cultures as a high-content phenotypic screening system for fibrotic invasive processes. 3D multicellular spheroids were used as living tissue surrogates in co-culture with fluorescently labeled lung fibroblasts to monitor invasion processes by automated microscopy. This setup was used to screen a compound library containing 480 known bioactive substances. Identified hits prevented fibroblast invasion and could be subdivided into two hit classes. First, Prostaglandins were shown to prevent fibroblast invasion, most likely mediated by the prostaglandin EP2 receptor and generation of cAMP. Additionally, Rho-associated protein kinase (ROCK) inhibitors prevented fibroblast invasion, possibly by inactivation of myosin II. Importantly, both Prostaglandins and ROCK inhibitors are potential treatment options shown to be effective in in vitro and in vivo models of fibrotic diseases. This validates the presented novel phenotypic screening approach for the evaluation of potential inhibitors and the identification of novel compounds with activity in diseases that are associated with fibroblast invasion.

  15. Flexible surveillance system architecture for prototyping video content analysis algorithms

    NASA Astrophysics Data System (ADS)

    Wijnhoven, R. G. J.; Jaspers, E. G. T.; de With, P. H. N.

    2006-01-01

    Many proposed video content analysis algorithms for surveillance applications are very computationally intensive, which limits the integration in a total system, running on one processing unit (e.g. PC). To build flexible prototyping systems of low cost, a distributed system with scalable processing power is therefore required. This paper discusses requirements for surveillance systems, considering two example applications. From these requirements, specifications for a prototyping architecture are derived. An implementation of the proposed architecture is presented, enabling mapping of multiple software modules onto a number of processing units (PCs). The architecture enables fast prototyping of new algorithms for complex surveillance applications without considering resource constraints.

  16. Comprehensive depth estimation algorithm for efficient stereoscopic content creation in three-dimensional video systems

    NASA Astrophysics Data System (ADS)

    Xu, Huihui; Jiang, Mingyan

    2015-07-01

    Two-dimensional to three-dimensional (3-D) conversion in 3-D video applications has attracted great attention as it can alleviate the problem of stereoscopic content shortage. Depth estimation is an essential part of this conversion since the depth accuracy directly affects the quality of a stereoscopic image. In order to generate a perceptually reasonable depth map, a comprehensive depth estimation algorithm that considers the scenario type is presented. Based on the human visual system mechanism, which is sensitive to a change in the scenario, this study classifies the type of scenario into four classes according to the relationship between the movements of the camera and the object, and then leverages different strategies on the basis of the scenario type. The proposed strategies efficiently extract the depth information from different scenarios. In addition, the depth generation method for a scenario in which there is no motion, neither of the object nor the camera, is also suitable for the single image. Qualitative and quantitative evaluation results demonstrate that the proposed depth estimation algorithm is very effective for generating stereoscopic content and providing a realistic visual experience.

  17. Evolution-based Virtual Content Insertion with Visually Virtual Interactions in Videos

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Hu; Wu, Ja-Ling

    With the development of content-based multimedia analysis, virtual content insertion has been widely used and studied for video enrichment and multimedia advertising. However, how to automatically insert a user-selected virtual content into personal videos in a less-intrusive manner, with an attractive representation, is a challenging problem. In this chapter, we present an evolution-based virtual content insertion system which can insert virtual contents into videos with evolved animations according to predefined behaviors emulating the characteristics of evolutionary biology. The videos are considered not only as carriers of message conveyed by the virtual content but also as the environment in which the lifelike virtual contents live. Thus, the inserted virtual content will be affected by the videos to trigger a series of artificial evolutions and evolve its appearances and behaviors while interacting with video contents. By inserting virtual contents into videos through the system, users can easily create entertaining storylines and turn their personal videos into visually appealing ones. In addition, it would bring a new opportunity to increase the advertising revenue for video assets of the media industry and online video-sharing websites.

  18. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  19. Key-frame retrieval from MPEG video based on linear approximation of content curve

    NASA Astrophysics Data System (ADS)

    Kim, Tae-hee; Lee, Woong-hee; Jeong, Dong-seok

    2003-01-01

    In general, video is too much lengthy for browsing the contents. So, there are many efforts being made for browsing the content of the video fast and effectively. Video summary is the one of techniques related to those efforts. Video summary comprises a number of key-frames. Therefore, we propose a method to extract key-frames from the video in MPEG compressed domain. Proposed method extracts the simple 2D content curve reflecting the variation of the video content from the MPEG video in the compressed domain, approximates the curve to polygonal lines and then extracts key-frames from the approximated lines effectively and rapidly. Also, proposed method let the user set the number of key-frames.

  20. Advances in 3D soil mapping and water content estimation using multi-channel ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Moysey, S. M.

    2011-12-01

    Multi-channel ground-penetrating radar systems have recently become widely available, thereby opening new possibilities for shallow imaging of the subsurface. One advantage of these systems is that they can significantly reduce survey times by simultaneously collecting multiple lines of GPR reflection data. As a result, it is becoming more practical to complete 3D surveys - particularly in situations where the subsurface undergoes rapid changes, e.g., when monitoring infiltration and redistribution of water in soils. While 3D and 4D surveys can provide a degree of clarity that significantly improves interpretation of the subsurface, an even more powerful feature of the new multi-channel systems for hydrologists is their ability to collect data using multiple antenna offsets. Central mid-point (CMP) surveys have been widely used to estimate radar wave velocities, which can be related to water contents, by sequentially increasing the distance, i.e., offset, between the source and receiver antennas. This process is highly labor intensive using single-channel systems and therefore such surveys are often only performed at a few locations at any given site. In contrast, with multi-channel GPR systems it is possible to physically arrange an array of antennas at different offsets, such that a CMP-style survey is performed at every point along a radar transect. It is then possible to process this data to obtain detailed maps of wave velocity with a horizontal resolution on the order of centimeters. In this talk I review concepts underlying multi-channel GPR imaging with an emphasis on multi-offset profiling for water content estimation. Numerical simulations are used to provide examples that illustrate situations where multi-offset GPR profiling is likely to be successful, with an emphasis on considering how issues like noise, soil heterogeneity, vertical variations in water content and weak reflection returns affect algorithms for automated analysis of the data. Overall

  1. Virtual muscularity: a content analysis of male video game characters.

    PubMed

    Martins, Nicole; Williams, Dmitri C; Ratan, Rabindra A; Harrison, Kristen

    2011-01-01

    The 150 top-selling video games were content analyzed to study representations of male bodies. Human males in the games were captured via screenshot and body parts measured. These measurements were then compared to anthropometric data drawn from a representative sample of 1120 North American men. Characters at high levels of photorealism were larger than the average American male, but these characters did not mirror the V-shaped ideal found in mainstream media. Characters at low levels of photorealism were also larger than the average American male, but these characters were so much larger that they appeared cartoonish. Idealized male characters were more likely to be found in games for children than in games for adults. Implications for cultivation theory are discussed.

  2. Home-video content analysis for MTV-style video generation

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Hung; Yeh, Chia-Hung; Kuo, C. C. J.

    2005-01-01

    Intelligent video pre-processing and authoring techniques that facilitate people to create MTV-style music video clips are investigated in this research. First, we present an automatic approach to detect and remove bad shots often occurring in home video, such as video with poor lighting or motion blur. Then, we consider the generation of MTV-style video clips by performing video and music tempo analysis and seeking an effective way in matching these two tempos. Experiment results are given to demonstrate the feasibility and efficiency of the proposed techniques for home video editing.

  3. Home-video content analysis for MTV-style video generation

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Hung; Yeh, Chia-Hung; Kuo, C. C. J.

    2004-12-01

    Intelligent video pre-processing and authoring techniques that facilitate people to create MTV-style music video clips are investigated in this research. First, we present an automatic approach to detect and remove bad shots often occurring in home video, such as video with poor lighting or motion blur. Then, we consider the generation of MTV-style video clips by performing video and music tempo analysis and seeking an effective way in matching these two tempos. Experiment results are given to demonstrate the feasibility and efficiency of the proposed techniques for home video editing.

  4. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals.

    PubMed

    Bamatraf, Saeed; Hussain, Muhammad; Aboalsamh, Hatim; Qazi, Emad-Ul-Haq; Malik, Amir Saeed; Amin, Hafeez Ullah; Mathkour, Hassan; Muhammad, Ghulam; Imran, Hafiz Muhammad

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM.

  5. A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals

    PubMed Central

    2016-01-01

    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM. PMID:26819593

  6. Development of a 3D Tissue Culture–Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases

    PubMed Central

    Booij, Tijmen H.; Klop, Maarten J. D.; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S.

    2016-01-01

    3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting. PMID:27412535

  7. Development of a 3D Tissue Culture-Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases.

    PubMed

    Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S

    2016-10-01

    3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.

  8. 100 Million Views of Electronic Cigarette YouTube Videos and Counting: Quantification, Content Evaluation, and Engagement Levels of Videos

    PubMed Central

    2016-01-01

    Background The video-sharing website, YouTube, has become an important avenue for product marketing, including tobacco products. It may also serve as an important medium for promoting electronic cigarettes, which have rapidly increased in popularity and are heavily marketed online. While a few studies have examined a limited subset of tobacco-related videos on YouTube, none has explored e-cigarette videos’ overall presence on the platform. Objective To quantify e-cigarette-related videos on YouTube, assess their content, and characterize levels of engagement with those videos. Understanding promotion and discussion of e-cigarettes on YouTube may help clarify the platform’s impact on consumer attitudes and behaviors and inform regulations. Methods Using an automated crawling procedure and keyword rules, e-cigarette-related videos posted on YouTube and their associated metadata were collected between July 1, 2012, and June 30, 2013. Metadata were analyzed to describe posting and viewing time trends, number of views, comments, and ratings. Metadata were content coded for mentions of health, safety, smoking cessation, promotional offers, Web addresses, product types, top-selling brands, or names of celebrity endorsers. Results As of June 30, 2013, approximately 28,000 videos related to e-cigarettes were captured. Videos were posted by approximately 10,000 unique YouTube accounts, viewed more than 100 million times, rated over 380,000 times, and commented on more than 280,000 times. More than 2200 new videos were being uploaded every month by June 2013. The top 1% of most-viewed videos accounted for 44% of total views. Text fields for the majority of videos mentioned websites (70.11%); many referenced health (13.63%), safety (10.12%), smoking cessation (9.22%), or top e-cigarette brands (33.39%). The number of e-cigarette-related YouTube videos was projected to exceed 65,000 by the end of 2014, with approximately 190 million views. Conclusions YouTube is a major

  9. Video Production as an Instructional Strategy: Content Learning and Teacher Practice

    ERIC Educational Resources Information Center

    Norton, Priscilla; Hathaway, Dawn

    2010-01-01

    This study examined teacher-learners' reflections about the use of video production in their K-12 classrooms for evidence of content learning, the factors facilitating teacher use of video production, and the challenges teachers reported. Findings demonstrated positive content learning outcomes as measured by objective tests, rubrics, and…

  10. Video segmentation and classification for content-based storage and retrieval using motion vectors

    NASA Astrophysics Data System (ADS)

    Fernando, W. A. C.; Canagarajah, Cedric N.; Bull, David R.

    1998-12-01

    Video parsing is an important step in content-based indexing techniques, where the input video is decomposed into segments with uniform content. In video parsing detection of scene changes is one of the approaches widely used for extracting key frames from the video sequence. In this paper, an algorithm, based on motion vectors, is proposed to detect sudden scene changes and gradual scene changes (camera movements such as panning, tilting and zooming). Unlike some of the existing schemes, the proposed scheme is capable of detecting both sudden and gradual changes in uncompressed, as well as, compressed domain video. It is shown that the resultant motion vector can be used to identify and classify gradual changes due to camera movements. Results show that algorithm performed as well as the histogram-based schemes, with uncompressed video. The performance of the algorithm was also investigated with H.263 compressed video. The detection and classification of both sudden and gradual scene changes was successfully demonstrated.

  11. Building a virtual archive using brain architecture and Web 3D to deliver neuropsychopharmacology content over the Internet.

    PubMed

    Mongeau, R; Casu, M A; Pani, L; Pillolla, G; Lianas, L; Giachetti, A

    2008-05-01

    The vast amount of heterogeneous data generated in various fields of neurosciences such as neuropsychopharmacology can hardly be classified using traditional databases. We present here the concept of a virtual archive, spatially referenced over a simplified 3D brain map and accessible over the Internet. A simple prototype (available at http://aquatics.crs4.it/neuropsydat3d) has been realized using current Web-based virtual reality standards and technologies. It illustrates how primary literature or summary information can easily be retrieved through hyperlinks mapped onto a 3D schema while navigating through neuroanatomy. Furthermore, 3D navigation and visualization techniques are used to enhance the representation of brain's neurotransmitters, pathways and the involvement of specific brain areas in any particular physiological or behavioral functions. The system proposed shows how the use of a schematic spatial organization of data, widely exploited in other fields (e.g. Geographical Information Systems) can be extremely useful to develop efficient tools for research and teaching in neurosciences. PMID:18262677

  12. Building a virtual archive using brain architecture and Web 3D to deliver neuropsychopharmacology content over the Internet.

    PubMed

    Mongeau, R; Casu, M A; Pani, L; Pillolla, G; Lianas, L; Giachetti, A

    2008-05-01

    The vast amount of heterogeneous data generated in various fields of neurosciences such as neuropsychopharmacology can hardly be classified using traditional databases. We present here the concept of a virtual archive, spatially referenced over a simplified 3D brain map and accessible over the Internet. A simple prototype (available at http://aquatics.crs4.it/neuropsydat3d) has been realized using current Web-based virtual reality standards and technologies. It illustrates how primary literature or summary information can easily be retrieved through hyperlinks mapped onto a 3D schema while navigating through neuroanatomy. Furthermore, 3D navigation and visualization techniques are used to enhance the representation of brain's neurotransmitters, pathways and the involvement of specific brain areas in any particular physiological or behavioral functions. The system proposed shows how the use of a schematic spatial organization of data, widely exploited in other fields (e.g. Geographical Information Systems) can be extremely useful to develop efficient tools for research and teaching in neurosciences.

  13. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  14. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. Content Area Vocabulary Videos in Multiple Contexts: A Pedagogical Tool

    ERIC Educational Resources Information Center

    Webb, C. Lorraine; Kapavik, Robin Robinson

    2015-01-01

    The authors challenged pre-service teachers to digitally define a social studies or mathematical vocabulary term in multiple contexts using a digital video camera. The researchers sought to answer the following questions: 1. How will creating a video for instruction affect pre-service teachers' attitudes about teaching with technology, if at…

  16. The most widely viewed YouTube videos with content related to multivitamins

    PubMed Central

    Basch, Corey H.; Mongiovi, Jennifer; Berdnik, Alyssa; Basch, Charles E.

    2016-01-01

    Background: Use of multivitamin/multimineral (MVM) and other dietary supplements is common among American adults. The purpose of this study was to describe the source and content of the most widely viewed YouTube videos associated with MVM supplements. Methods: Videos were filtered by number of views and the source of the video upload was recorded. A comparison of video characteristics and differences in video content was conducted. Results: Cumulatively, the videos in this sample were viewed 25 573 055 times. The majority of videos found in this sample were uploaded by a nutrition, wellness, or fitness channels. Most videos mentioned benefits (80.4%, 95% CI: 72.5%, 88.3%) and advocated for use of the supplement (72.2%, 95% CI: 63.3%, 81.1%). Over 84% (84.5%, 95% CI: 77.3, 91.7%) of the videos did not mention risks associated with taking a particular vitamin or supplement. Conclusion: The findings of this study indicate that MVMs are often promoted and encouraged, yet risks associated with MVMs were infrequently mentioned. Health professionals should be aware of the extent to which MVM related content appears on social media and, more importantly, be attuned to the content, which can be misleading, or missing information regarding risks and/or evidence of possible benefits. PMID:27766240

  17. Software architecture as a freedom for 3D content providers and users along with independency on purposes and used devices

    NASA Astrophysics Data System (ADS)

    Sultana, Razia; Christ, Andreas; Meyrueis, Patrick

    2014-05-01

    The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.

  18. Ordering Single Cells and Single Embryos in 3D Confinement: A New Device for High Content Screening.

    PubMed

    Wollrab, Viktoria; Caballero, David; Thiagarajan, Raghavan; Riveline, Daniel

    2016-01-01

    Biological cells are usually observed on flat (2D) surfaces. This condition is not physiological, and phenotypes and shapes are highly variable. Screening based on cells in such environments have therefore serious limitations: cell organelles show extreme phenotypes, cell morphologies and sizes are heterogeneous and/or specific cell organelles cannot be properly visualized. In addition, cells in vivo are located in a 3D environment; in this situation, cells show different phenotypes mainly because of their interaction with the surrounding extracellular matrix of the tissue. In order to standardize and generate order of single cells in a physiologically-relevant 3D environment for cell-based assays, we report here the microfabrication and applications of a device for in vitro 3D cell culture. This device consists of a 2D array of microcavities (typically 10(5) cavities/cm(2)), each filled with single cells or embryos. Cell position, shape, polarity and internal cell organization become then normalized showing a 3D architecture. We used replica molding to pattern an array of microcavities, 'eggcups', onto a thin polydimethylsiloxane (PDMS) layer adhered on a coverslip. Cavities were covered with fibronectin to facilitate adhesion. Cells were inserted by centrifugation. Filling percentage was optimized for each system allowing up to 80%. Cells and embryos viability was confirmed. We applied this methodology for the visualization of cellular organelles, such as nucleus and Golgi apparatus, and to study active processes, such as the closure of the cytokinetic ring during cell mitosis. This device allowed the identification of new features, such as periodic accumulations and inhomogeneities of myosin and actin during the cytokinetic ring closure and compacted phenotypes for Golgi and nucleus alignment. We characterized the method for mammalian cells, fission yeast, budding yeast, C. elegans with specific adaptation in each case. Finally, the characteristics of this

  19. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  20. Using Video Modeling and Video Prompting to Teach Core Academic Content to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Kellems, Ryan O.; Edwards, Sean

    2016-01-01

    Practitioners are constantly searching for evidence-based practices that are effective in teaching academic skills to students with learning disabilities (LD). Video modeling (VM) and video prompting have become popular instructional interventions for many students across a wide range of different disability classifications, including those with…

  1. Video contents summary using the combination of multiple MPEG-7 metadata

    NASA Astrophysics Data System (ADS)

    Lee, Hee Kyung; Kim, Cheon S.; Jung, Yong J.; Nam, Je Ho; Kang, Kyeong O.; Ro, Yong M.

    2002-03-01

    We propose a content-based summary generation method using MPEG-7 metadata. In this paper, the important events of video are defined and subsequently shot boundary detection is carried out. Then, we analyze the video contents in the shot with multiple content features using multiple MPEG-7 descriptors. In experiments with a golf-video, we combined motion activity, edge histogram and homogeneous texture for the detection of event. Further, the extracted segments and key-frames of each event are described by XML document. Experimental result shows that the proposed method gives reliable summary generation with robust event detection.

  2. Levels of Interaction and Proximity: Content Analysis of Video-Based Classroom Cases

    ERIC Educational Resources Information Center

    Kale, Ugur

    2008-01-01

    This study employed content analysis techniques to examine video-based cases of two websites that exemplify learner-centered pedagogies for pre-service teachers to carry out in their teaching practices. The study focused on interaction types and physical proximity levels between students and teachers observed in the videos. The findings regarding…

  3. Captioned Instructional Video: Effects on Content Comprehension, Vocabulary Acquisition and Language Proficiency

    ERIC Educational Resources Information Center

    BavaHarji, Madhubala; Alavi, Zhinoos Kamal; Letchumanan, Krishnaveni

    2014-01-01

    This experimental design study examined the effects of viewing captioned instructional videos on EFL learners' content comprehension, vocabulary acquisition and language proficiency. It also examined the participants' perception of viewing the captioned instructional videos. The 92 EFL students in two classes, who were undertaking the "Tape…

  4. Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal

    NASA Technical Reports Server (NTRS)

    Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric

    2016-01-01

    Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.

