Science.gov

Sample records for 3d virtual world

  1. Learning in 3-D Virtual Worlds: Rethinking Media Literacy

    ERIC Educational Resources Information Center

    Qian, Yufeng

    2008-01-01

    3-D virtual worlds, as a new form of learning environments in the 21st century, hold great potential in education. Learning in such environments, however, demands a broader spectrum of literacy skills. This article identifies a new set of media literacy skills required in 3-D virtual learning environments by reviewing exemplary 3-D virtual…

  2. ESL Teacher Training in 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  3. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  4. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  5. The SEE Experience: Edutainment in 3D Virtual Worlds.

    ERIC Educational Resources Information Center

    Di Blas, Nicoletta; Paolini, Paolo; Hazan, Susan

    Shared virtual worlds are innovative applications where several users, represented by Avatars, simultaneously access via Internet a 3D space. Users cooperate through interaction with the environment and with each other, manipulating objects and chatting as they go. Apart from in the well documented online action games industry, now often played…

  6. Second Life, a 3-D Animated Virtual World: An Alternative Platform for (Art) Education

    ERIC Educational Resources Information Center

    Han, Hsiao-Cheng

    2011-01-01

    3-D animated virtual worlds are no longer only for gaming. With the advance of technology, animated virtual worlds not only are found on every computer, but also connect users with the internet. Today, virtual worlds are created not only by companies, but also through the collaboration of users. Online 3-D animated virtual worlds provide a new…

  7. Presence Pedagogy: Teaching and Learning in a 3D Virtual Immersive World

    ERIC Educational Resources Information Center

    Bronack, Stephen; Sanders, Robert; Cheney, Amelia; Riedl, Richard; Tashner, John; Matzen, Nita

    2008-01-01

    As the use of 3D immersive virtual worlds in higher education expands, it is important to examine which pedagogical approaches are most likely to bring about success. AET Zone, a 3D immersive virtual world in use for more than seven years, is one embodiment of pedagogical innovation that capitalizes on what virtual worlds have to offer to social…

  8. Issues and Challenges of Teaching and Learning in 3D Virtual Worlds: Real Life Case Studies

    ERIC Educational Resources Information Center

    Pfeil, Ulrike; Ang, Chee Siang; Zaphiris, Panayiotis

    2009-01-01

    We aimed to study the characteristics and usage patterns of 3D virtual worlds in the context of teaching and learning. To achieve this, we organised a full-day workshop to explore, discuss and investigate the educational use of 3D virtual worlds. Thirty participants took part in the workshop. All conversations were recorded and transcribed for…

  9. iVirtualWorld: A Domain-Oriented End-User Development Environment for Building 3D Virtual Chemistry Experiments

    ERIC Educational Resources Information Center

    Zhong, Ying

    2013-01-01

    Virtual worlds are well-suited for building virtual laboratories for educational purposes to complement hands-on physical laboratories. However, educators may face technical challenges because developing virtual worlds requires skills in programming and 3D design. Current virtual world building tools are developed for users who have programming…

  10. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  11. 3D Inhabited Virtual Worlds: Interactivity and Interaction between Avatars, Autonomous Agents, and Users.

    ERIC Educational Resources Information Center

    Jensen, Jens F.

    This paper addresses some of the central questions currently related to 3-Dimensional Inhabited Virtual Worlds (3D-IVWs), their virtual interactions, and communication, drawing from the theory and methodology of sociology, interaction analysis, interpersonal communication, semiotics, cultural studies, and media studies. First, 3D-IVWs--seen as a…

  12. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  13. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or research…

  14. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    ERIC Educational Resources Information Center

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  15. Design and Implementation of a 3D Multi-User Virtual World for Language Learning

    ERIC Educational Resources Information Center

    Ibanez, Maria Blanca; Garcia, Jose Jesus; Galan, Sergio; Maroto, David; Morillo, Diego; Kloos, Carlos Delgado

    2011-01-01

    The best way to learn is by having a good teacher and the best language learning takes place when the learner is immersed in an environment where the language is natively spoken. 3D multi-user virtual worlds have been claimed to be useful for learning, and the field of exploiting them for education is becoming more and more active thanks to the…

  16. GEARS a 3D Virtual Learning Environment and Virtual Social and Educational World Used in Online Secondary Schools

    ERIC Educational Resources Information Center

    Barkand, Jonathan; Kush, Joseph

    2009-01-01

    Virtual Learning Environments (VLEs) are becoming increasingly popular in online education environments and have multiple pedagogical advantages over more traditional approaches to education. VLEs include 3D worlds where students can engage in simulated learning activities such as Second Life. According to Claudia L'Amoreaux at Linden Lab, "at…

  17. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    NASA Astrophysics Data System (ADS)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  18. 3D Virtual Worlds as Art Media and Exhibition Arenas: Students' Responses and Challenges in Contemporary Art Education

    ERIC Educational Resources Information Center

    Lu, Lilly

    2013-01-01

    3D virtual worlds (3D VWs) are considered one of the emerging learning spaces of the 21st century; however, few empirical studies have investigated educational applications and student learning aspects in art education. This study focused on students' responses to and challenges with 3D VWs in both aspects. The findings show that most…

  19. Employing Virtual Humans for Education and Training in X3D/VRML Worlds

    ERIC Educational Resources Information Center

    Ieronutti, Lucio; Chittaro, Luca

    2007-01-01

    Web-based education and training provides a new paradigm for imparting knowledge; students can access the learning material anytime by operating remotely from any location. Web3D open standards, such as X3D and VRML, support Web-based delivery of Educational Virtual Environments (EVEs). EVEs have a great potential for learning and training…

  20. Instructors' Perceptions of Three-Dimensional (3D) Virtual Worlds: Instructional Use, Implementation and Benefits for Adult Learners

    ERIC Educational Resources Information Center

    Stone, Sophia Jeffries

    2009-01-01

    The purpose of this dissertation research study was to explore instructors' perceptions of the educational application of three-dimensional (3D) virtual worlds in a variety of academic discipline areas and to assess the strengths and limitations this virtual environment presents for teaching adult learners. The guiding research question for this…

  1. L2 Immersion in 3D Virtual Worlds: The Next Thing to Being There?

    ERIC Educational Resources Information Center

    Paillat, Edith

    2014-01-01

    Second Life is one of the many three-dimensional virtual environments accessible through a computer and a fast broadband connection. Thousands of participants connect to this platform to interact virtually with the world, join international communities of practice and, for some, role play groups. Unlike online role play games however, Second Life…

  2. An Australian and New Zealand Scoping Study on the Use of 3D Immersive Virtual Worlds in Higher Education

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.; Carlson, Lauren; Gregory, Sue; Tynan, Belinda

    2011-01-01

    This article describes the research design of, and reports selected findings from, a scoping study aimed at examining current and planned applications of 3D immersive virtual worlds at higher education institutions across Australia and New Zealand. The scoping study is the first of its kind in the region, intended to parallel and complement a…

  3. "The Evolution of e-Learning in the Context of 3D Virtual Worlds"

    ERIC Educational Resources Information Center

    Kotsilieris, Theodore; Dimopoulou, Nikoletta

    2013-01-01

    Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…

  4. Applying a 3D Situational Virtual Learning Environment to the Real World Business--An Extended Research in Marketing

    ERIC Educational Resources Information Center

    Wang, Shwu-huey

    2012-01-01

    In order to understand (1) what kind of students can be facilitated through the help of three-dimensional virtual learning environment (3D VLE), and (2) the relationship between a conventional test (ie, paper and pencil test) and the 3D VLE used in this study, the study designs a 3D virtual supermarket (3DVS) to help students transform their role…

  5. Collaboration and Knowledge Sharing Using 3D Virtual World on "Second Life"

    ERIC Educational Resources Information Center

    Rahim, Noor Faridah A.

    2013-01-01

    A collaborative and knowledge sharing virtual activity on "Second Life" using a learner-centred teaching methodology was initiated between Temasek Polytechnic and The Hong Kong Polytechnic University (HK PolyU) in the October 2011 semester. This paper highlights the author's experience in designing and implementing this e-learning…

  6. Determinants of Presence in 3D Virtual Worlds: A Structural Equation Modelling Analysis

    ERIC Educational Resources Information Center

    Chow, Meyrick

    2016-01-01

    There is a growing body of evidence that feeling present in virtual environments contributes to effective learning. Presence is a psychological state of the user; hence, it is generally agreed that individual differences in user characteristics can lead to different experiences of presence. Despite the fact that user characteristics can play a…

  7. Virtual Worlds? "Outlook Good"

    ERIC Educational Resources Information Center

    Kelton, AJ

    2008-01-01

    Many people believed that virtual worlds would end up like the eight-track audiotape: a memory of something no longer used (or useful). Yet today there are hundreds of higher education institutions represented in three-dimensional (3D) virtual worlds such as Active Worlds and Second Life. The movement toward the virtual realm as a viable teaching…

  8. Virtual Representations in 3D Learning Environments

    ERIC Educational Resources Information Center

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  9. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  10. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  11. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  12. 3D Virtual Reality for Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  13. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  14. Virtual Laboratories and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Hut, Piet

    2008-05-01

    Since we cannot put stars in a laboratory, astrophysicists had to wait till the invention of computers before becoming laboratory scientists. For half a century now, we have been conducting experiments in our virtual laboratories. However, we ourselves have remained behind the keyboard, with the screen of the monitor separating us from the world we are simulating. Recently, 3D on-line technology, developed first for games but now deployed in virtual worlds like Second Life, is beginning to make it possible for astrophysicists to enter their virtual labs themselves, in virtual form as avatars. This has several advantages, from new possibilities to explore the results of the simulations to a shared presence in a virtual lab with remote collaborators on different continents. I will report my experiences with the use of Qwaq Forums, a virtual world developed by a new company (see http://www.qwaq.com).

  15. Virtual VMASC: A 3D Game Environment

    NASA Technical Reports Server (NTRS)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  16. Virtual Worlds for Educators

    ERIC Educational Resources Information Center

    Dembo, Steve

    2008-01-01

    This article describes an online experience that has not only created a fantasy world for the general public but has enabled some tech-savvy educators to create virtual educational opportunities. Second Life, or SL, is a 3-D Internet-based virtual world created by Linden Lab and populated by nearly 1,000,000 active users worldwide since 2003.…

  17. A Second Chance at Health: How a 3D Virtual World Can Improve Health Self-Efficacy for Weight Loss Management Among Adults.

    PubMed

    Behm-Morawitz, Elizabeth; Lewallen, Jennifer; Choi, Grace

    2016-02-01

    Health self-efficacy, or the beliefs in one's capabilities to perform health behaviors, is a significant factor in eliciting health behavior change, such as weight loss. Research has demonstrated that virtual embodiment has the potential to alter one's psychology and physicality, particularly in health contexts; however, little is known about the impacts embodiment in a virtual world has on health self-efficacy. The present research is a randomized controlled trial (N = 90) examining the effectiveness of virtual embodiment and play in a social virtual world (Second Life [SL]) for increasing health self-efficacy (exercise and nutrition efficacy) among overweight adults. Participants were randomly assigned to a 3D social virtual world (avatar virtual interaction experimental condition), 2D social networking site (no avatar virtual interaction control condition), or no intervention (no virtual interaction control condition). The findings of this study provide initial evidence for the use of SL to improve exercise efficacy and to support weight loss. Results also suggest that individuals who have higher self-presence with their avatar reap more benefits. Finally, quantitative findings are triangulated with qualitative data to increase confidence in the results and provide richer insight into the perceived effectiveness and limitations of SL for meeting weight loss goals. Themes resulting from the qualitative analysis indicate that participation in SL can improve motivation and efficacy to try new physical activities; however, individuals who have a dislike for video games may not be benefitted by avatar-based virtual interventions. Implications for research on the transformative potential of virtual embodiment and self-presence in general are discussed. PMID:26882324

  18. Virtual hand: a 3D tactile interface to virtual environments

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Borrel, Paul

    2008-02-01

    We introduce a novel system that allows users to experience the sensation of touch in a computer graphics environment. In this system, the user places his/her hand on an array of pins, which is moved about space on a 6 degree-of-freedom robot arm. The surface of the pins defines a surface in the virtual world. This "virtual hand" can move about the virtual world. When the virtual hand encounters an object in the virtual world, the heights of the pins are adjusted so that they represent the object's shape, surface, and texture. A control system integrates pin and robot arm motions to transmit information about objects in the computer graphics world to the user. It also allows the user to edit, change and move the virtual objects, shapes and textures. This system provides a general framework for touching, manipulating, and modifying objects in a 3-D computer graphics environment, which may be useful in a wide range of applications, including computer games, computer aided design systems, and immersive virtual worlds.

  19. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  20. Literacy in Virtual Worlds

    ERIC Educational Resources Information Center

    Merchant, Guy

    2009-01-01

    Introducing new digital literacies into classroom settings is an important and challenging task, and one that is encouraged by both policy-makers and educators. This paper draws on a case study of a 3D virtual world which aimed to engage and motivate primary school children in an immersive and literacy-rich on-line experience. Planning decisions,…

  1. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  2. Use of Three-Dimensional (3-D) Immersive Virtual Worlds in K-12 And Higher Education Settings: A Review of the Research

    ERIC Educational Resources Information Center

    Hew, Khe Foon; Cheung, Wing Sum

    2010-01-01

    In this paper, we review past empirical research studies on the use of three-dimensional immersive virtual worlds in education settings such as K-12 and higher education. Three questions guided our review: (1) How are virtual worlds (eg, "Active Worlds", "Second Life") used by students and teachers? (2) What types of research methods have been…

  3. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  4. From Multi-User Virtual Environment to 3D Virtual Learning Environment

    ERIC Educational Resources Information Center

    Livingstone, Daniel; Kemp, Jeremy; Edgar, Edmund

    2008-01-01

    While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi-user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the…

  5. [3D virtual endoscopy of heart].

    PubMed

    Du, Aan; Yang, Xin; Xue, Haihong; Yao, Liping; Sun, Kun

    2012-10-01

    In this paper, we present a virtual endoscopy (VE) for diagnosis of heart diseases, which is proved efficient and affordable, easy to popularize for viewing the interior of the heart. The dual source CT (DSCT) data were used as primary data in our system. The 3D structure of virtual heart was reconstructed with 3D texture mapping technology based on graphics processing unit (GPU), and could be displayed dynamically in real time. When we displayed it in real time, we could not only observe the inside of the chambers of heart but also examine from the new angle of view by the 3D data which were already clipped according to doctor's desire. In the pattern of observation, we used both mutual interactive mode and auto mode. In the auto mode, we used Dijkstra Algorithm which treated the 3D Euler distance as weighting factor to find out the view path quickly, and, used view path to calculate the four chamber plane. PMID:23198444

  6. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  7. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  8. Building intuitive 3D interfaces for virtual reality systems

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Seitel, Mathias; Mullick, Rakesh

    2007-03-01

    An exploration of techniques for developing intuitive, and efficient user interfaces for virtual reality systems. Work seeks to understand which paradigms from the better-understood world of 2D user interfaces remain viable within 3D environments. In order to establish this a new user interface was created that applied various understood principles of interface design. A user study was then performed where it was compared with an earlier interface for a series of medical visualization tasks.

  9. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  10. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  11. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  12. A specification of 3D manipulation in virtual environments

    NASA Technical Reports Server (NTRS)

    Su, S. Augustine; Furuta, Richard

    1994-01-01

    In this paper we discuss the modeling of three basic kinds of 3-D manipulations in the context of a logical hand device and our virtual panel architecture. The logical hand device is a useful software abstraction representing hands in virtual environments. The virtual panel architecture is the 3-D component of the 2-D window systems. Both of the abstractions are intended to form the foundation for adaptable 3-D manipulation.

  13. Virtual Worlds, Real Learning

    ERIC Educational Resources Information Center

    Meyers, Eric M.

    2009-01-01

    Many children between the ages of four and twelve log in to Web-based virtual play spaces each day, and these virtual worlds are quickly becoming an important aspect of their out-of-school lives. Consequently, educators' challenge is to see how they can leverage virtual spaces, such as the virtual play spaces, for learning and literacy. Over the…

  14. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  15. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  16. Gravity and spatial orientation in virtual 3D-mazes.

    PubMed

    Vidal, Manuel; Lipshits, Mark; McIntyre, Joseph; Berthoz, Alain

    2003-01-01

    In order to bring new insights into the processing of 3D spatial information, we conducted experiments on the capacity of human subjects to memorize 3D-structured environments, such as buildings with several floors or the potentially complex 3D structure of an orbital space station. We had subjects move passively in one of two different exploration modes, through a visual virtual environment that consisted of a series of connected tunnels. In upright displacement, self-rotation when going around corners in the tunnels was limited to yaw rotations. For horizontal translations, subjects faced forward in the direction of motion. When moving up or down through vertical segments of the 3D tunnels, however, subjects facing the tunnel wall, remaining upright as if moving up and down in a glass elevator. In the unconstrained displacement mode, subjects would appear to climb or dive face-forward when moving vertically; thus, in this mode subjects could experience visual flow consistent with rotations about any of the 3 canonical axes. In a previous experiment, subjects were asked to determine whether a static, outside view of a test tunnel corresponded or not to the tunnel through which they had just passed. Results showed that performance was better on this task for the upright than for the unconstrained displacement mode; i.e. when subjects remained "upright" with respect to the virtual environment as defined by subject's posture in the first segment. This effect suggests that gravity may provide a key reference frame used in the shift between egocentric and allocentric representations of the 3D virtual world. To check whether it is the polarizing effects of gravity that leads to the favoring of the upright displacement mode, the experimental paradigm was adapted for orbital flight and performed by cosmonauts onboard the International Space Station. For these flight experiments the previous recognition task was replaced by a computerized reconstruction task, which proved

  17. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  18. An Intelligent Crawler for a Virtual World

    ERIC Educational Resources Information Center

    Eno, Joshua

    2010-01-01

    Virtual worlds, which allow users to create and interact with content in a 3D, multi-user environment, growing and becoming more integrated with the traditional flat web. However, little is empirically known about the content users create in virtual world and how it can be indexed and searched effectively. In order to gain a better understanding…

  19. World Wind: NASA's Virtual Globe

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2007-12-01

    Virtual globes have set the standard for information exchange. Once you've experienced the visually rich and highly compelling nature of data delivered via virtual globes with their highly engaging context of 3D, it's hard to go back to a flat 2D world. Just as the sawbones of not-too-long-ago have given way to sophisticated surgical operating theater, today's medium for information exchange is just beginning to leap from the staid chalkboards and remote libraries to fingertip navigable 3D worlds. How we harness this technology to serve a world inundated with information will describe the quality of our future. Our instincts for discovery and entertainment urge us on. There's so much we could know if the world's knowledge was presented to us in its natural context. Virtual globes are almost magical in their ability to reveal natural wonders. Anyone flying along a chain of volcanoes, a mid-ocean ridge or deep ocean trench, while simultaneously seeing the different depths to the history of earthquakes in those areas, will be delighted to sense Earth's dynamic nature in a way that would otherwise take several paragraphs of "boring" text. The sophisticated concepts related to global climate change would be far more comprehensible when experienced via a virtual globe. There is a large universe of public and private geospatial data sets that virtual globes can bring to light. The benefit derived from access to this data within virtual globes represents a significant return on investment for government, industry, the general public, and especially in the realm of education. Data access remains a key issue. Just as the highway infrastructure allows unimpeded access from point A to point B, an open standards-based infrastructure for data access allows virtual globes to exchange data in the most efficient manner possible. This data can be either free or proprietary. The Open Geospatial Consortium is providing the leadership necessary for this open standards-based data access

  20. What Are the Learning Affordances of 3-D Virtual Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.

    2010-01-01

    This article explores the potential learning benefits of three-dimensional (3-D) virtual learning environments (VLEs). Drawing on published research spanning two decades, it identifies a set of unique characteristics of 3-D VLEs, which includes aspects of their representational fidelity and aspects of the learner-computer interactivity they…

  1. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  2. Virtual 3d City Modeling: Techniques and Applications

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  3. Dynamic 3D echocardiography in virtual reality

    PubMed Central

    van den Bosch, Annemien E; Koning, Anton HJ; Meijboom, Folkert J; McGhie, Jackie S; Simoons, Maarten L; van der Spek, Peter J; Bogers, Ad JJC

    2005-01-01

    Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium) I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes). Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited. PMID:16375768

  4. Improvements in education in pathology: virtual 3D specimens.

    PubMed

    Kalinski, Thomas; Zwönitzer, Ralf; Jonczyk-Weber, Thomas; Hofmann, Harald; Bernarding, Johannes; Roessner, Albert

    2009-01-01

    Virtual three-dimensional (3D) specimens correspond to 3D visualizations of real pathological specimens on a computer display. We describe a simple method for the digitalization of such specimens from high-quality digital images. The images were taken during a whole rotation of a specimen, and merged together into a JPEG2000 multi-document file. The files were made available in the internet (http://patho.med.uni-magdeburg.de/research.shtml) and obtained very positive ratings by medical students. Virtual 3D specimens expand the application of digital techniques in pathology, and will contribute significantly to the successful introduction of knowledge databases and electronic learning platforms. PMID:19457621

  5. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  6. Identifying Virtual 3D Geometric Shapes with a Vibrotactile Glove.

    PubMed

    Martínez, Jonatan; García, Arturo; Oliver, Miguel; Molina, José Pascual; González, Pascual

    2016-01-01

    The emergence of off-screen interaction devices is bringing the field of virtual reality to a broad range of applications where virtual objects can be manipulated without the use of traditional peripherals. However, to facilitate object interaction, other stimuli such as haptic feedback are necessary to improve the user experience. To enable the identification of virtual 3D objects without visual feedback, a haptic display based on a vibrotactile glove and multiple points of contact gives users an enhanced sensation of touching a virtual object with their hands. Experimental results demonstrate the capacity of this technology in practical applications. PMID:25137722

  7. The Cognitive Apprenticeship Theory for the Teaching of Mathematics in an Online 3D Virtual Environment

    ERIC Educational Resources Information Center

    Bouta, Hara; Paraskeva, Fotini

    2013-01-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective.…

  8. [Development of a software for 3D virtual phantom design].

    PubMed

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research. PMID:24804488

  9. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  10. Spilling the beans on java 3D: a tool for the virtual anatomist.

    PubMed

    Guttmann, G D

    1999-04-15

    The computing world has just provided the anatomist with another tool: Java 3D, within the Java 2 platform. On December 9, 1998, Sun Microsystems released Java 2. Java 3D classes are now included in the jar (Java Archive) archives of the extensions directory of Java 2. Java 3D is also a part of the Java Media Suite of APIs (Application Programming Interfaces). But what is Java? How does Java 3D work? How do you view Java 3D objects? A brief introduction to the concepts of Java and object-oriented programming is provided. Also, there is a short description of the tools of Java 3D and of the Java 3D viewer. Thus, the virtual anatomist has another set of computer tools to use for modeling various aspects of anatomy, such as embryological development. Also, the virtual anatomist will be able to assist the surgeon with virtual surgery using the tools found in Java 3D. Java 3D will be able to fulfill gaps, such as the lack of platform independence, interactivity, and manipulability of 3D images, currently existing in many anatomical computer-aided learning programs. PMID:10321435

  11. Consultation virtual collaborative environment for 3D medicine.

    PubMed

    Krsek, Premysl; Spanel, Michal; Svub, Miroslav; Stancl, Vít; Siler, Ondrej; Sára, Vítezslav

    2008-01-01

    This article focuses on the problems of consultation virtual collaborative environment, which is designed to support 3D medical applications. This system allows loading CT/MR data from PACS system, segmentation and 3D models of tissues. It allows distant 3D consultations of the data between technicians and surgeons. System is designed as three-layer client-server architecture. Communication between clients and server is done via HTTP/HTTPS protocol. Results and tests have confirmed, that today's standard network latency and dataflow do not affect the usability of our system. PMID:19162770

  12. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  13. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential. PMID:26915117

  14. Virtual view adaptation for 3D multiview video streaming

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Do, Luat; Zinger, Sveta; de With, Peter H. N.

    2010-02-01

    Virtual views in 3D-TV and multi-view video systems are reconstructed images of the scene generated synthetically from the original views. In this paper, we analyze the performance of streaming virtual views over IP-networks with a limited and time-varying available bandwidth. We show that the average video quality perceived by the user can be improved with an adaptive streaming strategy aiming at maximizing the average video quality. Our adaptive 3D multi-view streaming can provide a quality improvement of 2 dB on the average - over non-adaptive streaming. We demonstrate that an optimized virtual view adaptation algorithm needs to be view-dependent and achieve an improvement of up to 0.7 dB. We analyze our adaptation strategies under dynamic available bandwidth in the network.

  15. Mobile viewer system for virtual 3D space using infrared LED point markers and camera

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-09-01

    The authors have developed a 3D workspace system using collaborative imaging devices. A stereoscopic display enables this system to project 3D information. In this paper, we describe the position detecting system for a see-through 3D viewer. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1)2)3)4). The purpose of this paper is to propose the interactive system using these 3D imaging technologies. The observer can view virtual images in the real world when the user watches the screen of a see-through 3D viewer. The goal of our research is to build the display system as follows; when users see the real world through the mobile viewer, the display system gives users virtual 3D images, which is floating in the air, and the observers can touch these floating images and interact them such that kids can make play clay. The key technologies of this system are the position recognition system and the spatial imaging display. The 3D images are presented by the improved parallax barrier 3D display. Here the authors discuss the measuring method of the mobile viewer using infrared LED point markers and a camera in the 3D workspace (augmented reality world). The authors show the geometric analysis of the proposed measuring method, which is the simplest method using a single camera not the stereo camera, and the results of our viewer system.

  16. Virtual Worlds in Distance Education: A Content Analysis Study

    ERIC Educational Resources Information Center

    Wang, Feihong; Lockee, Barbara B.

    2010-01-01

    The three-dimensional (3D) virtual world is one of the current innovations that has been discussed extensively as the potential medium for online distance education. Despite the heated discussion on the possible applications of 3D virtual worlds for distance education, empirical studies were hard to locate, and little has been written about how…

  17. Virtual image display as a backlight for 3D.

    PubMed

    Travis, Adrian; MacCrann, Niall; Emerton, Neil; Kollin, Joel; Georgiou, Andreas; Lanier, Jaron; Bathiche, Stephen

    2013-07-29

    We describe a device which has the potential to be used both as a virtual image display and as a backlight. The pupil of the emitted light fills the device approximately to its periphery and the collimated emission can be scanned both horizontally and vertically in the manner needed to illuminate an eye in any position. The aim is to reduce the power needed to illuminate a liquid crystal panel but also to enable a smooth transition from 3D to a virtual image as the user nears the screen. PMID:23938645

  18. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  19. Integrating visible light 3D scanning into the everyday world

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    Visible light 3D scanning offers the potential to non-invasively and nearly non-perceptibly incorporate 3D imaging into the everyday world. This paper considers the various possible uses of visible light 3D scanning technology. It discusses multiple possible usage scenarios including in hospitals, security perimeter settings and retail environments. The paper presents a framework for assessing the efficacy of visible light 3D scanning for a given application (and compares this to other scanning approaches such as those using blue light or lasers). It also discusses ethical and legal considerations relevant to real-world use and concludes by presenting a decision making framework.

  20. 3-D Sound for Virtual Reality and Multimedia

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Trejo, Leonard J. (Technical Monitor)

    2000-01-01

    Technology and applications for the rendering of virtual acoustic spaces are reviewed. Chapter 1 deals with acoustics and psychoacoustics. Chapters 2 and 3 cover cues to spatial hearing and review psychoacoustic literature. Chapter 4 covers signal processing and systems overviews of 3-D sound systems. Chapter 5 covers applications to computer workstations, communication systems, aeronautics and space, and sonic arts. Chapter 6 lists resources. This TM is a reprint of the 1994 book from Academic Press.

  1. When Virtual Worlds Expand

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims

    The future of a virtual world depends on whether it can grow in subjective size, cultural content, and numbers of human participants. In one form of growth, exemplified by Second Life, the scope of a world increases gradually as new sponsors pay for new territory and inhabitants create content. A very different form of growth is sudden expansion, as when World of Warcraft (WoW) added entire new continents in its Burning Crusade and Lich King expansions (Lummis and Kern 2006, 2008; Corneliussen and Rettberg 2008; Sims et al. 2008). Well-established gamelike worlds have often undergone many expansions. Both the pioneer science fiction game Anarchy Online, which was launched in 2001, and Star Wars Galaxies dating from 2003, have had three, and EVE Online also from 2003 has had nine, although smaller ones. This chapter reports research on WoW's 2008 Lich King expansion, using both quantitative and qualitative methods, in order to develop theoretical ideas of the implications of expansion for virtual worlds.

  2. Virtual Worlds in Computing Education

    ERIC Educational Resources Information Center

    Crellin, Jonathan; Duke-Williams, Emma; Chandler, Jane; Collinson, Timothy

    2009-01-01

    This article reports on the use of a virtual world ("Second Life") in computing education, and identifies the precursors of current virtual world systems. The article reviews the potential for virtual worlds as tools in computing education. It describes two areas where "Second Life" has been used in computing education: as a development…

  3. A 3D cellular context for the macromolecular world

    PubMed Central

    Patwardhan, Ardan; Ashton, Alun; Brandt, Robert; Butcher, Sarah; Carzaniga, Raffaella; Chiu, Wah; Collinson, Lucy; Doux, Pascal; Duke, Elizabeth; Ellisman, Mark H; Franken, Erik; Grünewald, Kay; Heriche, Jean-Karim; Koster, Abraham; Kühlbrandt, Werner; Lagerstedt, Ingvar; Larabell, Carolyn; Lawson, Catherine L; Saibil, Helen R; Sanz-García, Eduardo; Subramaniam, Sriram; Verkade, Paul; Swedlow, Jason R; Kleywegt, Gerard J

    2015-01-01

    We report the outcomes of the discussion initiated at the workshop entitled A 3D Cellular Context for the Macromolecular World and propose how data from emerging three-dimensional (3D) cellular imaging techniques—such as electron tomography, 3D scanning electron microscopy and soft X-ray tomography—should be archived, curated, validated and disseminated, to enable their interpretation and reuse by the biomedical community. PMID:25289590

  4. Learning Experience with Virtual Worlds

    ERIC Educational Resources Information Center

    Wagner, Christian

    2008-01-01

    Virtual worlds create a new opportunity to enrich the educational experience through media-rich immersive learning. Virtual worlds have gained notoriety in games such as World of Warcraft (WoW), which has become the most successful online game ever, and in "general purpose" worlds, such as Second Life (SL), whose participation levels (more than 10…

  5. Ethnography in a Virtual World

    ERIC Educational Resources Information Center

    Shumar, Wesley; Madison, Nora

    2013-01-01

    This article situates the discussion of virtual ethnography within the larger political/economic changes of twenty-first century consumer capitalism and suggests that increasingly our entire social world is a virtual world and that there were very particular utopian and dystopian framings of virtual community growing out of that history. The…

  6. World Reaction to Virtual Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    DRaW Computing developed virtual reality software for the International Space Station. Open Worlds, as the software has been named, can be made to support Java scripting and virtual reality hardware devices. Open Worlds permits the use of VRML script nodes to add virtual reality capabilities to the user's applications.

  7. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  8. Virtual World Astrosociology

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims

    2010-01-01

    This essay introduces the opportunity for theory development and even empirical research on some aspects of astrosociology through today's online virtual worlds. The examples covered present life on other planets or in space itself, in a manner that can be experienced by the user and where the user's reactions may simulate to some degree future human behavior in real extraterrestrial environments: Tabula Rasa, Anarchy Online, Entropia Universe, EVE Online, StarCraft and World of Warcraft. Ethnographic exploration of these computerized environments raises many questions about the social science both of space exploration and of direct contact with extraterrestrials. The views expressed in this essay do not necessarily represent the views of the National Science Foundation or the United States.

  9. Virtual reality 3D headset based on DMD light modulators

    SciTech Connect

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  10. Learning in the Wild of a Virtual World

    ERIC Educational Resources Information Center

    Aurilio, Suzanne

    2009-01-01

    This study took place in the online 3D virtual world Second Life[R], a recreational environment designed for world-building and socializing, and intended for individuals 18 years old and older. It described learning from the perspective of Second Life[R] Residents and focused on their world-building activities. As a virtual ethnographer, my avatar…

  11. The virtual reality 3D city of Ningbo

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Wu, Dun

    2009-09-01

    In 2005, Ningbo Design Research Institute of Mapping & Surveying started the development of concepts and an implementation of Virtual Reality Ningbo System (VRNS). VRNS is being developed under the digital city technological framework and well supported by computing advances, space technologies, and commercial innovations. It has become the best solution for integrating, managing, presenting, and distributing complex city information. VRNS is not only a 3D-GIS launch project but also a technology innovation. The traditional domain of surveying and mapping has changed greatly in Ningbo. Geo-information systems are developing towards a more reality-, three dimension- and Service-Oriented Architecture-based system. The VRNS uses technology such as 3D modeling, user interface design, view scene modeling, real-time rendering and interactive roaming under a virtual environment. Two applications of VRNS already being used are for city planning and high-rise buildings' security management. The final purpose is to develop VRNS into a powerful public information platform, and to achieve that heterogeneous city information resources share this one single platform.

  12. The virtual reality 3D city of Ningbo

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Wu, Dun

    2010-11-01

    In 2005, Ningbo Design Research Institute of Mapping & Surveying started the development of concepts and an implementation of Virtual Reality Ningbo System (VRNS). VRNS is being developed under the digital city technological framework and well supported by computing advances, space technologies, and commercial innovations. It has become the best solution for integrating, managing, presenting, and distributing complex city information. VRNS is not only a 3D-GIS launch project but also a technology innovation. The traditional domain of surveying and mapping has changed greatly in Ningbo. Geo-information systems are developing towards a more reality-, three dimension- and Service-Oriented Architecture-based system. The VRNS uses technology such as 3D modeling, user interface design, view scene modeling, real-time rendering and interactive roaming under a virtual environment. Two applications of VRNS already being used are for city planning and high-rise buildings' security management. The final purpose is to develop VRNS into a powerful public information platform, and to achieve that heterogeneous city information resources share this one single platform.

  13. 3D Reconstruction of virtual colon structures from colonoscopy images.

    PubMed

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  14. Virtual reality 3D headset based on DMD light modulators

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  15. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    NASA Astrophysics Data System (ADS)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  16. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  17. The cognitive apprenticeship theory for the teaching of mathematics in an online 3D virtual environment

    NASA Astrophysics Data System (ADS)

    Bouta, Hara; Paraskeva, Fotini

    2013-03-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective. To this end, we propose a pedagogical framework based on the cognitive apprenticeship for deriving principles and guidelines to inform the design, development and use of a 3D virtual environment. This study examines how the use of a 3D virtual world facilitates the teaching of mathematics in primary education by combining design principles and guidelines based on the Cognitive Apprenticeship Theory and the teaching methods that this theory introduces. We focus specifically on 5th and 6th grade students' engagement (behavioral, affective and cognitive) while learning fractional concepts over a period of two class sessions. Quantitative and qualitative analyses indicate considerable improvement in the engagement of the students who participated in the experiment. This paper presents the findings regarding students' cognitive engagement in the process of comprehending basic fractional concepts - notoriously hard for students to master. The findings are encouraging and suggestions are made for further research.

  18. What People Talk About in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Maher, Mary Lou

    This chapter examines what people talk about in virtual worlds, employing protocol analysis. Each of two scenario studies was developed to assess the impact of virtual worlds as a collaborative environment for a specific purpose: one for learning and one for designing. The first designed a place in Active Worlds for a course on Web Site Design, having group learning spaces surrounded by individual student galleries. Student text chat was analyzed through a coding scheme with four major categories: control, technology, learning, and place. The second studied expert architects in a Second Life environment called DesignWorld that combined 3D modeling and sketching tools. Video and audio recordings were coded in terms of four categories of communication content (designing, representation of the model, awareness of each other, and software features), and in terms of synthesis comparing alternative designs versus analysis of how well the proposed solution satisfies the given design task. Both studies found that people talk about their avatars, identity, and location in the virtual world. However, the discussion is chiefly about the task and not about the virtual world, implying that virtual worlds provide a viable environment for learning and designing that does not distract people from their task.

  19. Acoustic simulation in realistic 3D virtual scenes

    NASA Astrophysics Data System (ADS)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean

    2003-09-01

    The simulation workshop CHORALE developed in collaboration with OKTAL SE company for the French MoD is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain. The main operational reference for CHORALE is the assessment of the infrared guidance system of the Storm Shadow missile French version, called Scalp. The use of CHORALE workshop is now extended to the acoustic domain. The main objective is the simulation of the detection of moving vehicles in realistic 3D virtual scenes. This article briefly describes the acoustic model in CHORALE. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its sensitivity. The purpose of the acoustic simulation is to calculate the incoming acoustic pressure on microphone sensors. CHORALE is based on a generic ray tracing kernel. This kernel possesses original capabilities: computation time is nearly independent on the scene complexity, especially the number of polygons, databases are enhanced with precise physical data, special mechanisms of antialiasing have been developed that enable to manage very accurate details. The ray tracer takes into account the wave geometrical divergence and the atmospheric transmission. The sound wave refraction is simulated and rays cast in the 3D scene are curved according to air temperature gradient. Finally, sound diffraction by edges (hill, wall,...) is also taken into account.

  20. 3D virtual colonoscopy with real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Wan, Ming; Li, Wei J.; Kreeger, Kevin; Bitter, Ingmar; Kaufman, Arie E.; Liang, Zhengrong; Chen, Dongqing; Wax, Mark R.

    2000-04-01

    In our previous work, we developed a virtual colonoscopy system on a high-end 16-processor SGI Challenge with an expensive hardware graphics accelerator. The goal of this work is to port the system to a low cost PC in order to increase its availability for mass screening. Recently, Mitsubishi Electric has developed a volume-rendering PC board, called VolumePro, which includes 128 MB of RAM and vg500 rendering chip. The vg500 chip, based on Cube-4 technology, can render a 2563 volume at 30 frames per second. High image quality of volume rendering inside the colon is guaranteed by the full lighting model and 3D interpolation supported by the vg500 chip. However, the VolumePro board is lacking some features required by our interactive colon navigation. First, VolumePro currently does not support perspective projection which is paramount for interior colon navigation. Second, the patient colon data is usually much larger than 2563 and cannot be rendered in real-time. In this paper, we present our solutions to these problems, including simulated perspective projection and axis aligned boxing techniques, and demonstrate the high performance of our virtual colonoscopy system on low cost PCs.

  1. Virtual environment display for a 3D audio room simulation

    NASA Astrophysics Data System (ADS)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  2. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    PubMed Central

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  3. Versatile, Immersive, Creative and Dynamic Virtual 3-D Healthcare Learning Environments: A Review of the Literature

    PubMed Central

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and “serious gaming” that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger’s Diffusion of Innovations Theory and Siemens’ Connectivism Theory for today’s learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  4. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    PubMed

    Hansen, Margaret M

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  5. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  6. Virtual Worlds, Virtual Literacy: An Educational Exploration

    ERIC Educational Resources Information Center

    Stoerger, Sharon

    2008-01-01

    Virtual worlds enable students to learn through seeing, knowing, and doing within visually rich and mentally engaging spaces. Rather than reading about events, students become part of the events through the adoption of a pre-set persona. Along with visual feedback that guides the players' activities and the development of visual skills, visual…

  7. Enhancing Spiritualism in Virtual World

    ERIC Educational Resources Information Center

    Dangwal, Kiran Lata; Singh, Shireesh Pal

    2012-01-01

    Spiritualism is one word which puts man on the highest plinth of life. Spirituality is the way we find meaning, hope, comfort and inner peace in life. Spirituality in the virtual World is generally known as Virtual Spirituality. A goldmine of wisdom from all kinds of religious and spiritual philosophies, traditions and practices can be found in…

  8. The Viability of Virtual Worlds in Higher Education: Can Creativity Thrive outside the Traditional Classroom Environment?

    ERIC Educational Resources Information Center

    Bradford, Linda M.

    2012-01-01

    In spite of the growing popularity of virtual worlds for gaming, recreation, and education, few studies have explored the efficacy of 3D immersive virtual worlds in post-secondary instruction; even fewer discuss the ability of virtual worlds to help young adults develop creative thinking. This study investigated the effect of virtual world…

  9. "Immersed in Learning": Supporting Creative Practice in Virtual Worlds

    ERIC Educational Resources Information Center

    Doyle, Denise

    2010-01-01

    The "Immersed in Learning" project began in 2007 to evaluate the use of 3D virtual worlds as a teaching and learning tool in undergraduate programmes in digital media at the University of Wolverhampton, UK. A question that the research set out to explore was what were the benefits of integrating 3D immersive learning with face-to-face learning for…

  10. Integration of the virtual 3D model of a control system with the virtual controller

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  11. Design Concerns in the Engineering of Virtual Worlds for Learning

    ERIC Educational Resources Information Center

    Rapanotti, Lucia; Hall, Jon G.

    2011-01-01

    The convergence of 3D simulation and social networking into current multi-user virtual environments has opened the door to new forms of interaction for learning in order to complement the face-to-face and Web 2.0-based systems. Yet, despite a growing user community, design knowledge for virtual worlds remains patchy, particularly when it comes to…

  12. The Future of Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Bainbridge, William Sims; Lutters, Wayne; Rhoten, Diana; Lowood, Henry

    This book, like the May 2008 conference in World of Warcraft, ends with projections toward what the future might hold for virtual worlds. Every chapter thus far has included speculations about future directions, even while standing on data from the past. This last chapter, like the final session of the conference on which it is based, incorporates comments from dozens of participants into a stream of ideas. We have edited selected comments together with the panel's contributions. Our intention is to provide a portal from this book into a wider virtual community comprising researchers and residents in virtual worlds. The discussion surveys many recent lines of development, some of which have already been surveyed in scientific and historical literature, or by journalists (Au 2008; Castronova 2007; Guest 2007; Ludlow and Wallace 2007). Yet, many of the topics here have not received such attention. Considered as a set of socio-technical innovations, virtual worlds are not just about technical possibilities; they also inspired the participants to consider the economic bases for investing in those possibilities and the novel cultural, social, and artistic forms virtual worlds might offer.

  13. The Effect of 3D Virtual Learning Environment on Secondary School Third Grade Students' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Simsek, Irfan

    2016-01-01

    With this research, in Second Life environment which is a three dimensional online virtual world, it is aimed to reveal the effects of student attitudes toward mathematics courses and design activities which will enable the third grade students of secondary school (primary education seventh grade) to see the 3D objects in mathematics courses in a…

  14. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  15. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    NASA Astrophysics Data System (ADS)

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  16. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    NASA Astrophysics Data System (ADS)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  17. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  18. Contextual EFL Learning in a 3D Virtual Environment

    ERIC Educational Resources Information Center

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  19. Evaluation of Home Delivery of Lectures Utilizing 3D Virtual Space Infrastructure

    ERIC Educational Resources Information Center

    Nishide, Ryo; Shima, Ryoichi; Araie, Hiromu; Ueshima, Shinichi

    2007-01-01

    Evaluation experiments have been essential in exploring home delivery of lectures for which users can experience campus lifestyle and distant learning through 3D virtual space. This paper discusses the necessity of virtual space for distant learners by examining the effects of virtual space. The authors have pursued the possibility of…

  20. Distributed virtual worlds in high-speed networks

    NASA Astrophysics Data System (ADS)

    Schiffner, Norbert

    1998-09-01

    Recent research efforts have concentrated on determining how the distributed workplace can be transformed into a shared virtual environment. Interaction among people and process virtual worlds has to be provided and improved. To enhance the usability of our virtual collaborative environment we integrated a multicast communication environment. With the availability of global information highways, 3D graphical intercontinental collaboration will become a part of our daily work routine. This paper describes the basics of our network infrastructure and the multicast support. As a proof of concept, a virtual world scenario is also presented in this paper.

  1. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  2. Visualization of N-body Simulations in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Knop, Robert A.; Ames, J.; Djorgovski, G.; Farr, W.; Hut, P.; Johnson, A.; McMillan, S.; Nakasone, A.; Vesperini, E.

    2010-01-01

    We report on work to use virtual worlds for visualizing the results of N-body calculations, on three levels. First, we have written a demonstration 3-body solver entirely in the scripting language of the popularly used virtual world Second Life. Second, we have written a physics module for the open source virtual world OpenSim that performs N-body calculations as the physics engine for the server, allowing natural 3-d visualization of the solution as the solution is being performed. Finally, we give an initial report on the potential use of virtual worlds to visualize calculations which have previously been performed, or which are being performed in other processes and reported to the virtual world server. This work has been performed as part of the Meta-Institute of Computational Astrophysics (MICA). http://www.mica-vw.org

  3. 3-D Virtual and Physical Reconstruction of Bendego Iron

    NASA Astrophysics Data System (ADS)

    Belmonte, S. L. R.; Zucolotto, M. E.; Fontes, R. C.; dos Santos, J. R. L.

    2012-09-01

    The use of 3D laser scanning to meteoritic to preserve the original shape of the meteorites before cutting and the facility of saved the datas in STL format (stereolithography) to print three-dimensional physical models and generate a digital replica.

  4. Social Presence and Motivation in a Three-Dimensional Virtual World: An Explanatory Study

    ERIC Educational Resources Information Center

    Yilmaz, Rabia M.; Topu, F. Burcu; Goktas, Yuksel; Coban, Murat

    2013-01-01

    Three-dimensional (3-D) virtual worlds differ from other learning environments in their similarity to real life, providing opportunities for more effective communication and interaction. With these features, 3-D virtual worlds possess considerable potential to enhance learning opportunities. For effective learning, the users' motivation…

  5. Working Group Reports and Presentations: Virtual Worlds and Virtual Exploration

    NASA Technical Reports Server (NTRS)

    LAmoreaux, Claudia

    2006-01-01

    Scientists and engineers are continually developing innovative methods to capitalize on recent developments in computational power. Virtual worlds and virtual exploration present a new toolset for project design, implementation, and resolution. Replication of the physical world in the virtual domain provides stimulating displays to augment current data analysis techniques and to encourage public participation. In addition, the virtual domain provides stakeholders with a low cost, low risk design and test environment. The following document defines a virtual world and virtual exploration, categorizes the chief motivations for virtual exploration, elaborates upon specific objectives, identifies roadblocks and enablers for realizing the benefits, and highlights the more immediate areas of implementation (i.e. the action items). While the document attempts a comprehensive evaluation of virtual worlds and virtual exploration, the innovative nature of the opportunities presented precludes completeness. The authors strongly encourage readers to derive additional means of utilizing the virtual exploration toolset.

  6. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    MedlinePlus

    ... body) from the National Library of Medicine's Visible Human project (www.nlm.nih.gov). By 1996, Kaufman and his colleagues had patented a pioneering computer software system and techniques for 3-D virtual ...

  7. A 3D world model builder with a mobile robot

    SciTech Connect

    Zhang, Z.; Faugeras, O. )

    1992-08-01

    This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.

  8. A Parameterizable Framework for Replicated Experiments in Virtual 3D Environments

    NASA Astrophysics Data System (ADS)

    Biella, Daniel; Luther, Wolfram

    This paper reports on a parameterizable 3D framework that provides 3D content developers with an initial spatial starting configuration, metaphorical connectors for accessing exhibits or interactive 3D learning objects or experiments, and other optional 3D extensions, such as a multimedia room, a gallery, username identification tools and an avatar selection room. The framework is implemented in X3D and uses a Web-based content management system. It has been successfully used for an interactive virtual museum for key historical experiments and in two additional interactive e-learning implementations: an African arts museum and a virtual science centre. It can be shown that, by reusing the framework, the production costs for the latter two implementations can be significantly reduced and content designers can focus on developing educational content instead of producing cost-intensive out-of-focus 3D objects.

  9. Collective Action Situated in Virtual Worlds

    ERIC Educational Resources Information Center

    Blodgett, Bridget M.

    2011-01-01

    For the first time in the history of collective action, the offline world has experienced a virtually organized and enacted union strike. While this was the first publicly noticed political action in a virtual world, others have been going on for several years now. As virtual worlds continue to grow in popularity, this type of protest of action…

  10. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  11. Anesthesiology training using 3D imaging and virtual reality

    NASA Astrophysics Data System (ADS)

    Blezek, Daniel J.; Robb, Richard A.; Camp, Jon J.; Nauss, Lee A.

    1996-04-01

    Current training for regional nerve block procedures by anesthesiology residents requires expert supervision and the use of cadavers; both of which are relatively expensive commodities in today's cost-conscious medical environment. We are developing methods to augment and eventually replace these training procedures with real-time and realistic computer visualizations and manipulations of the anatomical structures involved in anesthesiology procedures, such as nerve plexus injections (e.g., celiac blocks). The initial work is focused on visualizations: both static images and rotational renderings. From the initial results, a coherent paradigm for virtual patient and scene representation will be developed.

  12. Virtual 3D interactive system with embedded multiwavelength optical sensor array and sequential devices

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Zhen; Huang, Yi-Pai; Hu, Kuo-Jui

    2012-06-01

    We proposed a virtual 3D-touch system by bare finger, which can detect the 3-axis (x, y, z) information of finger. This system has multi-wavelength optical sensor array embedded on the backplane of TFT panel and sequentail devices on the border of TFT panel. We had developed reflecting mode which can be worked by bare finger for the 3D interaction. A 4-inch mobile 3D-LCD with this proposed system was successfully been demonstrated already.

  13. A method of 3-D data information storage with virtual holography

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Liu, Guodong; Ren, Zhong; Zeng, Lüming

    2008-12-01

    In this paper, a new method of 3-D data cube based on virtual holographic storage is presented. Firstly, the data information is encoded in the form of 3-D data cube with a certain algorithm, in which the interval along coordinates between every data is d. Using the plane-scanning method, the 3-D cube can be described as a assembly of slices which are parallel planes along the coordinates at an interval of d. The dot on the slice represents a bit. The bright one means "1", while the dark one means "0". Secondly, a hologram of the 3-D cube is obtained by computer with virtual optics technology. All the information of a 3-D cube can be described by a 2-D hologram. At last, the hologram is inputted in the SLM, and recorded in the recording material by intersecting two coherent laser beams. When the 3-D data is exported, a reference light illuminates the hologram, and a CCD is used to get the object image which is a hologram of the 3-D data. Then the 3-D data is computed with virtual optical technology. Compared with 2-D data page storage, the 3-D data cube storage has outstanding performance in larger capacity of data storage and higher security of data.

  14. A Collaborative Virtual Environment for Situated Language Learning Using VEC3D

    ERIC Educational Resources Information Center

    Shih, Ya-Chun; Yang, Mau-Tsuen

    2008-01-01

    A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…

  15. Cross-Cultural Discussions in a 3D Virtual Environment and Their Affordances for Learners' Motivation and Foreign Language Discussion Skills

    ERIC Educational Resources Information Center

    Jauregi, Kristi; Kuure, Leena; Bastian, Pim; Reinhardt, Dennis; Koivisto, Tuomo

    2015-01-01

    Within the European TILA project a case study was carried out where pupils from schools in Finland and the Netherlands engaged in debating sessions using the 3D virtual world of OpenSim once a week for a period of 5 weeks. The case study had two main objectives: (1) to study the impact that the discussion tasks undertaken in a virtual environment…

  16. The Virtual-casing Principle For 3D Toroidal Systems

    SciTech Connect

    Lazerson, Samuel A.

    2014-02-24

    The capability to calculate the magnetic field due to the plasma currents in a toroidally confined magnetic fusion equilibrium is of manifest relevance to equilibrium reconstruction and stellarator divertor design. Two methodologies arise for calculating such quantities. The first being a volume integral over the plasma current density for a given equilibrium. Such an integral is computationally expensive. The second is a surface integral over a surface current on the equilibrium boundary. This method is computationally desirable as the calculation does not grow as the radial resolution of the volume integral. This surface integral method has come to be known as the "virtual-casing principle". In this paper, a full derivation of this method is presented along with a discussion regarding its optimal application.

  17. 3D structure of nucleon with virtuality distributions

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly

    2014-09-01

    We describe a new approach to transverse momentum dependence in hard processes. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O (0 , z)) describing a hadron with momentum p. Treated as functions of (pz) and z2, they are parametrized through parton virtuality distribution (PVD) Φ (x , σ) , with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0 , we introduce the transverse momentum distribution (TMD) f (x ,k⊥) , and write it in terms of PVD Φ (x , σ) . The results of covariant calculations, written in terms of Φ (x , σ) are converted into expressions involving f (x ,k⊥) . We propose models for soft PVDs/TMDs,and describe how one can generate high-k⊥ tails of TMDs from primordial soft distributions. We describe a new approach to transverse momentum dependence in hard processes. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O (0 , z)) describing a hadron with momentum p. Treated as functions of (pz) and z2, they are parametrized through parton virtuality distribution (PVD) Φ (x , σ) , with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0 , we introduce the transverse momentum distribution (TMD) f (x ,k⊥) , and write it in terms of PVD Φ (x , σ) . The results of covariant calculations, written in terms of Φ (x , σ) are converted into expressions involving f (x ,k⊥) . We propose models for soft PVDs/TMDs,and describe how one can generate high-k⊥ tails of TMDs from primordial soft distributions. Supported by Jefferson Science Associates, LLC under U.S. DOE Contract #DE-AC05-06OR23177 and by U.S. DOE Grant #DE-FG02-97ER41028.

  18. Towards a 3d Based Platform for Cultural Heritage Site Survey and Virtual Exploration

    NASA Astrophysics Data System (ADS)

    Seinturier, J.; Riedinger, C.; Mahiddine, A.; Peloso, D.; Boï, J.-M.; Merad, D.; Drap, P.

    2013-07-01

    This paper present a 3D platform that enables to make both cultural heritage site survey and its virtual exploration. It provides a single and easy way to use framework for merging multi scaled 3D measurements based on photogrammetry, documentation produced by experts and the knowledge of involved domains leaving the experts able to extract and choose the relevant information to produce the final survey. Taking into account the interpretation of the real world during the process of archaeological surveys is in fact the main goal of a survey. New advances in photogrammetry and the capability to produce dense 3D point clouds do not solve the problem of surveys. New opportunities for 3D representation are now available and we must to use them and find new ways to link geometry and knowledge. The new platform is able to efficiently manage and process large 3D data (points set, meshes) thanks to the implementation of space partition methods coming from the state of the art such as octrees and kd-trees and thus can interact with dense point clouds (thousands to millions of points) in real time. The semantisation of raw 3D data relies on geometric algorithms such as geodetic path computation, surface extraction from dense points cloud and geometrical primitive optimization. The platform provide an interface that enables expert to describe geometric representations of interesting objects like ashlar blocs, stratigraphic units or generic items (contour, lines, … ) directly onto the 3D representation of the site and without explicit links to underlying algorithms. The platform provide two ways for describing geometric representation. If oriented photographs are available, the expert can draw geometry on a photograph and the system computes its 3D representation by projection on the underlying mesh or the points cloud. If photographs are not available or if the expert wants to only use the 3D representation then he can simply draw objects shape on it. When 3D

  19. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  20. Toward Educational Virtual Worlds: Should Identity Federation Be a Concern?