  5. Video quality assessment using content-weighted spatial and temporal pooling method

    NASA Astrophysics Data System (ADS)

    Li, Chaofeng; Pan, Feng; Wu, Xiaojun; Ju, Yiwen; Yuan, Yun-Hao; Fang, Wei

    2015-09-01

    Video quality assessment plays an important role in video processing and communication applications. We propose a full reference video quality metric by combining a content-weighted spatial pooling strategy with a temporal pooling strategy. All pixels in a frame are classified into edge, texture, and smooth regions, and their structural similarity image index (SSIM) maps are divided into increasing and saturated regions by the curve of their SSIM values, then a content weight method is applied to increasing regions to get the score of an image frame. Finally, a temporal pooling method is used to get the overall video quality. Experimental results on the LIVE and IVP video quality databases show our proposed method works well in matching subjective scores.

  6. Enhancing Secondary Science Content Accessibility with Video Games

    ERIC Educational Resources Information Center

    Marino, Matthew T.; Becht, Kathleen M.; Vasquez, Eleazar, III; Gallup, Jennifer L.; Basham, James D.; Gallegos, Benjamin

    2014-01-01

    Mobile devices, including iPads, tablets, and so on, are common in high schools across the country. Unfortunately, many secondary teachers see these devices as distractions rather than tools for scaffolding instruction. This article highlights current research related to the use of video games as a means to increase the cognitive and social…

  7. Fuzzy framework for unsupervised video content characterization and shot classification

    NASA Astrophysics Data System (ADS)

    Ferman, Ahmet M.; Tekalp, A. Murat

    2001-10-01

    In this paper we present a fuzzy framework for domain-dependent analysis of video sequences. Fuzzy clustering and cluster validation methods are first employed to determine the number of distinct shot patterns and construct a reference model for a program or video domain of interest, using an appropriate training set. This model is subsequently utilized to assign new input data to the available classes by a fuzzy minimum-distance classifier. Additional domain-specific information can be introduced after classification to further enhance the annotations associated with every shot. The main advantage of the approach is that it builds a model for the input video automatically from training data, and thus eliminates the need for extensive user supervision. The fuzzy representation method improves the interpretability of the results, and reduces the number of erroneous classifications, since the continuous class affiliations of each input sample provide a confidence measure for the final assignments. The proposed approach presents a computationally efficient, unsupervised method for building browsable semantic descriptions of video sequences. Specifically, the algorithm can be used to generate various components of an MPEG-7-compliant description.

  8. Human-friendly stylization of video content using simulated colored paper mosaics

    NASA Astrophysics Data System (ADS)

    Kim, Seulbeom; Kang, Dongwann; Yoon, Kyunghyun

    2016-07-01

    Video content is used extensively in many fields. However, in some fields, video manipulation techniques are required to improve the human-friendliness of such content. In this paper, we propose a method that automatically generates animations in the style of colored paper mosaics, to create human-friendly, artistic imagery. To enhance temporal coherence while maintaining the characteristics of colored paper mosaics, we also propose a particle video-based method that determines coherent locations for tiles in animations. The proposed method generates evenly distributed particles, which are used to produce animated tiles via our tile modeling process.

  9. Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus F. R.; Kawai, Takashi; Shibata, Takashi; Yamazoe, Takashi; Westhofen, Martin

    2006-02-01

    Introduction: An increasing number of surgical procedures are performed in a microsurgical and minimally-invasive fashion. However, the performance of surgery, its possibilities and limitations become difficult to teach. Stereoscopic video has evolved from a complex production process and expensive hardware towards rapid editing of video streams with standard and HDTV resolution which can be displayed on portable equipment. This study evaluates the usefulness of stereoscopic video in teaching undergraduate medical students. Material and methods: From an earlier study we chose two clips each of three different microsurgical operations (tympanoplasty type III of the ear, endonasal operation of the paranasal sinuses and laser chordectomy for carcinoma of the larynx). This material was added by 23 clips of a cochlear implantation, which was specifically edited for a portable computer with an autostereoscopic display (PC-RD1-3D, SHARP Corp., Japan). The recording and synchronization of left and right image was performed at the University Hospital Aachen. The footage was edited stereoscopically at the Waseda University by means of our original software for non-linear editing of stereoscopic 3-D movies. Then the material was converted into the streaming 3-D video format. The purpose of the conversion was to present the video clips by a file type that does not depend on a television signal such as PAL or NTSC. 25 4th year medical students who participated in the general ENT course at Aachen University Hospital were asked to estimate depth clues within the six video clips plus cochlear implantation clips. Another 25 4th year students who were shown the material monoscopically on a conventional laptop served as control. Results: All participants noted that the additional depth information helped with understanding the relation of anatomical structures, even though none had hands-on experience with Ear, Nose and Throat operations before or during the course. The monoscopic

  10. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  11. Adolescents’ exposure to tobacco and alcohol content in YouTube music videos

    PubMed Central

    Murray, Rachael; Lewis, Sarah; Leonardi‐Bee, Jo; Dockrell, Martin; Britton, John

    2015-01-01

    Abstract Aims To quantify tobacco and alcohol content, including branding, in popular contemporary YouTube music videos; and measure adolescent exposure to such content. Design Ten‐second interval content analysis of alcohol, tobacco or electronic cigarette imagery in all UK Top 40 YouTube music videos during a 12‐week period in 2013/14; on‐line national survey of adolescent viewing of the 32 most popular high‐content videos. Setting Great Britain. Participants A total of 2068 adolescents aged 11–18 years who completed an on‐line survey. Measurements Occurrence of alcohol, tobacco and electronic cigarette use, implied use, paraphernalia or branding in music videos and proportions and estimated numbers of adolescents who had watched sampled videos. Findings Alcohol imagery appeared in 45% [95% confidence interval (CI) = 33–51%] of all videos, tobacco in 22% (95% CI = 13–27%) and electronic cigarettes in 2% (95% CI = 0–4%). Alcohol branding appeared in 7% (95% CI = 2–11%) of videos, tobacco branding in 4% (95% CI = 0–7%) and electronic cigarettes in 1% (95% CI = 0–3%). The most frequently observed alcohol, tobacco and electronic cigarette brands were, respectively, Absolut Tune, Marlboro and E‐Lites. At least one of the 32 most popular music videos containing alcohol or tobacco content had been seen by 81% (95% CI = 79%, 83%) of adolescents surveyed, and of these 87% (95% CI = 85%, 89%) had re‐watched at least one video. The average number of videos seen was 7.1 (95% CI = 6.8, 7.4). Girls were more likely to watch and also re‐watch the videos than boys, P < 0.001. Conclusions Popular YouTube music videos watched by a large number of British adolescents, particularly girls, include significant tobacco and alcohol content, including branding. PMID:25516167

  12. Semi-automated query construction for content-based endomicroscopy video retrieval.

    PubMed

    Tafreshi, Marzieh Kohandani; Linard, Nicolas; André, Barbara; Ayache, Nicholas; Vercauteren, Tom

    2014-01-01

    Content-based video retrieval has shown promising results to help physicians in their interpretation of medical videos in general and endomicroscopic ones in particular. Defining a relevant query for CBVR can however be a complex and time-consuming task for non-expert and even expert users. Indeed, uncut endomicroscopy videos may very well contain images corresponding to a variety of different tissue types. Using such uncut videos as queries may lead to drastic performance degradations for the system. In this study, we propose a semi-automated methodology that allows the physician to create meaningful and relevant queries in a simple and efficient manner. We believe that this will lead to more reproducible and more consistent results. The validation of our method is divided into two approaches. The first one is an indirect validation based on per video classification results with histopathological ground-truth. The second one is more direct and relies on perceived inter-video visual similarity ground-truth. We demonstrate that our proposed method significantly outperforms the approach with uncut videos and approaches the performance of a tedious manual query construction by an expert. Finally, we show that the similarity perceived between videos by experts is significantly correlated with the inter-video similarity distance computed by our retrieval system.

  13. Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices.

    PubMed Central

    Galie, Peter A.; Westfall, Margaret V.; Stegemann, Jan P.

    2011-01-01

    Introduction The fibroblast-myofibroblast transition is an important event in the development of cardiac fibrosis and scar formation initiated after myocardial ischemia. The goals of the present study were to better understand the contribution of environmental factors to this transition and determine whether myofibroblasts provide equally important feedback to the surrounding environment. Methods The influence of matrix stiffness and serum concentration on the myofibroblast transition was assessed by measuring message levels of a panel of cardiac fibroblast phenotype markers using quantitative rtPCR. Cell-mediated gel compaction measured the influence of environmental factors on cardiac fibroblast contractility. Immunohistochemistry characterized α-SMA expression and cell morphology, while static and dynamic compression testing evaluated the effect of the cell response on the mechanical properties of the cell-seeded collagen hydrogels. Results Both reduced serum content and increased matrix stiffness contributed to the myofibroblast transition, as indicated by contractile compaction of the gels, increased message levels of col3α1 and α-SMA, and a less stellate morphology. However, the effects of serum and matrix stiffness were not additive. Mechanical testing indicated the cell-seeded gels became less viscoelastic with time, and that reduced serum content also increased the initial elastic properties of the gel. Conclusions The results suggest that reduced serum and increased matrix stiffness promote the myofibroblast phenotype in the myocardium. This transition both enhances and is promoted by matrix stiffness, indicating the presence of positive feedback that may contribute to the pathogenesis of cardiac fibrosis. Summary Lower serum content and increased matrix stiffness accelerated the transition of cardiac fibroblasts seeded in collagen hydrogels to a myofibroblast phenotype, though their effects were not additive. Reduced serum also affected mechanical

  14. The Impact of Rock Videos and Music with Suicidal Content on Thoughts and Attitudes about Suicide.

    ERIC Educational Resources Information Center

    Rustad, Robin A.; Small, Jacob E.; Jobes, David A.; Safer, Martin A.; Peterson, Rebecca J.

    2003-01-01

    Two experiments exposed college student volunteers to rock music with or without suicidal content. Music and videos with suicide content appeared to prime implicit cognitions related to suicide but did not affect variables associated with increased suicide risk. (Contains 60 references and 3 tables.) (Author/JBJ)

  15. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.

    PubMed

    Kothapalli, Chandrasekhar R; Shaw, Montgomery T; Wei, Mei

    2005-11-01

    Scaffolds comprising poly(lactic acid) and nano-hydroxyapatite (HA) were prepared using the solvent-casting/salt-leaching technique. NaCl was used as the leaching agent. Nano-sized HA was synthesized by a hydrothermal method at 170 degrees C and autogenous pressure. High-resolution TEM imaging revealed that the HA particles were ellipsoidal-shaped with needle-like morphologies. The particles had an average size of approximately 25 nm in width and 150 nm in length with aspect ratios ranging from 6 to 8. As the HA content increased in the scaffold from 0 to 50 wt%, the compression modulus of the scaffolds increased from 4.72+/-1.2 to 9.87+/-1.8 MPa, while the yield strength from 0.29+/-0.03 to 0.44+/-0.01 MPa. Such polymeric scaffolds should be suitable materials for non-load sharing tissue-engineering applications. PMID:16701846

  16. Automated content and quality assessment of full-motion-video for the generation of meta data

    NASA Astrophysics Data System (ADS)

    Harguess, Josh

    2015-05-01

    Virtually all of the video data (and full-motion-video (FMV)) that is currently collected and stored in support of missions has been corrupted to various extents by image acquisition and compression artifacts. Additionally, video collected by wide-area motion imagery (WAMI) surveillance systems and unmanned aerial vehicles (UAVs) and similar sources is often of low quality or in other ways corrupted so that it is not worth storing or analyzing. In order to make progress in the problem of automatic video analysis, the first problem that should be solved is deciding whether the content of the video is even worth analyzing to begin with. We present a work in progress to address three types of scenes which are typically found in real-world data stored in support of Department of Defense (DoD) missions: no or very little motion in the scene, large occlusions in the scene, and fast camera motion. Each of these produce video that is generally not usable to an analyst or automated algorithm for mission support and therefore should be removed or flagged to the user as such. We utilize recent computer vision advances in motion detection and optical flow to automatically assess FMV for the identification and generation of meta-data (or tagging) of video segments which exhibit unwanted scenarios as described above. Results are shown on representative real-world video data.

  17. A Review on Stereoscopic 3D: Home Entertainment for the Twenty First Century

    NASA Astrophysics Data System (ADS)

    Karajeh, Huda; Maqableh, Mahmoud; Masa'deh, Ra'ed

    2014-12-01

    In the last few years, stereoscopic developed very rapidly and employed in many different fields such as entertainment. Due to the importance of entertainment aspect of stereoscopic 3D (S3D) applications, a review of the current state of S3D development in entertainment technology is conducted. In this paper, a novel survey of the stereoscopic entertainment aspects is presented by discussing the significant development of a 3D cinema, the major development of 3DTV, the issues related to 3D video content and 3D video games. Moreover, we reviewed some problems that can be caused in the viewers' visual system from watching stereoscopic contents. Some stereoscopic viewers are not satisfied as they are frustrated from wearing glasses, have visual fatigue, complain from unavailability of 3D contents, and/or complain from some sickness. Therefore, we will discuss stereoscopic visual discomfort and to what extend the viewer will have an eye fatigue while watching 3D contents or playing 3D games. The suggested solutions in the literature for this problem are discussed.

  18. Effect of TV content in subjective assessment of video quality on mobile devices

    NASA Astrophysics Data System (ADS)

    Jumisko, Satu H.; Ilvonen, Ville P.; Vaananen-Vainio-Mattila, Kaisa A.

    2005-03-01

    Selection of test materials in subjective assessment methodology recommendations is based mainly on technical parameters. Materials should test the ability of the codec to cope with spatial and temporal redundancy. However consumers watch TV for a reason -- one of the main criteria is the interesting content. In this study we examined whether the content recognition and subjects" personal interests have an effect on quality assessment. We also studied subjective assessment criteria for video quality. The study was done using small resolution and low bit rate video in mobile phones in a laboratory environment. Altogether 135 subjects, aged 18-65 years, participated in the tests. The test started with a subjective assessment of video quality using well-known TV content. Afterwards a survey was done to measure content recognition and level of interests in the content. The test session ended up with a qualitative interview about evaluation criteria. Our studies showed that there is a connection between interest in content and given quality score with TV content. Therefore we raise a concern on content selection and recommend measuring the evaluator"s interest in content in subjective assessment studies. The study on subjective evaluation criteria revealed that subjects pay attention on content and quality impairments especially in regions of interest.

  19. Know your data: understanding implicit usage versus explicit action in video content classification

    NASA Astrophysics Data System (ADS)

    Yew, Jude; Shamma, David A.

    2011-02-01

    In this paper, we present a method for video category classification using only social metadata from websites like YouTube. In place of content analysis, we utilize communicative and social contexts surrounding videos as a means to determine a categorical genre, e.g. Comedy, Music. We hypothesize that video clips belonging to different genre categories would have distinct signatures and patterns that are reflected in their collected metadata. In particular, we define and describe social metadata as usage or action to aid in classification. We trained a Naive Bayes classifier to predict categories from a sample of 1,740 YouTube videos representing the top five genre categories. Using just a small number of the available metadata features, we compare the classifications produced by our Naive Bayes classifier with those provided by the uploader of that particular video. Compared to random predictions with the YouTube data (21% accurate), our classifier attained a mediocre 33% accuracy in predicting video genres. However, we found that the accuracy of our classifier significantly improves by nominal factoring of the explicit data features. By factoring the ratings of the videos in the dataset, the classifier was able to accurately predict the genres of 75% of the videos. We argue that the patterns of social activity found in the metadata are not just meaningful in their own right, but are indicative of the meaning of the shared video content. The results presented by this project represents a first step in investigating the potential meaning and significance of social metadata and its relation to the media experience.

  20. A tree-based paradigm for content-based video retrieval and management

    NASA Astrophysics Data System (ADS)

    Fang, H.; Yin, Y.; Jiang, J.

    2006-01-01

    As video databases become increasingly important for full exploitation of multimedia resources, this paper aims at describing our recent efforts in feasibility studies towards building up a content-based and high-level video retrieval/management system. The study is focused on constructing a semantic tree structure via combination of low-level image processing techniques and high-level interpretation of visual content. Specifically, two separate algorithms were developed to organise input videos in terms of two layers: the shot layer and the key-frame layer. While the shot layer is derived by developing a multi-featured shot cut detection, the key frame layer is extracted automatically by a genetic algorithm. This paves the way for applying pattern recognition techniques to analyse those key frames and thus extract high level information to interpret the visual content or objects. Correspondingly, content-based video retrieval can be conducted in three stages. The first stage is to browse the digital video via the semantic tree at structural level, the second stage is match the key frame in terms of low-level features, such as colour, shape of objects, and texture etc. Finally, the third stage is to match the high-level information, such as conversation with indoor background, moving vehicles along a seaside road etc. Extensive experiments are reported in this paper for shot cut detection and key frame extraction, enabling the tree structure to be constructed.

  1. 3D printing of soft and wet systems benefit from hard-to-soft transition of transparent shape memory gels (presentation video)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Gong, Jin; Makino, Masato; Kabir, Md. Hasnat

    2014-04-01

    Recently we successfully developed novel transparent shape memory gels. The SMG memorize their original shapes during the gelation process. In the room temperature, the SMG are elastic and show plasticity (yielding) under deformation. However when heated above about 50˚C, the SMG induce hard-to-soft transition and go back to their original shapes automatically. We focus on new soft and wet systems made of the SMG by 3-D printing technology.

  2. The impact of rock videos and music with suicidal content on thoughts and attitudes about suicide.

    PubMed

    Rustad, Robin A; Small, Jacob E; Jobes, David A; Safer, Martin A; Peterson, Rebecca J

    2003-01-01

    In Experiment 1, 133 college student volunteers watched a rock music video with or without suicidal content and then completed written measures assessing mood, priming of suicide-related thoughts, perceptions of personal risk, sensitivity to suicidality in others, and attitudes/beliefs about suicide. In Experiment 2, 104 college student volunteers listened to rock music with either suicidal or neutral content and then completed measures similar to Experiment 1, with the addition of a hopelessness measure. In both experiments, participants exposed to suicidal content wrote more scenarios with suicide-related themes in a projective storytelling task than those exposed to nonsuicidal content. However, there were virtually no group differences on explicit measures of affect, attitudes, and perceptions. Music and videos with suicide content appeared to prime implicit cognitions related to suicide but did not affect variables associated with increased suicide risk.

  3. Viewer Response Sets to Filmed and Video Taped Television Content.

    ERIC Educational Resources Information Center

    Donohue, Thomas R.; Donohue, William A.

    Two hundred college students participated in a comparison of film and videotape television content. After viewing a three-minute dance segment on either film or videotape, students in the experimental groups completed a set of 15 bipolar adjective scales relating to organizational and aesthetic components and made judgments of the technical…

  4. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  5. Video content analysis on body-worn cameras for retrospective investigation

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; ter Haar, Frank B.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Burghouts, Gertjan J.; Wijn, Remco; van den Broek, Sebastiaan P.; van Rest, Jeroen H. C.

    2015-10-01

    In the security domain, cameras are important to assess critical situations. Apart from fixed surveillance cameras we observe an increasing number of sensors on mobile platforms, such as drones, vehicles and persons. Mobile cameras allow rapid and local deployment, enabling many novel applications and effects, such as the reduction of violence between police and citizens. However, the increased use of bodycams also creates potential challenges. For example: how can end-users extract information from the abundance of video, how can the information be presented, and how can an officer retrieve information efficiently? Nevertheless, such video gives the opportunity to stimulate the professionals' memory, and support complete and accurate reporting. In this paper, we show how video content analysis (VCA) can address these challenges and seize these opportunities. To this end, we focus on methods for creating a complete summary of the video, which allows quick retrieval of relevant fragments. The content analysis for summarization consists of several components, such as stabilization, scene selection, motion estimation, localization, pedestrian tracking and action recognition in the video from a bodycam. The different components and visual representations of summaries are presented for retrospective investigation.

  6. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Aygun, N.; Lo, S.-F.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-04-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14% however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  7. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch.

    PubMed

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P; Siewerdsen, J H

    2016-04-21

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved

  8. A content analysis of smoking fetish videos on YouTube: regulatory implications for tobacco control.

    PubMed

    Kim, Kyongseok; Paek, Hye-Jin; Lynn, Jordan

    2010-03-01

    This study examined the prevalence, accessibility, and characteristics of eroticized smoking portrayal, also referred to as smoking fetish, on YouTube. The analysis of 200 smoking fetish videos revealed that the smoking fetish videos are prevalent and accessible to adolescents on the website. They featured explicit smoking behavior by sexy, young, and healthy females, with the content corresponding to PG-13 and R movie ratings. We discuss a potential impact of the prosmoking image on youth according to social cognitive theory, and implications for tobacco control.