    ERIC Educational Resources Information Center

    Cruz, Gonçalo; Costa, António; Martins, Paulo; Gonçalves, Ramiro; Barroso, João

    2015-01-01

    3D Virtual Worlds are being used for education and training purposes in a cross-disciplinary way. However, its widespread adoption, particularly in formal learning contexts, is far from being a reality due a broad range of technological challenges. In this reflection paper, our main goal is to argue why and how identity federation should be…

  1. Earth Science Research Discovery, Integration, 3D Visualization and Analysis using NASA World Wind

    NASA Astrophysics Data System (ADS)

    Alameh, N.; Hogan, P.

    2008-12-01

    more possible to include virtual globe capability in support of any Earth science objective. 3- With the source code being fully accessible, anyone can advance this technology (including in a commercial or other proprietary manner). Such features enable World Wind to provide easy discovery, access and 3D integration/visualization/analysis of Earth observation data in a flexible, customizable open source tool. This positions World Wind to become a key part of an Advanced Information Systems infrastructure supporting a collaborative decision-making environment for a variety of applications.

  2. Integration of virtual and real scenes within an integral 3D imaging environment

    NASA Astrophysics Data System (ADS)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  3. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  4. Attitude and Self-Efficacy Change: English Language Learning in Virtual Worlds

    ERIC Educational Resources Information Center

    Zheng, Dongping; Young, Michael F.; Brewer, Robert A.; Wagner, Manuela

    2009-01-01

    This study explored affective factors in learning English as a foreign language in a 3D game-like virtual world, Quest Atlantis (QA). Through the use of communication tools (e.g., chat, bulletin board, telegrams, and email), 3D avatars, and 2D webpage navigation tools in virtual space, nonnative English speakers (NNES) co-solved online…

  5. Enhancing L2 Interaction in Avatar-Based Virtual Worlds: Student Teachers' Perceptions

    ERIC Educational Resources Information Center

    Tseng, Jun-Jie; Tsai, Ya-Hsun; Chao, Rih-Chang

    2013-01-01

    Three-dimensional (3-D) multi-user virtual environments (3-D MUVEs) have been used to provide language learners with realistic scenarios in which verbal and non-verbal interactions are simulated. However, little is known of the underlying factors that shape interaction in avatar-based virtual worlds. This study examined the perceptions of 38…

  6. The Effect of the Use of the 3-D Multi-User Virtual Environment "Second Life" on Student Motivation and Language Proficiency in Courses of Spanish as a Foreign Language

    ERIC Educational Resources Information Center

    Pares-Toral, Maria T.

    2013-01-01

    The ever increasing popularity of virtual worlds, also known as 3-D multi-user virtual environments (MUVEs) or simply virtual worlds provides language instructors with a new tool they can exploit in their courses. For now, "Second Life" is one of the most popular MUVEs used for teaching and learning, and although "Second Life"…

  7. Embodied collaboration support system for 3D shape evaluation in virtual space

    NASA Astrophysics Data System (ADS)

    Okubo, Masashi; Watanabe, Tomio

    2005-12-01

    Collaboration mainly consists of two tasks; one is each partner's task that is performed by the individual, the other is communication with each other. Both of them are very important objectives for all the collaboration support system. In this paper, a collaboration support system for 3D shape evaluation in virtual space is proposed on the basis of both studies in 3D shape evaluation and communication support in virtual space. The proposed system provides the two viewpoints for each task. One is the viewpoint of back side of user's own avatar for the smooth communication. The other is that of avatar's eye for 3D shape evaluation. Switching the viewpoints satisfies the task conditions for 3D shape evaluation and communication. The system basically consists of PC, HMD and magnetic sensors, and users can share the embodied interaction by observing interaction between their avatars in virtual space. However, the HMD and magnetic sensors, which are put on the users, would restrict the nonverbal communication. Then, we have tried to compensate the loss of nodding of partner's avatar by introducing the speech-driven embodied interactive actor InterActor. Sensory evaluation by paired comparison of 3D shapes in the collaborative situation in virtual space and in real space and the questionnaire are performed. The result demonstrates the effectiveness of InterActor's nodding in the collaborative situation.

  8. Approach to Constructing 3d Virtual Scene of Irrigation Area Using Multi-Source Data

    NASA Astrophysics Data System (ADS)

    Cheng, S.; Dou, M.; Wang, J.; Zhang, S.; Chen, X.

    2015-10-01

    For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS), remote sensing (RS) technology. Based on multi-source data such as Google Earth (GE) high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  9. Astronomy Education and Public Outreach in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Gauthier, Adrienne J.

    2008-05-01

    Multi-user 3-dimensional virtual worlds, like Second Life or Active Worlds, are the latest trend for innovation in higher education. There are over 100 college/university projects currently in Second Life. These social environments are also being utilized as a public relation and outreach method by such organizations as NASA (National Aeronautics and Space Administration), JPL (Jet Propulsion Lab), NOAA (National Oceanic and Atmospheric Administration), NPL (National Physical Laboratory), Exploratorium, and The Tech Museum of Innovation. Immersive virtual environments can offer new methods for education and public outreach projects in astronomy and astrobiology. Whether you are a faculty member wanting to dabble in Second Life with your students or an EPO professional considering a virtual world presence you will learn about the challenges and opportunities for developing content for 3D worlds. A review of popular science areas in Second Life as well as a 'quick start' guide will be included.

  10. Teaching Digital Natives: 3-D Virtual Science Lab in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Franklin, Teresa J.

    2008-01-01

    This paper presents the development of a 3-D virtual environment in Second Life for the delivery of standards-based science content for middle school students in the rural Appalachian region of Southeast Ohio. A mixed method approach in which quantitative results of improved student learning and qualitative observations of implementation within…

  11. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments" (http://www.le.ac.uk/moose)…

  12. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars.

    PubMed

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  13. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  14. Three Primary School Students' Cognition about 3D Rotation in a Virtual Reality Learning Environment

    ERIC Educational Resources Information Center

    Yeh, Andy

    2010-01-01

    This paper reports on three primary school students' explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students…

  15. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  16. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  17. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  18. Using virtual 3D audio in multispeech channel and multimedia environments

    NASA Astrophysics Data System (ADS)

    Orosz, Michael D.; Karplus, Walter J.; Balakrishnan, Jerry D.

    2000-08-01

    The advantages and disadvantages of using virtual 3-D audio in mission-critical, multimedia display interfaces were evaluated. The 3D audio platform seems to be an especially promising candidate for aircraft cockpits, flight control rooms, and other command and control environments in which operators must make mission-critical decisions while handling demanding and routine tasks. Virtual audio signal processing creates the illusion for a listener wearing conventional earphones that each of a multiplicity of simultaneous speech or audio channels is originating from a different, program- specified location in virtual space. To explore the possible uses of this new, readily available technology, a test bed simulating some of the conditions experienced by the chief flight test coordinator at NASA's Dryden Flight Research Center was designed and implemented. Thirty test subjects simultaneously performed routine tasks requiring constant hand-eye coordination, while monitoring four speech channels, each generating continuous speech signals, for the occurrence of pre-specified keywords. Performance measures included accuracy in identifying the keywords, accuracy in identifying the speaker of the keyword, and response time. We found substantial improvements on all of these measures when comparing virtual audio with conventional, monaural transmissions. We also explored the effect on operator performance of different spatial configurations of the audio sources in 3-D space, simulated movement (dither) in the source locations, and of providing graphical redundancy. Some of these manipulations were less effective and may even decrease performance efficiency, even though they improve some aspects of the virtual space simulation.

  19. Collaborative Virtual Gaming Worlds in Higher Education

    ERIC Educational Resources Information Center

    Whitton, Nicola; Hollins, Paul

    2008-01-01

    There is growing interest in the use of virtual gaming worlds in education, supported by the increased use of multi-user virtual environments (MUVEs) and massively multi-player online role-playing games (MMORPGs) for collaborative learning. However, this paper argues that collaborative gaming worlds have been in use much longer and are much wider…

  20. Visualizing a Taxonomy for Virtual Worlds

    ERIC Educational Resources Information Center

    Downey, Steve

    2012-01-01

    Since the mid-1990s, however, the popularity, diversity, and application of virtual worlds have spread rapidly. As a result, existing taxonomies and topologies increasingly are becoming less effective at being able to classify and organize the growing diversification of content available in today's virtual worlds. This article presents the…

  1. Educational Frontiers: Learning in a Virtual World

    ERIC Educational Resources Information Center

    Calongne, Cynthia M.

    2008-01-01

    Virtual worlds are engaging, stimulating spaces where students can meet online for normal class activities, including lectures, discussions, case studies, projects, papers, exams, and labs. Classes are a mix of synchronous and asynchronous activity. A virtual world class differs from a traditional course management system, such as Blackboard or…

  2. Eventedness and Disjuncture in Virtual Worlds

    ERIC Educational Resources Information Center

    White, David; Le Cornu, Alison

    2010-01-01

    Background: Many of the potential benefits of using virtual worlds for teaching and learning are difficult to define and often become overly focused on the functionality of the technology or on its ability to support informal or "social" forms of learning. Purpose: The aim of the paper is to highlight the experiential nature of virtual worlds and…

  3. Teaching and Learning in a Virtual World

    ERIC Educational Resources Information Center

    Guzzetti, Barbara J.; Stokrocki, Mary

    2013-01-01

    Although virtual worlds offer teachers the potential to enhance the K-12 curriculum in novel ways, there have been few systematic attempts to instruct teachers about virtual worlds, research their reactions, or track their explorations of these three-dimensional environments. Therefore, this study was designed to respond to the call to help…

  4. Accuracy of 3D Virtual Planning of Corrective Osteotomies of the Distal Radius.

    PubMed

    Stockmans, Filip; Dezillie, Marleen; Vanhaecke, Jeroen

    2013-11-01

    Corrective osteotomies of the distal radius for symptomatic malunion are time-tested procedures that rely on accurate corrections. Patients with combined intra- and extra-articular malunions present a challenging deformity. Virtual planning and patient-specific instruments (PSIs) to transfer the planning into the operating room have been used both to simplify the surgery and to make it more accurate. This report focuses on the clinically achieved accuracy in four patients treated between 2008 and 2012 with virtual planning and PSIs for a combined intra- and extraarticular malunion of the distal radius. The accuracy of the correction is quantified by comparing the virtual three-dimensional (3D) planning model with the postoperative 3D bone model. For the extraarticular malunion the 3D volar tilt, 3D radial inclination and 3D ulnar variance are measured. The volar tilt is undercorrected in all cases with an average of -6 ± 6°. The average difference between the postoperative and planned 3D radial inclination was -1 ± 5°. The average difference between the postoperative and planned 3D ulnar variances is 0 ± 1 mm. For the evaluation of the intraarticular malunion, both the arc method of measurement and distance map measurement are used. The average postoperative maximum gap is 2.1 ± 0.9 mm. The average maximum postoperative step-off is 1.3 ± 0.4 mm. The average distance between the postoperative and planned articular surfaces is 1.1 ± 0.6 mm as determined in the distance map measurement. There is a tendency to achieve higher accuracy as experience builds up, both on the surgeon's side and on the design engineering side. We believe this technology holds the potential to achieve consistent accuracy of very complex corrections. PMID:24436834

  5. Accuracy of 3D Virtual Planning of Corrective Osteotomies of the Distal Radius

    PubMed Central

    Stockmans, Filip; Dezillie, Marleen; Vanhaecke, Jeroen

    2013-01-01

    Corrective osteotomies of the distal radius for symptomatic malunion are time-tested procedures that rely on accurate corrections. Patients with combined intra- and extra-articular malunions present a challenging deformity. Virtual planning and patient-specific instruments (PSIs) to transfer the planning into the operating room have been used both to simplify the surgery and to make it more accurate. This report focuses on the clinically achieved accuracy in four patients treated between 2008 and 2012 with virtual planning and PSIs for a combined intra- and extraarticular malunion of the distal radius. The accuracy of the correction is quantified by comparing the virtual three-dimensional (3D) planning model with the postoperative 3D bone model. For the extraarticular malunion the 3D volar tilt, 3D radial inclination and 3D ulnar variance are measured. The volar tilt is undercorrected in all cases with an average of –6 ± 6°. The average difference between the postoperative and planned 3D radial inclination was –1 ± 5°. The average difference between the postoperative and planned 3D ulnar variances is 0 ± 1 mm. For the evaluation of the intraarticular malunion, both the arc method of measurement and distance map measurement are used. The average postoperative maximum gap is 2.1 ± 0.9 mm. The average maximum postoperative step-off is 1.3 ± 0.4 mm. The average distance between the postoperative and planned articular surfaces is 1.1 ± 0.6 mm as determined in the distance map measurement. There is a tendency to achieve higher accuracy as experience builds up, both on the surgeon's side and on the design engineering side. We believe this technology holds the potential to achieve consistent accuracy of very complex corrections. PMID:24436834

  6. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls. PMID:27046584

  7. Virtual World Teaching, Experiential Learning, and Assessment: An Interdisciplinary Communication Course in Second Life

    ERIC Educational Resources Information Center

    Jarmon, Leslie; Traphagan, Tomoko; Mayrath, Michael; Trivedi, Avani

    2009-01-01

    While many reports espouse the potential impact that 3-D virtual worlds are expected to have on teaching and learning in higher education in a few years, there are few empirical studies that inform instructional design and learning assessment in virtual worlds. This study explores the nature and process of learning in Second Life in a graduate…

  8. Learning Behaviors and Interaction Patterns among Students in Virtual Learning Worlds

    ERIC Educational Resources Information Center

    Lin, Chi-Syan; Ma, Jung Tsan; Chen, Yi-Lung; Kuo, Ming-Shiou

    2010-01-01

    The goal of this study is to investigate how students behave themselves in the virtual learning worlds. The study creates a 3D virtual learning world, entitled the Best Digital Village, and implements a learning program on it. The learning program, the Expo, takes place at the Exhibition Center in the Best Digital Village. The space in the Expo is…

  9. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  10. Cultural Competency Instruction in a 3D Virtual World

    ERIC Educational Resources Information Center

    Steed, Robin

    2009-01-01

    Approximately one third of the population of Louisiana is African American. According to federal reports, Blacks in Louisiana receive a poorer quality of healthcare compared to the White population. Occupational therapy is a profession of predominately White, middle class females who report in surveys that they are not adequately prepared to…

  11. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. PMID:25448267

  12. Crossing the Virtual World Barrier with OpenAvatar

    NASA Technical Reports Server (NTRS)

    Joy, Bruce; Kavle, Lori; Tan, Ian

    2012-01-01

    There are multiple standards and formats for 3D models in virtual environments. The problem is that there is no open source platform for generating models out of discrete parts; this results in the process of having to "reinvent the wheel" when new games, virtual worlds and simulations want to enable their users to create their own avatars or easily customize in-world objects. OpenAvatar is designed to provide a framework to allow artists and programmers to create reusable assets which can be used by end users to generate vast numbers of complete models that are unique and functional. OpenAvatar serves as a framework which facilitates the modularization of 3D models allowing parts to be interchanged within a set of logical constraints.

  13. The Real World and Virtual Worlds.

    ERIC Educational Resources Information Center

    Glaser, Stan

    1997-01-01

    Discusses some of the limitations of virtual reality (VR) with reference to socio-technical systems, i.e., the interaction of people with technology. Points to a significant opportunity for VR technology to be used in strategic partnership marketing and supply chain management. (Author/LRW)

  14. fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media

    NASA Astrophysics Data System (ADS)

    Yoshida, Shunsuke

    2012-06-01

    A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.

  15. Representing 3D virtual objects: interaction between visuo-spatial ability and type of exploration.

    PubMed

    Meijer, Frank; van den Broek, Egon L

    2010-03-17

    We investigated individual differences in interactively exploring 3D virtual objects. 36 participants explored 24 simple and 24 difficult objects (composed of respectively three and five Biederman geons) actively, passively, or not at all. Both their 3D mental representation of the objects and visuo-spatial ability was assessed. Results show that, regardless of the object's complexity, people with a low VSA benefit from active exploration of objects, where people with a middle or high VSA do not. These findings extend and refine earlier research on interactively learning visuo-spatial information and underline the importance to take individual differences into account. PMID:20116394

  16. Seamless 3D interaction for virtual tables, projection planes, and CAVEs

    NASA Astrophysics Data System (ADS)

    Encarnacao, L. M.; Bimber, Oliver; Schmalstieg, Dieter; Barton, Robert J., III

    2000-08-01

    The Virtual Table presents stereoscopic graphics to a user in a workbench-like setting. This device shares with other large- screen display technologies (such as data walls and surround- screen projection systems) the lack of human-centered unencumbered user interfaces and 3D interaction technologies. Such shortcomings present severe limitations to the application of virtual reality (VR) technology to time- critical applications as well as employment scenarios that involve heterogeneous groups of end-users without high levels of computer familiarity and expertise. Traditionally such employment scenarios are common in planning-related application areas such as mission rehearsal and command and control. For these applications, a high grade of flexibility with respect to the system requirements (display and I/O devices) as well as to the ability to seamlessly and intuitively switch between different interaction modalities and interaction are sought. Conventional VR techniques may be insufficient to meet this challenge. This paper presents novel approaches for human-centered interfaces to Virtual Environments focusing on the Virtual Table visual input device. It introduces new paradigms for 3D interaction in virtual environments (VE) for a variety of application areas based on pen-and-clipboard, mirror-in-hand, and magic-lens metaphors, and introduces new concepts for combining VR and augmented reality (AR) techniques. It finally describes approaches toward hybrid and distributed multi-user interaction environments and concludes by hypothesizing on possible use cases for defense applications.

  17. Game-Based Virtual Worlds as Decentralized Virtual Activity Systems

    NASA Astrophysics Data System (ADS)

    Scacchi, Walt

    There is widespread interest in the development and use of decentralized systems and virtual world environments as possible new places for engaging in collaborative work activities. Similarly, there is widespread interest in stimulating new technological innovations that enable people to come together through social networking, file/media sharing, and networked multi-player computer game play. A decentralized virtual activity system (DVAS) is a networked computer supported work/play system whose elements and social activities can be both virtual and decentralized (Scacchi et al. 2008b). Massively multi-player online games (MMOGs) such as World of Warcraft and online virtual worlds such as Second Life are each popular examples of a DVAS. Furthermore, these systems are beginning to be used for research, deve-lopment, and education activities in different science, technology, and engineering domains (Bainbridge 2007, Bohannon et al. 2009; Rieber 2005; Scacchi and Adams 2007; Shaffer 2006), which are also of interest here. This chapter explores two case studies of DVASs developed at the University of California at Irvine that employ game-based virtual worlds to support collaborative work/play activities in different settings. The settings include those that model and simulate practical or imaginative physical worlds in different domains of science, technology, or engineering through alternative virtual worlds where players/workers engage in different kinds of quests or quest-like workflows (Jakobsson 2006).

  18. The Learner Characteristics, Features of Desktop 3D Virtual Reality Environments, and College Chemistry Instruction: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.

    2012-01-01

    We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…

  19. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    SciTech Connect

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.

    1995-08-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.

  20. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology. PMID:8591413

  1. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy.

    PubMed

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-19

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available. PMID:24910506

  2. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl’s law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available. PMID:24910506

  3. An improved virtual aberration model to simulate mask 3D and resist effects

    NASA Astrophysics Data System (ADS)

    Kanaya, Reiji; Fujii, Koichi; Imai, Motokatsu; Matsuyama, Tomoyuki; Tsuzuki, Takao; Lin, Qun Ying

    2015-03-01

    As shrinkage of design features progresses, the difference in best focus positions among different patterns is becoming a fatal issue, especially when many patterns co-exist in a layer. The problem arises from three major factors: aberrations of projection optics, mask 3D topography effects, and resist thickness effects. Aberrations in projection optics have already been thoroughly investigated, but mask 3D topography effects and resist thickness effects are still under study. It is well known that mask 3D topography effects can be simulated by various Electro-magnetic Field (EMF) analysis methods. However, it is almost impossible to use them for full chip modeling because all of these methods are extremely computationally intensive. Consequently, they usually apply only to a limited range of mask patterns which are about tens of square micro meters in area. Resist thickness effects on best focus positions are rarely treated as a topic of lithography investigations. Resist 3D effects are treated mostly for resist profile prediction, which also requires an intensive EMF analysis when one needs to predict it accurately. In this paper, we present a simplified Virtual Aberration (VA) model to simulate both mask 3D induced effects and resist thickness effects. A conventional simulator, when applied with this simplified method, can factor in both mask 3D topography effects and resist thickness effects. Thus it can be used to model inter-pattern Best Focus Difference (BFD) issues with the least amount of rigorous EMF analysis.

  4. An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

    2014-05-01

    In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are

  5. The Satirical Value of Virtual Worlds

    ERIC Educational Resources Information Center

    Baggaley, Jon

    2010-01-01

    Imaginary worlds have been devised by artists and commentators for centuries to focus satirical attention on society's problems. The increasing sophistication of three-dimensional graphics software is generating comparable "virtual worlds" for educational usage. Can such worlds play a satirical role suggesting developments in distance education…

  6. Virtually Out of This World!

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.

  7. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  8. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  9. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    ERIC Educational Resources Information Center

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  10. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  11. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  12. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  13. Early pregnancy placental bed and fetal vascular volume measurements using 3-D virtual reality.

    PubMed

    Reus, Averil D; Klop-van der Aa, Josine; Rifouna, Maria S; Koning, Anton H J; Exalto, Niek; van der Spek, Peter J; Steegers, Eric A P

    2014-08-01

    In this study, a new 3-D Virtual Reality (3D VR) technique for examining placental and uterine vasculature was investigated. The validity of placental bed vascular volume (PBVV) and fetal vascular volume (FVV) measurements was assessed and associations of PBVV and FVV with embryonic volume, crown-rump length, fetal birth weight and maternal parity were investigated. One hundred thirty-two patients were included in this study, and measurements were performed in 100 patients. Using V-Scope software, 100 3-D Power Doppler data sets of 100 pregnancies at 12 wk of gestation were analyzed with 3D VR in the I-Space Virtual Reality system. Volume measurements were performed with semi-automatic, pre-defined parameters. The inter-observer and intra-observer agreement was excellent with all intra-class correlation coefficients >0.93. PBVVs of multiparous women were significantly larger than the PBVVs of primiparous women (p = 0.008). In this study, no other associations were found. In conclusion, V-Scope offers a reproducible method for measuring PBVV and FVV at 12 wk of gestation, although we are unsure whether the volume measured represents the true volume of the vasculature. Maternal parity influences PBVV. PMID:24798392

  14. A Virtual World with Real Results

    ERIC Educational Resources Information Center

    Hughes, Katherine L.; Golann, Joanne Wang

    2008-01-01

    This article describes how students learn invaluable job-readiness and academic skills by setting up and running their own businesses in a virtual world. Virtual Enterprises (VE) International is a high school career and technical education (CTE) program that teaches students about business by having a class create and operate its own virtual…

  15. Selecting a Virtual World Platform for Learning

    ERIC Educational Resources Information Center

    Robbins, Russell W.; Butler, Brian S.

    2009-01-01

    Like any infrastructure technology, Virtual World (VW) platforms provide affordances that facilitate some activities and hinder others. Although it is theoretically possible for a VW platform to support all types of activities, designers make choices that lead technologies to be more or less suited for different learning objectives. Virtual World…

  16. Fast extraction of minimal paths in 3D images and applications to virtual endoscopy.

    PubMed

    Deschamps, T; Cohen, L D

    2001-12-01

    The aim of this article is to build trajectories for virtual endoscopy inside 3D medical images, using the most automatic way. Usually the construction of this trajectory is left to the clinician who must define some points on the path manually using three orthogonal views. But for a complex structure such as the colon, those views give little information on the shape of the object of interest. The path construction in 3D images becomes a very tedious task and precise a priori knowledge of the structure is needed to determine a suitable trajectory. We propose a more automatic path tracking method to overcome those drawbacks: we are able to build a path, given only one or two end points and the 3D image as inputs. This work is based on previous work by Cohen and Kimmel [Int. J. Comp. Vis. 24 (1) (1997) 57] for extracting paths in 2D images using Fast Marching algorithm. Our original contribution is twofold. On the first hand, we present a general technical contribution which extends minimal paths to 3D images and gives new improvements of the approach that are relevant in 2D as well as in 3D to extract linear structures in images. It includes techniques to make the path extraction scheme faster and easier, by reducing the user interaction. We also develop a new method to extract a centered path in tubular structures. Synthetic and real medical images are used to illustrate each contribution. On the other hand, we show that our method can be efficiently applied to the problem of finding a centered path in tubular anatomical structures with minimum interactivity, and that this path can be used for virtual endoscopy. Results are shown in various anatomical regions (colon, brain vessels, arteries) with different 3D imaging protocols (CT, MR). PMID:11731307

  17. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    NASA Astrophysics Data System (ADS)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  18. Virtual Spring-Based 3D Multi-Agent Group Coordination

    NASA Astrophysics Data System (ADS)

    Daneshvar, Roozbeh; Shih, Liwen

    As future personal vehicles start enjoying the ability to fly, tackling safe transportation coordination can be a tremendous task, far beyond the current challenge on radar screen monitoring of the already saturated air traffic control. Our focus is on the distributed safe-distance coordination among a group of autonomous flying vehicle agents, where each follows its own current straight-line direction in a 3D space with variable speeds. A virtual spring-based model is proposed for the group coordination. Within a specified neighborhood radius, each vehicle forms a virtual connection with each neighbor vehicle by a virtual spring. As the vehicle changes its position, speed and altitude, the total resultant forces on each virtual spring try to maintain zero by moving to the mechanical equilibrium point. The agents then add the simple total virtual spring constraints to their movements to determine their next positions individually. Together, the multi-agent vehicles reach a group behavior, where each of them keeps a minimal safe-distance with others. A new safe behavior thus arises in the group level. With the proposed virtual spring coordination model, the vehicles need no direct communication with each other, require only minimum local processing resources, and the control is completely distributed. New behaviors can now be formulated and studied based on the proposed model, e.g., how a fast driving vehicle can find its way though the crowd by avoiding the other vehicles effortlessly1.

  19. Poster presentations in the virtual world.

    PubMed

    Sloan, Rosalind

    2012-11-01

    This column describes a creative virtual-world approach used by the American Nurses Association Center for Continuing Education and Professional Development to provide an additional venue for continuing nursing education within a large conference format. Hurdles that were overcome in developing a virtual world of poster presentations included determining how to award contact hours, how to secure funding, how to separate sponsorship from the integrity of the learning activity, and how to manage submissions and content. PMID:23126303

  20. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  1. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    USGS Publications Warehouse

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  2. 3D resolution enhancement of deep-tissue imaging based on virtual spatial overlap modulation microscopy.

    PubMed

    Su, I-Cheng; Hsu, Kuo-Jen; Shen, Po-Ting; Lin, Yen-Yin; Chu, Shi-Wei

    2016-07-25

    During the last decades, several resolution enhancement methods for optical microscopy beyond diffraction limit have been developed. Nevertheless, those hardware-based techniques typically require strong illumination, and fail to improve resolution in deep tissue. Here we develop a high-speed computational approach, three-dimensional virtual spatial overlap modulation microscopy (3D-vSPOM), which immediately solves the strong-illumination issue. By amplifying only the spatial frequency component corresponding to the un-scattered point-spread-function at focus, plus 3D nonlinear value selection, 3D-vSPOM shows significant resolution enhancement in deep tissue. Since no iteration is required, 3D-vSPOM is much faster than iterative deconvolution. Compared to non-iterative deconvolution, 3D-vSPOM does not need a priori information of point-spread-function at deep tissue, and provides much better resolution enhancement plus greatly improved noise-immune response. This method is ready to be amalgamated with two-photon microscopy or other laser scanning microscopy to enhance deep-tissue resolution. PMID:27464077

  3. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  4. A Voice and Mouse Input Interface for 3D Virtual Environments

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Bryson, Steve T.