  9. A content analysis of smoking fetish videos on YouTube: regulatory implications for tobacco control.

    PubMed

    Kim, Kyongseok; Paek, Hye-Jin; Lynn, Jordan

    2010-03-01

    This study examined the prevalence, accessibility, and characteristics of eroticized smoking portrayal, also referred to as smoking fetish, on YouTube. The analysis of 200 smoking fetish videos revealed that the smoking fetish videos are prevalent and accessible to adolescents on the website. They featured explicit smoking behavior by sexy, young, and healthy females, with the content corresponding to PG-13 and R movie ratings. We discuss a potential impact of the prosmoking image on youth according to social cognitive theory, and implications for tobacco control. PMID:20390676

  10. Tissue-plastinated vs. celloidin-embedded large serial sections in video, analog and digital photographic on-screen reproduction: a preliminary step to exact virtual 3D modelling, exemplified in the normal midface and cleft-lip and palate

    PubMed Central

    Landes, Constantin A; Weichert, Frank; Geis, Philipp; Wernstedt, Katrin; Wilde, Anja; Fritsch, Helga; Wagner, Mathias

    2005-01-01

    This study analyses tissue-plastinated vs. celloidin-embedded large serial sections, their inherent artefacts and aptitude with common video, analog or digital photographic on-screen reproduction. Subsequent virtual 3D microanatomical reconstruction will increase our knowledge of normal and pathological microanatomy for cleft-lip-palate (clp) reconstructive surgery. Of 18 fetal (six clp, 12 control) specimens, six randomized specimens (two clp) were BiodurE12-plastinated, sawn, burnished 90 µm thick transversely (five) or frontally (one), stained with azureII/methylene blue, and counterstained with basic-fuchsin (TP-AMF). Twelve remaining specimens (four clp) were celloidin-embedded, microtome-sectioned 75 µm thick transversely (ten) or frontally (two), and stained with haematoxylin–eosin (CE-HE). Computed-planimetry gauged artefacts, structure differentiation was compared with light microscopy on video, analog and digital photography. Total artefact was 0.9% (TP-AMF) and 2.1% (CE-HE); TP-AMF showed higher colour contrast, gamut and luminance, and CE-HE more red contrast, saturation and hue (P < 0.4). All (100%) structures of interest were light microscopically discerned, 83% on video, 76% on analog photography and 98% in digital photography. Computed image analysis assessed the greatest colour contrast, gamut, luminance and saturation on video; the most detailed, colour-balanced and sharpest images were obatined with digital photography (P < 0.02). TP-AMF retained spatial oversight, covered the entire area of interest and should be combined in different specimens with CE-HE which enables more refined muscle fibre reproduction. Digital photography is preferred for on-screen analysis. PMID:16050904

  11. Headless, hungry, and unhealthy: a video content analysis of obese persons portrayed in online news.

    PubMed

    Puhl, Rebecca M; Peterson, Jamie Lee; DePierre, Jenny A; Luedicke, Joerg

    2013-01-01

    The news media has substantial influence on public perceptions of social and health issues. This study conducted a video content analysis to examine portrayals of obese persons in online news reports about obesity. The authors downloaded online news videos about obesity (N = 371) from 5 major news websites and systematically coded visual portrayals of obese and nonobese adults and youth in these videos. The authors found that 65% of overweight/obese adults and 77% of overweight/obese youth were portrayed in a negative, stigmatizing manner across multiple obesity-related topics covered in online news videos. In particular, overweight/obese individuals were significantly more likely than were nonoverweight individuals to be portrayed as headless, with an unflattering emphasis on isolated body parts, from an unflattering rear view of their excess weight, eating unhealthy foods, engaging in sedentary behavior, and dressed in inappropriately fitting clothing. Nonoverweight individuals were significantly more likely to be portrayed positively. In conclusion, obese children and adults are frequently stigmatized in online news videos about obesity. These findings have important implications for public perceptions of obesity and obese persons and may reinforce negative societal weight bias.

  12. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  13. Robust hashing for 3D models

    NASA Astrophysics Data System (ADS)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  14. Organ donation on Web 2.0: content and audience analysis of organ donation videos on YouTube.

    PubMed

    Tian, Yan

    2010-04-01

    This study examines the content of and audience response to organ donation videos on YouTube, a Web 2.0 platform, with framing theory. Positive frames were identified in both video content and audience comments. Analysis revealed a reciprocity relationship between media frames and audience frames. Videos covered content categories such as kidney, liver, organ donation registration process, and youth. Videos were favorably rated. No significant differences were found between videos produced by organizations and individuals in the United States and those produced in other countries. The findings provide insight into how new communication technologies are shaping health communication in ways that differ from traditional media. The implications of Web 2.0, characterized by user-generated content and interactivity, for health communication and health campaign practice are discussed.

  15. Dynamic heterogeneity of DNA methylation and hydroxymethylation in embryonic stem cell populations captured by single-cell 3D high-content analysis

    SciTech Connect

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-03-15

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a 10-day differentiation course in vitro: by means of confocal and super-resolution imaging together with 3D high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU/day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17: 0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, global DNA methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC{sup +}/5mC{sup −}, 5hmC{sup +}/5mC{sup +}, and 5hmC{sup −}/5mC{sup +} cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC{sup +}/5mC{sup +} cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably

  16. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between

  17. An Examination of Automatic Video Retrieval Technology on Access to the Contents of an Historical Video Archive

    ERIC Educational Resources Information Center

    Petrelli, Daniela; Auld, Daniel

    2008-01-01

    Purpose: This paper aims to provide an initial understanding of the constraints that historical video collections pose to video retrieval technology and the potential that online access offers to both archive and users. Design/methodology/approach: A small and unique collection of videos on customs and folklore was used as a case study. Multiple…

  18. Aggression and sexual behavior in best-selling pornography videos: a content analysis update.

    PubMed

    Bridges, Ana J; Wosnitzer, Robert; Scharrer, Erica; Sun, Chyng; Liberman, Rachael

    2010-10-01

    This current study analyzes the content of popular pornographic videos, with the objectives of updating depictions of aggression, degradation, and sexual practices and comparing the study's results to previous content analysis studies. Findings indicate high levels of aggression in pornography in both verbal and physical forms. Of the 304 scenes analyzed, 88.2% contained physical aggression, principally spanking, gagging, and slapping, while 48.7% of scenes contained verbal aggression, primarily name-calling. Perpetrators of aggression were usually male, whereas targets of aggression were overwhelmingly female. Targets most often showed pleasure or responded neutrally to the aggression. PMID:20980228

  19. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  20. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  1. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  2. Automated 3D reconstruction of interiors with multiple scan views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  3. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  4. Practical, Real-Time, and Robust Watermarking on the Spatial Domain for High-Definition Video Contents

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Su; Lee, Hae-Yeoun; Im, Dong-Hyuck; Lee, Heung-Kyu

    Commercial markets employ digital right management (DRM) systems to protect valuable high-definition (HD) quality videos. DRM system uses watermarking to provide copyright protection and ownership authentication of multimedia contents. We propose a real-time video watermarking scheme for HD video in the uncompressed domain. Especially, our approach is in aspect of practical perspectives to satisfy perceptual quality, real-time processing, and robustness requirements. We simplify and optimize human visual system mask for real-time performance and also apply dithering technique for invisibility. Extensive experiments are performed to prove that the proposed scheme satisfies the invisibility, real-time processing, and robustness requirements against video processing attacks. We concentrate upon video processing attacks that commonly occur in HD quality videos to display on portable devices. These attacks include not only scaling and low bit-rate encoding, but also malicious attacks such as format conversion and frame rate change.

  5. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  6. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  7. GPM 3D Flyby Video of Lester

    NASA Video Gallery

    On Aug. 25, GPM found rain was falling at a rate of over 54 mm (2.1 inches) per hour in rain bands east of Lester's center. Cloud top heights were reaching about 12km (7.4 miles) in the tallest sto...

  8. Through the looking glass of a chemistry video game: Evaluating the effects of different MLEs presenting identical content material

    NASA Astrophysics Data System (ADS)

    Hillman, Dustin S.

    The primary goal of this study is to evaluate the effects of different media-based learning environments (MLEs) that present identical chemistry content material. This is done with four different MLEs that utilize some or all components of a chemistry-based media-based prototype video game. Examination of general chemistry student volunteers purposefully randomized to one of four different MLEs did not provide evidence that the higher the level of interactivity resulted in a more effective MLE for the chemistry content. Data suggested that the cognitive load to play the chemistry-based video game may impaired the chemistry content being presented and recalled by the students while the students watching the movie of the chemistry-based video game were able to recall the chemistry content more efficiently. Further studies in this area need to address the overall cognitive load of the different MLEs to potentially better determine what the most effective MLE may be for this chemistry content.

  9. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. Gender (In)equality in Internet Pornography: A Content Analysis of Popular Pornographic Internet Videos.

    PubMed

    Klaassen, Marleen J E; Peter, Jochen

    2015-01-01

    Although Internet pornography is widely consumed and researchers have started to investigate its effects, we still know little about its content. This has resulted in contrasting claims about whether Internet pornography depicts gender (in)equality and whether this depiction differs between amateur and professional pornography. We conducted a content analysis of three main dimensions of gender (in)equality (i.e., objectification, power, and violence) in 400 popular pornographic Internet videos from the most visited pornographic Web sites. Objectification was depicted more often for women through instrumentality, but men were more frequently objectified through dehumanization. Regarding power, men and women did not differ in social or professional status, but men were more often shown as dominant and women as submissive during sexual activities. Except for spanking and gagging, violence occurred rather infrequently. Nonconsensual sex was also relatively rare. Overall, amateur pornography contained more gender inequality at the expense of women than professional pornography did. PMID:25420868

  11. Gender (In)equality in Internet Pornography: A Content Analysis of Popular Pornographic Internet Videos.

    PubMed

    Klaassen, Marleen J E; Peter, Jochen

    2015-01-01

    Although Internet pornography is widely consumed and researchers have started to investigate its effects, we still know little about its content. This has resulted in contrasting claims about whether Internet pornography depicts gender (in)equality and whether this depiction differs between amateur and professional pornography. We conducted a content analysis of three main dimensions of gender (in)equality (i.e., objectification, power, and violence) in 400 popular pornographic Internet videos from the most visited pornographic Web sites. Objectification was depicted more often for women through instrumentality, but men were more frequently objectified through dehumanization. Regarding power, men and women did not differ in social or professional status, but men were more often shown as dominant and women as submissive during sexual activities. Except for spanking and gagging, violence occurred rather infrequently. Nonconsensual sex was also relatively rare. Overall, amateur pornography contained more gender inequality at the expense of women than professional pornography did.

  12. Preschoolers' Recall of Science Content From Educational Videos Presented With and Without Songs

    NASA Astrophysics Data System (ADS)

    Schechter, Rachel L.

    This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and its parts) and their use of the precise scientific terms presented in the episode. A total of 91 preschoolers were included (3-5 years old). Clusters of children were randomly assigned to a control group or one of three video groups: (a) Dialogue Only, which did not include a song; (b) Dialogue Plus Lyrics, which included a song; or (c) Lyrics Only, which consisted of a song, played twice. Results from interviews suggested that children from all video groups (lyrics and/or dialogue) were able to explain the form and function of a pulley better than the control group. The data suggested that children from the Lyrics Only group understood the science content because of the visual imagery, not through the information provided in the lyrics. In terms of precise vocabulary terms, significantly more children in the Dialogue Only group recalled at least one precise term from the program compared to the Lyrics Only group. Looking at the interview as a whole, the children's responses suggested different levels of scientific understanding. Children would require additional teacher-led instruction to deepen their scientific understanding and to clarify any misconceptions. This paper discusses implications of these findings for teachers using multi-media tools in the science classroom and producers creating new educational programming for television and other platforms.

  13. Immersive video

    NASA Astrophysics Data System (ADS)

    Moezzi, Saied; Katkere, Arun L.; Jain, Ramesh C.

    1996-03-01

    Interactive video and television viewers should have the power to control their viewing position. To make this a reality, we introduce the concept of Immersive Video, which employs computer vision and computer graphics technologies to provide remote users a sense of complete immersion when viewing an event. Immersive Video uses multiple videos of an event, captured from different perspectives, to generate a full 3D digital video of that event. That is accomplished by assimilating important information from each video stream into a comprehensive, dynamic, 3D model of the environment. Using this 3D digital video, interactive viewers can then move around the remote environment and observe the events taking place from any desired perspective. Our Immersive Video System currently provides interactive viewing and `walkthrus' of staged karate demonstrations, basketball games, dance performances, and typical campus scenes. In its full realization, Immersive Video will be a paradigm shift in visual communication which will revolutionize television and video media, and become an integral part of future telepresence and virtual reality systems.

  14. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  15. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  16. Alcohol and Tobacco Content in UK Video Games and Their Association with Alcohol and Tobacco Use Among Young People.

    PubMed

    Cranwell, Jo; Whittamore, Kathy; Britton, John; Leonardi-Bee, Jo

    2016-07-01

    To determine the extent to which video games include alcohol and tobacco content and assess the association between playing them and alcohol and smoking behaviors in adolescent players in Great Britain. Assessment of substance in the 32 UK bestselling video games of 2012/2013; online survey of adolescent playing of 17 games with substance content; and content analysis of the five most popular games. A total of 1,094 adolescents aged 11-17 years were included as participants. Reported presence of substance content in the 32 games; estimated numbers of adolescents who had played games; self-reported substance use; semiquantitative measures of substance content by interval coding of video game cut scenes. Nonofficial sources reported substance content in 17 (44 percent) games but none was reported by the official Pan European Game Information (PEGI) system. Adolescents who had played at least one game were significantly more likely ever to have tried smoking (adjusted odds ratio [OR] 2.70, 95 percent confidence interval [CI] 1.75-4.17) or consumed alcohol (adjusted OR 2.35, 95 percent CI 1.70-3.23). In the five most popular game episodes of alcohol actual use, implied use and paraphernalia occurred in 31 (14 percent), 81 (37 percent), and 41 (19 percent) intervals, respectively. Tobacco actual use, implied use, and paraphernalia occurred in 32 (15 percent), 27 (12 percent), and 53 (24 percent) intervals, respectively. Alcohol and tobacco content is common in the most popular video games but not reported by the official PEGI system. Content analysis identified substantial substance content in a sample of those games. Adolescents who play these video games are more likely to have experimented with tobacco and alcohol. PMID:27428030

  17. Alcohol and Tobacco Content in UK Video Games and Their Association with Alcohol and Tobacco Use Among Young People

    PubMed Central

    Whittamore, Kathy; Britton, John; Leonardi-Bee, Jo

    2016-01-01

    Abstract To determine the extent to which video games include alcohol and tobacco content and assess the association between playing them and alcohol and smoking behaviors in adolescent players in Great Britain. Assessment of substance in the 32 UK bestselling video games of 2012/2013; online survey of adolescent playing of 17 games with substance content; and content analysis of the five most popular games. A total of 1,094 adolescents aged 11–17 years were included as participants. Reported presence of substance content in the 32 games; estimated numbers of adolescents who had played games; self-reported substance use; semiquantitative measures of substance content by interval coding of video game cut scenes. Nonofficial sources reported substance content in 17 (44 percent) games but none was reported by the official Pan European Game Information (PEGI) system. Adolescents who had played at least one game were significantly more likely ever to have tried smoking (adjusted odds ratio [OR] 2.70, 95 percent confidence interval [CI] 1.75–4.17) or consumed alcohol (adjusted OR 2.35, 95 percent CI 1.70–3.23). In the five most popular game episodes of alcohol actual use, implied use and paraphernalia occurred in 31 (14 percent), 81 (37 percent), and 41 (19 percent) intervals, respectively. Tobacco actual use, implied use, and paraphernalia occurred in 32 (15 percent), 27 (12 percent), and 53 (24 percent) intervals, respectively. Alcohol and tobacco content is common in the most popular video games but not reported by the official PEGI system. Content analysis identified substantial substance content in a sample of those games. Adolescents who play these video games are more likely to have experimented with tobacco and alcohol. PMID:27428030

  18. Alcohol and Tobacco Content in UK Video Games and Their Association with Alcohol and Tobacco Use Among Young People.

    PubMed

    Cranwell, Jo; Whittamore, Kathy; Britton, John; Leonardi-Bee, Jo

    2016-07-01

    To determine the extent to which video games include alcohol and tobacco content and assess the association between playing them and alcohol and smoking behaviors in adolescent players in Great Britain. Assessment of substance in the 32 UK bestselling video games of 2012/2013; online survey of adolescent playing of 17 games with substance content; and content analysis of the five most popular games. A total of 1,094 adolescents aged 11-17 years were included as participants. Reported presence of substance content in the 32 games; estimated numbers of adolescents who had played games; self-reported substance use; semiquantitative measures of substance content by interval coding of video game cut scenes. Nonofficial sources reported substance content in 17 (44 percent) games but none was reported by the official Pan European Game Information (PEGI) system. Adolescents who had played at least one game were significantly more likely ever to have tried smoking (adjusted odds ratio [OR] 2.70, 95 percent confidence interval [CI] 1.75-4.17) or consumed alcohol (adjusted OR 2.35, 95 percent CI 1.70-3.23). In the five most popular game episodes of alcohol actual use, implied use and paraphernalia occurred in 31 (14 percent), 81 (37 percent), and 41 (19 percent) intervals, respectively. Tobacco actual use, implied use, and paraphernalia occurred in 32 (15 percent), 27 (12 percent), and 53 (24 percent) intervals, respectively. Alcohol and tobacco content is common in the most popular video games but not reported by the official PEGI system. Content analysis identified substantial substance content in a sample of those games. Adolescents who play these video games are more likely to have experimented with tobacco and alcohol.

  19. Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D microenvironment

    PubMed Central

    Rey-Rico, Ana; Klich, Angelique; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) microenvironment and to support proteoglycan synthesis of encapsulated human meniscal fibrochondrocytes in vitro. Biomedical-grade, high mannuronic acid alginate spheres (BioLVM, BioMVM) were the most uniform in size, indicating an effect of the purity of alginate on the shape of the spheres. Interestingly, the purity of alginates did not affect cell viability. Of note, only fibrochondrocytes encapsulated in BioMVM alginate produced and retained significant amounts of proteoglycans. Following transplantation in an explant culture model, the alginate spheres containing fibrochondrocytes remained in close proximity with the meniscal tissue adjacent to the defect. The results reveal a promising role of BioMVM alginate to enhance the proteoglycan production of primary human meniscal fibrochondrocytes in a 3-D hydrogel microenvironment. These findings have significant implications for cell-based translational studies aiming at restoring lost meniscal tissue in regions containing high amounts of proteoglycans. PMID:27302206

  20. Longitudinal, Quantitative Monitoring of Therapeutic Response in 3D In Vitro Tumor Models with OCT for High-Content Therapeutic Screening

    PubMed Central

    Klein, O. J.; Jung, Y. K.; Evans, C. L.

    2013-01-01

    In vitro three-dimensional models of cancer have the ability to recapitulate many features of tumors found in vivo, including cell-cell and cell-matrix interactions, microenvironments that become hypoxic and acidic, and other barriers to effective therapy. These model tumors can be large, highly complex, heterogeneous, and undergo time-dependent growth and treatment response processes that are difficult to track and quantify using standard imaging tools. Optical coherence tomography is an optical ranging technique that is ideally suited for visualizing, monitoring, and quantifying the growth and treatment response dynamics occurring in these informative model systems. By optimizing both optical coherence tomography and 3D culture systems, it is possible to continuously and non-perturbatively monitor advanced in vitro models without the use of labels over the course of hours and days. In this article, we describe approaches and methods for creating and carrying out quantitative therapeutic screens with in vitro 3D cultures using optical coherence tomography to gain insights into therapeutic mechanisms and build more effective treatment regimens. PMID:24013042

  1. Prevalence of Behavior Changing Strategies in Fitness Video Games: Theory-Based Content Analysis

    PubMed Central

    Hatkevich, Claire

    2013-01-01

    Background Fitness video games are popular, but little is known about their content. Because many contain interactive tools that mimic behavioral strategies from weight loss intervention programs, it is possible that differences in content could affect player physical activity and/or weight outcomes. There is a need for a better understanding of what behavioral strategies are currently available in fitness games and how they are implemented. Objective The purpose of this study was to investigate the prevalence of evidence-based behavioral strategies across fitness video games available for home use. Games available for consoles that used camera-based controllers were also contrasted with games available for a console that used handheld motion controllers. Methods Fitness games (N=18) available for three home consoles were systematically identified and play-tested by 2 trained coders for at least 3 hours each. In cases of multiple games from one series, only the most recently released game was included. The Sony PlayStation 3 and Microsoft Xbox360 were the two camera-based consoles, and the Nintendo Wii was the handheld motion controller console. A coding list based on a taxonomy of behavioral strategies was used to begin coding. Codes were refined in an iterative process based on data found during play-testing. Results The most prevalent behavioral strategies were modeling (17/18), specific performance feedback (17/18), reinforcement (16/18), caloric expenditure feedback (15/18), and guided practice (15/18). All games included some kind of feedback on performance accuracy, exercise frequency, and/or fitness progress. Action planning (scheduling future workouts) was the least prevalent of the included strategies (4/18). Twelve games included some kind of social integration, with nine of them providing options for real-time multiplayer sessions. Only two games did not feature any kind of reward. Games for the camera-based consoles (mean 12.89, SD 2.71) included a

  2. Good clean fun? A content analysis of profanity in video games and its prevalence across game systems and ratings.

    PubMed

    Ivory, James D; Williams, Dmitri; Martins, Nicole; Consalvo, Mia

    2009-08-01

    Although violent video game content and its effects have been examined extensively by empirical research, verbal aggression in the form of profanity has received less attention. Building on preliminary findings from previous studies, an extensive content analysis of profanity in video games was conducted using a sample of the 150 top-selling video games across all popular game platforms (including home consoles, portable consoles, and personal computers). The frequency of profanity, both in general and across three profanity categories, was measured and compared to games' ratings, sales, and platforms. Generally, profanity was found in about one in five games and appeared primarily in games rated for teenagers or above. Games containing profanity, however, tended to contain it frequently. Profanity was not found to be related to games' sales or platforms. PMID:19514818

  3. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  4. The Use of Eye Tracking in Research on Video-Based Second Language (L2) Listening Assessment: A Comparison of Context Videos and Content Videos

    ERIC Educational Resources Information Center

    Suvorov, Ruslan

    2015-01-01

    Investigating how visuals affect test takers' performance on video-based L2 listening tests has been the focus of many recent studies. While most existing research has been based on test scores and self-reported verbal data, few studies have examined test takers' viewing behavior (Ockey, 2007; Wagner, 2007, 2010a). To address this gap, in the…

  5. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  6. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  7. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  8. Fast mode decision for 3D-HEVC depth intracoding.

    PubMed

    Zhang, Qiuwen; Li, Nana; Wu, Qinggang

    2014-01-01

    The emerging international standard of high efficiency video coding based 3D video coding (3D-HEVC) is a successor to multiview video coding (MVC). In 3D-HEVC depth intracoding, depth modeling mode (DMM) and high efficiency video coding (HEVC) intraprediction mode are both employed to select the best coding mode for each coding unit (CU). This technique achieves the highest possible coding efficiency, but it results in extremely large encoding time which obstructs the 3D-HEVC from practical application. In this paper, a fast mode decision algorithm based on the correlation between texture video and depth map is proposed to reduce 3D-HEVC depth intracoding computational complexity. Since the texture video and its associated depth map represent the same scene, there is a high correlation among the prediction mode from texture video and depth map. Therefore, we can skip some specific depth intraprediction modes rarely used in related texture CU. Experimental results show that the proposed algorithm can significantly reduce computational complexity of 3D-HEVC depth intracoding while maintaining coding efficiency. PMID:24963512

  9. Video document

    NASA Astrophysics Data System (ADS)

    Davies, Bob; Lienhart, Rainer W.; Yeo, Boon-Lock

    1999-08-01

    The metaphor of film and TV permeates the design of software to support video on the PC. Simply transplanting the non- interactive, sequential experience of film to the PC fails to exploit the virtues of the new context. Video ont eh PC should be interactive and non-sequential. This paper experiments with a variety of tools for using video on the PC that exploits the new content of the PC. Some feature are more successful than others. Applications that use these tools are explored, including primarily the home video archive but also streaming video servers on the Internet. The ability to browse, edit, abstract and index large volumes of video content such as home video and corporate video is a problem without appropriate solution in today's market. The current tools available are complex, unfriendly video editors, requiring hours of work to prepare a short home video, far more work that a typical home user can be expected to provide. Our proposed solution treats video like a text document, providing functionality similar to a text editor. Users can browse, interact, edit and compose one or more video sequences with the same ease and convenience as handling text documents. With this level of text-like composition, we call what is normally a sequential medium a 'video document'. An important component of the proposed solution is shot detection, the ability to detect when a short started or stopped. When combined with a spreadsheet of key frames, the host become a grid of pictures that can be manipulated and viewed in the same way that a spreadsheet can be edited. Multiple video documents may be viewed, joined, manipulated, and seamlessly played back. Abstracts of unedited video content can be produce automatically to create novel video content for export to other venues. Edited and raw video content can be published to the net or burned to a CD-ROM with a self-installing viewer for Windows 98 and Windows NT 4.0.

  10. Marking spatial parts within stereoscopic video images

    NASA Astrophysics Data System (ADS)

    Belz, Constance; Boehm, Klaus; Duong, Thanh; Kuehn, Volker; Weber, Martin

    1996-04-01

    The technology of stereoscopic imaging enables reliable online telediagnoses. Applications of telediagnosis include the fields of medicine and in general telerobotics. For allowing the participants in a telediagnosis to mark spatial parts within the stereoscopic video image, graphic tools and automatism have to be provided. The process of marking spatial parts and objects inside a stereoscopic video image is a non trivial interaction technique. The markings themselves have to be 3D elements instead of 2D markings which would lead to an alienated effect `in' the stereoscopic video image. Furthermore, one problem to be tackled here, is that the content of the stereoscopic video image is unknown. This is in contrast to 3D Virtual Reality scenes, which enable an easy 3D interaction because all the objects and their position within the 3D scene are known. The goals of our research comprised the development of new interaction paradigms and marking techniques in stereoscopic video images, as well as an investigation of input devices appropriate for this interaction task. We have implemented these interaction techniques in a test environment and integrated therefore computer graphics into stereoscopic video images. In order to evaluate the new interaction techniques a user test was carried out. The results of our research will be presented here.

  11. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  12. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  13. Perception of detail in 3D images

    NASA Astrophysics Data System (ADS)

    Heynderickx, Ingrid; Kaptein, Ronald

    2009-01-01

    A lot of current 3D displays suffer from the fact that their spatial resolution is lower compared to their 2D counterparts. One reason for this is that the multiple views needed to generate 3D are often spatially multiplexed. Besides this, imperfect separation of the left- and right-eye view leads to blurring or ghosting, and therefore to a decrease in perceived sharpness. However, people watching stereoscopic videos have reported that the 3D scene contained more details, compared to the 2D scene with identical spatial resolution. This is an interesting notion, that has never been tested in a systematic and quantitative way. To investigate this effect, we had people compare the amount of detail ("detailedness") in pairs of 2D and 3D images. A blur filter was applied to one of the two images, and the blur level was varied using an adaptive staircase procedure. In this way, the blur threshold for which the 2D and 3D image contained perceptually the same amount of detail could be found. Our results show that the 3D image needed to be blurred more than the 2D image. This confirms the earlier qualitative findings that 3D images contain perceptually more details than 2D images with the same spatial resolution.

  14. Content-based storage and retrieval scheme for image and video databases

    NASA Astrophysics Data System (ADS)

    Herodotou, Nicos; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    1998-01-01

    In this paper, a technique is presented to locate and track the facial areas in image and video databases. The extracted facial regions are used to obtain a number features that are suitable for content-based storage and retrieval. The proposed face localization method consists of essentially two components: i) a color processing unit, and ii) a shape and color analysis module. The color processing component utilizes the distribution of skin-tones in the HSV color space to obtain an initial set of candidate regions or objects. The latter shape and color analysis module is used to correctly identify the facial regions when falsely detected objects are extracted. A number of features such as hair color, skin-tone, and face location and size are subsequently determined from the extracted facial areas. The hair and skin colors provide useful descriptions related to the human characteristics while the face location and size can reveal information about the activity within the scene, and the type of image. These features can be effectively combined with others and employed in user queries to retrieve particular facial images.

  15. Performance evaluation of real-time video content analysis systems in the CANDELA project

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Wijnhoven, Rob; Jaspers, Egbert; Caignart, Olivier; Barais, Mike; Favoreel, Wouter; Delaigle, Jean-Francois

    2005-02-01

    The CANDELA project aims at realizing a system for real-time image processing in traffic and surveillance applications. The system performs segmentation, labels the extracted blobs and tracks their movements in the scene. Performance evaluation of such a system is a major challenge since no standard methods exist and the criteria for evaluation are highly subjective. This paper proposes a performance evaluation approach for video content analysis (VCA) systems and identifies the involved research areas. For these areas we give an overview of the state-of-the-art in performance evaluation and introduce a classification into different semantic levels. The proposed evaluation approach compares the results of the VCA algorithm with a ground-truth (GT) counterpart, which contains the desired results. Both the VCA results and the ground truth comprise description files that are formatted in MPEG-7. The evaluation is required to provide an objective performance measure and a mean to choose between competitive methods. In addition, it enables algorithm developers to measure the progress of their work at the different levels in the design process. From these requirements and the state-of-the-art overview we conclude that standardization is highly desirable for which many research topics still need to be addressed.

  16. Spatial watermarking of 3D triangle meshes

    NASA Astrophysics Data System (ADS)

    Cayre, Francois; Macq, Benoit M. M.

    2001-12-01

    Although it is obvious that watermarking has become of great interest in protecting audio, videos, and still pictures, few work has been done considering 3D meshes. We propose a new method for watermarking 3D triangle meshes. This method embeds the watermark as triangles deformations. The list of watermarked triangles is obtained through a similar way to the one used in the TSPS (Triangle Strip Peeling Sequence) method. Unlike TSPS, our method is automatic and more secure. We also show that it is reversible.

  17. Content analysis of antismoking videos on YouTube: message sensation value, message appeals, and their relationships with viewer responses.

    PubMed

    Paek, Hye-Jin; Kim, Kyongseok; Hove, Thomas

    2010-12-01

    Focusing on several message features that are prominent in antismoking campaign literature, this content-analytic study examines 934 antismoking video clips on YouTube for the following characteristics: message sensation value (MSV) and three types of message appeal (threat, social and humor). These four characteristics are then linked to YouTube's interactive audience response mechanisms (number of viewers, viewer ratings and number of comments) to capture message reach, viewer preference and viewer engagement. The findings suggest the following: (i) antismoking messages are prevalent on YouTube, (ii) MSV levels of online antismoking videos are relatively low compared with MSV levels of televised antismoking messages, (iii) threat appeals are the videos' predominant message strategy and (iv) message characteristics are related to viewer reach and viewer preference.

  18. Extra Dimensions: 3D in PDF Documentation

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2012-12-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  19. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  20. Content-Based Indexing and Teaching Focus Mining for Lecture Videos

    ERIC Educational Resources Information Center

    Lin, Yu-Tzu; Yen, Bai-Jang; Chang, Chia-Hu; Lee, Greg C.; Lin, Yu-Chih

    2010-01-01

    Purpose: The purpose of this paper is to propose an indexing and teaching focus mining system for lecture videos recorded in an unconstrained environment. Design/methodology/approach: By applying the proposed algorithms in this paper, the slide structure can be reconstructed by extracting slide images from the video. Instead of applying…

  1. Movie Ratings and the Content of Adult Videos: The Sex-Violence Ratio.

    ERIC Educational Resources Information Center

    Yang, Ni; Linz, Daniel

    1990-01-01

    Quantifies sexual, violent, sexually violent, and prosocial behaviors in a sample of R-rated and X-rated videocassettes. Finds the predominant behavior in both X- and XXX-rated videos is sexual. Finds the predominant behavior in R-rated videos was violence followed by prosocial behavior. (RS)

  2. Obesity in the new media: a content analysis of obesity videos on YouTube.

    PubMed

    Yoo, Jina H; Kim, Junghyun

    2012-01-01

    This study examines (1) how the topics of obesity are framed and (2) how obese persons are portrayed on YouTube video clips. The analysis of 417 obesity videos revealed that a newer medium like YouTube, similar to traditional media, appeared to assign responsibility and solutions for obesity mainly to individuals and their behaviors, although there was a tendency that some video categories have started to show other causal claims or solutions. However, due to the prevailing emphasis on personal causes and solutions, numerous YouTube videos had a theme of weight-based teasing, or showed obese persons engaging in stereotypical eating behaviors. We discuss a potential impact of YouTube videos on shaping viewers' perceptions about obesity and further reinforcing stigmatization of obese persons.

  3. Recent development of 3D display technology for new market

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Sik

    2003-11-01

    A multi-view 3D video processor was designed and implemented with several FPGAs for real-time applications and a projection-type 3D display was introduced for low-cost commercialization. One high resolution projection panel and only one projection lens is capable of displaying multiview autostereoscopic images. It can cope with various arrangements of 3D camera systems (or pixel arrays) and resolutions of 3D displays. This system shows high 3-D image quality in terms of resolution, brightness, and contrast so it is well suited for the commercialization in the field of game and advertisement market.

  4. Stereoscopic display technologies for FHD 3D LCD TV

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Sik; Ko, Young-Ji; Park, Sang-Moo; Jung, Jong-Hoon; Shestak, Sergey

    2010-04-01

    Stereoscopic display technologies have been developed as one of advanced displays, and many TV industrials have been trying commercialization of 3D TV. We have been developing 3D TV based on LCD with LED BLU (backlight unit) since Samsung launched the world's first 3D TV based on PDP. However, the data scanning of panel and LC's response characteristics of LCD TV cause interference among frames (that is crosstalk), and this makes 3D video quality worse. We propose the method to reduce crosstalk by LCD driving and backlight control of FHD 3D LCD TV.

  5. Real-time depth map manipulation for 3D visualization

    NASA Astrophysics Data System (ADS)

    Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid

    2009-02-01

    One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).

  6. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  7. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    SciTech Connect

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.

  10. Dynamic Heterogeneity of DNA Methylation and Hydroxymethylation in Embryonic Stem Cell Populations Captured by Single-Cell 3D High-Content Analysis

    PubMed Central

    Tajbakhsh, Jian; Stefanovski, Darko; Tang, George; Wawrowsky, Kolja; Liu, Naiyou; Fair, Jeffrey H.

    2015-01-01

    Cell-surface markers and transcription factors are being used in the assessment of stem cell fate and therapeutic safety, but display significant variability in stem cell cultures. We assessed nuclear patterns of 5-hydroxymethylcytosine (5hmC, associated with pluripotency), a second important epigenetic mark, and its combination with 5-methylcytosine (5mC, associated with differentiation), also in comparison to more established markers of pluripotency (Oct-4) and endodermal differentiation (FoxA2, Sox17) in mouse embryonic stem cells (mESC) over a ten-day differentiation course in vitro: by means of confocal and super-resolution imaging together with high-content analysis, an essential tool in single-cell screening. In summary: 1) We did not measure any significant correlation of putative markers with global 5mC or 5hmC. 2) While average Oct-4 levels stagnated on a cell-population base (0.015 lnIU per day), Sox17 and FoxA2 increased 22-fold and 3-fold faster, respectively (Sox17:0.343 lnIU/day; FoxA2: 0.046 lnIU/day). In comparison, DNA global methylation levels increased 4-fold faster (0.068 lnIU/day), and global hydroxymethylation declined at 0.046 lnIU/day, both with a better explanation of the temporal profile. 3) This progression was concomitant with the occurrence of distinct nuclear codistribution patterns that represented a heterogeneous spectrum of states in differentiation; converging to three major coexisting 5mC/5hmC phenotypes by day 10: 5hmC+/5mC−, 5hmC+/5mC+, and 5hmC−/5mC+ cells. 4) Using optical nanoscopy we could delineate the respective topologies of 5mC/5hmC colocalization in subregions of nuclear DNA: in the majority of 5hmC+/5mC+ cells 5hmC and 5mC predominantly occupied mutually exclusive territories resembling euchromatic and heterochromatic regions, respectively. Simultaneously, in a smaller subset of cells we observed a tighter colocalization of the two cytosine variants, presumably delineating chromatin domains in remodeling. We

  11. Optic flow aided navigation and 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Rollason, Malcolm

    2013-10-01

    An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.

  12. Future-saving audiovisual content for Data Science: Preservation of geoinformatics video heritage with the TIB|AV-Portal

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Plank, Margret; Ziedorn, Frauke

    2015-04-01

    of Science and Technology. The web-based portal allows for extended search capabilities based on enhanced metadata derived by automated video analysis. By combining state-of-the-art multimedia retrieval techniques such as speech-, text-, and image recognition with semantic analysis, content-based access to videos at the segment level is provided. Further, by using the open standard Media Fragment Identifier (MFID), a citable Digital Object Identifier is displayed for each video segment. In addition to the continuously growing footprint of contemporary content, the importance of vintage audiovisual information needs to be considered: This paper showcases the successful application of the TIB|AV-Portal in the preservation and provision of a newly discovered version of a GRASS GIS promotional video produced by US Army -Corps of Enginers Laboratory (US-CERL) in 1987. The video is provides insight into the constraints of the very early days of the GRASS GIS project, which is the oldest active Free and Open Source Software (FOSS) GIS project which has been active for over thirty years. GRASS itself has turned into a collaborative scientific platform and a repository of scientific peer-reviewed code and algorithm/knowledge hub for future generation of scientists [1]. This is a reference case for future preservation activities regarding semantic-enhanced Web 2.0 content from geospatial software projects within Academia and beyond. References: [1] Chemin, Y., Petras V., Petrasova, A., Landa, M., Gebbert, S., Zambelli, P., Neteler, M., Löwe, P.: GRASS GIS: a peer-reviewed scientific platform and future research Repository, Geophysical Research Abstracts, Vol. 17, EGU2015-8314-1, 2015 (submitted)

  13. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  14. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  15. A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(ii) compound with 5,5'-bistetrazole-1,1'-diolate.

    PubMed

    Shang, Yu; Jin, Bo; Peng, Rufang; Liu, Qiangqiang; Tan, Bisheng; Guo, Zhicheng; Zhao, Jun; Zhang, Qingchun

    2016-09-21

    The development of high-performance insensitive energetic materials is important because of the increasing demand for these materials in military and civilian applications. A novel 3D energetic metal-organic framework (MOF) of exceptionally high energy content, [Pb(BTO)(H2O)]n, was synthesized and structurally characterized by single crystal X-ray diffraction, featuring a three-dimensional parallelogram porous framework, where BTO represents 5,5'-bistetrazole-1,1'-diolate. The thermal stability and energetic properties were determined, exhibiting good thermostability (Td = 309.0 °C), excellent detonation pressure (P) of 53.06 GPa, a detonation velocity (D) of 9.204 km s(-1), and acceptable sensitivity to confirmed impact (IS = 7.5 J). Notably, the complex possesses unprecedented superior density than the reported energetic MOFs. The results highlight this new MOF as a potential energetic material.