    2003-01-01

    There have been many successful stories on how 3D input devices can be fully integrated into an immersive virtual environment. Electromagnetic trackers, optical trackers, gloves, and flying mice are just some of these input devices. Though we can use existing 3D input devices that are commonly used for VR applications, there are several factors that prevent us from choosing these input devices for our applications. One main factor is that most of these tracking devices are not suitable for prolonged use due to human fatigue associated with using them. A second factor is that many of them would occupy additional office space. Another factor is that many of the 3D input devices are expensive due to the unusual hardware that are required. For our VR applications, we want a user interface that would work naturally with standard equipment. In this paper, we demonstrate applications or our proposed muitimodal interface using a 3D dome display. We also show that effective data analysis can be achieved while the scientists view their data rendered inside the dome display and perform user interactions simply using the mouse and voice input. Though the sphere coordinate grid seems to be ideal for interaction using a 3D dome display, we can also use other non-spherical grids as well.

  5. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    PubMed Central

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system. PMID:19849837

  6. Virtual worlds and team training.

    PubMed

    Dev, Parvati; Youngblood, Patricia; Heinrichs, W Leroy; Kusumoto, Laura

    2007-06-01

    An important component of all emergency medicine residency programs is managing trauma effectively as a member of an emergency medicine team, but practice on live patients is often impractical and mannequin-based simulators are expensive and require all trainees to be physically present at the same location. This article describes a project to develop and evaluate a computer-based simulator (the Virtual Emergency Department) for distance training in teamwork and leadership in trauma management. The virtual environment provides repeated practice opportunities with life-threatening trauma cases in a safe and reproducible setting. PMID:17574193

  7. Developing a Virtual Physics World

    ERIC Educational Resources Information Center

    Wegener, Margaret; McIntyre, Timothy J.; McGrath, Dominic; Savage, Craig M.; Williamson, Michael

    2012-01-01

    In this article, the successful implementation of a development cycle for a physics teaching package based on game-like virtual reality software is reported. The cycle involved several iterations of evaluating students' use of the package followed by instructional and software development. The evaluation used a variety of techniques, including…

  8. Options in virtual 3D, optical-impression-based planning of dental implants.

    PubMed

    Reich, Sven; Kern, Thomas; Ritter, Lutz

    2014-01-01

    If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow. PMID:25098158

  9. Building virtual 3D bone fragment models to control diaphyseal fracture reduction

    NASA Astrophysics Data System (ADS)

    Leloup, Thierry; Schuind, Frederic; Lasudry, Nadine; Van Ham, Philippe

    1999-05-01

    Most fractures of the long bones are displaced and need to be surgically reduced. External fixation is often used but the crucial point of this technique is the control of reduction, which is effected with a brilliance amplifier. This system, giving instantly a x-ray image, has many disadvantages. It implies frequent irradiation to the patient and the surgical team, the visual field is limited, the supplied images are distorted and it only gives 2D information. Consequently, the reduction is occasionally imperfect although intraoperatively it appears acceptable. Using the pains inserted in each fragment as markers and an optical tracker, it is possible to build a virtual 3D model for each principal fragment and to follow its movement during the reduction. This system will supply a 3D image of the fracture in real time and without irradiation. The brilliance amplifier could then be replaced by such a virtual reality system to provide the surgeon with an accurate tool facilitating the reduction of the fracture. The purpose of this work is to show how to build the 3D model for each principal bone fragment.

  10. Avalanche for shape and feature-based virtual screening with 3D alignment.

    PubMed

    Diller, David J; Connell, Nancy D; Welsh, William J

    2015-11-01

    This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns. PMID:26458937

  11. Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling.

    PubMed

    Cappel, Daniel; Dixon, Steven L; Sherman, Woody; Duan, Jianxin

    2015-02-01

    3-D ligand conformations are required for most ligand-based drug design methods, such as pharmacophore modeling, shape-based screening, and 3-D QSAR model building. Many studies of conformational search methods have focused on the reproduction of crystal structures (i.e. bioactive conformations); however, for ligand-based modeling the key question is how to generate a ligand alignment that produces the best results for a given query molecule. In this work, we study different conformation generation modes of ConfGen and the impact on virtual screening (Shape Screening and e-Pharmacophore) and QSAR predictions (atom-based and field-based). In addition, we develop a new search method, called common scaffold alignment, that automatically detects the maximum common scaffold between each screening molecule and the query to ensure identical coordinates of the common core, thereby minimizing the noise introduced by analogous parts of the molecules. In general, we find that virtual screening results are relatively insensitive to the conformational search protocol; hence, a conformational search method that generates fewer conformations could be considered "better" because it is more computationally efficient for screening. However, for 3-D QSAR modeling we find that more thorough conformational sampling tends to produce better QSAR predictions. In addition, significant improvements in QSAR predictions are obtained with the common scaffold alignment protocol developed in this work, which focuses conformational sampling on parts of the molecules that are not part of the common scaffold. PMID:25408244

  12. A virtual interface for interactions with 3D models of the human body.

    PubMed

    De Paolis, Lucio T; Pulimeno, Marco; Aloisio, Giovanni

    2009-01-01

    The developed system is the first prototype of a virtual interface designed to avoid contact with the computer so that the surgeon is able to visualize 3D models of the patient's organs more effectively during surgical procedure or to use this in the pre-operative planning. The doctor will be able to rotate, to translate and to zoom in on 3D models of the patient's organs simply by moving his finger in free space; in addition, it is possible to choose to visualize all of the organs or only some of them. All of the interactions with the models happen in real-time using the virtual interface which appears as a touch-screen suspended in free space in a position chosen by the user when the application is started up. Finger movements are detected by means of an optical tracking system and are used to simulate touch with the interface and to interact by pressing the buttons present on the virtual screen. PMID:19377116

  13. Young Children's Play in Online Virtual Worlds

    ERIC Educational Resources Information Center

    Marsh, Jackie

    2010-01-01

    Virtual worlds for children are becoming increasingly popular, and yet there are few accounts of children's use of these worlds. Young children are spending increasing amounts of time online as technology continues to create significant changes in social and cultural practices in the 21st century. Some of children's online interactions can be…

  14. Elastic registration using 3D ChainMail: application to virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Daly, Barry; Shekhar, Raj

    2006-03-01

    We present an elastic registration algorithm based on local deformations modeled using cubic B-splines and controlled using 3D ChainMail. Our algorithm eliminates the appearance of folding artifacts and allows local rigidity and compressibility control independent of the image similarity metric being used. 3D ChainMail propagates large internal deformations between neighboring B-Spline control points, thereby preserving the topology of the transformed image without requiring the addition of penalty terms based on rigidity of the transformation field to the equation used to maximize image similarity. A novel application to virtual colonoscopy is presented where the algorithm is used to significantly improve cross-localization between colon locations in prone and supine CT images.

  15. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues.

    PubMed

    Calì, Corrado; Baghabra, Jumana; Boges, Daniya J; Holst, Glendon R; Kreshuk, Anna; Hamprecht, Fred A; Srinivasan, Madhusudhanan; Lehväslaiho, Heikki; Magistretti, Pierre J

    2016-01-01

    Advances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room in which we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of EM preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to the observation of a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. PMID:26179415

  16. Interactive 3D Visualization of the Great Lakes of the World (GLOW) as a Tool to Facilitate Informal Science Education

    NASA Astrophysics Data System (ADS)

    Yikilmaz, M.; Harwood, C. L.; Hsi, S.; Kellogg, L. H.; Kreylos, O.; McDermott, J.; Pellett, B.; Schladow, G.; Segale, H. M.; Yalowitz, S.

    2013-12-01

    Three-dimensional (3D) visualization is a powerful research tool that has been used to investigate complex scientific problems in various fields. It allows researchers to explore and understand processes and features that are not directly observable and help with building of new models. It has been shown that 3D visualization creates a more engaging environment for public audiences. Interactive 3D visualization can allow individuals to explore scientific concepts on their own. We present an NSF funded project developed in collaboration with UC Davis KeckCAVES, UC Davis Tahoe Environmental Research Center, ECHO Lake Aquarium & Science Center, and Lawrence Hall of Science. The Great Lakes of the World (GLOW) project aims to build interactive 3D visualization of some of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes. The project includes a collection of publicly available satellite imagery and digital elevation models at various resolutions for the 20 major lakes of the world as well as the bathymetry data for the 12 lakes. It also includes the vector based 'Global Lakes and Wetlands Database (GLWD)' by the World Wildlife Foundation (WWF) and the Center for Environmental System Research University of Kassel, Germany and the CIA World DataBank II data sets to show wetlands and water reservoirs at global scale. We use a custom virtual globe (Crusta) developed at the UC Davis KeckCAVES. Crusta is designed to specifically allow for visualization and mapping of features in very high spatial resolution (< 1m) and large extent (1000's of km2) raster imagery and topographic data. In addition to imagery, a set of pins, labels and billboards are used to provide textual information about these lakes. Users can interactively learn about the lake and watershed processes as well as geologic processes (e.g. faulting, landslide, glacial, volcanic

  17. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  18. Going Virtual… or Not: Development and Testing of a 3D Virtual Astronomy Environment

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, L.; Speck, A.; Ding, N.; Baldridge, S.; Witzig, S.; Laffey, J.

    2013-04-01

    We present our preliminary results of a pilot study of students' knowledge transfer of an astronomy concept into a new environment. We also share our discoveries on what aspects of a 3D environment students consider being motivational and discouraging for their learning. This study was conducted among 64 non-science major students enrolled in an astronomy laboratory course. During the course, students learned the concept and applications of Kepler's laws using a 2D interactive environment. Later in the semester, the students were placed in a 3D environment in which they were asked to conduct observations and to answers a set of questions pertaining to the Kepler's laws of planetary motion. In this study, we were interested in observing scrutinizing and assessing students' behavior: from choices that they made while creating their avatars (virtual representations) to tools they choose to use, to their navigational patterns, to their levels of discourse in the environment. These helped us to identify what features of the 3D environment our participants found to be helpful and interesting and what tools created unnecessary clutter and distraction. The students' social behavior patterns in the virtual environment together with their answers to the questions helped us to determine how well they understood Kepler's laws, how well they could transfer the concepts to a new situation, and at what point a motivational tool such as a 3D environment becomes a disruption to the constructive learning. Our founding confirmed that students construct deeper knowledge of a concept when they are fully immersed in the environment.

  19. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  20. Molecular surface point environments for virtual screening and the elucidation of binding patterns (MOLPRINT 3D).

    PubMed

    Bender, Andreas; Mussa, Hamse Y; Gill, Gurprem S; Glen, Robert C

    2004-12-16

    A novel method (MOLPRINT 3D) for virtual screening and the elucidation of ligand-receptor binding patterns is introduced that is based on environments of molecular surface points. The descriptor uses points relative to the molecular coordinates, thus it is translationally and rotationally invariant. Due to its local nature, conformational variations cause only minor changes in the descriptor. If surface point environments are combined with the Tanimoto coefficient and applied to virtual screening, they achieve retrieval rates comparable to that of two-dimensional (2D) fingerprints. The identification of active structures with minimal 2D similarity ("scaffold hopping") is facilitated. In combination with information-gain-based feature selection and a naive Bayesian classifier, information from multiple molecules can be combined and classification performance can be improved. Selected features are consistent with experimentally determined binding patterns. Examples are given for angiotensin-converting enzyme inhibitors, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, and thromboxane A2 antagonists. PMID:15588092

  1. A Critical Analysis of Learner Participation in Virtual Worlds: How Can Virtual Worlds Inform Our Pedagogy?

    ERIC Educational Resources Information Center

    Panichi, Luisa

    2015-01-01

    This paper reports on an exploratory case study of learner participation within the context of online language learning in virtual world platforms. Data for this investigation was collected through a case study of a Business English course within a qualitative Case-Study Research framework. This study examines learner activity in virtual worlds in…

  2. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    NASA Astrophysics Data System (ADS)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  3. Virtual Presence and the Mind's Eye in 3-D Online Communities

    NASA Astrophysics Data System (ADS)

    Beacham, R. C.; Denard, H.; Baker, D.

    2011-09-01

    Digital technologies have introduced fundamental changes in the forms, content, and media of communication. Indeed, some have suggested we are in the early stages of a seismic shift comparable to that in antiquity with the transition from a primarily oral culture to one based upon writing. The digital transformation is rapidly displacing the long-standing hegemony of text, and restoring in part social, bodily, oral and spatial elements, but in radically reconfigured forms and formats. Contributing to and drawing upon such changes and possibilities, scholars and those responsible for sites preserving or displaying cultural heritage, have undertaken projects to explore the properties and potential of the online communities enabled by "Virtual Worlds" and related platforms for teaching, collaboration, publication, and new modes of disciplinary research. Others, keenly observing and evaluating such work, are poised to contribute to it. It is crucial that leadership be provided to ensure that serious and sustained investigation be undertaken by scholars who have experience, and achievements, in more traditional forms of research, and who perceive the emerging potential of Virtual World work to advance their investigations. The Virtual Museums Transnational Network will seek to engage such scholars and provide leadership in this emerging and immensely attractive new area of cultural heritage exploration and experience. This presentation reviews examples of the current "state of the art" in heritage based Virtual World initiatives, looking at the new modes of social interaction and experience enabled by such online communities, and some of the achievements and future aspirations of this work.

  4. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  5. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included. PMID:24678025

  6. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    PubMed Central

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2013-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803

  7. Using a 3D Virtual Supermarket to Measure Food Purchase Behavior: A Validation Study

    PubMed Central

    Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-01-01

    Background There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. Objective The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of “presence” (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Methods Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. Results A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real

  8. The 3-D world modeling with updating capability based on combinatorial geometry

    NASA Technical Reports Server (NTRS)

    Goldstein, M.; Pin, F. G.; Desaussure, G.; Weisbin, C. R.

    1987-01-01

    A 3-D world modeling technique using range data is discribed. Range data quantify the distances from the sensor focal plane to the object surface, i.e., the 3-D coordinates of discrete points on the object surface are known. The approach proposed herein for 3-D world modeling is based on the Combinatorial Geometry (CG) method which is widely used in Monte Carlo particle transport calculations. First, each measured point on the object surface is surrounded by a small sphere with a radius determined by the range to that point. Then, the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of all the spheres. The result is an unambiguous representation of the object's boundary surfaces. The pre-learned partial knowledge of the environment can be also represented using the CG Method with a relatively small amount of data. Using the CG type of representation, distances in desired directions to boundary surfaces of various objects are efficiently calculated. This feature is particularly useful for continuously verifying the world model against the data provided by a range finder, and for integrating range data from successive locations of the robot during motion. The efficiency of the proposed approach is illustrated by simulations of a spherical robot in a 3-D room in the presence of moving obstacles and inadequate prelearned partial knowledge of the environment.

  9. Using a Quest in a 3D Virtual Environment for Student Interaction and Vocabulary Acquisition in Foreign Language Learning

    ERIC Educational Resources Information Center

    Kastoudi, Denise

    2011-01-01

    The gaming and interactional nature of the virtual environment of Second Life offers opportunities for language learning beyond the traditional pedagogy. This study case examined the potential of 3D virtual quest games to enhance vocabulary acquisition through interaction, negotiation of meaning and noticing. Four adult students of English at…

  10. Testing the hybrid-3D Hillslope Hydrological Model in a Real-World Controlled Environment

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Gochis, D. J.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    Hillslopes play an important role for converting rainfall into runoff, and as such, influence theterrestrial dynamics of the Earth's climate system. Recently, we have developed a hybrid-3D (h3D) hillslope hydrological model that couples a 1D vertical soil column model with a lateral pseudo-2D saturated zone and overland flow model. The h3D model gives similar results as the CATchment HYdrological model (CATHY), which simulates the subsurface movement of water with the 3D Richards equation, though the runtime efficiency of the h3D model is about 2-3 orders of magnitude faster. In the current work, the ability of the h3D model to predict real-world hydrological dynamics is assessed using a number of recharge-drainage experiments within the Landscape Evolution Observatory (LEO) at the Biosphere 2 near Tucson, Arizona, USA. LEO offers accurate and high-resolution (both temporally and spatially) observations of the inputs, outputs and storage dynamics of several hillslopes. The level of detail of these observations is generally not possible with real-world hillslope studies. Therefore, LEO offers an optimal environment to test the h3D model. The h3D model captures the observed storage, baseflow, and overland flow dynamics of both a larger and a smaller hillslope. Furthermore, it simulates overland flow better than CATHY. The h3D model has difficulties correctly representing the height of the saturated zone close to the seepage face of the smaller hillslope, though. There is a gravel layer near this seepage face, and the numerical boundary condition of the h3D model is insufficient to capture the hydrological dynamics within this region. In addition, the h3D model is used to test the hypothesis that model parameters change through time due to the migration of soil particles during the recharge-drainage experiments. An in depth calibration of the h3D model parameters reveals that the best results are obtained by applying an event-based optimization procedure as compared

  11. Conversational Agents in Virtual Worlds: Bridging Disciplines

    ERIC Educational Resources Information Center

    Veletsianos, George; Heller, Robert; Overmyer, Scott; Procter, Mike

    2010-01-01

    This paper examines the effective deployment of conversational agents in virtual worlds from the perspective of researchers/practitioners in cognitive psychology, computing science, learning technologies and engineering. From a cognitive perspective, the major challenge lies in the coordination and management of the various channels of information…

  12. 13 Tips for Virtual World Teaching

    ERIC Educational Resources Information Center

    Villano, Matt

    2008-01-01

    Multi-user virtual environments (MUVEs) are gaining momentum as the latest and greatest learning tool in the world of education technology. How does one get started with them? How do they work? This article shares 13 secrets from immersive education experts and educators on how to have success in implementing these new tools and technologies on…

  13. Meaningful Learning and Creativity in Virtual Worlds

    ERIC Educational Resources Information Center

    Ferguson, Rebecca

    2011-01-01

    Virtual worlds open new possibilities for learners, prompting a reconsideration of how learning takes place, and setting education in a context of playfulness, delight and creativity. They provide environments in which it is not only possible but also necessary to generate and try out ideas. They therefore offer opportunities to explore new…

  14. The Therapeutic Stage Encounters the Virtual World

    ERIC Educational Resources Information Center

    Imholz, Susan

    2008-01-01

    Clinical research in expressive therapies, psychodrama in particular, offer education researchers and software designers descriptive analyses and evidence-based impact studies on attitudinal shifts and enhanced problem solving abilities for patients and students who participate in psychodrama role-play. Gaming environments and virtual worlds that…

  15. Corporate Learning in a Virtual World

    ERIC Educational Resources Information Center

    Cole, Anne; Berge, Zane L.

    2009-01-01

    Corporate training professionals led the explosion of e-learning solutions in the 1990s. Yet in 2008, as new generations of technology-savvy, computer games-oriented employees are entering the workforce, corporate training departments are far behind universities in exploring the use of virtual worlds like Second Life or Protosphere as platforms…

  16. Acceptance of Virtual Worlds as Learning Space

    ERIC Educational Resources Information Center

    Tokel, Saniye Tugba; Isler, Veysi

    2015-01-01

    This study investigated relationships among perceived usefulness (PU), ease of use and perceived enjoyment, plus their relationships with the behavioural intention (BI) of individuals to use virtual worlds as a learning space. Participant responses to a questionnaire were analysed, and results indicated that while PU seemed to affect BIs most,…

  17. Distributed Cognition in a Virtual World

    ERIC Educational Resources Information Center

    Gillen, Julia; Ferguson, Rebecca; Peachey, Anna; Twining, Peter

    2012-01-01

    Over a 13-month period, the Schome Park Programme operated the first "closed" (i.e. protected) Teen Second Life project in Europe. The project organised diverse educational events that centred on use of a virtual world and an associated asynchronous forum and wiki. Students and staff together exploited the affordances of the environment to develop…

  18. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  19. Barriers and Enablers to the Use of Virtual Worlds in Higher Education: An Exploration of Educator Perceptions, Attitudes and Experiences

    ERIC Educational Resources Information Center

    Gregory, Sue; Scutter, Sheila; Jacka, Lisa; McDonald, Marcus; Farley, Helen; Newman, Chris

    2015-01-01

    Three-dimensional (3D) virtual worlds have been used for more than a decade in higher education for teaching and learning. Since the 1980s, academics began using virtual worlds as an exciting and innovative new technology to provide their students with new learning experiences that were difficult to provide any other way. But since that time,…

  20. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    PubMed Central

    Zhou, Nannan; Xu, Yuan; Liu, Xian; Wang, Yulan; Peng, Jianlong; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2015-01-01

    The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors. PMID:26110383

  1. New world of 3-D printing offers "completely new ways of thinking": Q&A with author, engineer, and 3-D printing expert Hod Lipson.

    PubMed

    Lipson, Hod

    2013-01-01

    With stories about everything from a three-?dimensional (3-D)-printed tracheal implant used in an infant to a 3-D-printed replacement for 75% of a man?s skull, a media firestorm is swirling around this seemingly new technology, but what exactly is 3-D printing? How is it being used today, and what is its true potential in the biomedical arena? Renowned robotics engineer Hod Lipson, coauthor of Fabricated: The New World of 3D Printing [1], and director of the Creative Machines Lab at Cornell University?s Sibley School of Mechanical and Aerospace Engineering in Ithaca, New York, spent some time with IEEE Pulse in a wide-ranging conversation about the past, present, and future of 3-D printing and its implications for biomedical engineering. PMID:24215725

  2. Design and fabrication of concave-convex lens for head mounted virtual reality 3D glasses

    NASA Astrophysics Data System (ADS)

    Deng, Zhaoyang; Cheng, Dewen; Hu, Yuan; Huang, Yifan; Wang, Yongtian

    2015-08-01

    As a kind of light-weighted and convenient tool to achieve stereoscopic vision, virtual reality glasses are gaining more popularity nowadays. For these glasses, molded plastic lenses are often adopted to handle both the imaging property and the cost of massive production. However, the as-built performance of the glass depends on both the optical design and the injection molding process, and maintaining the profile of the lens during injection molding process presents particular challenges. In this paper, optical design is combined with processing simulation analysis to obtain a design result suitable for injection molding. Based on the design and analysis results, different experiments are done using high-quality equipment to optimize the process parameters of injection molding. Finally, a single concave-convex lens is designed with a field-of-view of 90° for the virtual reality 3D glasses. The as-built profile error of the glass lens is controlled within 5μm, which indicates that the designed shape of the lens is fairly realized and the designed optical performance can thus be achieved.

  3. Design and implementation of a 3D ocean virtual reality and visualization engine

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  4. 3D modeling of the Strasbourg's Cathedral basements for interdisciplinary research and virtual visits

    NASA Astrophysics Data System (ADS)

    Landes, T.; Kuhnle, G.; Bruna, R.

    2015-08-01

    On the occasion of the millennium celebration of Strasbourg Cathedral, a transdisciplinary research group composed of archaeologists, surveyors, architects, art historians and a stonemason revised the 1966-1972 excavations under the St. Lawrence's Chapel of the Cathedral having remains of Roman and medieval masonry. The 3D modeling of the Chapel has been realized based on the combination of conventional surveying techniques for the network creation, laser scanning for the model creation and photogrammetric techniques for the texturing of a few parts. According to the requirements and the end-user of the model, the level of detail and level of accuracy have been adapted and assessed for every floor. The basement has been acquired and modeled with more details and a higher accuracy than the other parts. Thanks to this modeling work, archaeologists can confront their assumptions to those of other disciplines by simulating constructions of other worship edifices on the massive stones composing the basement. The virtual reconstructions provided evidence in support of these assumptions and served for communication via virtual visits.

  5. Learning, Teaching and Ambiguity in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Carr, Diane; Oliver, Martin; Burn, Andrew

    What might online communities and informal learning practices teach us about virtual world pedagogy? In this chapter we describe a research project in which learning practices in online worlds such as World of Warcraft and Second LifeTM (SL) were investigated. Working within an action research framework, we employed a range of methods to investigate how members of online communities define the worlds they encounter, negotiate the terms of participation, and manage the incremental complexity of game worlds. The implications of such practices for online pedagogy were then explored through teaching in SL. SL eludes simple definitions. Users, or "residents", of SL partake of a range of pleasures and activities - socialising, building, creating and exhibiting art, playing games, exploring, shopping, or running a business, for instance. We argue that the variable nature of SL gives rise to degrees of ambiguity. This ambiguity impacts on inworld social practices, and has significant implications for online teaching and learning.

  6. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    . In the ARTEC digital mock-up for example, it shows the ability to select the individual frames, already polygonal and geo-referenced at the time of capture; however, it is not possible to make an automated texturization differently from the low-cost environment which allows to produce a good graphics' definition. Once the final 3D models were obtained, we have proceeded to do a geometric and graphic comparison of the results. Therefore, in order to provide an accuracy requirement and an assessment for the 3D reconstruction we have taken into account the following benchmarks: cost, captured points, noise (local and global), shadows and holes, operability, degree of definition, quality and accuracy. Subsequently, these studies carried out in an empirical way on the virtual reconstructions, a 3D documentation was codified with a procedural method endorsing the use of terrestrial sensors for the documentation of antlers. The results thus pursued were compared with the standards set by the current provisions (see "Manual de medición" of Government of Andalusia-Spain); to date, in fact, the identification is based on data such as length, volume, colour, texture, openness, tips, structure, etc. Data, which is currently only appreciated with traditional instruments, such as tape measure, would be well represented by a process of virtual reconstruction and cataloguing.

  7. Using a virtual world for robot planning

    NASA Astrophysics Data System (ADS)

    Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian

    2012-06-01

    We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.

  8. Who regulates ethics in the virtual world?

    PubMed

    Sharma, Seemu; Lomash, Hitashi; Bawa, Seema

    2015-02-01

    This paper attempts to give an insight into emerging ethical issues due to the increased usage of the Internet in our lives. We discuss three main theoretical approaches relating to the ethics involved in the information technology (IT) era: first, the use of IT as a tool; second, the use of social constructivist methods; and third, the approach of phenomenologists. Certain aspects of ethics and IT have been discussed based on a phenomenological approach and moral development. Further, ethical issues related to social networking sites are discussed. A plausible way to make the virtual world ethically responsive is collective responsibility which proposes that society has the power to influence but not control behavior in the virtual world. PMID:24469471

  9. Exploring the Contribution of Virtual Worlds to Learning in Organizations

    ERIC Educational Resources Information Center

    Li, Jessica; D'Souza, Derrick; Du, Yunfei

    2011-01-01

    Despite the growing interest of business executives, there is limited academic research on the contributions of virtual worlds to learning in organizations. We address this limitation by using a recently developed typology of virtual world capabilities to investigate the potential contributions of virtual worlds to learning in organizations.…

  10. Faculty Perspectives of Faculty Persona in a Virtual World

    ERIC Educational Resources Information Center

    Blackmon, Stephanie J.

    2013-01-01

    Immersive virtual worlds provide a new way to deliver online courses or parts of online and face-to-face courses. There is a growing body of research on online learning, and the data on virtual worlds is also increasing. However, literature concerning professors' experiences with specific aspects of virtual worlds is limited. For example,…

  11. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    NASA Astrophysics Data System (ADS)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  12. NanTroSEIZE in 3-D: Creating a Virtual Research Experience in Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Bangs, N. L.; Moore, G. F.; Tobin, H.