  16. A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(ii) compound with 5,5'-bistetrazole-1,1'-diolate.

    PubMed

    Shang, Yu; Jin, Bo; Peng, Rufang; Liu, Qiangqiang; Tan, Bisheng; Guo, Zhicheng; Zhao, Jun; Zhang, Qingchun

    2016-09-21

    The development of high-performance insensitive energetic materials is important because of the increasing demand for these materials in military and civilian applications. A novel 3D energetic metal-organic framework (MOF) of exceptionally high energy content, [Pb(BTO)(H2O)]n, was synthesized and structurally characterized by single crystal X-ray diffraction, featuring a three-dimensional parallelogram porous framework, where BTO represents 5,5'-bistetrazole-1,1'-diolate. The thermal stability and energetic properties were determined, exhibiting good thermostability (Td = 309.0 °C), excellent detonation pressure (P) of 53.06 GPa, a detonation velocity (D) of 9.204 km s(-1), and acceptable sensitivity to confirmed impact (IS = 7.5 J). Notably, the complex possesses unprecedented superior density than the reported energetic MOFs. The results highlight this new MOF as a potential energetic material. PMID:27518537

  17. Summarizing motion contents of the video clip using moving edge overlaid frame (MEOF)

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Zhang, Yujin

    2001-12-01

    How to quickly and effectively exchange video information with the user is a major task for video searching engine's user interface. In this paper, we proposed to use Moving Edge Overlaid Frame (MEOF) image to summarize both the local object motion and global camera motion information of the video clip into a single image. MEOF will supplement the motion information that is generally dropped by the key frame representation, and it will enable faster perception for the user than viewing the actual video. The key technology of our MEOF generating algorithm involves the global motion estimation (GME). In order to extract the precise global motion model from general video, our GME module takes two stages, the match based initial GME and the gradient based GME refinement. The GME module also maintains a sprite image that will be aligned with the new input frame in the background after the global motion compensation transform. The difference between the aligned sprite and the new frame will be used to extract the masks that will help to pick out the moving objects' edges. The sprite is updated with each input frame and the moving edges are extracted at a constant interval. After all the frames are processed, the extracted moving edges are overlaid to the sprite according to there global motion displacement with the sprite and the temporal distance with the last frame, thus create our MEOF image. Experiments show that the MEOF representation of the video clip helps the user acquire the motion knowledge much faster and also be compact enough to serve the needs of online applications.

  18. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  20. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. The Role of Violent Video Game Content in Adolescent Development: Boys' Perspectives

    ERIC Educational Resources Information Center

    Olson, Cheryl K.; Kutner, Lawrence A.; Warner, Dorothy E.

    2008-01-01

    Numerous policies have been proposed at the local, state, and national level to restrict youth access to violent video and computer games. Although studies are cited to support policies, there is no published research on how children perceive the uses and influence of violent interactive games. The authors conduct focus groups with 42 boys ages 12…

  2. Designing Video Narratives to Contextualize Content for ESL Learners: A Design Process Case Study

    ERIC Educational Resources Information Center

    South, Joseph B.; Gabbitas, Bruce; Merrill, Paul F.

    2008-01-01

    In this paper we discuss how the Brigham Young University Technology Assisted Language Learning Group (BYU TALL Group) develops video-based dramatic narratives to increase the amount of context we provide to English as a second language (ESL) learners. First, we discuss the problem of decontextualization in education, the contextualism…

  3. Enabling Access and Enhancing Comprehension of Video Content for Postsecondary Students with Intellectual Disability

    ERIC Educational Resources Information Center

    Evmenova, Anya S.; Behrmann, Michael M.

    2014-01-01

    There is a great need for new innovative tools to integrate individuals with intellectual disability into educational experiences. This multiple baseline study examined the effects of various adaptations for improving factual and inferential comprehension of non-fiction videos by six postsecondary students with intellectual disability. Video…

  4. Never mind the content, look at the edits: fundamentals of video editing.

    PubMed

    Say, D

    1990-07-01

    There are many facets that go into the making of a good video programme. One of these is the editing, and the success of any programme very much depends upon the editing skills, a craft that can only be achieved by experience. This paper gives a brief but useful insight into some of the skills required.

  5. Low Complexity Mode Decision for 3D-HEVC

    PubMed Central

    Li, Nana; Gan, Yong

    2014-01-01

    High efficiency video coding- (HEVC-) based 3D video coding (3D-HEVC) developed by joint collaborative team on 3D video coding (JCT-3V) for multiview video and depth map is an extension of HEVC standard. In the test model of 3D-HEVC, variable coding unit (CU) size decision and disparity estimation (DE) are introduced to achieve the highest coding efficiency with the cost of very high computational complexity. In this paper, a fast mode decision algorithm based on variable size CU and DE is proposed to reduce 3D-HEVC computational complexity. The basic idea of the method is to utilize the correlations between depth map and motion activity in prediction mode where variable size CU and DE are needed, and only in these regions variable size CU and DE are enabled. Experimental results show that the proposed algorithm can save about 43% average computational complexity of 3D-HEVC while maintaining almost the same rate-distortion (RD) performance. PMID:25254237

  6. Low complexity mode decision for 3D-HEVC.

    PubMed

    Zhang, Qiuwen; Li, Nana; Gan, Yong

    2014-01-01

    High efficiency video coding- (HEVC-) based 3D video coding (3D-HEVC) developed by joint collaborative team on 3D video coding (JCT-3V) for multiview video and depth map is an extension of HEVC standard. In the test model of 3D-HEVC, variable coding unit (CU) size decision and disparity estimation (DE) are introduced to achieve the highest coding efficiency with the cost of very high computational complexity. In this paper, a fast mode decision algorithm based on variable size CU and DE is proposed to reduce 3D-HEVC computational complexity. The basic idea of the method is to utilize the correlations between depth map and motion activity in prediction mode where variable size CU and DE are needed, and only in these regions variable size CU and DE are enabled. Experimental results show that the proposed algorithm can save about 43% average computational complexity of 3D-HEVC while maintaining almost the same rate-distortion (RD) performance. PMID:25254237

  7. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  8. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  9. Can Clinical Scenario Videos Improve Dental Students' Perceptions of the Basic Sciences and Ability to Apply Content Knowledge?

    PubMed

    Miller, Cynthia Jayne; Metz, Michael James

    2015-12-01

    Dental students often have difficulty understanding the importance of basic science classes, such as physiology, for their future careers. To help alleviate this problem, the aim of this study was to create and evaluate a series of video modules using simulated patients and custom-designed animations that showcase medical emergencies in the dental practice. First-year students in a dental physiology course formatively assessed their knowledge using embedded questions in each of the three videos; 108 to 114 of the total 120 first-year students answered the questions, for a 90-95% response rate. These responses indicated that while the students could initially recognize the cause of the medical emergency, they had difficulty in applying their knowledge of physiology to the scenario. In two of the three videos, students drastically improved their ability to answer high-level clinical questions at the conclusion of the video. Additionally, when compared to the previous year of the course, there was a significant improvement in unit exam scores on clinically related questions (6.2% increase). Surveys were administered to the first-year students who participated in the video modules and fourth-year students who had completed the course prior to implementation of any clinical material. The response rate for the first-year students was 96% (115/120) and for the fourth-year students was 57% (68/120). The first-year students indicated a more positive perception of the physiology course and its importance for success on board examinations and their dental career than the fourth-year students. The students perceived that the most positive aspects of the modules were the clear applications of physiology to real-life dental situations, the interactive nature of the videos, and the improved student comprehension of course concepts. These results suggest that online modules may be used successfully to improve students' perceptions of the basic sciences and enhance their ability to

  10. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  11. Preschoolers' Recall of Science Content from Educational Videos Presented with and without Songs

    ERIC Educational Resources Information Center

    Schechter, Rachel L.

    2013-01-01

    This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and…

  12. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  13. 3D Integration for Wireless Multimedia

    NASA Astrophysics Data System (ADS)

    Kimmich, Georg

    The convergence of mobile phone, internet, mapping, gaming and office automation tools with high quality video and still imaging capture capability is becoming a strong market trend for portable devices. High-density video encode and decode, 3D graphics for gaming, increased application-software complexity and ultra-high-bandwidth 4G modem technologies are driving the CPU performance and memory bandwidth requirements close to the PC segment. These portable multimedia devices are battery operated, which requires the deployment of new low-power-optimized silicon process technologies and ultra-low-power design techniques at system, architecture and device level. Mobile devices also need to comply with stringent silicon-area and package-volume constraints. As for all consumer devices, low production cost and fast time-to-volume production is key for success. This chapter shows how 3D architectures can bring a possible breakthrough to meet the conflicting power, performance and area constraints. Multiple 3D die-stacking partitioning strategies are described and analyzed on their potential to improve the overall system power, performance and cost for specific application scenarios. Requirements and maturity of the basic process-technology bricks including through-silicon via (TSV) and die-to-die attachment techniques are reviewed. Finally, we highlight new challenges which will arise with 3D stacking and an outlook on how they may be addressed: Higher power density will require thermal design considerations, new EDA tools will need to be developed to cope with the integration of heterogeneous technologies and to guarantee signal and power integrity across the die stack. The silicon/wafer test strategies have to be adapted to handle high-density IO arrays, ultra-thin wafers and provide built-in self-test of attached memories. New standards and business models have to be developed to allow cost-efficient assembly and testing of devices from different silicon and technology

  14. Exploring interaction with 3D volumetric displays

    NASA Astrophysics Data System (ADS)

    Grossman, Tovi; Wigdor, Daniel; Balakrishnan, Ravin

    2005-03-01

    Volumetric displays generate true volumetric 3D images by actually illuminating points in 3D space. As a result, viewing their contents is similar to viewing physical objects in the real world. These displays provide a 360 degree field of view, and do not require the user to wear hardware such as shutter glasses or head-trackers. These properties make them a promising alternative to traditional display systems for viewing imagery in 3D. Because these displays have only recently been made available commercially (e.g., www.actuality-systems.com), their current use tends to be limited to non-interactive output-only display devices. To take full advantage of the unique features of these displays, however, it would be desirable if the 3D data being displayed could be directly interacted with and manipulated. We investigate interaction techniques for volumetric display interfaces, through the development of an interactive 3D geometric model building application. While this application area itself presents many interesting challenges, our focus is on the interaction techniques that are likely generalizable to interactive applications for other domains. We explore a very direct style of interaction where the user interacts with the virtual data using direct finger manipulations on and around the enclosure surrounding the displayed 3D volumetric image.

  15. Adult and adolescent exposure to tobacco and alcohol content in contemporary YouTube music videos in Great Britain: a population estimate

    PubMed Central

    Cranwell, Jo; Opazo-Breton, Magdalena; Britton, John

    2016-01-01

    Background We estimate exposure of British adults and adolescents to tobacco and alcohol content from a sample of popular YouTube music videos. Methods British viewing figures were generated from 2 representative online national surveys of adult and adolescent viewing of the 32 most popular videos containing content. 2068 adolescents aged 11–18 years (1010 boys, 1058 girls), and 2232 adults aged 19+years (1052 male, 1180 female) completed the surveys. We used the number of 10 s intervals in the 32 most popular videos containing content to estimate the number of impressions. We extrapolated gross and per capita impressions for the British population from census data and estimated numbers of adults and adolescents who had ever watched the sampled videos. Results From video release to the point of survey, the videos delivered an estimated 1006 million gross impressions of alcohol (95% CI 748 to 1264 million), and 203 million of tobacco (95% CI 151 to 255 million), to the British population. Per capita exposure was around 5 times higher for alcohol than for tobacco, and nearly 4 times higher in adolescents, who were exposed to an average of 52.1 (95% CI 43.4 to 60.9) and 10.5 (95% CI 8.8 to 12.3) alcohol and tobacco impressions, respectively, than in adults (14.1 (95% CI 10.2 to 18.1) and 2.9 (95% CI 2.1 to 3.6)). Exposure rates were higher in girls than in boys. Conclusions YouTube music videos deliver millions of gross impressions of alcohol and tobacco content. Adolescents are exposed much more than adults. Music videos are a major global medium of exposure to such content. PMID:26767404

  16. User experience while viewing stereoscopic 3D television

    PubMed Central

    Read, Jenny C.A.; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the ‘nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. Practitioner Summary: Stereoscopic 3D (S3D) has been linked to visual discomfort and fatigue. Viewers watched the same movie in either 2D or stereo 3D (between-subjects design). Around 14% reported effects such as headache and eyestrain linked to S3D itself, while 8% report adverse effects attributable to 3D glasses or negative expectations. PMID:24874550

  17. Picturing Video

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Video Pics is a software program that generates high-quality photos from video. The software was developed under an SBIR contract with Marshall Space Flight Center by Redhawk Vision, Inc.--a subsidiary of Irvine Sensors Corporation. Video Pics takes information content from multiple frames of video and enhances the resolution of a selected frame. The resulting image has enhanced sharpness and clarity like that of a 35 mm photo. The images are generated as digital files and are compatible with image editing software.

  18. R3D-2-MSA: the RNA 3D structure-to-multiple sequence alignment server

    PubMed Central

    Cannone, Jamie J.; Sweeney, Blake A.; Petrov, Anton I.; Gutell, Robin R.; Zirbel, Craig L.; Leontis, Neocles

    2015-01-01

    The RNA 3D Structure-to-Multiple Sequence Alignment Server (R3D-2-MSA) is a new web service that seamlessly links RNA three-dimensional (3D) structures to high-quality RNA multiple sequence alignments (MSAs) from diverse biological sources. In this first release, R3D-2-MSA provides manual and programmatic access to curated, representative ribosomal RNA sequence alignments from bacterial, archaeal, eukaryal and organellar ribosomes, using nucleotide numbers from representative atomic-resolution 3D structures. A web-based front end is available for manual entry and an Application Program Interface for programmatic access. Users can specify up to five ranges of nucleotides and 50 nucleotide positions per range. The R3D-2-MSA server maps these ranges to the appropriate columns of the corresponding MSA and returns the contents of the columns, either for display in a web browser or in JSON format for subsequent programmatic use. The browser output page provides a 3D interactive display of the query, a full list of sequence variants with taxonomic information and a statistical summary of distinct sequence variants found. The output can be filtered and sorted in the browser. Previous user queries can be viewed at any time by resubmitting the output URL, which encodes the search and re-generates the results. The service is freely available with no login requirement at http://rna.bgsu.edu/r3d-2-msa. PMID:26048960

  19. [Viewing of horror and violence videos by adolescence. A study of speech samples of video consumers with the Gottschalk-Gleser Speech Content analysis].

    PubMed

    Hopf, H; Weiss, R H

    1996-01-01

    In 1990 pupils of different schools in Württemberg were interviewed about their television and video consumption. It turned out that a high percentage of mainly male pupils of Hauptschulen (upper division of elementary schools) and special schools excessively and regularly consumed films which were on the index (X-rated) or seized depicting horror and violence. Subsequent to the inquiry through questionnaires and different personality tests, speech samples of 51 test persons were recorded on tape. 5 speech samples had to be excluded from further investigation since they contained less than 70 words. The transcribed and anonymized records were examined according to the Gottschalk-Gleser content analysis of verbal behavior, and two groups of so-called seldom lookers (n = 22) and frequent lookers (n = 24) were compared to each other. The frequent lookers significantly often reported about film contents which presumably means that their imagination is more restricted and less productive than that of the other group. In addition, this group of frequent lookers had significantly higher scores concerning death anxiety and guilt anxiety. With regard to hostility affects, their scores were also significantly raised concerning outward-overt hostility, outward-covert hostility, and ambivalent hostility. Probably the group of frequent lookers comprised more test persons with relationship disorders, with borderline risks, dissocial personality features, and problems to cope with their aggressiveness. So they show on the one hand a raised affinity to watch such films, but simultaneously unconscious and conscious learning processes take place which stimulate further aggressive fantasies (and possibly also actions).

  20. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  1. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. Sexually Explicit Media on the Internet: A Content Analysis of Sexual Behaviors, Risk, and Media Characteristics in Gay Male Adult Videos

    PubMed Central

    Downing, Martin J.; Schrimshaw, Eric W.; Antebi, Nadav; Siegel, Karolynn

    2013-01-01

    Recent research suggests that viewing sexually explicit media (SEM), i.e., adult videos, may influence sexual risk taking among men who have sex with men (MSM). Despite this evidence, very little is known about the content of gay male SEM on the Internet, including the prevalence of sexual risk behaviors and their relation to video- and performer-characteristics, viewing frequency, and favorability. The current study content analyzed 302 sexually explicit videos featuring male same-sex performers that were posted to five highly trafficked adult-oriented websites. Findings revealed that gay male SEM on the Internet features a variety of conventional and nonconventional sexual behaviors. There was a substantial prevalence of unprotected anal intercourse (UAI) (34%) and was virtually the same as the prevalence of anal sex with a condom (36%). The presence of UAI was not associated with video length, amateur production, number of video views, favorability, or website source. However, the presence of other potentially high-risk behaviors (e.g., ejaculation in the mouth, and ejaculation on/in/rubbed into the anus) was associated with longer videos, more views, and group sex videos (three or more performers). The findings of high levels of sexual risk behavior and the fact that there was virtually no difference in the prevalence of anal sex with and without a condom in gay male SEM have important implications for HIV prevention efforts, future research on the role of SEM on sexual risk taking, and public health policy. PMID:23733156

  3. Comparing Ethical Content Ratings of Text and Video Versions of Stories

    ERIC Educational Resources Information Center

    Gomberg, Anna; Orlova, Darya; Squillace, Mary; Narvaez, Darcia

    2005-01-01

    The Rating Ethical Content System (RECS) provides a systematic method for rating the positive content of stories, based on the Four Process model of ethical behavior (Rest, 1983): ethical sensitivity, ethical judgment, ethical focus and ethical action. We present data from an experiment in which college students and children rated the ethical…

  4. Using YouTube Videos as a Primer to Affect Academic Content Retention

    ERIC Educational Resources Information Center

    Duverger, Philippe; Steffes, Erin M.

    2012-01-01

    College students today watch more content, academic or not, on the Internet than on any other media. Consequently, the authors argue that using any of these media, especially YouTube.com in particular, is an effective way to not only reach students, but also capture their attention and interest while increasing retention of academic content. Using…

  5. Learning Projectile Motion with the Computer Game ``Scorched 3D``

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    2008-01-01

    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  6. Benchmark three-dimensional eye-tracking dataset for visual saliency prediction on stereoscopic three-dimensional video

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin; Nasiopoulos, Eleni; Pourazad, Mahsa T.; Nasiopoulos, Panos

    2016-01-01

    Visual attention models (VAMs) predict the location of image or video regions that are most likely to attract human attention. Although saliency detection is well explored for two-dimensional (2-D) image and video content, there have been only a few attempts made to design three-dimensional (3-D) saliency prediction models. Newly proposed 3-D VAMs have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2-D image and video content. In the case of 3-D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3-D VAMs. We introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3-D videos (and also 2-D versions of those), and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2-D and 3-D VAMs and facilitating the addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs.

  7. Using the Technological Pedagogical Content Knowledge (TPCK) Framework to Explore Teachers' Perceptions of the Role of Technology in the Implementation of mCLASSRTM: Reading 3D

    ERIC Educational Resources Information Center

    Wilson, Melody Tyler

    2012-01-01

    This qualitative study considers the perceptions of teachers from one rural county in North Carolina who implemented the program implementation of mCLASSRTM: Reading 3D. Reading 3D is an electronic early literacy assessment that is designed to assist teachers in planning appropriate literacy instruction based on student needs by offering immediate…

  8. Video games.

    PubMed

    Funk, Jeanne B

    2005-06-01

    The video game industry insists that it is doing everything possible to provide information about the content of games so that parents can make informed choices; however, surveys indicate that ratings may not reflect consumer views of the nature of the content. This article describes some of the currently popular video games, as well as developments that are on the horizon, and discusses the status of research on the positive and negative impacts of playing video games. Recommendations are made to help parents ensure that children play games that are consistent with their values.

  9. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  10. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  11. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  12. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  13. 3D-model building of the jaw impression

    NASA Astrophysics Data System (ADS)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  14. 3D model-based still image object categorization

    NASA Astrophysics Data System (ADS)

    Petre, Raluca-Diana; Zaharia, Titus

    2011-09-01

    This paper proposes a novel recognition scheme algorithm for semantic labeling of 2D object present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to infer the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Results obtained show promising performances, with recognition rate up to 84%, which opens interesting perspectives in terms of semantic metadata extraction from still images/videos.

  15. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  16. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  17. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  18. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  19. Extra dimensions: 3D in PDF documentation

    SciTech Connect

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  20. Extra dimensions: 3D in PDF documentation

    DOE PAGES

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less

  1. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  2. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  3. Development of a Coding Instrument to Assess the Quality and Content of Anti-Tobacco Video Games.