    2009-12-01

    Marine research programs, both large and small, have increasingly added a web-based component to facilitate outreach to K-12 and the public, in general. These efforts have included, among other activities, information-rich websites, ship-to-shore communication with scientists during expeditions, blogs at sea, clips on YouTube, and information about daily shipboard activities. Our objective was to leverage a portion of the vast collection of data acquired through the NSF-MARGINS program to create a learning tool with a long lifespan for use in undergraduate geoscience courses. We have developed a web-based virtual expedition, NanTroSEIZE in 3-D, based on a seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project. The website combines text, graphics, audio and video to place learning in an experiential framework as students participate on the expedition and carry out research. Students learn about the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the sea-going expedition. Students are presented with the principles of 3-D seismic imaging, data processing and interpretation while mapping and identifying the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. They also learn about IODP drilling that began in 2007 and will extend through much of the next decade. The website is being tested in undergraduate classes in fall 2009 and will be distributed through the NSF-MARGINS website (http://www.nsf-margins.org/) and the MARGINS Mini-lesson section of the Science Education Resource Center (SERC) (http

  13. Validating agent based models through virtual worlds.

    SciTech Connect

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  14. CamMedNP: Building the Cameroonian 3D structural natural products database for virtual screening

    PubMed Central

    2013-01-01

    Background Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We present CamMedNP - a new database beginning with more than 2,500 compounds of natural origin, along with some of their derivatives which were obtained through hemisynthesis. These are pure compounds which have been previously isolated and characterized using modern spectroscopic methods and published by several research teams spread across Cameroon. Description In the present study, 224 distinct medicinal plant species belonging to 55 plant families from the Cameroonian flora have been considered. About 80 % of these have been previously published and/or referenced in internationally recognized journals. For each compound, the optimized 3D structure, drug-like properties, plant source, collection site and currently known biological activities are given, as well as literature references. We have evaluated the “drug-likeness” of this database using Lipinski’s “Rule of Five”. A diversity analysis has been carried out in comparison with the ChemBridge diverse database. Conclusion CamMedNP could be highly useful for database screening and natural product lead generation programs. PMID:23590173

  15. Toward virtual anatomy: a stereoscopic 3-D interactive multimedia computer program for cranial osteology.

    PubMed

    Trelease, R B

    1996-01-01

    Advances in computer visualization and user interface technologies have enabled development of "virtual reality" programs that allow users to perceive and to interact with objects in artificial three-dimensional environments. Such technologies were used to create an image database and program for studying the human skull, a specimen that has become increasingly expensive and scarce. Stereoscopic image pairs of a museum-quality skull were digitized from multiple views. For each view, the stereo pairs were interlaced into a single, field-sequential stereoscopic picture using an image processing program. The resulting interlaced image files are organized in an interactive multimedia program. At run-time, gray-scale 3-D images are displayed on a large-screen computer monitor and observed through liquid-crystal shutter goggles. Users can then control the program and change views with a mouse and cursor to point-and-click on screen-level control words ("buttons"). For each view of the skull, an ID control button can be used to overlay pointers and captions for important structures. Pointing and clicking on "hidden buttons" overlying certain structures triggers digitized audio spoken word descriptions or mini lectures. PMID:8793223

  16. Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting.

    PubMed

    Atabaki, Artin; Marciniak, Karolina; Dicke, Peter W; Thier, Peter

    2015-07-01

    Despite the ecological importance of gaze following, little is known about the underlying neuronal processes, which allow us to extract gaze direction from the geometric features of the eye and head of a conspecific. In order to understand the neuronal mechanisms underlying this ability, a careful description of the capacity and the limitations of gaze following at the behavioral level is needed. Previous studies of gaze following, which relied on naturalistic settings have the disadvantage of allowing only very limited control of potentially relevant visual features guiding gaze following, such as the contrast of iris and sclera, the shape of the eyelids and--in the case of photographs--they lack depth. Hence, in order to get full control of potentially relevant features we decided to study gaze following of human observers guided by the gaze of a human avatar seen stereoscopically. To this end we established a stereoscopic 3D virtual reality setup, in which we tested human subjects' abilities to detect at which target a human avatar was looking at. Following the gaze of the avatar showed all the features of the gaze following of a natural person, namely a substantial degree of precision associated with a consistent pattern of systematic deviations from the target. Poor stereo vision affected performance surprisingly little (only in certain experimental conditions). Only gaze following guided by targets at larger downward eccentricities exhibited a differential effect of the presence or absence of accompanying movements of the avatar's eyelids and eyebrows. PMID:25982719

  17. Re-Dimensional Thinking in Earth Science: From 3-D Virtual Reality Panoramas to 2-D Contour Maps

    ERIC Educational Resources Information Center

    Park, John; Carter, Glenda; Butler, Susan; Slykhuis, David; Reid-Griffin, Angelia

    2008-01-01

    This study examines the relationship of gender and spatial perception on student interactivity with contour maps and non-immersive virtual reality. Eighteen eighth-grade students elected to participate in a six-week activity-based course called "3-D GeoMapping." The course included nine days of activities related to topographic mapping. At the end…

  18. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by combining…

  19. Teacher's Skill Improvement by Role-Play and Simulations on Collaborative Educational Virtual Worlds

    ERIC Educational Resources Information Center

    Lorenzo, Carlos-Miguel

    2014-01-01

    This study looked at teachers' role-play and simulations in order to increase teachers' skills in psycho-pedagogical support on educational virtual worlds. We put forward a proposal to encourage the use of 3D scenarios where teachers can improve their skills for situations of cultural and ethical concerns that require a high level…

  20. A Theoretical Cybernetic Macro-Script to Articulate Collaborative Interactions of Cyber Entities in Virtual Worlds

    ERIC Educational Resources Information Center

    Pellas, Nikolaos

    2014-01-01

    Nowadays, the dissemination and exploitation of three-dimensional (3D) multi-user virtual worlds in higher education have been disclosed from their widespread acceptance as candidate learning platforms. However, it is still lacking a theoretical cybernetic macro-script to elaborate the coordination of multiple complex interactions among…

  1. Teaching an Aerospace Engineering Design Course via Virtual Worlds: A Comparative Assessment of Learning Outcomes

    ERIC Educational Resources Information Center

    Okutsu, Masataka; DeLaurentis, Daniel; Brophy, Sean; Lambert, Jason

    2013-01-01

    To test the concept of multiuser 3D virtual environments as media to teach semester-long courses, we developed a software prototype called Aeroquest. An aerospace design course--offered to 135 second-year students for university credits in Fall 2009--was divided into two groups: the real-world group attending lectures, physically, in a campus hall…

  2. Analysing the Suitability of Virtual Worlds for Direct Instruction and Individual Learning Activities

    ERIC Educational Resources Information Center

    Zarraonandia, Telmo; Francese, Rita; Passero, Ignazio; Diaz, Paloma; Tortora, Genoveffa

    2014-01-01

    Despite several researchers reporting evidence that 3D Virtual Worlds can be used to effectively support educational processes in recent years, the integration of this technology in real learning processes is not as commonplace as in other educational technologies. Instructional designers have to balance the cost associated with the development of…

  3. Cotton Island: Students' Learning Motivation Using a Virtual World

    ERIC Educational Resources Information Center

    Wyss, Jamie; Lee, Seung-Eun; Domina, Tanya; MacGillivray, Maureen

    2014-01-01

    As technology advances, it is important for teachers to seamlessly integrate technology into their innovative teaching techniques. Using virtual worlds is one alternative to traditional teaching methods that can provide rich learning experiences. The purpose of this article is twofold: (a) to present Cotton Island, an avatar-based 3-D virtual…

  4. A microbased shared virtual world prototype

    NASA Technical Reports Server (NTRS)

    Pitts, Gerald; Robinson, Mark; Strange, Steve

    1993-01-01

    Virtual reality (VR) allows sensory immersion and interaction with a computer-generated environment. The user adopts a physical interface with the computer, through Input/Output devices such as a head-mounted display, data glove, mouse, keyboard, or monitor, to experience an alternate universe. What this means is that the computer generates an environment which, in its ultimate extension, becomes indistinguishable from the real world. 'Imagine a wraparound television with three-dimensional programs, including three-dimensional sound, and solid objects that you can pick up and manipulate, even feel with your fingers and hands.... 'Imagine that you are the creator as well as the consumer of your artificial experience, with the power to use a gesture or word to remold the world you see and hear and feel. That part is not fiction... three-dimensional computer graphics, input/output devices, computer models that constitute a VR system make it possible, today, to immerse yourself in an artificial world and to reach in and reshape it.' Our research's goal was to propose a feasibility experiment in the construction of a networked virtual reality system, making use of current personal computer (PC) technology. The prototype was built using Borland C compiler, running on an IBM 486 33 MHz and a 386 33 MHz. Each game currently is represented as an IPX client on a non-dedicated Novell server. We initially posed the two questions: (1) Is there a need for networked virtual reality? (2) In what ways can the technology be made available to the most people possible?

  5. Fusion of image and laser-scanning data in a large-scale 3D virtual environment

    NASA Astrophysics Data System (ADS)

    Shih, Jhih-Syuan; Lin, Ta-Te

    2013-05-01

    Construction of large-scale 3D virtual environment is important in many fields such as robotic navigation, urban planning, transportation, and remote sensing, etc. Laser scanning approach is the most common method used in constructing 3D models. This paper proposes an automatic method to fuse image and laser-scanning data in a large-scale 3D virtual environment. The system comprises a laser-scanning device installed on a robot platform and the software for data fusion and visualization. The algorithms of data fusion and scene integration are presented. Experiments were performed for the reconstruction of outdoor scenes to test and demonstrate the functionality of the system. We also discuss the efficacy of the system and technical problems involved in this proposed method.

  6. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  7. Novel 3D modeling methods for virtual fabrication and EDA compatible design of MEMS via parametric libraries

    NASA Astrophysics Data System (ADS)

    Schröpfer, Gerold; Lorenz, Gunar; Rouvillois, Stéphane; Breit, Stephen

    2010-06-01

    This paper provides a brief summary of the state-of-the-art of MEMS-specific modeling techniques and describes the validation of new models for a parametric component library. Two recently developed 3D modeling tools are described in more detail. The first one captures a methodology for designing MEMS devices and simulating them together with integrated electronics within a standard electronic design automation (EDA) environment. The MEMS designer can construct the MEMS model directly in a 3D view. The resulting 3D model differs from a typical feature-based 3D CAD modeling tool in that there is an underlying behavioral model and parametric layout associated with each MEMS component. The model of the complete MEMS device that is shared with the standard EDA environment can be fully parameterized with respect to manufacturing- and design-dependent variables. Another recent innovation is a process modeling tool that allows accurate and highly realistic visualization of the step-by-step creation of 3D micro-fabricated devices. The novelty of the tool lies in its use of voxels (3D pixels) rather than conventional 3D CAD techniques to represent the 3D geometry. Case studies for experimental devices are presented showing how the examination of these virtual prototypes can reveal design errors before mask tape out, support process development before actual fabrication and also enable failure analysis after manufacturing.

  8. Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging.

    PubMed

    Messier, Julie; Adamovich, Sergei; Jack, David; Hening, Wayne; Sage, Jacob; Poizner, Howard

    2007-05-01

    Successful adaptation to novel sensorimotor contexts critically depends on efficient sensory processing and integration mechanisms, particularly those required to combine visual and proprioceptive inputs. If the basal ganglia are a critical part of specialized circuits that adapt motor behavior to new sensorimotor contexts, then patients who are suffering from basal ganglia dysfunction, as in Parkinson's disease should show sensorimotor learning impairments. However, this issue has been under-explored. We tested the ability of 8 patients with Parkinson's disease (PD), off medication, ten healthy elderly subjects and ten healthy young adults to reach to a remembered 3D location presented in an immersive virtual environment. A multi-phase learning paradigm was used having four conditions: baseline, initial learning, reversal learning and aftereffect. In initial learning, the computer altered the position of a simulated arm endpoint used for movement feedback by shifting its apparent location diagonally, requiring thereby both horizontal and vertical compensations. This visual distortion forced subjects to learn new coordinations between what they saw in the virtual environment and the actual position of their limbs, which they had to derive from proprioceptive information (or efference copy). In reversal learning, the sign of the distortion was reversed. Both elderly subjects and PD patients showed learning phase-dependent difficulties. First, elderly controls were slower than young subjects when learning both dimensions of the initial biaxial discordance. However, their performance improved during reversal learning and as a result elderly and young controls showed similar adaptation rates during reversal learning. Second, in striking contrast to healthy elderly subjects, PD patients were more profoundly impaired during the reversal phase of learning. PD patients were able to learn the initial biaxial discordance but were on average slower than age-matched controls

  9. Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.

    PubMed

    Cleary, Jon O; Modat, Marc; Norris, Francesca C; Price, Anthony N; Jayakody, Sujatha A; Martinez-Barbera, Juan Pedro; Greene, Nicholas D E; Hawkes, David J; Ordidge, Roger J; Scambler, Peter J; Ourselin, Sebastien; Lythgoe, Mark F

    2011-01-15

    Ambitious international efforts are underway to produce gene-knockout mice for each of the 25,000 mouse genes, providing a new platform to study mammalian development and disease. Robust, large-scale methods for morphological assessment of prenatal mice will be essential to this work. Embryo phenotyping currently relies on histological techniques but these are not well suited to large volume screening. The qualitative nature of these approaches also limits the potential for detailed group analysis. Advances in non-invasive imaging techniques such as magnetic resonance imaging (MRI) may surmount these barriers. We present a high-throughput approach to generate detailed virtual histology of the whole embryo, combined with the novel use of a whole-embryo atlas for automated phenotypic assessment. Using individual 3D embryo MRI histology, we identified new pituitary phenotypes in Hesx1 mutant mice. Subsequently, we used advanced computational techniques to produce a whole-body embryo atlas from 6 CD-1 embryos, creating an average image with greatly enhanced anatomical detail, particularly in CNS structures. This methodology enabled unsupervised assessment of morphological differences between CD-1 embryos and Chd7 knockout mice (n=5 Chd7(+/+) and n=8 Chd7(+/-), C57BL/6 background). Using a new atlas generated from these three groups, quantitative organ volumes were automatically measured. We demonstrated a difference in mean brain volumes between Chd7(+/+) and Chd7(+/-) mice (42.0 vs. 39.1mm(3), p<0.05). Differences in whole-body, olfactory and normalised pituitary gland volumes were also found between CD-1 and Chd7(+/+) mice (C57BL/6 background). Our work demonstrates the feasibility of combining high-throughput embryo MRI with automated analysis techniques to distinguish novel mouse phenotypes. PMID:20656039

  10. Second Life in Higher Education: Assessing the Potential for and the Barriers to Deploying Virtual Worlds in Learning and Teaching

    ERIC Educational Resources Information Center

    Warburton, Steven

    2009-01-01

    "Second Life" (SL) is currently the most mature and popular multi-user virtual world platform being used in education. Through an in-depth examination of SL, this article explores its potential and the barriers that multi-user virtual environments present to educators wanting to use immersive 3-D spaces in their teaching. The context is set by…

  11. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  12. Confessions of a Second Life: Conforming in the Virtual World?

    NASA Astrophysics Data System (ADS)

    Chicas, K.; Bailenson, J.; Stevenson Won, A.; Bailey, J.

    2012-12-01

    Virtual Worlds such as Second Life or World of Warcraft are increasingly popular, with people all over the world joining these online communities. In these virtual environments people break the barrier of reality every day when they fly, walk through walls and teleport places. It is easy for people to violate the norms and behaviors of the real world in the virtual environment without real world consequences. However, previous research has shown that users' behavior may conform to their digital self-representation (avatar). This is also known as the Proteus effect (Yee, 2007). Are people behaving in virtual worlds in ways that most people would not in the physical world? It's important to understand the behaviors that occur in the virtual world if they have an impact on how people act in the real world.

  13. TV-view-into-reality metaphor: introducing computer vision into virtual worlds

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Knoche, Horst; Rossmann, Juergen

    1998-10-01

    Smart man machine interfaces turn out to be a key technology for service robots, for automation applications in industrial environments as well as in future scenarios for applications in space. For either field, the use of virtual reality (VR) techniques showed a great potential. At the IRF a virtual reality system was developed and implemented which allows the intuitive control of a multi-robot system and different automation systems under one unified VR framework. As the developed multi-robot system is also employed for space application, the intuitive commanding of inspection and teleoperation sequences is of great interest. In order to facilitate teleoperation and inspection, we make use of several metaphors and a vision system as an `intelligent sensor'. One major metaphor to be presented in the paper is the `TV-view into reality', where a TV-set is displayed in the virtual world with images of the real world being mapped onto the screen as textures. The user can move the TV-set in the virtual world and, as the image generating camera is carried by a robot, the camera-viewpoint changes accordingly. Thus the user can explore the physical world `behind' the virtual world, which is ideal for inspection and teleoperation tasks. By means of real world images and with different measurement-services provided by the underlying 3D vision system, the user can thus interactively build up or refine the virtual world according to the physical world he is watching through the TV-set.

  14. The Components of Effective Teacher Training in the Use of Three-Dimensional Immersive Virtual Worlds for Learning and Instruction Purposes: A Literature Review

    ERIC Educational Resources Information Center

    Nussli, Natalie; Oh, Kevin

    2014-01-01

    The overarching question that guides this review is to identify the key components of effective teacher training in virtual schooling, with a focus on three-dimensional (3D) immersive virtual worlds (IVWs). The process of identifying the essential components of effective teacher training in the use of 3D IVWs will be described step-by-step. First,…

  15. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    MedlinePlus

    ... tech medical fields of biomedical visualization, computer graphics, virtual reality, and multimedia. The year was 1994. Kaufman's "two- ... organ, like the colon—and view it in virtual reality." Later, he and his team used it with ...

  16. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  17. Vasculogenesis and angiogenesis in the first trimester human placenta: an innovative 3D study using an immersive Virtual Reality system.

    PubMed

    van Oppenraaij, R H F; Koning, A H J; Lisman, B A; Boer, K; van den Hoff, M J B; van der Spek, P J; Steegers, E A P; Exalto, N

    2009-03-01

    First trimester human villous vascularization is mainly studied by conventional two-dimensional (2D) microscopy. With this (2D) technique it is not possible to observe the spatial arrangement of the haemangioblastic cords and vessels, transition of cords into vessels and the transition of vasculogenesis to angiogenesis. The Confocal Laser Scanning Microscopy (CLSM) allows for a three-dimensional (3D) reconstruction of images of early pregnancy villous vascularization. These 3D reconstructions, however, are normally analyzed on a 2D medium, lacking depth perception. We performed a descriptive morphologic study, using an immersive Virtual Reality system to utilize the full third dimension completely. This innovative 3D technique visualizes 3D datasets as enlarged 3D holograms and provided detailed insight in the spatial arrangement of first trimester villous vascularization, the beginning of lumen formation within various junctions of haemangioblastic cords between 5 and 7 weeks gestational age and in the gradual transition of vasculogenesis to angiogenesis. This innovative immersive Virtual Reality system enables new perspectives for vascular research and will be implemented for future investigation. PMID:19185915

  18. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  19. Is There a Second Life for Virtual Worlds?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2011-01-01

    Just a few years ago, virtual worlds were credited with the power to transform the universe. Used since the late 1990s in military and medical applications, virtual worlds first gained mainstream media attention when Linden Lab released Second Life in 2003. While other worlds, including open source environments, have launched since then (examples…

  20. Content Creation in Virtual Worlds to Support Adolescent Identity Development

    ERIC Educational Resources Information Center

    Beals, Laura M.

    2010-01-01

    Virtual worlds are online graphical environments that are becoming an increasingly large part of the online experience of young people. Virtual worlds have the potential to become one additional environment, like school, home, and the playground, where youth can learn, play, and grow. The physical world is becoming interconnected with virtual…

  1. What Children Should Know about Technology and the Virtual World

    ERIC Educational Resources Information Center

    Zhao, Yong

    2010-01-01

    The dominant view of technology so far has been that it is a tool to help improve the teaching of traditional subjects--knowledge mostly about the local and physical world. But technology has created a new realm: the virtual world. It may not be physical or tangible, but the virtual world is indisputable and has a significant economy. If one…

  2. A Taxonomy of Virtual Worlds Usage in Education

    ERIC Educational Resources Information Center

    Duncan, Ishbel; Miller, Alan; Jiang, Shangyi

    2012-01-01

    Virtual worlds are an important tool in modern education practices as well as providing socialisation, entertainment and a laboratory for collaborative work. This paper focuses on the uses of virtual worlds for education and synthesises over 100 published academic papers, reports and educational websites from around the world. A taxonomy is then…

  3. Future Evolution of Virtual Worlds as Communication Environments

    NASA Astrophysics Data System (ADS)

    Prisco, Giulio

    Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.

  4. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    PubMed

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  5. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

    PubMed Central

    Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  6. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  7. A PC-based high-quality and interactive virtual endoscopy navigating system using 3D texture based volume rendering.

    PubMed

    Hwang, Jin-Woo; Lee, Jong-Min; Kim, In-Young; Song, In-Ho; Lee, Yong-Hee; Kim, SunI

    2003-05-01

    As an alternative method to optical endoscopy, visual quality and interactivity are crucial for virtual endoscopy. One solution is to use the 3D texture map based volume rendering method that offers high rendering speed without reducing visual quality. However, it is difficult to apply the method to virtual endoscopy. First, 3D texture mapping requires a high-end graphic workstation. Second, texture memory limits reduce the frame-rate. Third, lack of shading reduces visual quality significantly. As 3D texture mapping has become available on personal computers recently, we developed an interactive navigation system using 3D texture mapping on a personal computer. We divided the volume data into small cubes and tested whether the cubes had meaningful data. Only the cubes that passed the test were loaded into the texture memory and rendered. With the amount of data to be rendered minimized, rendering speed increased remarkably. We also improved visual quality by implementing full Phong shading based on the iso-surface shading method without sacrificing interactivity. With the developed navigation system, 256 x 256 x 256 sized brain MRA data was interactively explored with good image quality. PMID:12725966

  8. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  9. Virtual Worlds, Simulations, and Games for Education: A Unifying View

    ERIC Educational Resources Information Center

    Aldrich, Clark

    2009-01-01

    While there is some overlap in the uses and structures of virtual worlds, games, and simulations and the three often look similar, their differences are profound. Clark Aldrich presents a taxonomy of virtual environments that recognizes both the distinctions and the similarities among virtual environments for learning. All three, he suggests, are…

  10. Virtual worlds: a new frontier for nurse education?

    PubMed

    Green, Janet; Wyllie, Aileen; Jackson, Debra

    2014-01-01

    Virtual worlds have the potential to offer nursing students social networking and, learning, opportunities through the use of collaborative and immersive learning. If nursing educators, are to stay, abreast of contemporary learning opportunities an exploration of the potential benefits of, virtual, worlds and their possibilities is needed. Literature was sourced that explored virtual worlds, and their, use in education, but nursing education specifically. It is clear that immersive learning has, positive, benefits for nursing, however the best way to approach virtual reality in nursing education, has yet to, be ascertained. PMID:25109212

  11. Avatars Talking: The Use of Virtual Worlds within Communication Courses

    ERIC Educational Resources Information Center

    Sarachan, Jeremy; Burk, Nanci; Day, Kenneth; Trevett-Smith, Matthew

    2013-01-01

    Virtual worlds have become an invaluable space for online learning and the exploration of digital cultures. Communication departments can benefit from using these spaces to educate their students in the logistics of virtual worlds and as a way to better understand how the process of interpersonal and global communication functions in both online…

  12. Virtual Worlds: A New Opportunity for People with Lifelong Disability?

    ERIC Educational Resources Information Center

    Stendal, Karen; Balandin, Susan; Molka-Danielsen, Judith

    2011-01-01

    Virtual worlds, such as Second Life[R], are the latest star in the online communication sky. Created by Linden Lab, Second Life is a three-dimensional environment that provides a context for avatars to communicate and socialise with other avatars in a variety of settings (Bell, 2009). Virtual worlds have been used to train people with intellectual…

  13. Factors Contributing to the Adoption of Virtual Worlds by Librarians

    ERIC Educational Resources Information Center

    Hill, Valerie J.

    2012-01-01

    The purpose of this study was to examine factors that may or may not contribute to the adoption of the innovation of virtual worlds by librarians. Using Everett Rogers' Diffusion Theory as a framework, the study sought to identify librarians with avatars (computer simulated representations of themselves) in the virtual world of Second Life,…

  14. Virtual Worlds as a Trigger for Transformative Learning

    ERIC Educational Resources Information Center

    Harmon, Stephen W.

    2011-01-01

    This article examines the affordances of virtual worlds for initiating a transformative learning experience for adults. In particular, it addresses the capacity of virtual worlds to allow creation of an alternate self which requires some level of personal self-reflection; provide atypical experiences that can initiate reflection; allow experience…

  15. Learning in Virtual Worlds: Results from Two Studies

    ERIC Educational Resources Information Center

    Jestice, Rebecca J.

    2010-01-01

    Virtual worlds are garnering a lot of attention from educators and trainers as a new tool to enhance the effectiveness and efficiency of online learning. Virtual worlds are considered beneficial to the learning process because their unique combination of features and capabilities and their richness allows the employment of new instructional…

  16. The Pixelated Professor: Faculty in Immersive Virtual Worlds

    ERIC Educational Resources Information Center

    Blackmon, Stephanie

    2015-01-01

    Online environments, particularly virtual worlds, can sometimes complicate issues of self expression. For example, the faculty member who loves punk rock has an opportunity, through hairstyle and attire choices in the virtual world, to share that part of herself with students. However, deciding to share that part of the self can depend on a number…

  17. Ethical Considerations for Educational Research in a Virtual World

    ERIC Educational Resources Information Center

    Girvan, C.; Savage, T.

    2012-01-01

    The combination of features in virtual worlds provides an opportunity to implement and research unique learning experiences. With increasing interest and activity from the educational research community, exploring virtual worlds for teaching and learning, there is a need to identify and understand the ethical implications of conducting research in…

  18. Teaching Literature in Virtual Worlds: Immersive Learning in English Studies

    ERIC Educational Resources Information Center

    Webb, Allen, Ed.

    2011-01-01

    What are the realities and possibilities of utilizing on-line virtual worlds as teaching tools for specific literary works? Through engaging and surprising stories from classrooms where virtual worlds are in use, this book invites readers to understand and participate in this emerging and valuable pedagogy. It examines the experience of high…

  19. Content creation in virtual worlds to support adolescent identity development.

    PubMed

    Beals, Laura M

    2010-01-01

    Virtual worlds are online graphical environments that are becoming an increasingly large part of the online experience of young people. Virtual worlds have the potential to become one additional environment, like school, home, and the playground, where youth can learn, play, and grow. The physical world is becoming interconnected with virtual worlds, and it is important for researchers to understand how this will affect children's development. Virtual worlds technologies provide a unique opportunity to allow youth to explore many types of content creation, including customizable avatars, media galleries, and virtual representations of personal spaces. This ability for youth to create content can be an important means by which to support and encourage adolescent identity development. PMID:21240952

  20. Theft of Virtual Property — Towards Security Requirements for Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Beyer, Anja

    The article is focused to introduce the topic of information technology security for Virtual Worlds to a security experts’ audience. Virtual Worlds are Web 2.0 applications where the users cruise through the world with their individually shaped avatars to find either amusement, challenges or the next best business deal. People do invest a lot of time but beyond they invest in buying virtual assets like fantasy witcheries, wepaons, armour, houses, clothes,...etc with the power of real world money. Although it is called “virtual” (which is often put on the same level as “not existent”) there is a real value behind it. In November 2007 dutch police arrested a seventeen years old teenager who was suspicted to have stolen virtual items in a Virtual World called Habbo Hotel [Reuters07]. In order to successfully provide security mechanisms into Virtual Worlds it is necessarry to fully understand the domain for which the security mechansims are defined. As Virtual Worlds must be clasified into the domain of Social Software the article starts with an overview of how to understand Web 2.0 and gives a short introduction to Virtual Worlds. The article then provides a consideration of assets of Virtual Worlds participants, describes how these assets can be threatened and gives an overview of appopriate security requirements and completes with an outlook of possible countermeasures.

  1. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. PMID:22727689

  2. Automatic 360-deg profilometry of a 3D object using a shearing interferometer and virtual grating

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Lin; Bu, Guixue

    1996-10-01

    Phase measuring technique has been widely used in optical precision inspection for its extraordinary advantage. We use the phase-measuring technique and design a practical instrument for measuring 360 degrees profile of 3D object. A novel method that can realize profile detection with higher speed and lower cost is proposed. Phase unwrapping algorithm based on the second order differentiation is developed. A complete 3D shape is reconstructed from a series of line- section profiles corresponding to discrete angular position of the object. The profile-jointing procedure is only related with two fixed parameters and coordination transformation.

  3. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of

  4. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Renaud G.; Blacklock, Matthew; Bale, Hrishikesh; Begley, Matthew R.; Cox, Brian N.

    2012-08-01

    Recent work presented a Monte Carlo algorithm based on Markov Chain operators for generating replicas of textile composite specimens that possess the same statistical characteristics as specimens imaged using high resolution x-ray computed tomography. That work represented the textile reinforcement by one-dimensional tow loci in three-dimensional space, suitable for use in the Binary Model of textile composites. Here analogous algorithms are used to generate solid, three-dimensional (3D) tow representations, to provide geometrical models for more detailed failure analyses. The algorithms for generating 3D models are divided into those that refer to the topology of the textile and those that deal with its geometry. The topological rules carry all the information that distinguishes textiles with different interlacing patterns (weaves, braids, etc.) and provide instructions for resolving interpenetrations or ordering errors among tows. They also simplify writing a single computer program that can accept input data for generic textile cases. The geometrical rules adjust the shape and smoothness of the generated virtual specimens to match data from imaged specimens. The virtual specimen generator is illustrated using data for an angle interlock weave, a common 3D textile architecture.

  5. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.

    PubMed

    Levin, Mindy F; Magdalon, Eliane C; Michaelsen, Stella M; Quevedo, Antonio A F

    2015-11-01

    Reaching and grasping parameters with and without haptic feedback were characterized in people with chronic post-stroke behaviors. Twelve (67 ± 10 years) individuals with chronic stroke and arm/hand paresis (Fugl-Meyer Assessment-Arm: ≥ 46/66 pts) participated. Three dimensional (3-D) temporal and spatial kinematics of reaching and grasping movements to three objects (can: cylindrical grasp; screwdriver: power grasp; pen: precision grasp) in a physical environment (PE) with and without additional haptic feedback and a 3-D virtual environment (VE) with haptic feedback were recorded. Participants reached, grasped and transported physical and virtual objects using similar movement strategies in all conditions. Reaches made in VE were less smooth and slower compared to the PE. Arm and trunk kinematics were similar in both environments and glove conditions. For grasping, stroke subjects preserved aperture scaling to object size but used wider hand apertures with longer delays between times to maximal reaching velocity and maximal grasping aperture. Wearing the glove decreased reaching velocity. Our results in a small group of subjects suggest that providing haptic information in the VE did not affect the validity of reaching and grasping movement. Small disparities in movement parameters between environments may be due to differences in perception of object distance in VE. Reach-to-grasp kinematics to smaller objects may be improved by better 3-D rendering. Comparable kinematics between environments and conditions is encouraging for the incorporation of high quality VEs in rehabilitation programs aimed at improving upper limb recovery. PMID:25594971

  6. Proteopedia: A Collaborative, Virtual 3D Web-Resource for Protein and Biomolecule Structure and Function

    ERIC Educational Resources Information Center

    Hodis, Eran; Prilusky, Jaime, Sussman, Joel L.

    2010-01-01

    Protein structures are hard to represent on paper. They are large, complex, and three-dimensional (3D)--four-dimensional if conformational changes count! Unlike most of their substrates, which can easily be drawn out in full chemical formula, drawing every atom in a protein would usually be a mess. Simplifications like showing only the surface of…

  7. Sounds of silence: How to animate virtual worlds with sound

    NASA Technical Reports Server (NTRS)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  8. Design and application of real-time visual attention model for the exploration of 3D virtual environments.

    PubMed

    Hillaire, Sébastien; Lécuyer, Anatole; Regia-Corte, Tony; Cozot, Rémi; Royan, Jérôme; Breton, Gaspard

    2012-03-01

    This paper studies the design and application of a novel visual attention model designed to compute user's gaze position automatically, i.e., without using a gaze-tracking system. The model we propose is specifically designed for real-time first-person exploration of 3D virtual environments. It is the first model adapted to this context which can compute in real time a continuous gaze point position instead of a set of 3D objects potentially observed by the user. To do so, contrary to previous models which use a mesh-based representation of visual objects, we introduce a representation based on surface-elements. Our model also simulates visual reflexes and the cognitive processes which take place in the brain such as the gaze behavior associated to first-person navigation in the virtual environment. Our visual attention model combines both bottom-up and top-down components to compute a continuous gaze point position on screen that hopefully matches the user's one. We conducted an experiment to study and compare the performance of our method with a state-of-the-art approach. Our results are found significantly better with sometimes more than 100 percent of accuracy gained. This suggests that computing a gaze point in a 3D virtual environment in real time is possible and is a valid approach, compared to object-based approaches. Finally, we expose different applications of our model when exploring virtual environments. We present different algorithms which can improve or adapt the visual feedback of virtual environments based on gaze information. We first propose a level-of-detail approach that heavily relies on multiple-texture sampling. We show that it is possible to use the gaze information of our visual attention model to increase visual quality where the user is looking, while maintaining a high-refresh rate. Second, we introduce the use of the visual attention model in three visual effects inspired by the human visual system namely: depth-of-field blur, camera

  9. Virtually supportive: A feasibility pilot study of an online support group for dementia caregivers in a 3D virtual environment

    PubMed Central

    O’Connor, Mary-Frances; Arizmendi, Brian J.; Kaszniak, Alfred W.

    2014-01-01

    Caregiver support groups effectively reduce stress from caring for someone with dementia. These same demands can prevent participation in a group. The present feasibility study investigated a virtual online caregiver support group to bring the support group into the home. While online groups have been shown to be helpful, submissions to a message board (vs. live conversation) can feel impersonal. By using avatars, participants interacted via real-time chat in a virtual environment in an 8-week support group. Data indicated lower levels of perceived stress, depression and loneliness across participants. Importantly, satisfaction reports also indicate that caregivers overcame the barriers to participation, and had a strong sense of the group’s presence. This study provides the framework for an accessible and low cost online support group for a dementia caregiver. The study demonstrates the feasibility of interactive group in a virtual environment for engaging members in meaningful interaction. PMID:24984911

  10. Caring in the Dynamics of Design and Languaging: Exploring Second Language Learning in 3D Virtual Spaces

    ERIC Educational Resources Information Center

    Zheng, Dongping

    2012-01-01

    This study provides concrete evidence of ecological, dialogical views of languaging within the dynamics of coordination and cooperation in a virtual world. Beginning level second language learners of Chinese engaged in cooperative activities designed to provide them opportunities to refine linguistic actions by way of caring for others, for the…

  11. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    PubMed

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates. PMID:19343586

  12. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    ERIC Educational Resources Information Center

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  13. The Use of 3D Virtual Learning Environments in Training Foreign Language Pre-Service Teachers

    ERIC Educational Resources Information Center

    Can, Tuncer; Simsek, Irfan

    2015-01-01

    The recent developments in computer and Internet technologies and in three dimensional modelling necessitates the new approaches and methods in the education field and brings new opportunities to the higher education. The Internet and virtual learning environments have changed the learning opportunities by diversifying the learning options not…

  14. Towards a Transcription System of Sign Language for 3D Virtual Agents

    NASA Astrophysics Data System (ADS)

    Do Amaral, Wanessa Machado; de Martino, José Mario

    Accessibility is a growing concern in computer science. Since virtual information is mostly presented visually, it may seem that access for deaf people is not an issue. However, for prelingually deaf individuals, those who were deaf since before acquiring and formally learn a language, written information is often of limited accessibility than if presented in signing. Further, for this community, signing is their language of choice, and reading text in a spoken language is akin to using a foreign language. Sign language uses gestures and facial expressions and is widely used by deaf communities. To enabling efficient production of signed content on virtual environment, it is necessary to make written records of signs. Transcription systems have been developed to describe sign languages in written form, but these systems have limitations. Since they were not originally designed with computer animation in mind, in general, the recognition and reproduction of signs in these systems is an easy task only to those who deeply know the system. The aim of this work is to develop a transcription system to provide signed content in virtual environment. To animate a virtual avatar, a transcription system requires explicit enough information, such as movement speed, signs concatenation, sequence of each hold-and-movement and facial expressions, trying to articulate close to reality. Although many important studies in sign languages have been published, the transcription problem remains a challenge. Thus, a notation to describe, store and play signed content in virtual environments offers a multidisciplinary study and research tool, which may help linguistic studies to understand the sign languages structure and grammar.

  15. Developing interprofessional health competencies in a virtual world

    PubMed Central

    King, Sharla; Chodos, David; Stroulia, Eleni; Carbonaro, Mike; MacKenzie, Mark; Reid, Andrew; Torres, Lisa; Greidanus, Elaine

    2012-01-01

    Background Virtual worlds provide a promising means of delivering simulations for developing interprofessional health skills. However, developing and implementing a virtual world simulation is a challenging process, in part because of the novelty of virtual worlds as a simulation platform and also because of the degree of collaboration required among technical and subject experts. Thus, it can be difficult to ensure that the simulation is both technically satisfactory and educationally appropriate. Methods To address this challenge, we propose the use of de Freitas and Oliver's four-dimensional framework as a means of guiding the development process. We give an overview of the framework and describe how its principles can be applied to the development of virtual world simulations. Results We present two virtual world simulation pilot projects that adopted this approach, and describe our development experience in these projects. We directly connect this experience to the four-dimensional framework, thus validating the framework's applicability to the projects and to the context of virtual world simulations in general. Conclusions We present a series of recommendations for developing virtual world simulations for interprofessional health education. These recommendations are based on the four-dimensional framework and are also informed by our experience with the pilot projects. PMID:23195649

  16. Design and application of a virtual reality 3D engine based on rapid indices

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Mai, Jin

    2007-06-01

    This article proposes a data structure of a 3D engine based on rapid indices. Taking a model for a construction unit, this data structure can construct a coordinate array with 3D vertex rapidly and arrange those vertices in a sequence of triangle strips or triangle fans, which can be rendered rapidly by OpenGL. This data structure is easy to extend. It can hold texture coordinates, normal coordinates of vertices and a model matrix. Other models can be added to it, deleted from it, or transformed by model matrix, so it is flexible. This data structure also improves the render speed of OpenGL when it holds a large amount of data.

  17. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  18. Model-based 3D human shape estimation from silhouettes for virtual fitting

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Kouchi, Makiko; Mochimaru, Masaaki; Aoki, Yoshimitsu

    2014-03-01

    We propose a model-based 3D human shape reconstruction system from two silhouettes. Firstly, we synthesize a deformable body model from 3D human shape database consists of a hundred whole body mesh models. Each mesh model is homologous, so that it has the same topology and same number of vertices among all models. We perform principal component analysis (PCA) on the database and synthesize an Active Shape Model (ASM). ASM allows changing the body type of the model with a few parameters. The pose changing of our model can be achieved by reconstructing the skeleton structures from implanted joints of the model. By applying pose changing after body type deformation, our model can represents various body types and any pose. We apply the model to the problem of 3D human shape reconstruction from front and side silhouette. Our approach is simply comparing the contours between the model's and input silhouettes', we then use only torso part contour of the model to reconstruct whole shape. We optimize the model parameters by minimizing the difference between corresponding silhouettes by using a stochastic, derivative-free non-linear optimization method, CMA-ES.

  19. Virtual worlds to enhance Ambient-Assisted Living.

    PubMed

    Cascado, Daniel; Romero, Salvador Jesus; Hors, Santiago; Brasero, Angel; Fernandez-Luque, Luis; Sevillano, Jose Luis

    2010-01-01

    In this paper we discuss about the integration of Ambient-Assisted Living (AAL) with virtual worlds. The integration of sensors from the AAL environment (e.g. vital signs, motion sensors) in the Virtual World can enhance the provision of in-world eHealth services, such as tele-rehabilitation, and taking advance of the social nature of virtual worlds. An implementation of a virtual world integrated in an AAL environment for tele-rehabilitation is described in this paper. At this time, all of the system's modules have been developed and we are currently integrating them in a fully functional version. The system will be tested with real users during 2010 in the Sport Medical Unit of The University of Seville. This paper describes the architecture and functionalities of the system. PMID:21097183

  20. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.

    PubMed

    Zhang, Qiang; Muegge, Ingo

    2006-03-01

    The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease, p38 MAP kinase, thrombin) have been assembled such that each ligand represents its own unique chemotype, thus ensuring that each similarity recognition event between ligands constitutes a scaffold hopping event. In a series of virtual screening studies involving 9969 MDDR compounds as negative controls it has been found that atom pair descriptors and 3D pharmacophore fingerprints combined with ranking, voting, and consensus scoring strategies perform well in finding novel bioactive scaffolds. In addition, often superior performance has been observed for similarity-based virtual screening compared to structure-based methods. This finding suggests that information about a target obtained from known bioactive ligands is as valuable as knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening. PMID:16509572

  1. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique. PMID:27410124

  2. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts.

    PubMed

    Carril, Julieta; Tambussi, Claudia Patricia; Degrange, Federico Javier; Benitez Saldivar, María Juliana; Picasso, Mariana Beatriz Julieta

    2016-08-01

    Psittaciformes are a very diverse group of non-passerine birds, with advanced cognitive abilities and highly developed locomotor and feeding behaviours. Using computed tomography and three-dimensional (3D) visualization software, the endocasts of 14 extant Neotropical parrots were reconstructed, with the aim of analysing, comparing and exploring the morphology of the brain within the clade. A 3D geomorphometric analysis was performed, and the encephalization quotient (EQ) was calculated. Brain morphology character states were traced onto a Psittaciformes tree in order to facilitate interpretation of morphological traits in a phylogenetic context. Our results indicate that: (i) there are two conspicuously distinct brain morphologies, one considered walnut type (quadrangular and wider than long) and the other rounded (narrower and rostrally tapered); (ii) Psittaciformes possess a noticeable notch between hemisphaeria that divides the bulbus olfactorius; (iii) the plesiomorphic and most frequently observed characteristics of Neotropical parrots are a rostrally tapered telencephalon in dorsal view, distinctly enlarged dorsal expansion of the eminentia sagittalis and conspicuous fissura mediana; (iv) there is a positive correlation between body mass and brain volume; (v) psittacids are characterized by high EQ values that suggest high brain volumes in relation to their body masses; and (vi) the endocranial morphology of the Psittaciformes as a whole is distinctive relative to other birds. This new knowledge of brain morphology offers much potential for further insight in paleoneurological, phylogenetic and evolutionary studies. PMID:26053196

  3. Virtual Worlds: New Directions for HRD Research and Practice

    ERIC Educational Resources Information Center

    Chapman, Diane D.

    2008-01-01

    Virtual environments, once used strictly for gaming and military training, have developed into spaces for community building and collaboration rather than competition. This literature review explores virtual worlds and underlying theories of interest to Human Resource Development (HRD). Findings suggest application opportunities for HRD in five…

  4. Machinima Interventions: Innovative Approaches to Immersive Virtual World Curriculum Integration

    ERIC Educational Resources Information Center

    Middleton, Andrew John; Mather, Richard

    2008-01-01

    The educational value of Immersive Virtual Worlds (IVWs) seems to be in their social immersive qualities and as an accessible simulation technology. In contrast to these synchronous applications this paper discusses the use of educational machinima developed in IVW virtual film sets. It also introduces the concept of media intervention, proposing…

  5. Virtual worlds in nursing education: a synthesis of the literature.

    PubMed

    De Gagne, Jennie C; Oh, Jina; Kang, Jeongae; Vorderstrasse, Allison A; Johnson, Constance M

    2013-07-01

    Although the literature has highlighted the use of virtual worlds in teaching-learning, little is known about the concepts associated with this technology in nursing education. Moreover, the application of virtual worlds to education has been underdeveloped theoretically, with much of the work being exploratory. Thus, the aim of this integrative review was to identify the current evidence on the use of virtual worlds in the education of nursing and other health professional students and to describe emerging themes surrounding this phenomenon. We searched seven electronic databases for relevant articles and used Whittemore's and Knafl's integrative review method to synthesize the literature. Twelve articles met the selection criteria for this review, from which three overarching themes emerged: (a) critical reasoning skills, (b) student-centered learning, and (c) instructional design considerations. This integrative review extends our understanding of virtual worlds in nursing education and the potential barriers and facilitators of their use. PMID:23755942

  6. Human Rights and Private Ordering in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Oosterbaan, Olivier

    This paper explores the application of human rights in (persistent) virtual world environments. The paper begins with describing a number of elements that most virtual environments share and that are relevant for the application of human rights in such a setting; and by describing in a general nature the application of human rights between private individuals. The paper then continues by discussing the application in virtual environments of two universally recognized human rights, namely freedom of expression, and freedom from discrimination. As these specific rights are discussed, a number of more general conclusions on the application of human rights in virtual environments are drawn. The first general conclusion being that, because virtual worlds are private environments, participants are subject to private ordering. The second general conclusion being that participants and non-participants alike have to accept at times that in-world expressions are to an extent private speech. The third general conclusion is that, where participants represent themselves in-world, other participants cannot assume that such in-world representation share the characteristics of the human player; and that where virtual environments contain game elements, participants and non-participants alike should not take everything that happens in the virtual environment at face value or literally, which does however not amount to having to accept a higher level of infringement on their rights for things that happen in such an environment.

  7. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    NASA Astrophysics Data System (ADS)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  8. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction. PMID:25122851

  9. 3D chromosome rendering from Hi-C data using virtual reality

    NASA Astrophysics Data System (ADS)

    Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing

    2015-01-01

    Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.

  10. Inspiring Equal Contribution and Opportunity in a 3D Multi-User Virtual Environment: Bringing Together Men Gamers and Women Non-Gamers in Second Life[R

    ERIC Educational Resources Information Center

    deNoyelles, Aimee; Seo, Kay Kyeong-Ju

    2012-01-01

    A 3D multi-user virtual environment holds promise to support and enhance student online learning communities due to its ability to promote global synchronous interaction and collaboration, rich multisensory experience and expression, and elaborate design capabilities. Second Life[R], a multi-user virtual environment intended for adult users 18 and…

  11. The Complete Virtual 3d Reconstruction of the East Pediment of the Temple of ZEUS at Olympia

    NASA Astrophysics Data System (ADS)

    Patay-Horváth, A.

    2011-09-01

    The arrangement of the five central figures of the east pediment of the temple of Zeus at Olympia has been the subject of scholarly debates since the discovery of the fragments more than a century ago. In theory, there are four substantially different arrangements, all of which have already been selected by certain scholars for various aesthetic, technical and other considerations. The present project tries to approach this controversy in a new way, by producing a virtual 3D reconstruction of the group. Digital models of the statues were produced by scanning the original fragments and by reconstructing them virtually. For this purpose an innovative new software (Leonar3Do) has also been employed. The virtual model of the pediment surrounding the sculptures was prepared on the basis of the latest architectural studies and afterwards the reconstructed models were inserted in this frame, in order to test the technical feasibility and aesthetic effects the four possible arrangements. The paper gives an overview of the entire work and presents the final results suggesting that two arrangements can be ruled out due to the limited space available in the pediment.

  12. Second Life for Distance Language Learning: A Framework for Native/Non-Native Speaker Interactions in a Virtual World

    ERIC Educational Resources Information Center

    Tusing, Jennifer; Berge, Zane L.

    2010-01-01

    This paper examines a number of theoretical principles governing second language teaching and learning and the ways in which these principles are being applied in 3D virtual worlds such as Second Life. Also examined are the benefits to language learning afforded by the Second Life interface, including access, the availability of native speakers of…

  13. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. PMID:27590974

  14. Teaching Scientific Concepts Using a Virtual World--Minecraft

    ERIC Educational Resources Information Center

    Short, Daniel

    2012-01-01

    Minecraft is a multiplayer sandbox video game based in a virtual world modeled on the real world. Players are able to build and craft everyday items using blocks. The cubic geometry of Minecraft lends itself to the teaching of various academic subjects. Minecraft also has a functioning ecology, with chemistry and physics aspects interwoven within…

  15. Global Warming and the Arctic in 3D: A Virtual Globe for Outreach

    NASA Astrophysics Data System (ADS)

    Manley, W. F.

    2006-12-01

    Virtual Globes provide a new way to capture and inform the public's interest in environmental change. As an example, a recent Google Earth presentation conveyed 'key findings' from the Arctic Climate Impact Assessment (ACIA, 2004) to middle school students during the 2006 INSTAAR/NSIDC Open House at the University of Colorado. The 20-minute demonstration to 180 eighth graders began with an introduction and a view of the Arctic from space, zooming into the North American Arctic, then to a placemark for the first key finding, 'Arctic climate is now warming rapidly and much larger changes are projected'. An embedded link then opened a custom web page, with brief explanatory text, along with an ACIA graphic illustrating the rise in Arctic temperature, global CO2 concentrations, and carbon emissions for the last millennium. The demo continued with an interactive tour of other key findings (Reduced Sea Ice, Changes for Animals, Melting Glaciers, Coastal Erosion, Changes in Vegetation, Melting Permafrost, and others). Each placemark was located somewhat arbitrarily (which may be a concern for some audiences), but the points represented the messages in a geographic sense and enabled a smooth visual tour of the northern latitudes. Each placemark was linked to custom web pages with photos and concise take-home messages. The demo ended with navigation to Colorado, then Boulder, then the middle school that the students attended, all the while speaking to implications as they live their lives locally. The demo piqued the students' curiosity, and in this way better conveyed important messages about the Arctic and climate change. The use of geospatial visualizations for outreach and education appears to be in its infancy, with much potential.

  16. Learning and Teaching in Virtual Worlds: Implications of Virtual Reality for Education.

    ERIC Educational Resources Information Center

    Moore, Paul

    1995-01-01

    Surveys the research into virtual reality (VR) and focuses on the implications of immersive virtual worlds for learning and teaching. Topics include how VR differs from other forms of interactive multimedia, VR and the development of educational theory and methodology, and case studies in educational VR research. (Author/LRW)

  17. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    PubMed

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient. PMID:23827333

  18. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors.

    PubMed

    Bhatt, Hardik G; Patel, Paresh K

    2012-06-01

    Sodium hydrogen exchanger (SHE) inhibitor is one of the most important targets in treatment of myocardial ischemia. In the course of our research into new types of non-acylguanidine, SHE inhibitory activities of 5-tetrahydroquinolinylidine aminoguanidine derivatives were used to build pharmacophore and 3D-QSAR models. Genetic Algorithm Similarity Program (GASP) was used to derive a 3D pharmacophore model which was used in effective alignment of data set. Eight molecules were selected on the basis of structure diversity to build 10 different pharmacophore models. Model 1 was considered as the best model as it has highest fitness score compared to other nine models. The obtained model contained two acceptor sites, two donor atoms and one hydrophobic region. Pharmacophore modeling was followed by substructure searching and virtual screening. The best CoMFA model, representing steric and electrostatic fields, obtained for 30 training set molecules was statistically significant with cross-validated coefficient (q(2)) of 0.673 and conventional coefficient (r(2)) of 0.988. In addition to steric and electrostatic fields observed in CoMFA, CoMSIA also represents hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. CoMSIA model was also significant with cross-validated coefficient (q(2)) and conventional coefficient (r(2)) of 0.636 and 0.986, respectively. Both models were validated by an external test set of eight compounds and gave satisfactory prediction (r(pred)(2)) of 0.772 and 0.701 for CoMFA and CoMSIA models, respectively. This pharmacophore based 3D-QSAR approach provides significant insights that can be used to design novel, potent and selective SHE inhibitors. PMID:22546667

  19. Psychophysical estimation of 3D virtual depth of united, synthesized and mixed type stereograms by means of simultaneous observation

    NASA Astrophysics Data System (ADS)

    Iizuka, Masayuki; Ookuma, Yoshio; Nakashima, Yoshio; Takamatsu, Mamoru

    2007-02-01

    Recently, many types of computer-generated stereograms (CGSs), i.e. various works of art produced by using computer are published for hobby and entertainment. It is said that activation of brain, improvement of visual eye sight, decrease of mental stress, effect of healing, etc. are expected when properly appreciating a kind of CGS as the stereoscopic view. There is a lot of information on the internet web site concerning all aspects of stereogram history, science, social organization, various types of stereograms, and free software for generating CGS. Generally, the CGS is classified into nine types: (1) stereo pair type, (2) anaglyph type, (3) repeated pattern type, (4) embedded type, (5) random dot stereogram (RDS), (6) single image stereogram (SIS), (7) united stereogram, (8) synthesized stereogram, and (9) mixed or multiple type stereogram. Each stereogram has advantages and disadvantages when viewing directly the stereogram with two eyes by training with a little patience. In this study, the characteristics of united, synthesized and mixed type stereograms, the role and composition of depth map image (DMI) called hidden image or picture, and the effect of irregular shift of texture pattern image called wall paper are discussed from the viewpoint of psychophysical estimation of 3D virtual depth and visual quality of virtual image by means of simultaneous observation in the case of the parallel viewing method.

  20. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. PMID:25808044

  1. From Cognitive Capability to Social Reform? Shifting Perceptions of Learning in Immersive Virtual Worlds

    ERIC Educational Resources Information Center

    Savin-Baden, Maggi

    2008-01-01

    Learning in immersive virtual worlds (simulations and virtual worlds such as Second Life) could become a central learning approach in many curricula, but the socio-political impact of virtual world learning on higher education remains under-researched. Much of the recent research into learning in immersive virtual worlds centres around games and…

  2. Perceptual and performance consequences of flight in virtual worlds

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Schwirzke, Martin; Tittle, James S.

    1991-01-01

    There are two primary purposes for head-mounted systems in aeronautical settings. One is for helmet-mounted sights and teleoperated (head-slaved) weapons systems. Bennett, Johnson, Perrone, and Phatak (1988) evaluated head tracking performance during passive and controlled flight. In that study, comparisons were also made of head tracking performance in sterile and relatively complex virtual worlds. That study confirmed the robustness of head tracking performance across a wide variety of visual scenes. A second use of virtual world displays is for aircraft control. Aircraft controllability using head-mounted, panel-mounted, or simulated out-the-window scenes has been systematically examined. Those studies reported the range of rotorcraft flight tasks in which head-mounted virtual worlds provided some advantages. Two studies will be reported that examine the perceptual/performance effects of virtual worlds. The first examines head tracking performance with roll-stabilized versus non-roll stabilized virtual worlds. The purpose of the study was to (1) examine display strategies used in current display systems and (2) study the adaptability of observers to estimated glide slope angles using head-slaved versus head-stabilized imagery. The purpose of this study was to examine the usefulness of wide field-of-regards during final approaches to a runway.

  3. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  4. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-06-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanisation and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanisation and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to climate variability in the short term. However, urbanisation arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and reduced its resilience to climate variability in the long-term. In addition to improving our understanding of Roman water resource management, our cost-distance based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  5. Virtual Libraries and Education in Virtual Worlds: Twenty-First Century Library Services

    ERIC Educational Resources Information Center

    Bell, Lori; Lindbloom, Mary-Carol; Peters, Tom; Pope, Kitty

    2008-01-01

    As the use of the Internet and time spent on the Internet by individuals grows, and the use of virtual worlds like Active Worlds and Second Life increases, the library needs to have an interactive place and role in these worlds as well as a bricks and mortar space. This article provides an overview of what some libraries are doing in these worlds,…

  6. Visualization and Interpretation in 3D Virtual Reality of Topographic and Geophysical Data from the Chicxulub Impact Crater

    NASA Astrophysics Data System (ADS)

    Rosen, J.; Kinsland, G. L.; Borst, C.