    PubMed

    Alber, Julia M; Watson, Anna M; Barnett, Tracey E; Mercado, Rebeccah; Bernhardt, Jay M

    2015-07-01

    Previous research has shown the use of electronic video games as an effective method for increasing content knowledge about the risks of drugs and alcohol use for adolescents. Although best practice suggests that theory, health communication strategies, and game appeal are important characteristics for developing games, no instruments are currently available to examine the quality and content of tobacco prevention and cessation electronic games. This study presents the systematic development of a coding instrument to measure the quality, use of theory, and health communication strategies of tobacco cessation and prevention electronic games. Using previous research and expert review, a content analysis coding instrument measuring 67 characteristics was developed with three overarching categories: type and quality of games, theory and approach, and type and format of messages. Two trained coders applied the instrument to 88 games on four platforms (personal computer, Nintendo DS, iPhone, and Android phone) to field test the instrument. Cohen's kappa for each item ranged from 0.66 to 1.00, with an average kappa value of 0.97. Future research can adapt this coding instrument to games addressing other health issues. In addition, the instrument questions can serve as a useful guide for evidence-based game development. PMID:26167842

  4. Optimizing color fidelity for display devices using contour phase predictive coding for text, graphics, and video content

    NASA Astrophysics Data System (ADS)

    Lebowsky, Fritz

    2013-02-01

    High-end monitors and TVs based on LCD technology continue to increase their native display resolution to 4k2k and beyond. Subsequently, uncompressed pixel data transmission becomes costly when transmitting over cable or wireless communication channels. For motion video content, spatial preprocessing from YCbCr 444 to YCbCr 420 is widely accepted. However, due to spatial low pass filtering in horizontal and vertical direction, quality and readability of small text and graphics content is heavily compromised when color contrast is high in chrominance channels. On the other hand, straight forward YCbCr 444 compression based on mathematical error coding schemes quite often lacks optimal adaptation to visually significant image content. Therefore, we present the idea of detecting synthetic small text fonts and fine graphics and applying contour phase predictive coding for improved text and graphics rendering at the decoder side. Using a predictive parametric (text) contour model and transmitting correlated phase information in vector format across all three color channels combined with foreground/background color vectors of a local color map promises to overcome weaknesses in compression schemes that process luminance and chrominance channels separately. The residual error of the predictive model is being minimized more easily since the decoder is an integral part of the encoder. A comparative analysis based on some competitive solutions highlights the effectiveness of our approach, discusses current limitations with regard to high quality color rendering, and identifies remaining visual artifacts.

  5. Development of a Coding Instrument to Assess the Quality and Content of Anti-Tobacco Video Games.

    PubMed

    Alber, Julia M; Watson, Anna M; Barnett, Tracey E; Mercado, Rebeccah; Bernhardt, Jay M

    2015-07-01

    Previous research has shown the use of electronic video games as an effective method for increasing content knowledge about the risks of drugs and alcohol use for adolescents. Although best practice suggests that theory, health communication strategies, and game appeal are important characteristics for developing games, no instruments are currently available to examine the quality and content of tobacco prevention and cessation electronic games. This study presents the systematic development of a coding instrument to measure the quality, use of theory, and health communication strategies of tobacco cessation and prevention electronic games. Using previous research and expert review, a content analysis coding instrument measuring 67 characteristics was developed with three overarching categories: type and quality of games, theory and approach, and type and format of messages. Two trained coders applied the instrument to 88 games on four platforms (personal computer, Nintendo DS, iPhone, and Android phone) to field test the instrument. Cohen's kappa for each item ranged from 0.66 to 1.00, with an average kappa value of 0.97. Future research can adapt this coding instrument to games addressing other health issues. In addition, the instrument questions can serve as a useful guide for evidence-based game development.

  6. Development of a Coding Instrument to Assess the Quality and Content of Anti-Tobacco Video Games

    PubMed Central

    Alber, Julia M.; Watson, Anna M.; Barnett, Tracey E.; Mercado, Rebeccah

    2015-01-01

    Abstract Previous research has shown the use of electronic video games as an effective method for increasing content knowledge about the risks of drugs and alcohol use for adolescents. Although best practice suggests that theory, health communication strategies, and game appeal are important characteristics for developing games, no instruments are currently available to examine the quality and content of tobacco prevention and cessation electronic games. This study presents the systematic development of a coding instrument to measure the quality, use of theory, and health communication strategies of tobacco cessation and prevention electronic games. Using previous research and expert review, a content analysis coding instrument measuring 67 characteristics was developed with three overarching categories: type and quality of games, theory and approach, and type and format of messages. Two trained coders applied the instrument to 88 games on four platforms (personal computer, Nintendo DS, iPhone, and Android phone) to field test the instrument. Cohen's kappa for each item ranged from 0.66 to 1.00, with an average kappa value of 0.97. Future research can adapt this coding instrument to games addressing other health issues. In addition, the instrument questions can serve as a useful guide for evidence-based game development. PMID:26167842

  7. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  8. Improving student learning via mobile phone video content: Evidence from the BridgeIT India project

    NASA Astrophysics Data System (ADS)

    Wennersten, Matthew; Quraishy, Zubeeda Banu; Velamuri, Malathi

    2015-08-01

    Past efforts invested in computer-based education technology interventions have generated little evidence of affordable success at scale. This paper presents the results of a mobile phone-based intervention conducted in the Indian states of Andhra Pradesh and Tamil Nadu in 2012-13. The BridgeIT project provided a pool of audio-visual learning materials organised in accordance with a system of syllabi pacing charts. Teachers of Standard 5 and 6 English and Science classes were notified of the availability of new videos via text messages (SMS), which they downloaded onto their phones using an open-source application and showed, with suggested activities, to students on a TV screen using a TV-out cable. In their evaluation of this project, the authors of this paper found that the test scores of children who experienced the intervention improved by 0.36 standard deviations in English and 0.98 standard deviations in Science in Andhra Pradesh, relative to students in similar classrooms who did not experience the intervention. Differences between treatment and control schools in Tamil Nadu were less marked. The intervention was also cost-effective, relative to other computer-based interventions. Based on these results, the authors argue that is possible to use mobile phones to produce a strong positive and statistically significant effect in terms of teaching and learning quality across a large number of classrooms in India at a lower cost per student than past computer-based interventions.

  9. Declarative and Dynamic Pedagogical Content Knowledge as Elicited through Two Video-Based Interview Methods

    ERIC Educational Resources Information Center

    Alonzo, Alicia C.; Kim, Jiwon

    2016-01-01

    Although pedagogical content knowledge (PCK) has become widely recognized as an essential part of the knowledge base for teaching, empirical evidence demonstrating a connection between PCK and teaching practice or student learning outcomes is mixed. In response, we argue for further attention to the measurement of dynamic (spontaneous or flexible,…

  10. Research-Based Strategies for Teaching Content to Students with Intellectual Disabilities: Adapted Videos

    ERIC Educational Resources Information Center

    Evmenova, Anna S.; Behrmann, Michael M.

    2011-01-01

    Teachers are always seeking any visual and/or auditory supports to facilitate students' comprehension and acquisition of difficult concepts associated with academic content. Such supports are even more important for students with intellectual disabilities who regardless of their abilities and needs are required to have access and active…

  11. Pedagogical Content Knowledge as Reflected in Teacher-Student Interactions: Analysis of Two Video Cases

    ERIC Educational Resources Information Center

    Alonzo, Alicia C.; Kobarg, Mareike; Seidel, Tina

    2012-01-01

    Despite the theorized centrality of pedagogical content knowledge (PCK) for teaching, we have little evidence of the relationship between PCK and students' learning and know relatively little about how to help teachers to develop PCK. This study is a preliminary attempt to address these gaps in our knowledge of PCK through exploration of two…

  12. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.

  13. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  14. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  15. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  16. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates

  17. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates

  18. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  19. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are

  20. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are

  1. Progressive content-based retrieval of image and video with adaptive and iterative refinement

    NASA Technical Reports Server (NTRS)

    Li, Chung-Sheng (Inventor); Turek, John Joseph Edward (Inventor); Castelli, Vittorio (Inventor); Chen, Ming-Syan (Inventor)

    1998-01-01

    A method and apparatus for minimizing the time required to obtain results for a content based query in a data base. More specifically, with this invention, the data base is partitioned into a plurality of groups. Then, a schedule or sequence of groups is assigned to each of the operations of the query, where the schedule represents the order in which an operation of the query will be applied to the groups in the schedule. Each schedule is arranged so that each application of the operation operates on the group which will yield intermediate results that are closest to final results.

  2. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  3. Immersive 3D geovisualisation in higher education

    NASA Astrophysics Data System (ADS)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    that significantly contributed to the hundred-year flooding in Dresden in 2002, we empirically evaluated the usefulness of this immersive 3D technology towards learning success. Results show that immersive 3D geovisualisation have educational and content-related advantages compared to 2D geovisualisations through the mentioned benefits. This innovative way of geovisualisation is thus not only entertaining and motivating for students, but can also be constructive for research studies by, for instance, facilitating the study of complex environments or decision-making processes.

  4. Projection type transparent 3D display using active screen

    NASA Astrophysics Data System (ADS)

    Kamoshita, Hiroki; Yendo, Tomohiro

    2015-05-01

    Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.

  5. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  6. Examining the Use of Video Study Groups for Developing Literacy Pedagogical Content Knowledge of Critical Elements of Strategy Instruction with Elementary Teachers

    ERIC Educational Resources Information Center

    Shanahan, Lynn E.; Tochelli, Andrea L.

    2014-01-01

    This collective case study explored what nine elementary teachers' video study group discussions revealed about their understanding of pedagogical content knowledge for an explicit reading strategy instruction framework, Critical Elements of Strategy Instruction (CESI). Qualitative methods were used to inductively and deductively analyze…

  7. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  8. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  9. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  10. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  11. Repeated-Viewing and Co-Viewing of an Animated Video: An Examination of Factors that Impact on Young Children's Comprehension of Video Content

    ERIC Educational Resources Information Center

    Skouteris, Helen; Kelly, Leanne

    2006-01-01

    The experiment reported here was concerned with the effect of repeat-viewing and adult co-viewing on the comprehension of an animated feature length movie. Four- to six-year-old children watched a movie on video either once or five times, and either with their mother present or on their own. The findings revealed that, after controlling for…

  12. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  13. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  14. Improvements of 3-D image quality in integral display by reducing distortion errors

    NASA Astrophysics Data System (ADS)

    Kawakita, Masahiro; Sasaki, Hisayuki; Arai, Jun; Okano, Fumio; Suehiro, Koya; Haino, Yasuyuki; Yoshimura, Makoto; Sato, Masahito

    2008-02-01

    An integral three-dimensional (3-D) system based on the principle of integral photography can display natural 3-D images. We studied ways of improving the resolution and viewing angle of 3-D images by using extremely highresolution (EHR) video in an integral 3-D video system. One of the problems with the EHR projection-type integral 3-D system is that positional errors appear between the elemental image and the elemental lens when there is geometric distortion in the projected image. We analyzed the relationships between the geometric distortion in the elemental images caused by the projection lens and the spatial distortion of the reconstructed 3-D image. As a result, we clarified that 3-D images reconstructed far from the lens array were greatly affected by the distortion of the elemental images, and that the 3-D images were significantly distorted in the depth direction at the corners of the displayed images. Moreover, we developed a video signal processor that electrically compensated the distortion in the elemental images for an EHR projection-type integral 3-D system. Therefore, the distortion in the displayed 3-D image was removed, and the viewing angle of the 3-D image was expanded to nearly double that obtained with the previous prototype system.

  15. The GIRAFFE Archive: 1D and 3D Spectra

    NASA Astrophysics Data System (ADS)

    Royer, F.; Jégouzo, I.; Tajahmady, F.; Normand, J.; Chilingarian, I.

    2013-10-01

    The GIRAFFE Archive (http://giraffe-archive.obspm.fr) contains the reduced spectra observed with the intermediate and high resolution multi-fiber spectrograph installed at VLT/UT2 (ESO). In its multi-object configuration and the different integral field unit configurations, GIRAFFE produces 1D spectra and 3D spectra. We present here the status of the archive and the different functionalities to select and download both 1D and 3D data products, as well as the present content. The two collections are available in the VO: the 1D spectra (summed in the case of integral field observations) and the 3D field observations. These latter products can be explored using the VO Paris Euro3D Client (http://voplus.obspm.fr/ chil/Euro3D).

  16. 3-D movies using microprocessor-controlled optoelectronic spectacles

    NASA Astrophysics Data System (ADS)

    Jacobs, Ken; Karpf, Ron

    2012-02-01

    Despite rapid advances in technology, 3-D movies are impractical for general movie viewing. A new approach that opens all content for casual 3-D viewing is needed. 3Deeps--advanced microprocessor controlled optoelectronic spectacles--provides such a new approach to 3-D. 3Deeps works on a different principle than other methods for 3-D. 3-D movies typically use the asymmetry of dual images to produce stereopsis, necessitating costly dual-image content, complex formatting and transmission standards, and viewing via a corresponding selection device. In contrast, all 3Deeps requires to view movies in realistic depth is an illumination asymmetry--a controlled difference in optical density between the lenses. When a 2-D movie has been projected for viewing, 3Deeps converts every scene containing lateral motion into realistic 3-D. Put on 3Deeps spectacles for 3-D viewing, or remove them for viewing in 2-D. 3Deeps works for all analogue and digital 2-D content, by any mode of transmission, and for projection screens, digital or analogue monitors. An example using aerial photography is presented. A movie consisting of successive monoscopic aerial photographs appears in realistic 3-D when viewed through 3Deeps spectacles.

  17. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  18. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  19. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  20. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  1. GLOBE 3D : an new 3D toolset for Geoscience data processing

    NASA Astrophysics Data System (ADS)

    Sinquin, Jean-Marc; Sorribas, Jordi; Diviacco, Paolo; Baeye, Matthias; Quemener, Gael

    2013-04-01

    Within EUROFLEETS project, and linked to EMODNET and GEOSEAS european projects, GLOBE (GLobal Oceanographic Bathymetry Explorer) is an innovative and generic software combining all necessary functionalities for cruise preparation, for collection, linking, processing and display of scientific data acquired during sea cruises, and for export of data and information to the main marine data centres and networks. The first version was delivered by the end of 2012 and was dedicated to MBES (Multi Beam Echo Sounder) data processing, but is designed to accept further functionalities such as image and video. It can be used onboard during the survey to get a quick view of acquired data, or later, to re-process data with accurate environmental data. Technically, the concept of the software relies on Eclipse RCP for the hosted client, Java and Nasa World Wind for the 3D views. The version shown at EGU will present several key items : - 3D vizualisation : DTM multi-layers from EmodNET, WaterColumn echogram, Seismic lines, ... - Bathymetry Plug-In : manual and automatic data cleaning, - Photo/Video Plug-In - Navigation - WMS/WFS interfaces.

  2. Clinical Assessment of Stereoacuity and 3-D Stereoscopic Entertainment

    PubMed Central

    Tidbury, Laurence P.; Black, Robert H.; O’Connor, Anna R.

    2015-01-01

    Abstract Background/Aims: The perception of compelling depth is often reported in individuals where no clinically measurable stereoacuity is apparent. We aim to investigate the potential cause of this finding by varying the amount of stereopsis available to the subject, and assessing their perception of depth viewing 3-D video clips and a Nintendo 3DS. Methods: Monocular blur was used to vary interocular VA difference, consequently creating 4 levels of measurable binocular deficit from normal stereoacuity to suppression. Stereoacuity was assessed at each level using the TNO, Preschool Randot®, Frisby, the FD2, and Distance Randot®. Subjects also completed an object depth identification task using the Nintendo 3DS, a static 3DTV stereoacuity test, and a 3-D perception rating task of 6 video clips. Results: As intraocular VA differences increased, stereoacuity of the 57 subjects (aged 16–62 years) decreased (eg, 110”, 280”, 340”, and suppression). The ability to correctly identify depth on the Nintendo 3DS remained at 100% until suppression of one eye occurred. The perception of a compelling 3-D effect when viewing the video clips was rated high until suppression of one eye occurred, where the 3-D effect was still reported as fairly evident. Conclusion: If an individual has any level of measurable stereoacuity, the perception of 3-D when viewing stereoscopic entertainment is present. The presence of motion in stereoscopic video appears to provide cues to depth, where static cues are not sufficient. This suggests there is a need for a dynamic test of stereoacuity to be developed, to allow fully informed patient management decisions to be made. PMID:26669421

  3. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  4. Art History in 3-D

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2012-01-01

    Students often have a hard time equating time spent on art history as time well spent in the art room. Likewise, art teachers struggle with how to keep interest in their classrooms high when the subject turns to history. Some teachers show endless videos, with the students nodding sleepily along to the narrator. Others try to incorporate small…

  5. Distributed network of integrated 3D sensors for transportation security applications

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Garcia, Fred

    2009-05-01

    The US Port Security Agency has strongly emphasized the needs for tighter control at transportation hubs. Distributed arrays of miniature CMOS cameras are providing some solutions today. However, due to the high bandwidth required and the low valued content of such cameras (simple video feed), large computing power and analysis algorithms as well as control software are needed, which makes such an architecture cumbersome, heavy, slow and expensive. We present a novel technique by integrating cheap and mass replicable stealth 3D sensing micro-devices in a distributed network. These micro-sensors are based on conventional structures illumination via successive fringe patterns on the object to be sensed. The communication bandwidth between each sensor remains very small, but is of very high valued content. Key technologies to integrate such a sensor are digital optics and structured laser illumination.

  6. MSV3d: database of human MisSense Variants mapped to 3D protein structure.

    PubMed

    Luu, Tien-Dao; Rusu, Alin-Mihai; Walter, Vincent; Ripp, Raymond; Moulinier, Luc; Muller, Jean; Toursel, Thierry; Thompson, Julie D; Poch, Olivier; Nguyen, Hoan

    2012-01-01

    The elucidation of the complex relationships linking genotypic and phenotypic variations to protein structure is a major challenge in the post-genomic era. We present MSV3d (Database of human MisSense Variants mapped to 3D protein structure), a new database that contains detailed annotation of missense variants of all human proteins (20 199 proteins). The multi-level characterization includes details of the physico-chemical changes induced by amino acid modification, as well as information related to the conservation of the mutated residue and its position relative to functional features in the available or predicted 3D model. Major releases of the database are automatically generated and updated regularly in line with the dbSNP (database of Single Nucleotide Polymorphism) and SwissVar releases, by exploiting the extensive Décrypthon computational grid resources. The database (http://decrypthon.igbmc.fr/msv3d) is easily accessible through a simple web interface coupled to a powerful query engine and a standard web service. The content is completely or partially downloadable in XML or flat file formats. Database URL: http://decrypthon.igbmc.fr/msv3d.

  7. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  8. Semantic home video categorization

    NASA Astrophysics Data System (ADS)

    Min, Hyun-Seok; Lee, Young Bok; De Neve, Wesley; Ro, Yong Man

    2009-02-01

    Nowadays, a strong need exists for the efficient organization of an increasing amount of home video content. To create an efficient system for the management of home video content, it is required to categorize home video content in a semantic way. So far, a significant amount of research has already been dedicated to semantic video categorization. However, conventional categorization approaches often rely on unnecessary concepts and complicated algorithms that are not suited in the context of home video categorization. To overcome the aforementioned problem, this paper proposes a novel home video categorization method that adopts semantic home photo categorization. To use home photo categorization in the context of home video, we segment video content into shots and extract key frames that represent each shot. To extract the semantics from key frames, we divide each key frame into ten local regions and extract lowlevel features. Based on the low level features extracted for each local region, we can predict the semantics of a particular key frame. To verify the usefulness of the proposed home video categorization method, experiments were performed with home video sequences, labeled by concepts part of the MPEG-7 VCE2 dataset. To verify the usefulness of the proposed home video categorization method, experiments were performed with 70 home video sequences. For the home video sequences used, the proposed system produced a recall of 77% and an accuracy of 78%.

  9. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  10. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  11. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  12. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  13. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  14. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  15. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  16. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  17. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  18. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  19. User experience while viewing stereoscopic 3D television.

    PubMed

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D. PMID:24874550

  20. User experience while viewing stereoscopic 3D television.

    PubMed

    Read, Jenny C A; Bohr, Iwo

    2014-01-01

    3D display technologies have been linked to visual discomfort and fatigue. In a lab-based study with a between-subjects design, 433 viewers aged from 4 to 82 years watched the same movie in either 2D or stereo 3D (S3D), and subjectively reported on a range of aspects of their viewing experience. Our results suggest that a minority of viewers, around 14%, experience adverse effects due to viewing S3D, mainly headache and eyestrain. A control experiment where participants viewed 2D content through 3D glasses suggests that around 8% may report adverse effects which are not due directly to viewing S3D, but instead are due to the glasses or to negative preconceptions about S3D (the 'nocebo effect'). Women were slightly more likely than men to report adverse effects with S3D. We could not detect any link between pre-existing eye conditions or low stereoacuity and the likelihood of experiencing adverse effects with S3D.