    2011-12-01

    We have assembled Shuttle Radar Topography Mission (SRTM) data (Borst and Kinsland, 2005), gravity data (Bedard, 1977), horizontal gravity gradient data (Hildebrand et al., 1995), magnetic data (Pilkington et al., 2000) and GPS topography data (Borst and Kinsland, 2005) from the Chicxulub Impact Crater buried on the Yucatan Peninsula of Mexico. These data sets are imaged as gridded surfaces and are all georegistered, within an interactive 3D virtual reality (3DVR) visualization and interpretation system created and maintained in the Center for Advanced Computer Studies at the University of Louisiana at Lafayette. We are able to view and interpret the data sets individually or together and to scale and move the data or to move our physical head position so as to achieve the best viewing perspective for interpretation. A feature which is especially valuable for understanding the relationships between the various data sets is our ability to "interlace" the 3D images. "Interlacing" is a technique we have developed whereby the data surfaces are moved along a common axis so that they interpenetrate. This technique leads to rapid and positive identification of spatially corresponding features in the various data sets. We present several images from the 3D system, which demonstrate spatial relationships amongst the features in the data sets. Some of the anomalies in gravity are very nearly coincident with anomalies in the magnetic data as one might suspect if the causal bodies are the same. Other gravity and magnetic anomalies are not spatially coincident indicating different causal bodies. Topographic anomalies display a strong spatial correspondence with many gravity anomalies. In some cases small gravity anomalies and topographic valleys are caused by shallow dissolution within the Tertiary cover along faults or fractures propagated upward from the buried structure. In other cases the sources of the gravity anomalies are in the more deeply buried structure from which

  7. Scientific Habits of Mind in Virtual Worlds

    ERIC Educational Resources Information Center

    Steinkuehler, Constance; Duncan, Sean

    2008-01-01

    In today's increasingly "flat" world of globalization (Friedman 2005), the need for a scientifically literate citizenry has grown more urgent. Yet, by some measures, we have done a poor job at fostering "scientific habits of mind" in schools. Recent research on informal games-based learning indicates that such technologies and the communities they…

  8. The Real Impact of Virtual Worlds

    ERIC Educational Resources Information Center

    Workman, Thomas A.

    2008-01-01

    There is no doubt that as technology continues to change, the generation of students will change also. The best preparation, then, is to train one's own mind to think digitally so that one can best create policies, programs, and interactions that enable a student to connect the two worlds in ways that are productive, satisfying, and meaningful.…

  9. 3D virtual planning in orthognathic surgery and CAD/CAM surgical splints generation in one patient with craniofacial microsomia: a case report

    PubMed Central

    Vale, Francisco; Scherzberg, Jessica; Cavaleiro, João; Sanz, David; Caramelo, Francisco; Maló, Luísa; Marcelino, João Pedro

    2016-01-01

    Objective: In this case report, the feasibility and precision of tridimensional (3D) virtual planning in one patient with craniofacial microsomia is tested using Nemoceph 3D-OS software (Software Nemotec SL, Madrid, Spain) to predict postoperative outcomes on hard tissue and produce CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) surgical splints. Methods: The clinical protocol consists of 3D data acquisition of the craniofacial complex by cone-beam computed tomography (CBCT) and surface scanning of the plaster dental casts. The ''virtual patient'' created underwent virtual surgery and a simulation of postoperative results on hard tissues. Surgical splints were manufactured using CAD/CAM technology in order to transfer the virtual surgical plan to the operating room. Intraoperatively, both CAD/CAM and conventional surgical splints are comparable. A second set of 3D images was obtained after surgery to acquire linear measurements and compare them with measurements obtained when predicting postoperative results virtually. Results: It was found a high similarity between both types of surgical splints with equal fitting on the dental arches. The linear measurements presented some discrepancies between the actual surgical outcomes and the predicted results from the 3D virtual simulation, but caution must be taken in the analysis of these results due to several variables. Conclusions: The reported case confirms the clinical feasibility of the described computer-assisted orthognathic surgical protocol. Further progress in the development of technologies for 3D image acquisition and improvements on software programs to simulate postoperative changes on soft tissue are required. PMID:27007767

  10. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Kolbe, T. H.

    2012-07-01

    In the context of increasing greenhouse gas emission and global demographic change with the simultaneous trend to urbanization, it is a big challenge for cities around the world to perform modifications in energy supply chain and building characteristics resulting in reduced energy consumption and carbon dioxide mitigation. Sound knowledge of energy resource demand and supply including its spatial distribution within urban areas is of great importance for planning strategies addressing greater energy efficiency. The understanding of the city as a complex energy system affects several areas of the urban living, e.g. energy supply, urban texture, human lifestyle, and climate protection. With the growing availability of 3D city models around the world based on the standard language and format CityGML, energy system modelling, analysis and simulation can be incorporated into these models. Both domains will profit from that interaction by bringing together official and accurate building models including building geometries, semantics and locations forming a realistic image of the urban structure with systemic energy simulation models. A holistic view on the impacts of energy planning scenarios can be modelled and analyzed including side effects on urban texture and human lifestyle. This paper focuses on the identification, classification, and integration of energy-related key indicators of buildings and neighbourhoods within 3D building models. Consequent application of 3D city models conforming to CityGML serves the purpose of deriving indicators for this topic. These will be set into the context of urban energy planning within the Energy Atlas Berlin. The generation of indicator objects covering the indicator values and related processing information will be presented on the sample scenario estimation of heating energy consumption in buildings and neighbourhoods. In their entirety the key indicators will form an adequate image of the local energy situation for

  11. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed. PMID:20557250

  12. Evaluating the Usability of Pinchigator, a system for Navigating Virtual Worlds using Pinch Gloves

    NASA Technical Reports Server (NTRS)

    Hamilton, George S.; Brookman, Stephen; Dumas, Joseph D. II; Tilghman, Neal

    2003-01-01

    Appropriate design of two dimensional user interfaces (2D U/I) utilizing the well known WIMP (Window, Icon, Menu, Pointing device) environment for computer software is well studied and guidance can be found in several standards. Three-dimensional U/I design is not nearly so mature as 2D U/I, and standards bodies have not reached consensus on what makes a usable interface. This is especially true when the tools for interacting with the virtual environment may include stereo viewing, real time trackers and pinch gloves instead of just a mouse & keyboard. Over the last several years the authors have created a 3D U/I system dubbed Pinchigator for navigating virtual worlds based on the dVise dV/Mockup visualization software, Fakespace Pinch Gloves and Pohlemus trackers. The current work is to test the usability of the system on several virtual worlds, suggest improvements to increase Pinchigator s usability, and then to generalize about what was learned and how those lessons might be applied to improve other 3D U/I systems.

  13. Enhancing Scientific Collaboration, Transparency, and Public Access: Utilizing the Second Life Platform to Convene a Scientific Conference in 3-D Virtual Space

    NASA Astrophysics Data System (ADS)

    McGee, B. W.

    2006-12-01

    Recent studies reveal a general mistrust of science as well as a distorted perception of the scientific method by the public at-large. Concurrently, the number of science undergraduate and graduate students is in decline. By taking advantage of emergent technologies not only for direct public outreach but also to enhance public accessibility to the science process, it may be possible to both begin a reversal of popular scientific misconceptions and to engage a new generation of scientists. The Second Life platform is a 3-D virtual world produced and operated by Linden Research, Inc., a privately owned company instituted to develop new forms of immersive entertainment. Free and downloadable to the public, Second Life offers an imbedded physics engine, streaming audio and video capability, and unlike other "multiplayer" software, the objects and inhabitants of Second Life are entirely designed and created by its users, providing an open-ended experience without the structure of a traditional video game. Already, educational institutions, virtual museums, and real-world businesses are utilizing Second Life for teleconferencing, pre-visualization, and distance education, as well as to conduct traditional business. However, the untapped potential of Second Life lies in its versatility, where the limitations of traditional scientific meeting venues do not exist, and attendees need not be restricted by prohibitive travel costs. It will be shown that the Second Life system enables scientific authors and presenters at a "virtual conference" to display figures and images at full resolution, employ audio-visual content typically not available to conference organizers, and to perform demonstrations or premier three-dimensional renderings of objects, processes, or information. An enhanced presentation like those possible with Second Life would be more engaging to non- scientists, and such an event would be accessible to the general users of Second Life, who could have an

  14. Situated Learning in Virtual Simulations: Researching the Authentic Dimension in Virtual Worlds

    ERIC Educational Resources Information Center

    Falconer, Liz

    2013-01-01

    This paper describes and discusses a case study of postgraduate students undertaking accident investigation and risk assessment exercises in an online virtual world as part of their course curriculum. These exercises were constructed to overcome the ethical and practical barriers inherent in real-world exercises. In particular this paper focusses…

  15. 3D Virtual Reality Applied in Tectonic Geomorphic Study of the Gombori Range of Greater Caucasus Mountains

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Lasha; Javakhishvili, Zurab

    2016-04-01

    Gombori Range represents the southern part of the young Greater Caucasus Mountains and stretches from NW to SE. The range separates Alazani and Iori basins within the eastern Georgian province of Kakheti. The active phase of Caucasian orogeny started in the Pliocene, but according to alluvial sediments of Gombori range (mapped in the Soviet geologic map), we observe its uplift process to be Quaternary event. The highest peak of the Gombori range has an absolute elevation of 1991 m, while its neighboring Alazani valley gains only 400 m. We assume the range has a very fast uplift rate and it could trigger streams flow direction course reverse in Quaternary. To check this preliminary assumptions we are going to use a tectonic and fluvial geomorphic and stratigraphic approaches including paleocurrent analyses and various affordable absolute dating techniques to detect the evidence of river course reverses and date them. For these purposes we have selected river Turdo outcrop. The river itself flows northwards from the Gombori range and nearby region`s main city of Telavi generates 30-40 m high continuous outcrop along 1 km section. Turdo outcrop has very steep walls and requires special climbing skills to work on it. The goal of this particularly study is to avoid time and resource consuming ground survey process of this steep, high and wide outcrop and test 3D aerial and ground base photogrammetric modelling and analyzing approaches in initial stage of the tectonic geomorphic study. Using this type of remote sensing and virtual lab analyses of 3D outcrop model, we roughly delineated stratigraphic layers, selected exact locations for applying various research techniques and planned safe and suitable climbing routes for getting to the investigation sites.

  16. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    NASA Technical Reports Server (NTRS)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a

  17. Training Educators to Design Lessons Incorporating Virtual Worlds

    ERIC Educational Resources Information Center

    Downey, Steve

    2012-01-01

    In the past decade, virtual worlds have progressed from isolated sectors of the Internet, inhabited by computer and fantasy role-playing enthusiasts, to one of the fastest growing sectors in the gaming industry. In the process, they have established themselves as promising venues for the delivery of online instruction. Unfortunately, during that…

  18. Immersive Virtual Worlds in University-Level Human Geography Courses

    ERIC Educational Resources Information Center

    Dittmer, Jason

    2010-01-01

    This paper addresses the potential for increased deployment of immersive virtual worlds in higher geographic education. An account of current practice regarding popular culture in the geography classroom is offered, focusing on the objectification of popular culture rather than its constitutive role vis-a-vis place. Current e-learning practice is…

  19. Situating Pedagogies, Positions and Practices in Immersive Virtual Worlds

    ERIC Educational Resources Information Center

    Savin-Baden, Maggi; Gourlay, Lesley; Tombs, Cathy; Steils, Nicole; Tombs, Gemma; Mawer, Matt

    2010-01-01

    Background: The literature on immersive virtual worlds and e-learning to date largely indicates that technology has led the pedagogy. Although rationales for implementing e-learning have included flexibility of provision and supporting diversity, none of these recommendations has helped to provide strong pedagogical location. Furthermore, there is…

  20. Effects of Collaborative Activities on Group Identity in Virtual World

    ERIC Educational Resources Information Center

    Park, Hyungsung; Seo, Sumin

    2013-01-01

    The purpose of this study was to analyze the effects of collaborative activities on group identity in a virtual world such as "Second Life." To achieve this purpose, this study adopted events that promoted participants' interactions using tools inherent in "Second Life." The interactive tools given to the control group in…

  1. The Virtual City: Putting Charleston on the World Wide Web.

    ERIC Educational Resources Information Center

    Beagle, Donald

    1996-01-01

    Describes the Charleston Multimedia Project, a World Wide Web guide to the history, architecture, and culture of Charleston, South Carolina, which includes a timeline and virtual tours. Incorporates materials issued by many agencies that were previously held in vertical files. The Charleston County Library's role and future plans are also…

  2. i-MMOLE: Instructional Framework for Creating Virtual World Lessons

    ERIC Educational Resources Information Center

    Downey, Steve

    2011-01-01

    Today virtual world instruction faces many of the same educational challenges faced by Web-based instruction during its infancy. There is a lot of jargon and visions of the future being bandied about, but as Hirumi et al. note in the May/June and July/August 2010 issues of "TechTrends" "there little understanding of how to apply" pedagogical…

  3. Designing Virtual Worlds for Use in Mathematics Education.

    ERIC Educational Resources Information Center

    Winn, William; Bricken, William

    Virtual Reality (VR) is a computer generated, multi-dimensional, inclusive environment that can build axioms of algebra into the behavior of the world. This paper discusses the use of VR to represent part of the algebra curriculum in order to improve students' classroom experiences in learning algebra. Students learn to construct their knowledge…

  4. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  5. Combining Immersive Virtual Worlds and Virtual Learning Environments into an Integrated System for Hosting and Supporting Virtual Conferences

    NASA Astrophysics Data System (ADS)

    Polychronis, Nikolaos; Patrikakis, Charalampos; Voulodimos, Athanasios

    In this paper, a proposal for hosting and supporting virtual conferences based on the use of state of the art web technologies and computer mediated education software is presented. The proposed system consists of a virtual conference venue hosted in Second Life platform, targeted at hosting synchronous conference sessions, and of a web space created with the use of the e-learning platform Moodle, targeted at serving the needs of asynchronous communication, as well as user and content management. The use of Sloodle (the next generation of Moodle software incorporating virtual world supporting capabilities), which up to now has been used only in traditional education, enables the combination of the virtual conference venue and the conference supporting site into an integrated system that allows for the conduction of successful and cost-effective virtual conferences.

  6. A Learner-Centered Approach for Training Science Teachers through Virtual Reality and 3D Visualization Technologies: Practical Experience for Sharing

    ERIC Educational Resources Information Center

    Yeung, Yau-Yuen

    2004-01-01

    This paper presentation will report on how some science educators at the Science Department of The Hong Kong Institute of Education have successfully employed an array of innovative learning media such as three-dimensional (3D) and virtual reality (VR) technologies to create seven sets of resource kits, most of which are being placed on the…

  7. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    ERIC Educational Resources Information Center

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  8. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  9. Risks and Uncertainties in Virtual Worlds: An Educators' Perspective

    ERIC Educational Resources Information Center

    Farahmand, Fariborz; Yadav, Aman; Spafford, Eugene H.

    2013-01-01

    Virtual worlds present tremendous advantages to cyberlearning. For example, in virtual worlds users can socialize with others, build objects and share them, customize parts of the world and hold lectures, do experiments, or share data. However, virtual worlds pose a wide range of security, privacy, and safety concerns. This may lead educators to…

  10. How Do Virtual World Experiences Bring about Learning? A Critical Review of Theories

    ERIC Educational Resources Information Center

    Loke, Swee-Kin

    2015-01-01

    While students do learn real-world knowledge and skills in virtual worlds, educators have yet to adequately theorise how students' virtual world experiences bring about this learning. This paper critically reviewed theories currently used to underpin empirical work in virtual worlds for education. In particular, it evaluated how applicable these…

  11. Learning and Teaching in Virtual Worlds: Boundaries, Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Thackray, Liz; Good, Judith; Howland, Katherine

    As evidenced by this book, the use of virtual worlds for teaching and learning is attracting increasing attention. Many universities have a virtual presence in environments such as Second LifeTM (SL), but there is little guidance to educators on how to best make use of the affordances of virtual worlds. In this chapter, we use our own practical experiences of developing learning experiences in SL as a base from which to examine the boundaries, challenges and opportunities that may be confronted in moving into teaching and learning in the virtual world. We use the "Diffusion of Innovation" model and its extensions to educational contexts both to analyse our experience and to consider the challenges facing later adopters of the technology. Our analysis suggests that students and staff and staff from different institutional settings have different profiles in terms of their attitude to risk, and their focus on learning products or process. Part of the learning experience involves helping students become aware of these characteristics, and allowing them to experiment with situations of greater risk. Finally, we identify a number of areas where improvements in the technology are needed in order to make it more welcoming to more risk averse users and to enable more flexible use of resources.

  12. Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.

    2016-06-01

    GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  13. Sensing and Virtual Worlds - A Survey of Research Opportunities

    NASA Technical Reports Server (NTRS)

    Moore, Dana

    2012-01-01

    Virtual Worlds (VWs) have been used effectively in live and constructive military training. An area that remains fertile ground for exploration and a new vision involves integrating various traditional and now non-traditional sensors into virtual worlds. In this paper, we will assert that the benefits of this integration are several. First, we maintain that virtual worlds offer improved sensor deployment planning through improved visualization and stimulation of the model, using geo-specific terrain and structure. Secondly, we assert that VWs enhance the mission rehearsal process, and that using a mix of live avatars, non-player characters, and live sensor feeds (e.g. real time meteorology) can help visualization of the area of operations. Finally, tactical operations are improved via better collaboration and integration of real world sensing capabilities, and in most situations, 30 VWs improve the state of the art over current "dots on a map" 20 geospatial visualization. However, several capability gaps preclude a fuller realization of this vision. In this paper, we identify many of these gaps and suggest research directions

  14. A Methodology for Elaborating Activities for Higher Education in 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Bravo, Javier; García-Magariño, Iván

    2015-01-01

    Distance education started being limited in comparison to traditional education. Distance teachers and educational organizations have overcome most of these limits, but some other limits still remain as challenges. One of these challenges is to collaboratively learn concepts in an immersive way, similarly to the education "in situ".…

  15. Virtual Chironomia: A Multimodal Study of Verbal and Non-Verbal Communication in a Virtual World

    ERIC Educational Resources Information Center

    Verhulsdonck, Gustav

    2010-01-01

    This mixed methods study examined the various aspects of multimodal use of non-verbal communication in virtual worlds during dyadic negotiations. Quantitative analysis uncovered a treatment effect whereby people with more rhetorical certainty used more neutral non-verbal communication; whereas people that were rhetorically less certain used more…

  16. Can Virtual Science Foster Real Skills? A Study of Inquiry Skills in a Virtual World

    ERIC Educational Resources Information Center

    Dodds, Heather E.

    2013-01-01

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life…

  17. Can virtual science foster real skills? A study of inquiry skills in a virtual world

    NASA Astrophysics Data System (ADS)

    Dodds, Heather E.

    Online education has grown into a part of the educational market answering the demand for learning at the learner's choice of time and place. Inquiry skills such as observing, questioning, collecting data, and devising fair experiments are an essential element of 21st-century online science coursework. Virtual immersive worlds such as Second Life are being used as new frontiers in science education. There have been few studies looking specifically at science education in virtual worlds that foster inquiry skills. This quantitative quasi-experimental nonrandomized control group pretest and posttest study explored what affect a virtual world experience had on inquiry skills as measured by the TIPS (Test of Integrated Process Skills) and TIPS II (Integrated Process Skills Test II) instruments. Participants between the ages of 18 and 65 were recruited from educator mailing lists and Second Life discussion boards and then sorted into the experimental group, which received instructions to utilize several displays in Mendelian genetics at the Genome Island location within Second Life, or the control group, which received text-based PDF documents of the same genetics course content. All participants, in the form of avatars, were experienced Second Life residents to reduce any novelty effect. This study found a greater increase in inquiry skills in the experimental group interacting using a virtual world to learn science content (0.90 points) than a control group that is presented only with online text-based content (0.87 points). Using a mixed between-within ANOVA (analysis of variance), with an alpha level of 0.05, there was no significant interaction between the control or experimental groups and inquiry skills, F (1, 58) = .783, p = .380, partial eta squared = .013, at the specified .05 alpha level suggesting no significant difference as a result of the virtual world exercise. However, there is not enough evidence to state that there was no effect because there was a

  18. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  19. The use of a low-cost visible light 3D scanner to create virtual reality environment models of actors and objects

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    A low-cost 3D scanner has been developed with a parts cost of approximately USD $5,000. This scanner uses visible light sensing to capture both structural as well as texture and color data of a subject. This paper discusses the use of this type of scanner to create 3D models for incorporation into a virtual reality environment. It describes the basic scanning process (which takes under a minute for a single scan), which can be repeated to collect multiple positions, if needed for actor model creation. The efficacy of visible light versus other scanner types is also discussed.

  20. Young Children's Literacy Practices in a Virtual World: Establishing an Online Interaction Order

    ERIC Educational Resources Information Center

    Marsh, Jackie

    2011-01-01

    This study examined the literacy practices of children ages 5-11 as they engaged in out-of-school use of virtual worlds. The purpose of the study was to explore the nature, purpose, and role of literacy in children's use of a virtual world. In this article, I reflect on how children's use of literacy practices in the virtual world constructed and…

  1. Using Virtual Worlds to Identify Multidimensional Student Engagement in High School Foreign Language Learning Classrooms

    ERIC Educational Resources Information Center

    Jacob, Laura Beth

    2012-01-01

    Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…

  2. Technical Problems Experienced in the Transformation of Virtual Worlds into an Education Environment and Coping Strategies

    ERIC Educational Resources Information Center

    Coban, Murat; Karakus, Turkan; Karaman, Asiye; Gunay, Fatma; Goktas, Yuksel

    2015-01-01

    Research into virtual worlds demonstrates that to successfully use virtual world platforms in different disciplines, certain limitations and potential difficulties of these platforms must be overcome. The current study extends previous research by investigating problems in integrating virtual worlds in education with a longitudinal observation of…

  3. 3-D Waveform Modeling of the 11 September 2001 World Trade Center Collapse Events in New York City

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Rhie, J.; Kim, W.

    2010-12-01

    The seismic signals from collapse of the twin towers of World Trade Center (WTC), NYC were well recorded by the seismographic stations in the northeastern United States. The building collapse can be represented by a vertical single force which does not generate tangential component seismic signals during the source process. The waveforms recorded by the Basking Ridge, NJ (BRNJ) station located due west of the WTC site show that the amplitude on tangential component is negligible and indicates that a vertical single force assumption is valid and the velocity structure is more or less homogeneous along the propagation path. However, 3-component seismograms recorded at Palisades, NY (PAL), which is located 33.8 km due north of the WTC site along the Hudson River (azimuth = 15.2°), show abnormal features. The amplitude on tangential component is larger than on vertical- or on radial-component. This observation may be attributable to the complex energy conversion between Rayleigh and Love waves due to the strong low velocity anomaly associated with unconsolidated sediments under the Hudson River. To test the effects of the low velocity anomaly on the enhanced amplitude in tangential component, we developed a 3D velocity model by considering local geology such as unconsolidated sediment layer, Palisades sill, Triassic sandstone, and crystalline basement and simulated waveforms at PAL. The preliminary synthetic results show that 3D velocity structure can significantly enhance the amplitude in tangential component but it is not as large as the observation. Although a more precise 3D model is required to better explain the observations, our results confirm that the low velocity layer under the Hudson River can enhance the amplitude in tangential component at PAL. This result suggests that a good understanding of the amplitude enhancements for specific event-site pairs may be important to evaluate seismic hazard of metropolitan New York City.

  4. A Web 2.0/Web3D Hybrid Platform for Engaging Students in e-Learning Environments

    ERIC Educational Resources Information Center

    de Byl, Penny; Taylor, Janet

    2007-01-01

    This paper explores the Web 2.0 ethos with respect to the application of pedagogy within 3D online virtual environments. 3D worlds can create a synthetic experience capturing the essence of "being" in a particular world or context. The AliveX3D platform adopts the Web 2.0 ethos and applies it to online 3D virtual environment forming a Web…

  5. Workshop Report on Virtual Worlds and Immersive Environments

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie R.; Cowan-Sharp, Jessy; Dodson, Karen E.; Damer, Bruce; Ketner, Bob

    2009-01-01

    The workshop revolved around three framing ideas or scenarios about the evolution of virtual environments: 1. Remote exploration: The ability to create high fidelity environments rendered from external data or models such that exploration, design and analysis that is truly interoperable with the physical world can take place within them. 2. We all get to go: The ability to engage anyone in being a part of or contributing to an experience (such as a space mission), no matter their training or location. It is the creation of a new paradigm for education, outreach, and the conduct of science in society that is truly participatory. 3. Become the data: A vision of a future where boundaries between the physical and the virtual have ceased to be meaningful. What would this future look like? Is this plausible? Is it desirable? Why and why not?

  6. Crime and hate in virtual worlds: a new playground for the ID?

    PubMed

    Gorrindo, Tristan; Groves, James E

    2010-01-01

    Virtual worlds offer the potential for friendship, compassionate listening and support, and even love for 15 million users worldwide. But virtual analogs of crimes such as rape, murder, and pedophilia also exist within these worlds. The writings of Freud and Winnicott provide one model for understanding what may motivate these virtual crimes and how to think about them clinically. Psychiatric treatment can potentially benefit if therapists discuss virtual world use with patients as a way of understanding their inner lives. PMID:20235776

  7. Speaking in Character: Voice Communication in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Wadley, Greg; Gibbs, Martin R.

    This chapter summarizes 5 years of research on the implications of introducing voice communication systems to virtual worlds. Voice introduces both benefits and problems for players of fast-paced team games, from better coordination of groups and greater social presence of fellow players on the positive side, to negative features such as channel congestion, transmission of noise, and an unwillingness by some to use voice with strangers online. Similarly, in non-game worlds like Second Life, issues related to identity and impression management play important roles, as voice may build greater trust that is especially important for business users, yet it erodes the anonymity and ability to conceal social attributes like gender that are important for other users. A very different mixture of problems and opportunities exists when users conduct several simultaneous conversations in multiple text and voice channels. Technical difficulties still exist with current systems, including the challenge of debugging and harmonizing all the participants' voice setups. Different groups use virtual worlds for very different purposes, so a single modality may not suit all.

  8. Analysis for Clinical Effect of Virtual Windowing and Poking Reduction Treatment for Schatzker III Tibial Plateau Fracture Based on 3D CT Data

    PubMed Central

    Zhang, Huafeng; Li, Zhijun; Xu, Qian; Zhang, Yuan; Xu, Ke; Ma, Xinlong

    2015-01-01

    Objective. To explore the applications of preoperative planning and virtual surgery including surgical windowing and elevating reduction and to determine the clinical effects of this technology on the treatment of Schatzker type III tibial plateau fractures. Methods. 32 patients with Schatzker type III tibial plateau fractures were randomised upon their admission to the hospital using a sealed envelope method. Fourteen were treated with preoperative virtual design and assisted operation (virtual group) and 18 with direct open reduction and internal fixation (control group). Results. All patients achieved primary incision healing. Compared with control group, virtual groups showed significant advantages in operative time, incision length, and blood loss (P < 0.001). The virtual surgery was consistent with the actual surgery. Conclusion. The virtual group was better than control group in the treatment of tibial plateau fractures of Schatzker type III, due to shorter operative time, smaller incision length, and lower blood loss. The reconstructed 3D fracture model could be used to preoperatively determine the surgical windowing and elevating reduction method and simulate the operation for Schatzker type III tibial plateau fractures. PMID:25767804

  9. Virtual Worlds and the Learner Hero: How Today's Video Games Can Inform Tomorrow's Digital Learning Environments

    ERIC Educational Resources Information Center

    Rigby, C. Scott; Przybylski, Andrew K.

    2009-01-01

    Participation in expansive video games called "virtual worlds" has become a mainstream leisure activity for tens of millions of people around the world. The growth of this industry and the strong motivational appeal of these digital worlds invite a closer examination as to how educators can learn from today's virtual worlds in the development of…

  10. Network worlds : from link analysis to virtual places.

    SciTech Connect

    Joslyn, C.