  1. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  2. Preference for motion and depth in 3D film

    NASA Astrophysics Data System (ADS)

    Hartle, Brittney; Lugtigheid, Arthur; Kazimi, Ali; Allison, Robert S.; Wilcox, Laurie M.

    2015-03-01

    While heuristics have evolved over decades for the capture and display of conventional 2D film, it is not clear these always apply well to stereoscopic 3D (S3D) film. Further, while there has been considerable recent research on viewer comfort in S3D media, little attention has been paid to audience preferences for filming parameters in S3D. Here we evaluate viewers' preferences for moving S3D film content in a theatre setting. Specifically we examine preferences for combinations of camera motion (speed and direction) and stereoscopic depth (IA). The amount of IA had no impact on clip preferences regardless of the direction or speed of camera movement. However, preferences were influenced by camera speed, but only in the in-depth condition where viewers preferred faster motion. Given that previous research shows that slower speeds are more comfortable for viewing S3D content, our results show that viewing preferences cannot be predicted simply from measures of comfort. Instead, it is clear that viewer response to S3D film is complex and that film parameters selected to enhance comfort may in some instances produce less appealing content.

  3. 3D Endoscope to Boost Safety, Cut Cost of Surgery

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Researchers at the Jet Propulsion Laboratory worked with the brain surgeon who directs the Skull Base Institute in Los Angeles to create the first endoscope fit for brain surgery and capable of producing 3D video images. It is also the first to be able to steer its lens back and forth. These improvements to visibility are expected to improve safety, speeding patient recovery and reducing medical costs.

  4. You can't take it with you? Effects of handheld portable media consoles on physiological and psychological responses to video game and movie content.

    PubMed

    Ivory, James D; Magee, Robert G

    2009-06-01

    Portable media consoles are becoming extremely popular devices for viewing a number of different types of media content, both for entertainment and for educational purposes. Given the increasingly heavy use of portable consoles as an alternative to traditional television-style monitors, it is important to investigate how physiological and psychological effects of portable consoles may differ from those of television-based consoles, because such differences in physiological and psychological responses may precipitate differences in the delivered content's effectiveness. Because portable consoles are popular as a delivery system for multiple types of media content, such as movies and video games, it is also important to investigate whether differences between the effects of portable and television-based consoles are consistent across multiple types of media. This article reports a 2 x 2 (console: portable or television-based x medium: video game or movie) mixed factorial design experiment with physiological arousal and self-reported flow experience as dependent variables, designed to explore whether console type affects media experiences and whether these effects are consistent across different media. Results indicate that portable media consoles evoke lower levels of physiological arousal and flow experience and that this effect is consistent for both video games and movies. These findings suggest that even though portable media consoles are often convenient compared to television-based consoles, the convenience may come at a cost in terms of the user experience. PMID:19445637

  5. You can't take it with you? Effects of handheld portable media consoles on physiological and psychological responses to video game and movie content.

    PubMed

    Ivory, James D; Magee, Robert G

    2009-06-01

    Portable media consoles are becoming extremely popular devices for viewing a number of different types of media content, both for entertainment and for educational purposes. Given the increasingly heavy use of portable consoles as an alternative to traditional television-style monitors, it is important to investigate how physiological and psychological effects of portable consoles may differ from those of television-based consoles, because such differences in physiological and psychological responses may precipitate differences in the delivered content's effectiveness. Because portable consoles are popular as a delivery system for multiple types of media content, such as movies and video games, it is also important to investigate whether differences between the effects of portable and television-based consoles are consistent across multiple types of media. This article reports a 2 x 2 (console: portable or television-based x medium: video game or movie) mixed factorial design experiment with physiological arousal and self-reported flow experience as dependent variables, designed to explore whether console type affects media experiences and whether these effects are consistent across different media. Results indicate that portable media consoles evoke lower levels of physiological arousal and flow experience and that this effect is consistent for both video games and movies. These findings suggest that even though portable media consoles are often convenient compared to television-based consoles, the convenience may come at a cost in terms of the user experience.

  6. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  7. A dynamic 3D foot reconstruction system.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  8. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  9. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  10. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  11. 3D printing of natural organic materials by photochemistry

    NASA Astrophysics Data System (ADS)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  12. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2004-12-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  13. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2005-01-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  14. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  15. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  16. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  17. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  18. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  19. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  1. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  2. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    NASA Astrophysics Data System (ADS)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  3. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  4. Multithreaded real-time 3D image processing software architecture and implementation

    NASA Astrophysics Data System (ADS)

    Ramachandra, Vikas; Atanassov, Kalin; Aleksic, Milivoje; Goma, Sergio R.

    2011-03-01

    Recently, 3D displays and videos have generated a lot of interest in the consumer electronics industry. To make 3D capture and playback popular and practical, a user friendly playback interface is desirable. Towards this end, we built a real time software 3D video player. The 3D video player displays user captured 3D videos, provides for various 3D specific image processing functions and ensures a pleasant viewing experience. Moreover, the player enables user interactivity by providing digital zoom and pan functionalities. This real time 3D player was implemented on the GPU using CUDA and OpenGL. The player provides user interactive 3D video playback. Stereo images are first read by the player from a fast drive and rectified. Further processing of the images determines the optimal convergence point in the 3D scene to reduce eye strain. The rationale for this convergence point selection takes into account scene depth and display geometry. The first step in this processing chain is identifying keypoints by detecting vertical edges within the left image. Regions surrounding reliable keypoints are then located on the right image through the use of block matching. The difference in the positions between the corresponding regions in the left and right images are then used to calculate disparity. The extrema of the disparity histogram gives the scene disparity range. The left and right images are shifted based upon the calculated range, in order to place the desired region of the 3D scene at convergence. All the above computations are performed on one CPU thread which calls CUDA functions. Image upsampling and shifting is performed in response to user zoom and pan. The player also consists of a CPU display thread, which uses OpenGL rendering (quad buffers). This also gathers user input for digital zoom and pan and sends them to the processing thread.

  5. 3D-Pathology: a real-time system for quantitative diagnostic pathology and visualisation in 3D

    NASA Astrophysics Data System (ADS)

    Gottrup, Christian; Beckett, Mark G.; Hager, Henrik; Locht, Peter

    2005-02-01

    This paper presents the results of the 3D-Pathology project conducted under the European EC Framework 5. The aim of the project was, through the application of 3D image reconstruction and visualization techniques, to improve the diagnostic and prognostic capabilities of medical personnel when analyzing pathological specimens using transmitted light microscopy. A fully automated, computer-controlled microscope system has been developed to capture 3D images of specimen content. 3D image reconstruction algorithms have been implemented and applied to the acquired volume data in order to facilitate the subsequent 3D visualization of the specimen. Three potential application fields, immunohistology, cromogenic in situ hybridization (CISH) and cytology, have been tested using the prototype system. For both immunohistology and CISH, use of the system furnished significant additional information to the pathologist.

  6. 3D-Measuring for Head Shape Covering Hair

    NASA Astrophysics Data System (ADS)

    Kato, Tsukasa; Hattori, Koosuke; Nomura, Takuya; Taguchi, Ryo; Hoguro, Masahiro; Umezaki, Taizo

    3D-Measuring is paid to attention because 3D-Display is making rapid spread. Especially, face and head are required to be measured because of necessary or contents production. However, it is a present problem that it is difficult to measure hair. Then, in this research, it is a purpose to measure face and hair with phase shift method. By using sine images arranged for hair measuring, the problems on hair measuring, dark color and reflection, are settled.

  7. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform. PMID:26737091

  8. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  9. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  10. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  11. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  12. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  13. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  14. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  15. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  16. The Vision Digital Video Library.

    ERIC Educational Resources Information Center

    Gauch, Susan; Li, Wei; Gauch, John

    1997-01-01

    Describes VISION (Video Indexing for Searching over Networks), a digital video prototype developed at the University of Kansas to demonstrate the technology necessary for an online digital video library. Highlights include content-based search and retrieval of video over computer networks; full-text information retrieval; and future plans.…

  17. Plans for a 3D reconnection experiment

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2010-11-01

    Plasma-filled, current-carrying magnetic flux tubes are the essence of tokamaks, RFP's, spheromaks, solar coronal loops, and astrophysical jets. Relevant behaviors/issues are magnetic helicity content and injection, motion of the tube axis (hoop force, kinking), plasma confinement (balance between hydrodynamic pressure and pinch force), axial jet flows (acceleration and stagnation), waves, particle orbits, reconnection, and open v. closed field lines. These behaviors/issues and their mutual interaction are being investigated via Alfven time-scale imaging and conventional diagnostics in highly reproducible experiments having the simplest relevant geometry. High-speed movies clearly show flux tube kinking, motion of the flux tube axis due to hoop force, axial jet flows, an unusual particle orbit associated with flows counter to the electrical current, and reconnection between adjacent co- or counter-helicity flux tubes. A new experiment now under construction will have two slightly offset plasma-filled, current carrying flux tubes locally reconnect in 3D to form a single long flux tube. The setup requires two floating power supplies to drive the pre-reconnection currents as post-reconnection the power supplies become series-connected. A means for overcoming the topologically unavoidable mutual repulsion between the pre-reconnection currents is also required. It is anticipated that Alfven waves will radiate from the 3D localized reconnection region.

  18. 3D structure and nuclear targets

    NASA Astrophysics Data System (ADS)

    Dupré, Raphaël; Scopetta, Sergio

    2016-06-01

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three-dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non-nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse-momentum-dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high-luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12GeV Jefferson Laboratory and the Electron Ion Collider, are presented.

  19. Programming standards for effective S-3D game development

    NASA Astrophysics Data System (ADS)

    Schneider, Neil; Matveev, Alexander

    2008-02-01

    When a video game is in development, more often than not it is being rendered in three dimensions - complete with volumetric depth. It's the PC monitor that is taking this three-dimensional information, and artificially displaying it in a flat, two-dimensional format. Stereoscopic drivers take the three-dimensional information captured from DirectX and OpenGL calls and properly display it with a unique left and right sided view for each eye so a proper stereoscopic 3D image can be seen by the gamer. The two-dimensional limitation of how information is displayed on screen has encouraged programming short-cuts and work-arounds that stifle this stereoscopic 3D effect, and the purpose of this guide is to outline techniques to get the best of both worlds. While the programming requirements do not significantly add to the game development time, following these guidelines will greatly enhance your customer's stereoscopic 3D experience, increase your likelihood of earning Meant to be Seen certification, and give you instant cost-free access to the industry's most valued consumer base. While this outline is mostly based on NVIDIA's programming guide and iZ3D resources, it is designed to work with all stereoscopic 3D hardware solutions and is not proprietary in any way.

  20. Development of a 3D CT scanner using cone beam

    NASA Astrophysics Data System (ADS)

    Endo, Masahiro; Kamagata, Nozomu; Sato, Kazumasa; Hattori, Yuichi; Kobayashi, Shigeo; Mizuno, Shinichi; Jimbo, Masao; Kusakabe, Masahiro

    1995-05-01

    In order to acquire 3D data of high contrast objects such as bone, lung and vessels enhanced by contrast media for use in 3D image processing, we have developed a 3D CT-scanner using cone beam x ray. The 3D CT-scanner consists of a gantry and a patient couch. The gantry consists of an x-ray tube designed for cone beam CT and a large area two-dimensional detector mounted on a single frame and rotated around an object in 12 seconds. The large area detector consists of a fluorescent plate and a charge coupled device video camera. The size of detection area was 600 mm X 450 mm capable of covering the total chest. While an x-ray tube was rotated around an object, pulsed x ray was exposed 30 times a second and 360 projected images were collected in a 12 second scan. A 256 X 256 X 256 matrix image (1.25 mm X 1.25 mm X 1.25 mm voxel) was reconstructed by a high-speed reconstruction engine. Reconstruction time was approximately 6 minutes. Cylindrical water phantoms, anesthetized rabbits with or without contrast media, and a Japanese macaque were scanned with the 3D CT-scanner. The results seem promising because they show high spatial resolution in three directions, though there existed several point to be improved. Possible improvements are discussed.

  1. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  2. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  3. Content, Interaction, or Both? Synthesizing Two German Traditions in a Video Study on Learning to Explain in Mathematics Classroom Microcultures

    ERIC Educational Resources Information Center

    Prediger, Susanne; Erath, Kirstin

    2014-01-01

    How do students learn to explain? We take this exemplary research question for presenting two antagonist traditions in German mathematics education research and their synthesis in an ongoing video study. These two traditions are (1) the German Didaktik approach that can be characterized by its epistemologically sensitive analyses and…

  4. Supported eText in Captioned Videos: A Comparison of Expanded versus Standard Captions on Student Comprehension of Educational Content

    ERIC Educational Resources Information Center

    Anderson-Inman, Lynne; Terrazas-Arellanes, Fatima E.

    2009-01-01

    Expanded captions are designed to enhance the educational value by linking unfamiliar words to one of three types of information: vocabulary definitions, labeled illustrations, or concept maps. This study investigated the effects of expanded captions versus standard captions on the comprehension of educational video materials on DVD by secondary…

  5. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  6. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  7. Quantitative 3-D imaging topogrammetry for telemedicine applications

    NASA Technical Reports Server (NTRS)

    Altschuler, Bruce R.

    1994-01-01

    The technology to reliably transmit high-resolution visual imagery over short to medium distances in real time has led to the serious considerations of the use of telemedicine, telepresence, and telerobotics in the delivery of health care. These concepts may involve, and evolve toward: consultation from remote expert teaching centers; diagnosis; triage; real-time remote advice to the surgeon; and real-time remote surgical instrument manipulation (telerobotics with virtual reality). Further extrapolation leads to teledesign and telereplication of spare surgical parts through quantitative teleimaging of 3-D surfaces tied to CAD/CAM devices and an artificially intelligent archival data base of 'normal' shapes. The ability to generate 'topogrames' or 3-D surface numerical tables of coordinate values capable of creating computer-generated virtual holographic-like displays, machine part replication, and statistical diagnostic shape assessment is critical to the progression of telemedicine. Any virtual reality simulation will remain in 'video-game' realm until realistic dimensional and spatial relational inputs from real measurements in vivo during surgeries are added to an ever-growing statistical data archive. The challenges of managing and interpreting this 3-D data base, which would include radiographic and surface quantitative data, are considerable. As technology drives toward dynamic and continuous 3-D surface measurements, presenting millions of X, Y, Z data points per second of flexing, stretching, moving human organs, the knowledge base and interpretive capabilities of 'brilliant robots' to work as a surgeon's tireless assistants becomes imaginable. The brilliant robot would 'see' what the surgeon sees--and more, for the robot could quantify its 3-D sensing and would 'see' in a wider spectral range than humans, and could zoom its 'eyes' from the macro world to long-distance microscopy. Unerring robot hands could rapidly perform machine-aided suturing with

  8. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  9. Locomotive wheel 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Luo, Zhisheng; Gao, Xiaorong; Wu, Jianle

    2010-08-01

    In the article, a system, which is used to reconstruct locomotive wheels, is described, helping workers detect the condition of a wheel through a direct view. The system consists of a line laser, a 2D camera, and a computer. We use 2D camera to capture the line-laser light reflected by the object, a wheel, and then compute the final coordinates of the structured light. Finally, using Matlab programming language, we transform the coordinate of points to a smooth surface and illustrate the 3D view of the wheel. The article also proposes the system structure, processing steps and methods, and sets up an experimental platform to verify the design proposal. We verify the feasibility of the whole process, and analyze the results comparing to standard date. The test results show that this system can work well, and has a high accuracy on the reconstruction. And because there is still no such application working in railway industries, so that it has practical value in railway inspection system.

  10. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  11. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  12. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  13. Interventional video tomography

    NASA Astrophysics Data System (ADS)

    Truppe, Michael J.; Pongracz, Ferenc; Ploder, Oliver; Wagner, Arne; Ewers, Rolf

    1995-05-01

    Interventional Video Tomography (IVT) is a new imaging modality for Image Directed Surgery to visualize in real-time intraoperatively the spatial position of surgical instruments relative to the patient's anatomy. The video imaging detector is based on a special camera equipped with an optical viewing and lighting system and electronic 3D sensors. When combined with an endoscope it is used for examining the inside of cavities or hollow organs of the body from many different angles. The surface topography of objects is reconstructed from a sequence of monocular video or endoscopic images. To increase accuracy and speed of the reconstruction the relative movement between objects and endoscope is continuously tracked by electronic sensors. The IVT image sequence represents a 4D data set in stereotactic space and contains image, surface topography and motion data. In ENT surgery an IVT image sequence of the planned and so far accessible surgical path is acquired prior to surgery. To simulate the surgical procedure the cross sectional imaging data is superimposed with the digitally stored IVT image sequence. During surgery the video sequence component of the IVT simulation is substituted by the live video source. The IVT technology makes obsolete the use of 3D digitizing probes for the patient image coordinate transformation. The image fusion of medical imaging data with live video sources is the first practical use of augmented reality in medicine. During surgery a head-up display is used to overlay real-time reformatted cross sectional imaging data with the live video image.

  14. Computer-generated hologram for 3D scene from multi-view images

    NASA Astrophysics Data System (ADS)

    Chang, Eun-Young; Kang, Yun-Suk; Moon, KyungAe; Ho, Yo-Sung; Kim, Jinwoong

    2013-05-01

    Recently, the computer generated hologram (CGH) calculated from real existing objects is more actively investigated to support holographic video and TV applications. In this paper, we propose a method of generating a hologram of the natural 3-D scene from multi-view images in order to provide motion parallax viewing with a suitable navigation range. After a unified 3-D point source set describing the captured 3-D scene is obtained from multi-view images, a hologram pattern supporting motion-parallax is calculated from the set using a point-based CGH method. We confirmed that 3-D scenes are faithfully reconstructed using numerical reconstruction.

  15. A systematized WYSIWYG pipeline for digital stereoscopic 3D filmmaking

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Ward, Chris; Hušák, Michal

    2008-02-01

    Digital tools are transforming stereoscopic 3D content creation and delivery, creating an opportunity for the broad acceptance and success of stereoscopic 3D films. Beginning in late 2005, a series of mostly CGI features has successfully initiated the public to this new generation of highly-comfortable, artifact-free digital 3D. While the response has been decidedly favorable, a lack of high-quality live-action films could hinder long-term success. Liveaction stereoscopic films have historically been more time-consuming, costly, and creatively-limiting than 2D films - thus a need arises for a live-action 3D filmmaking process which minimizes such limitations. A unique 'systematized' what-you-see-is-what-you-get (WYSIWYG) pipeline is described which allows the efficient, intuitive and accurate capture and integration of 3D and 2D elements from multiple shoots and sources - both live-action and CGI. Throughout this pipeline, digital tools utilize a consistent algorithm to provide meaningful and accurate visual depth references with respect to the viewing audience in the target theater environment. This intuitive, visual approach introduces efficiency and creativity to the 3D filmmaking process by eliminating both the need for a 'mathematician mentality' of spreadsheets and calculators, as well as any trial and error guesswork, while enabling the most comfortable, 'pixel-perfect', artifact-free 3D product possible.

  16. Three-dimensional video presentation of microsurgery by the cross-eyed viewing method using a high-definition video system.

    PubMed

    Terakawa, Yuzo; Ishibashi, Kenichi; Goto, Takeo; Ohata, Kenji

    2011-01-01

    Three-dimensional (3-D) video recording of microsurgery is a more promising tool for presentation and education of microsurgery than conventional two-dimensional video systems, but has not been widely adopted partly because 3-D image processing of previous 3-D video systems is complicated and observers without optical devices cannot visualize the 3-D image. A new technical development for 3-D video presentation of microsurgery is described. Microsurgery is recorded with a microscope equipped with a single high-definition (HD) video camera. This 3-D video system records the right- and left-eye views of the microscope simultaneously as single HD data with the use of a 3-D camera adapter: the right- and left-eye views of the microscope are displayed separately on the right and left sides, respectively. The operation video is then edited with video editing software so that the right-eye view is displayed on the left side and left-eye view is displayed on the right side. Consequently, a 3-D video of microsurgery can be created by viewing the edited video by the cross-eyed stereogram viewing method without optical devices. The 3-D microsurgical video provides a more accurate view, especially with regard to depth, and a better understanding of microsurgical anatomy. Although several issues are yet to be addressed, this 3-D video system is a useful method of recording and presenting microsurgery for 3-D viewing with currently available equipment, without optical devices. PMID:21701116

  17. Forward ramp in 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.

    The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 3D grain boundary migration

    NASA Astrophysics Data System (ADS)

    Becker, J. K.; Bons, P. D.

    2009-04-01

    Microstructures of rocks play an important role in determining rheological properties and help to reveal the processes that lead to their formation. Some of these processes change the microstructure significantly and may thus have the opposite effect in obliterating any fabrics indicative of the previous history of the rocks. One of these processes is grain boundary migration (GBM). During static recrystallisation, GBM may produce a foam texture that completely overprints a pre-existing grain boundary network and GBM actively influences the rheology of a rock, via its influence on grain size and lattice defect concentration. We here present a new numerical simulation software that is capable of simulating a whole range of processes on the grain scale (it is not limited to grain boundary migration). The software is polyhedron-based, meaning that each grain (or phase) is represented by a polyhedron that has discrete boundaries. The boundary (the shell) of the polyhedron is defined by a set of facets which in turn is defined by a set of vertices. Each structural entity (polyhedron, facets and vertices) can have an unlimited number of parameters (depending on the process to be modeled) such as surface energy, concentration, etc. which can be used to calculate changes of the microstructre. We use the processes of grain boundary migration of a "regular" and a partially molten rock to demonstrate the software. Since this software is 3D, the formation of melt networks in a partially molten rock can also be studied. The interconnected melt network is of fundamental importance for melt segregation and migration in the crust and mantle and can help to understand the core-mantle differentiation of large terrestrial planets.

  19. Markerless 3D motion capture for animal locomotion studies

    PubMed Central

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  20. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  1. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  2. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  3. Beowulf 3D: a case study

    NASA Astrophysics Data System (ADS)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  4. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  5. Expanding Geometry Understanding with 3D Printing

    ERIC Educational Resources Information Center

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  6. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  7. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  8. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.

    PubMed

    Piro, Neltje E; Piro, Lennart K; Kassubek, Jan; Blechschmidt-Trapp, Ronald A

    2016-01-01

    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  9. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  10. 3D Camouflage in an Ornithischian Dinosaur.

    PubMed

    Vinther, Jakob; Nicholls, Robert; Lautenschlager, Stephan; Pittman, Michael; Kaye, Thomas G; Rayfield, Emily; Mayr, Gerald; Cuthill, Innes C

    2016-09-26

    Countershading was one of the first proposed mechanisms of camouflage [1, 2]. A dark dorsum and light ventrum counteract the gradient created by illumination from above, obliterating cues to 3D shape [3-6]. Because the optimal countershading varies strongly with light environment [7-9], pigmentation patterns give clues to an animal's habitat. Indeed, comparative evidence from ungulates [9] shows that interspecific variation in countershading matches predictions: in open habitats, where direct overhead sunshine dominates, a sharp dark-light color transition high up the body is evident; in closed habitats (e.g., under forest canopy), diffuse illumination dominates and a smoother dorsoventral gradation is found. We can apply this approach to extinct animals in which the preservation of fossil melanin allows reconstruction of coloration [10-15]. Here we present a study of an exceptionally well-preserved specimen of Psittacosaurus sp. from the Chinese Jehol biota [16, 17]. This Psittacosaurus was countershaded [16] with a light underbelly and tail, whereas the chest was more pigmented. Other patterns resemble disruptive camouflage, whereas the chin and jugal bosses on the face appear dark. We projected the color patterns onto an anatomically accurate life-size model in order to assess their function experimentally. The patterns are compared to the predicted optimal countershading from the measured radiance patterns generated on an identical uniform gray model in direct versus diffuse illumination. These studies suggest that Psittacosaurus sp. inhabited a closed habitat such as a forest with a relatively dense canopy. VIDEO ABSTRACT. PMID:27641767

  11. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  12. Spatial constraints of stereopsis in video displays

    NASA Technical Reports Server (NTRS)

    Schor, Clifton

    1989-01-01

    Recent development in video technology, such as the liquid crystal displays and shutters, have made it feasible to incorporate stereoscopic depth into the 3-D representations on 2-D displays. However, depth has already been vividly portrayed in video displays without stereopsis using the classical artists' depth cues described by Helmholtz (1866) and the dynamic depth cues described in detail by Ittleson (1952). Successful static depth cues include overlap, size, linear perspective, texture gradients, and shading. Effective dynamic cues include looming (Regan and Beverly, 1979) and motion parallax (Rogers and Graham, 1982). Stereoscopic depth is superior to the monocular distance cues under certain circumstances. It is most useful at portraying depth intervals as small as 5 to 10 arc secs. For this reason it is extremely useful in user-video interactions such as telepresence. Objects can be manipulated in 3-D space, for example, while a person who controls the operations views a virtual image of the manipulated object on a remote 2-D video display. Stereopsis also provides structure and form information in camouflaged surfaces such as tree foliage. Motion parallax also reveals form; however, without other monocular cues such as overlap, motion parallax can yield an ambiguous perception. For example, a turning sphere, portrayed as solid by parallax can appear to rotate either leftward or rightward. However, only one direction of rotation is perceived when stereo-depth is included. If the scene is static, then stereopsis is the principal cue for revealing the camouflaged surface structure. Finally, dynamic stereopsis provides information about the direction of motion in depth (Regan and Beverly, 1979). Clearly there are many spatial constraints, including spatial frequency content, retinal eccentricity, exposure duration, target spacing, and disparity gradient, which - when properly adjusted - can greatly enhance stereodepth in video displays.

  13. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  14. Digital stereoscopic convergence where video games and movies for the home user meet

    NASA Astrophysics Data System (ADS)

    Schur, Ethan

    2009-02-01

    Today there is a proliferation of stereoscopic 3D display devices, 3D content, and 3D enabled video games. As we in the S-3D community bring stereoscopic 3D to the home user we have a real opportunity of using stereoscopic 3D to bridge the gap between exciting immersive games and home movies. But to do this, we cannot limit ourselves to current conceptions of gaming and movies. We need, for example, to imagine a movie that is fully rendered using avatars in a stereoscopic game environment. Or perhaps to imagine a pervasive drama where viewers can play too and become an essential part of the drama - whether at home or on the go on a mobile platform. Stereoscopic 3D is the "glue" that will bind these video and movie concepts together. As users feel more immersed, the lines between current media will blur. This means that we have the opportunity to shape the way that we, as humans, view and interact with each other, our surroundings and our most fundamental art forms. The goal of this paper is to stimulate conversation and further development on expanding the current gaming and home theatre infrastructures to support greatly-enhanced experiential entertainment.

  15. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  16. RELAP5-3D User Problems

    SciTech Connect

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  17. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  18. Algorithms for 3D shape scanning with a depth camera.

    PubMed

    Cui, Yan; Schuon, Sebastian; Thrun, Sebastian; Stricker, Didier; Theobalt, Christian

    2013-05-01

    We describe a method for 3D object scanning by aligning depth scans that were taken from around an object with a Time-of-Flight (ToF) camera. These ToF cameras can measure depth scans at video rate. Due to comparably simple technology, they bear potential for economical production in big volumes. Our easy-to-use, cost-effective scanning solution, which is based on such a sensor, could make 3D scanning technology more accessible to everyday users. The algorithmic challenge we face is that the sensor's level of random noise is substantial and there is a nontrivial systematic bias. In this paper, we show the surprising result that 3D scans of reasonable quality can also be obtained with a sensor of such low data quality. Established filtering and scan alignment techniques from the literature fail to achieve this goal. In contrast, our algorithm is based on a new combination of a 3D superresolution method with a probabilistic scan alignment approach that explicitly takes into account the sensor's noise characteristics.

  19. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  20. Evaluation of viewing experiences induced by curved 3D display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul; Yano, Sumio

    2015-05-01

    As advanced display technology has been developed, much attention has been given to flexible panels. On top of that, with the momentum of the 3D era, stereoscopic 3D technique has been combined with the curved displays. However, despite the increased needs for 3D function in the curved displays, comparisons between curved and flat panel displays with 3D views have rarely been tested. Most of the previous studies have investigated their basic ergonomic aspects such as viewing posture and distance with only 2D views. It has generally been known that curved displays are more effective in enhancing involvement in specific content stories because field of views and distance from the eyes of viewers to both edges of the screen are more natural in curved displays than in flat panel ones. For flat panel displays, ocular torsions may occur when viewers try to move their eyes from the center to the edges of the screen to continuously capture rapidly moving 3D objects. This is due in part to differences in viewing distances from the center of the screen to eyes of viewers and from the edges of the screen to the eyes. Thus, this study compared S3D viewing experiences induced by a curved display with those of a flat panel display by evaluating significant subjective and objective measures.

  1. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  2. A QoS aware resource allocation strategy for 3D A/V streaming in OFDMA based wireless systems.

    PubMed

    Chung, Young-Uk; Choi, Yong-Hoon; Park, Suwon; Lee, Hyukjoon

    2014-01-01

    Three-dimensional (3D) video is expected to be a "killer app" for OFDMA-based broadband wireless systems. The main limitation of 3D video streaming over a wireless system is the shortage of radio resources due to the large size of the 3D traffic. This paper presents a novel resource allocation strategy to address this problem. In the paper, the video-plus-depth 3D traffic type is considered. The proposed resource allocation strategy focuses on the relationship between 2D video and the depth map, handling them with different priorities. It is formulated as an optimization problem and is solved using a suboptimal heuristic algorithm. Numerical results show that the proposed scheme provides a better quality of service compared to conventional schemes.

  3. Incremental learning of 3D-DCT compact representations for robust visual tracking.

    PubMed

    Li, Xi; Dick, Anthony; Shen, Chunhua; van den Hengel, Anton; Wang, Hanzi

    2013-04-01

    Visual tracking usually requires an object appearance model that is robust to changing illumination, pose, and other factors encountered in video. Many recent trackers utilize appearance samples in previous frames to form the bases upon which the object appearance model is built. This approach has the following limitations: 1) The bases are data driven, so they can be easily corrupted, and 2) it is difficult to robustly update the bases in challenging situations. In this paper, we construct an appearance model using the 3D discrete cosine transform (3D-DCT). The 3D-DCT is based on a set of cosine basis functions which are determined by the dimensions of the 3D signal and thus independent of the input video data. In addition, the 3D-DCT can generate a compact energy spectrum whose high-frequency coefficients are sparse if the appearance samples are similar. By discarding these high-frequency coefficients, we simultaneously obtain a compact 3D-DCT-based object representation and a signal reconstruction-based similarity measure (reflecting the information loss from signal reconstruction). To efficiently update the object representation, we propose an incremental 3D-DCT algorithm which decomposes the 3D-DCT into successive operations of the 2D discrete cosine transform (2D-DCT) and 1D discrete cosine transform (1D-DCT) on the input video data. As a result, the incremental 3D-DCT algorithm only needs to compute the 2D-DCT for newly added frames as well as the 1D-DCT along the third dimension, which significantly reduces the computational complexity. Based on this incremental 3D-DCT algorithm, we design a discriminative criterion to evaluate the likelihood of a test sample belonging to the foreground object. We then embed the discriminative criterion into a particle filtering framework for object state inference over time. Experimental results demonstrate the effectiveness and robustness of the proposed tracker.

  4. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324

  5. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience.

  6. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  7. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  8. Optimizing 3D image quality and performance for stereoscopic gaming

    NASA Astrophysics Data System (ADS)

    Flack, Julien; Sanderson, Hugh; Pegg, Steven; Kwok, Simon; Paterson, Daniel

    2009-02-01

    The successful introduction of stereoscopic TV systems, such as Samsung's 3D Ready Plasma, requires high quality 3D content to be commercially available to the consumer. Console and PC games provide the most readily accessible source of high quality 3D content. This paper describes innovative developments in a generic, PC-based game driver architecture that addresses the two key issues affecting 3D gaming: quality and speed. At the heart of the quality issue are the same considerations that studios face producing stereoscopic renders from CG movies: how best to perform the mapping from a geometric CG environment into the stereoscopic display volume. The major difference being that for game drivers this mapping cannot be choreographed by hand but must be automatically calculated in real-time without significant impact on performance. Performance is a critical issue when dealing with gaming. Stereoscopic gaming has traditionally meant rendering the scene twice with the associated performance overhead. An alternative approach is to render the scene from one virtual camera position and use information from the z-buffer to generate a stereo pair using Depth-Image-Based Rendering (DIBR). We analyze this trade-off in more detail and provide some results relating to both 3D image quality and render performance.

  9. Guidance for horizontal image translation (HIT) of high definition stereoscopic video production

    NASA Astrophysics Data System (ADS)

    Broberg, David K.

    2011-03-01

    Horizontal image translation (HIT) is an electronic process for shifting the left-eye and right-eye images horizontally as a way to alter the stereoscopic characteristics and alignment of 3D content after signals have been captured by stereoscopic cameras. When used cautiously and with full awareness of the impact on other interrelated aspects of the stereography, HIT is a valuable tool in the post production process as a means to modify stereoscopic content for more comfortable viewing. Most commonly it is used to alter the zero parallax setting (ZPS), to compensate for stereo window violations or to compensate for excessive positive or negative parallax in the source material. As more and more cinematic 3D content migrates to television distribution channels the use of this tool will likely expand. Without proper attention to certain guidelines the use of HIT can actually harm the 3D viewing experience. This paper provides guidance on the most effective use and describes some of the interrelationships and trade-offs. The paper recommends the adoption of the cinematic 2K video format as a 3D source master format for high definition television distribution of stereoscopic 3D video programming.

  10. Gis-Based Smart Cartography Using 3d Modeling

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  11. Enhancing student interactions with the instructor and content using pen-based technology, YouTube videos, and virtual conferencing.

    PubMed

    Cox, James R

    2011-01-01

    This report describes the incorporation of digital learning elements in organic chemistry and biochemistry courses. The first example is the use of pen-based technology and a large-format PowerPoint slide to construct a map that integrates various metabolic pathways and control points. Students can use this map to visualize the integrated nature of metabolism and how various hormones impact metabolic regulation. The second example is the embedding of health-related YouTube videos directly into PowerPoint presentations. These videos become a part of the course notes and can be viewed within PowerPoint as long as students are online. The third example is the use of a webcam to show physical models during online sessions using web-conferencing software. Various molecular conformations can be shown through the webcam, and snapshots of important conformations can be incorporated into the notes for further discussion and annotation. Each of the digital learning elements discussed in this report is an attempt to use technology to improve the quality of educational resources available outside of the classroom to foster student engagement with ideas and concepts. Biochemistry and Molecular Biology Education Vol. 39, No. 1, pp. 4-9, 2011.

  12. Video stabilization using space-time video completion

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Frantc, V.; Marchuk, V.; Shrayfel, I.; Gapon, N.; Agaian, S.

    2016-05-01

    This paper proposes a video stabilization method using space-time video completion for effective static and dynamic textures reconstruction instead of frames cropping. The proposed method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. We propose to use a set of descriptors that encapsulate the information of periodical motion of objects necessary to reconstruct missing/corrupted frames. The background is filled-in by extending spatial texture synthesis techniques using set of 3D patches. Experimental results demonstrate the effectiveness of the proposed method in the task of full-frame video stabilization.

  13. Computer-aided microtomography with true 3-D display in electron microscopy.

    PubMed

    Nelson, A C

    1986-01-01

    A novel research system has been designed to permit three-dimensional (3-D) viewing of high resolution image data from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The system consists of front-end primary data acquisition devices, such as TEM and SEM machines, which are equipped with computer-controlled specimen tilt stages. The output from these machines is in analogue form, where a video camera attached to the TEM provides the sequential analogue image output while the SEM direct video output is utilized. A 10 MHz digitizer transforms the video image to a digital array of 512 X 512 pixel units of 8 bits deep-stored in a frame buffer. Digital images from multiple projections are reconstructed into 3-D image boxes in a dedicated computer. Attached to the computer is a powerful true 3-D display device which has hardware for graphic manipulations including tilt and rotate on any axis and for probing the image with a 3-D cursor. Data editing and automatic contouring functions are used to enhance areas of interest, and specialized software is available for measurement of numbers, distances, areas, and volumes. With proper archiving of reconstructed image sequences, a dynamic 3-D presentation is possible. The microtomography system is highly versatile and can process image data on-line or from remote sites from which data records would typically be transported on computer tape, video tape, or floppy disk. PMID:3753610

  14. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  15. Adaptive image warping for hole prevention in 3D view synthesis.

    PubMed

    Plath, Nils; Knorr, Sebastian; Goldmann, Lutz; Sikora, Thomas

    2013-09-01

    Increasing popularity of 3D videos calls for new methods to ease the conversion process of existing monocular video to stereoscopic or multi-view video. A popular way to convert video is given by depth image-based rendering methods, in which a depth map that is associated with an image frame is used to generate a virtual view. Because of the lack of knowledge about the 3D structure of a scene and its corresponding texture, the conversion of 2D video, inevitably, however, leads to holes in the resulting 3D image as a result of newly-exposed areas. The conversion process can be altered such that no holes become visible in the resulting 3D view by superimposing a regular grid over the depth map and deforming it. In this paper, an adaptive image warping approach as an improvement to the regular approach is proposed. The new algorithm exploits the smoothness of a typical depth map to reduce the complexity of the underlying optimization problem that is necessary to find the deformation, which is required to prevent holes. This is achieved by splitting a depth map into blocks of homogeneous depth using quadtrees and running the optimization on the resulting adaptive grid. The results show that this approach leads to a considerable reduction of the computational complexity while maintaining the visual quality of the synthesized views. PMID:23782807

  16. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  17. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  18. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  19. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  20. The Video Generation.

    ERIC Educational Resources Information Center

    Provenzo, Eugene F., Jr.

    1992-01-01

    Video games are neither neutral nor harmless but represent very specific social and symbolic constructs. Research on the social content of today's video games reveals that sex bias and gender stereotyping are widely evident throughout the Nintendo games. Violence and aggression also pervade the great majority of the games. (MLF)

  1. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  2. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  3. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  4. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  5. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  6. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  7. Preparation and 3D Tracking of Catalytic Swimming Devices

    PubMed Central

    Campbell, Andrew; Archer, Richard; Ebbens, Stephen

    2016-01-01

    We report a method to prepare catalytically active Janus colloids that "swim" in fluids and describe how to determine their 3D motion using fluorescence microscopy. One commonly deployed method for catalytically active colloids to produce enhanced motion is via an asymmetrical distribution of catalyst. Here this is achieved by spin coating a dispersed layer of fluorescent polymeric colloids onto a flat planar substrate, and then using directional platinum vapor deposition to half coat the exposed colloid surface, making a two faced "Janus" structure. The Janus colloids are then re-suspended from the planar substrate into an aqueous solution containing hydrogen peroxide. Hydrogen peroxide serves as a fuel for the platinum catalyst, which is decomposed into water and oxygen, but only on one side of the colloid. The asymmetry results in gradients that produce enhanced motion, or "swimming". A fluorescence microscope, together with a video camera is used to record the motion of individual colloids. The center of the fluorescent emission is found using image analysis to provide an x and y coordinate for each frame of the video. While keeping the microscope focal position fixed, the fluorescence emission from the colloid produces a characteristic concentric ring pattern which is subject to image analysis to determine the particles relative z position. In this way 3D trajectories for the swimming colloid are obtained, allowing swimming velocity to be accurately measured, and physical phenomena such as gravitaxis, which may bias the colloids motion to be detected. PMID:27404327

  8. Video Encryption and Decryption on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Venegas-Andraca, Salvador E.; Yang, Huamin

    2015-08-01

    A method for video encryption and decryption on quantum computers is proposed based on color information transformations on each frame encoding the content of the encoding the content of the video. The proposed method provides a flexible operation to encrypt quantum video by means of the quantum measurement in order to enhance the security of the video. To validate the proposed approach, a tetris tile-matching puzzle game video is utilized in the experimental simulations. The results obtained suggest that the proposed method enhances the security and speed of quantum video encryption and decryption, both properties required for secure transmission and sharing of video content in quantum communication.

  9. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  10. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  11. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  12. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  13. Static & Dynamic Response of 3D Solids

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  14. 3D Printing. What's the Harm?

    ERIC Educational Resources Information Center

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  15. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  16. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  17. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D v