    2002-01-01

    Significant progress is being made in knowledge systems through recent advances in the science of very large networks. Attention is now turning in many quarters to the potential impact on counter-terrorism methods. After reviewing some of these advances, we will discuss the difference between such 'network analytic' approaches, which focus on large, homogeneous graph strucures, and what we are calling 'link analytic' approaches, which focus on somewhat smaller graphs with heterogeneous link types. We use this venue to begin the process of rigorously defining link analysis methods, especially the concept of chaining of views of multidimensional databases. We conclude with some speculation on potential connections to virtual world architectures.

  11. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  12. Teaching with Virtual Worlds: Factors to Consider for Instructional Use of Second Life

    ERIC Educational Resources Information Center

    Mayrath, Michael C.; Traphagan, Tomoko; Jarmon, Leslie; Trivedi, Avani; Resta, Paul

    2010-01-01

    Substantial evidence now supports pedagogical applications of virtual worlds; however, most research supporting virtual worlds for education has been conducted using researcher-developed Multi-User Virtual Environments (MUVE). Second Life (SL) is a MUVE that has been adopted by a large number of academic institutions; however, little research has…

  13. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  14. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis

    PubMed Central

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it. PMID:26241496

  15. Addition of 3D scene attributes to a virtual landscape of Al-Madinah Al-Munwwarah in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alshammari, Saleh; Hayes, Ladson W.

    2003-03-01

    A 3-dimensional virtual landscape has been produced of Al-Madinah Al-Munwwarah in Saudi Arabia. A Triangular Irregular Network (TIN) interpolation method has been used to create a digital elevation model (DEM) from digital topographic maps at 1:1000 scale. High resolution aerial photography has been merged with satellite imagery to drape over the DEM. The resultant DEM, and fused overlay images, has been imported into Internet Space Builder software in order to add several attributes to the scene and to create an interactive virtual reality modelling language (VRML) model to support walk-throughs of the scene.

  16. Virtual Worlds and Kids: Mapping the Risks. A Report to Congress

    ERIC Educational Resources Information Center

    Federal Trade Commission, 2009

    2009-01-01

    Expressing concern about reports that children can easily access explicit content in online virtual worlds, in March 2009 Congress directed the Federal Trade Commission to conduct a study of such worlds, examining the types of content available and the methods virtual world operators use to restrict minors' access to explicit content. Accordingly,…

  17. Virtual Worlds for Language Learning: From Theory to Practice. Telecollaboration in Education. Volume 2

    ERIC Educational Resources Information Center

    Sadler, Randall

    2012-01-01

    This book focuses on one area in the field of Computer-Mediated Communication that has recently exploded in popularity--Virtual Worlds. Virtual Worlds are online multiplayer three-dimensional environments where avatars represent their real world counterparts. In particular, this text explores the potential for these environments to be used for…

  18. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  19. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  20. Virtual world for helping teens practice assertiveness skills

    NASA Astrophysics Data System (ADS)

    Nemire, Kenneth; Beil, Joshua; Swan, Ronald W.

    1999-05-01

    Smoking is on the rise among adolescents. This pilot project combined the well-documented benefits of Life Skills Training (LST) with the unique multisensory, 3D qualities of virtual environment (VE) technology to address some of the disadvantages of traditional prevention programs by engaging teens better, presenting information more persuasively, and making prevention programs continuously available in computer labs. In an eight-week pilot study, 45 seventh- grade students were randomly assigned to LST, VE, or non- intervention control groups. The VE system included goggles, synthesized speech, head and hand trackers, hand-held controller, and speech recognition. Questionnaires measured participants' smoking knowledge and behavior,a participants' reports on the usability of the VE system, and reports of simulator sickness symptoms. Structured interviews with randomly selected participants from each group revealed more detailed information. Data indicated the VE group retained more information and had more positive experiences learning about dangers of smoking and assertiveness skills than did the LST group. Usability data showed ease of use and learning of the VE system, with no significant symptoms of simulator sickness. These data indicated that this VE application is a promising tool for keeping teens healthy.

  1. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    PubMed

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery. PMID:20426007

  2. Using virtual worlds for patient and public engagement

    PubMed Central

    Taylor, Michael J.; Kaur, Meerat; Sharma, Uvarshi; Taylor, Dave; Reed, Julie E.; Darzi, Ara

    2015-01-01

    Patient and public involvement is fundamental in healthcare and many methods attempt to facilitate this engagement. The present study investigated use of computer-generated environments known as ‘virtual worlds’ (VW) as an involvement method. The VW used in the present research was Second Life, which is 3-dimensional, publically accessible and internet-based. It is accessed using digital self-representations, or ‘avatars’, through which users navigate the virtual environment and communicate with one another. Participants were patients with long-term conditions, frequently involved in shaping health research and care. Some had mobility and communication difficulties, potentially making involvement through traditional face-to-face modes of engagement challenging. There were 2 stages to this study. Stage-1: Participants were introduced to VWs and Second Life. This was followed by a face-to-face focus group discussion (FGD) in order to gain their views on use of SL. Stage-2: An FGD attended by 8 people (4 patients, 3 researchers, 1 healthcare professional) was conducted in Second Life. Training and support on using Second Life had been provided for participants. The FGD took place successfully, although some technical and communication difficulties were experienced. Data was collected in the form of interviews and questionnaires from the patients about their experience of using the virtual world. Participants recognised the potential of VWs as a platform for patient engagement, especially for those who suffer from chronic conditions that impact severely upon their mobility and communication. Participant feedback indicated that potential barriers include technical problems with VW programs and potential user inexperience of using VWs, which may be counteracted by ensuring provision of continuous training and support. In conclusion, this study established the feasibility of using VWs for patient FGDs and indicates a potential of use of VWs for engagement in

  3. Fish in the matrix: motor learning in a virtual world

    PubMed Central

    Engert, Florian

    2013-01-01

    One of the large remaining challenges in the field of zebrafish neuroscience is the establishment of techniques and preparations that permit the recording and perturbation of neural activity in animals that can interact meaningfully with the environment. Since it is very difficult to do this in freely behaving zebrafish, I describe here two alternative approaches that meet this goal via tethered preparations. The first uses head-fixation in agarose in combination with online imaging and analysis of tail motion. In the second method, paralyzed fish are suspended with suction pipettes in mid-water and nerve root recordings serve as indicators for intended locomotion. In both cases, fish can be immersed into a virtual environment and allowed to interact with this virtual world via real or fictive tail motions. The specific examples given in this review focus primarily on the role of visual feedback~– but the general principles certainly extend to other modalities, including proprioception, hearing, balance, and somatosensation. PMID:23355810

  4. The Role of Semantics in Next-Generation Online Virtual World-Based Retail Store

    NASA Astrophysics Data System (ADS)

    Sharma, Geetika; Anantaram, C.; Ghosh, Hiranmay

    Online virtual environments are increasingly becoming popular for entrepreneurship. While interactions are primarily between avatars, some interactions could occur through intelligent chatbots. Such interactions require connecting to backend business applications to obtain information, carry out real-world transactions etc. In this paper, we focus on integrating business application systems with virtual worlds. We discuss the probable features of a next-generation online virtual world-based retail store and the technologies involved in realizing the features of such a store. In particular, we examine the role of semantics in integrating popular virtual worlds with business applications to provide natural language based interactions.

  5. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    NASA Astrophysics Data System (ADS)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously

  6. A 3D Serious City Building Game on Waste Disposal

    ERIC Educational Resources Information Center

    Cuccurullo, Stefania; Francese, Rita; Passero, Ignazio; Tortora, Genoveffa

    2013-01-01

    The environmental priority requires structural interventions that will be effective in the long period only if they are accompanied by modifications of behaviors, orientations and beliefs, specially investing in the new generations. This paper presents a 3D Virtual World serious game named Pappi World, designed according to pedagogical theories…

  7. Faculty Perceptions of Instruction in Collaborative Virtual Immersive Learning Environments in Higher Education

    ERIC Educational Resources Information Center

    Janson, Barbara

    2013-01-01

    Use of 3D (three-dimensional) avatars in a synchronous virtual world for educational purposes has only been adopted for about a decade. Universities are offering synchronous, avatar-based virtual courses for credit - within 3D worlds (Luo & Kemp, 2008). Faculty and students immerse themselves, via avatars, in virtual worlds and communicate…

  8. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  9. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.

    PubMed

    Chaudhari, Prashant; Bari, Sanjay

    2016-02-01

    c-KIT is a component of the platelet-derived growth factor receptor family, classified as type-III receptor tyrosine kinase. c-KIT has been reported to be involved in, small cell lung cancer, other malignant human cancers, and inflammatory and autoimmune diseases associated with mast cells. Available c-KIT inhibitors suffer from tribulations of growing resistance or cardiac toxicity. A combined in silico pharmacophore and structure-based virtual screening was performed to identify novel potential c-KIT inhibitors. In the present study, five molecules from the ZINC database were retrieved as new potential c-KIT inhibitors, using Schrödinger's Maestro 9.0 molecular modeling suite. An atom-featured 3D QSAR model was built using previously reported c-KIT inhibitors containing the indolin-2-one scaffold. The developed 3D QSAR model ADHRR.24 was found to be significant (R2 = 0.9378, Q2 = 0.7832) and instituted to be sufficiently robust with good predictive accuracy, as confirmed through external validation approaches, Y-randomization and GH approach [GH score 0.84 and Enrichment factor (E) 4.964]. The present QSAR model was further validated for the OECD principle 3, in that the applicability domain was calculated using a "standardization approach." Molecular docking of the QSAR dataset molecules and final ZINC hits were performed on the c-KIT receptor (PDB ID: 3G0E). Docking interactions were in agreement with the developed 3D QSAR model. Model ADHRR.24 was explored for ligand-based virtual screening followed by in silico ADME prediction studies. Five molecules from the ZINC database were obtained as potential c-KIT inhibitors with high in -silico predicted activity and strong key binding interactions with the c-KIT receptor. PMID:26416560

  10. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  11. One concept, three implementations of 3D pharmacophore-based virtual screening: distinct coverage of chemical search space.

    PubMed

    Spitzer, Gudrun M; Heiss, Mathias; Mangold, Martina; Markt, Patrick; Kirchmair, Johannes; Wolber, Gerhard; Liedl, Klaus R

    2010-07-26

    Feature-based pharmacophore modeling is a well-established concept to support early stage drug discovery, where large virtual databases are filtered for potential drug candidates. The concept is implemented in popular molecular modeling software, including Catalyst, Phase, and MOE. With these software tools we performed a comparative virtual screening campaign on HSP90 and FXIa, taken from the 'maximum unbiased validation' data set. Despite the straightforward concept that pharmacophores are based on, we observed an unexpectedly high degree of variation among the hit lists obtained. By harmonizing the pharmacophore feature definitions of the investigated approaches, the exclusion volume sphere settings, and the screening parameters, we have derived a rationale for the observed differences, providing insight on the strengths and weaknesses of these algorithms. Application of more than one of these software tools in parallel will result in a widened coverage of chemical space. This is not only rooted in the dissimilarity of feature definitions but also in different algorithmic search strategies. PMID:20583761

  12. Sino-VirtualMoon: A 3D web platform using Chang’E-1 data for collaborative research

    NASA Astrophysics Data System (ADS)

    Chen, Min; Lin, Hui; Wen, Yongning; He, Li; Hu, Mingyuan

    2012-05-01

    The successful launch of the Chinese Chang’E-1 satellite created a valuable opportunity for lunar research, and represented China’s remarkable leap in deep space exploration. With the observed data acquired by Chang’E-1 satellite, a web platform was developed aims at providing an open research workspace for experts to conduct collaborative scientific research on the Moon. Excepting for supporting 3D visualization, the platform also provides collaborative tools for the basic geospatial analysis of the Moon, and supports collaborative simulation about the dynamic formation of lunar impact craters caused by the collision of meteors (or small asteroids). Based on this platform, related multidisciplinary experts can contribute their domain knowledge conveniently for collaborative scientific research of the Moon.

  13. Virtualizing ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model of imperial Rome

    NASA Astrophysics Data System (ADS)

    Guidi, Gabriele; Frischer, Bernard; De Simone, Monica; Cioci, Andrea; Spinetti, Alessandro; Carosso, Luca; Micoli, Laura L.; Russo, Michele; Grasso, Tommaso

    2005-01-01

    Computer modeling through digital range images has been used for many applications, including 3D modeling of objects belonging to our cultural heritage. The scales involved range from small objects (e.g. pottery), to middle-sized works of art (statues, architectural decorations), up to very large structures (architectural and archaeological monuments). For any of these applications, suitable sensors and methodologies have been explored by different authors. The object to be modeled within this project is the "Plastico di Roma antica," a large plaster-of-Paris model of imperial Rome (16x17 meters) created in the last century. Its overall size therefore demands an acquisition approach typical of large structures, but it also is characterized extremely tiny details typical of small objects (houses are a few centimeters high; their doors, windows, etc. are smaller than 1 centimeter). This paper gives an account of the procedures followed for solving this "contradiction" and describes how a huge 3D model was acquired and generated by using a special metrology Laser Radar. The procedures for reorienting in a single reference system the huge point clouds obtained after each acquisition phase, thanks to the measurement of fixed redundant references, are described. The data set was split in smaller sub-areas 2 x 2 meters each for purposes of mesh editing. This subdivision was necessary owing to the huge number of points in each individual scan (50-60 millions). The final merge of the edited parts made it possible to create a single mesh. All these processes were made with software specifically designed for this project since no commercial package could be found that was suitable for managing such a large number of points. Preliminary models are presented. Finally, the significance of the project is discussed in terms of the overall project known as "Rome Reborn," of which the present acquisition is an important component.

  14. Virtualizing ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model of imperial Rome

    NASA Astrophysics Data System (ADS)

    Guidi, Gabriele; Frischer, Bernard; De Simone, Monica; Cioci, Andrea; Spinetti, Alessandro; Carosso, Luca; Micoli, Laura L.; Russo, Michele; Grasso, Tommaso

    2004-12-01

    Computer modeling through digital range images has been used for many applications, including 3D modeling of objects belonging to our cultural heritage. The scales involved range from small objects (e.g. pottery), to middle-sized works of art (statues, architectural decorations), up to very large structures (architectural and archaeological monuments). For any of these applications, suitable sensors and methodologies have been explored by different authors. The object to be modeled within this project is the "Plastico di Roma antica," a large plaster-of-Paris model of imperial Rome (16x17 meters) created in the last century. Its overall size therefore demands an acquisition approach typical of large structures, but it also is characterized extremely tiny details typical of small objects (houses are a few centimeters high; their doors, windows, etc. are smaller than 1 centimeter). This paper gives an account of the procedures followed for solving this "contradiction" and describes how a huge 3D model was acquired and generated by using a special metrology Laser Radar. The procedures for reorienting in a single reference system the huge point clouds obtained after each acquisition phase, thanks to the measurement of fixed redundant references, are described. The data set was split in smaller sub-areas 2 x 2 meters each for purposes of mesh editing. This subdivision was necessary owing to the huge number of points in each individual scan (50-60 millions). The final merge of the edited parts made it possible to create a single mesh. All these processes were made with software specifically designed for this project since no commercial package could be found that was suitable for managing such a large number of points. Preliminary models are presented. Finally, the significance of the project is discussed in terms of the overall project known as "Rome Reborn," of which the present acquisition is an important component.

  15. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  16. Can Virtual Schools Thrive in the Real World?

    ERIC Educational Resources Information Center

    Wang, Yinying; Decker, Janet R.

    2014-01-01

    Despite the relatively large number of students enrolled in Ohio's virtual schools, it is unclear how virtual schools compare to their traditional school counterparts on measures of student achievement. To provide some insight, we compared the school performance from 2007-2011 at Ohio's virtual and traditional schools. The results…

  17. Simulating Geriatric Home Safety Assessments in a Three-Dimensional Virtual World

    ERIC Educational Resources Information Center

    Andrade, Allen D.; Cifuentes, Pedro; Mintzer, Michael J.; Roos, Bernard A.; Anam, Ramanakumar; Ruiz, Jorge G.

    2012-01-01

    Virtual worlds could offer inexpensive and safe three-dimensional environments in which medical trainees can learn to identify home safety hazards. Our aim was to evaluate the feasibility, usability, and acceptability of virtual worlds for geriatric home safety assessments and to correlate performance efficiency in hazard identification with…

  18. Web 2.0 and Virtual World Technologies: A Growing Impact on IS Education

    ERIC Educational Resources Information Center

    Harris, Albert L.; Rea, Alan

    2009-01-01

    Web 2.0 and virtual world technologies are here to stay. Today, our students come to our classroom with a presence on Facebook, the latest concert as a podcast on their MP3 player, and experience playing games in virtual worlds. In some respects, students are more tech-savvy than their Information Systems professors. Research showing the benefits…

  19. Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments

    ERIC Educational Resources Information Center

    Lukman, Rebeka; Krajnc, Majda

    2012-01-01

    This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…

  20. Facilitating Exploratory Learning in Schools through Virtual Worlds: Experiences from a Course Run at a School

    ERIC Educational Resources Information Center

    Iqbal, Ahmer

    2012-01-01

    The following paper examines the results of a research study in which a virtual world, Quest Atlantis (QA), was used to engage students in exploratory learning to teach about water quality issues. The main aim of the research was to find out how new digital learning environments and educational technology, such as virtual worlds, can be introduced…

  1. Improving Teaching and Learning of Computer Programming through the Use of the Second Life Virtual World

    ERIC Educational Resources Information Center

    Esteves, Micaela; Fonseca, Benjamim; Morgado, Leonel; Martins, Paulo

    2011-01-01

    The emergence of new technologies such as three-dimensional virtual worlds brings new opportunities for teaching and learning. We conducted an action research approach to the analysis of how teaching and learning of computer programming at the university level could be developed within the Second Life virtual world. Results support the notion that…

  2. Using Virtual Worlds in Education: Second Life[R] as an Educational Tool

    ERIC Educational Resources Information Center

    Baker, Suzanne C.; Wentz, Ryan K.; Woods, Madison M.

    2009-01-01

    The online virtual world Second Life (www.secondlife.com) has multiple potential uses in teaching. In Second Life (SL), users create avatars that represent them in the virtual world. Within SL, avatars can interact with each other and with objects and environments. SL offers tremendous creative potential in that users can create content within the…

  3. Children's Virtual Play Worlds Culture, Learning, and Participation. New Literacies and Digital Epistemologies. Volume 58

    ERIC Educational Resources Information Center

    Burke, Anne, Ed.; Marsh, Jackie, Ed.

    2013-01-01

    As children's digital lives become more relevant to schools and educators, the question of play and learning is being revisited in new and interesting ways. "Children's Virtual Play Worlds: Culture, Learning, and Participation" provides a more reasoned account of children's play engagements in virtual worlds through a number of scholarly…

  4. Come si fa? Can Virtual Worlds Help Us Promote Intercultural Awareness?

    ERIC Educational Resources Information Center

    Nocchi, Susanna

    2012-01-01

    This paper describes the author's experience with a pilot course of Italian in SL®[superscript 2]. The course is part of a PhD research on "Exploring the potential of virtual worlds to promote Intercultural Awareness in students learning Italian as a Foreign Language." In the paper the author will justify her choice of virtual worlds for…

  5. Drawing a Roadmap: Barriers and Challenges to Designing the Ideal Virtual World for Higher Education

    ERIC Educational Resources Information Center

    Johnson, Chris

    2008-01-01

    The goal of this article is to draw a roadmap for designing an "ideal" virtual world for higher education, pointing decision-makers in a general direction for implementing virtual worlds and noting various barriers along the way. When using a roadmap, one can take many different paths to reach a desired destination. Similarly, institutions can…

  6. Implementing the Liquid Curriculum: The Impact of Virtual World Learning on Higher Education

    ERIC Educational Resources Information Center

    Steils, Nicole; Tombs, Gemma; Mawer, Matt; Savin-Baden, Maggi; Wimpenny, Katherine

    2015-01-01

    This paper presents findings from a large-scale study which explored the socio-political impact of teaching and learning in virtual worlds on UK higher education. Three key themes emerged with regard to constructing curricula for virtual world teaching and learning, namely designing courses, framing practice and locating specific student needs.…

  7. Understanding the Impact of Virtual World Environments on Social and Cognitive Processes in Learning

    ERIC Educational Resources Information Center

    Zhang, Chi

    2009-01-01

    Researchers in information systems and technology-mediated learning have begun to examine how virtual world environments can be used in learning and how they enable learning processes and enhance learning outcomes. This research examined learning processes in a virtual world learning environment (VWLE). A research model of VWLE effects on learning…

  8. Pedagogical Practices in a Virtual World: An Ethnographic and Discourse Analysis Approach

    ERIC Educational Resources Information Center

    Stoerger, Sharon M.

    2010-01-01

    The purpose of this dissertation is to examine teaching and learning in virtual worlds such as "Second Life" (SL). This research is designed to address the following questions: What are the pedagogical practices in virtual worlds? What are the strengths and weaknesses of these practices? How do these practices change at different course levels?…

  9. "Come si fa?" Can Virtual Worlds Help Us Promote Intercultural Awareness?

    ERIC Educational Resources Information Center

    Nocchi, Susanna

    2012-01-01

    This paper describes the author's experience with a pilot course of Italian in SL[R]. The course is part of a PhD research on "Exploring the potential of virtual worlds to promote Intercultural Awareness in students learning Italian as a Foreign Language." In the paper the author will justify her choice of virtual worlds for the…

  10. Evaluating the Pedagogical Impact of a Virtual World Using Concept Mapping

    ERIC Educational Resources Information Center

    MacKinnon, Gregory; Saklofske, Jon

    2011-01-01

    A virtual world was created in an effort to supplement the study of the novel "The Natural Daughter". The educational impact of the virtual world experience on college students of English Literature was assessed using concept mapping as a measure of conceptual change. While conceptual change was evident, the origin of the growth was found to be…

  11. Educators' Experiences: The Process of Integrating Virtual World Technology in Higher Education

    ERIC Educational Resources Information Center

    Araullo, Jonathan John Javier

    2013-01-01

    This study focuses on educators in higher education who had used, or are currently using, virtual worlds in their courses. The focal point of most studies with regards to virtual worlds is on the technology itself. There have been very few studies where the focus is on educators. It is important to include educators, the human component, as part…

  12. Exploring Factors of Media Characteristic Influencing Flow in Learning through Virtual Worlds

    ERIC Educational Resources Information Center

    Choi, Beomkyu; Baek, Youngkyun

    2011-01-01

    This study aims to find out factors of media characteristic which are considered to influence flow in learning through virtual worlds. One hundred ninety eight elementary students who are eleven to twelve years old participated in this study. After the exploratory factor analysis, to extract media characteristics of virtual worlds, seventy-eight…

  13. Use of Second Life in Social Work Education: Virtual World Experiences and Their Effect on Students

    ERIC Educational Resources Information Center

    Reinsmith-Jones, Kelley; Kibbe, Sharon; Crayton, Traci; Campbell, Elana

    2015-01-01

    During the past 10 years, there has been a growing use of distance education, including the practice of holding classes in virtual world educational formats such as Second Life. Both the psychiatric and medical fields have caught on quickly to the functionality of virtual world teaching, yet social service educators have not ventured likewise.…

  14. Learners and Collaborative Learning in Virtual Worlds: A Review of the Literature

    ERIC Educational Resources Information Center

    Hanewald, Ria

    2013-01-01

    The purpose of this paper is to present selected literature on learners and collaborative learning in virtual worlds. Research in virtual worlds on collaborative learners is gradually emerging and will gain in significance, particularly in online and distance education environments. It will be argued that the design and functionality of virtual…

  15. Purposes for Literacy in Children's Use of the Online Virtual World "Club Penguin"

    ERIC Educational Resources Information Center

    Marsh, Jackie

    2014-01-01

    This paper reports on a study of the purposes for literacy discernible in young children's use of the virtual world, "Club Penguin." Twenty-six children aged between 5 and 11 took part in semi-structured interviews in which their use of virtual worlds was explored. Further, three 11-year-old children were filmed using "Club…

  16. Managing in the Virtual World: How Second Life is Rewriting the Rules of "Real Life" Business

    NASA Astrophysics Data System (ADS)

    Wyld, David C.

    In this paper, we will explore the growth of virtual worlds - one of the most exciting and fast-growing concepts in the Web 2.0 era. We will see that while there has been significant growth across all demographic groups, online gaming in MMOGs (Massively Multiplayer Online Games) are finding particular appeal in today's youth - the so-called "digital native" generation. We then overview the today's virtual world marketplace, both in the youth and adult-oriented markets. Second Life is emerging as the most important virtual world today, due to the intense interest amongst both large organizations and individual entrepreneurs to conduct real business in the virtual environment. Due to its prominence today and its forecasted growth over the next decade, we take a look at the unscripted world of Second Life, examining the corporate presence in-world, as well as the economic, technical, legal, ethical and security issues involved for companies doing business in the virtual world. In conclusion, we present an analysis of where we stand in terms of virtual world development today and a projection of where we will be heading in the near future. Finally, we present advice to management practitioners and academicians on how to learn about virtual worlds and explore the world of opportunities in them.

  17. Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies

    PubMed Central

    Nikolic, Katarina; Mavridis, Lazaros; Djikic, Teodora; Vucicevic, Jelica; Agbaba, Danica; Yelekci, Kemal; Mitchell, John B. O.

    2016-01-01

    HIGHLIGHTS Many CNS targets are being explored for multi-target drug designNew databases and cheminformatic methods enable prediction of primary pharmaceutical target and off-targets of compoundsQSAR, virtual screening and docking methods increase the potential of rational drug design The diverse cerebral mechanisms implicated in Central Nervous System (CNS) diseases together with the heterogeneous and overlapping nature of phenotypes indicated that multitarget strategies may be appropriate for the improved treatment of complex brain diseases. Understanding how the neurotransmitter systems interact is also important in optimizing therapeutic strategies. Pharmacological intervention on one target will often influence another one, such as the well-established serotonin-dopamine interaction or the dopamine-glutamate interaction. It is now accepted that drug action can involve plural targets and that polypharmacological interaction with multiple targets, to address disease in more subtle and effective ways, is a key concept for development of novel drug candidates against complex CNS diseases. A multi-target therapeutic strategy for Alzheimer‘s disease resulted in the development of very effective Multi-Target Designed Ligands (MTDL) that act on both the cholinergic and monoaminergic systems, and also retard the progression of neurodegeneration by inhibiting amyloid aggregation. Many compounds already in databases have been investigated as ligands for multiple targets in drug-discovery programs. A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a “predictor” model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. Based on all these findings, it is concluded that multipotent

  18. Drug Design for CNS Diseases: Polypharmacological Profiling of Compounds Using Cheminformatic, 3D-QSAR and Virtual Screening Methodologies.

    PubMed

    Nikolic, Katarina; Mavridis, Lazaros; Djikic, Teodora; Vucicevic, Jelica; Agbaba, Danica; Yelekci, Kemal; Mitchell, John B O

    2016-01-01

    HIGHLIGHTS Many CNS targets are being explored for multi-target drug designNew databases and cheminformatic methods enable prediction of primary pharmaceutical target and off-targets of compoundsQSAR, virtual screening and docking methods increase the potential of rational drug design The diverse cerebral mechanisms implicated in Central Nervous System (CNS) diseases together with the heterogeneous and overlapping nature of phenotypes indicated that multitarget strategies may be appropriate for the improved treatment of complex brain diseases. Understanding how the neurotransmitter systems interact is also important in optimizing therapeutic strategies. Pharmacological intervention on one target will often influence another one, such as the well-established serotonin-dopamine interaction or the dopamine-glutamate interaction. It is now accepted that drug action can involve plural targets and that polypharmacological interaction with multiple targets, to address disease in more subtle and effective ways, is a key concept for development of novel drug candidates against complex CNS diseases. A multi-target therapeutic strategy for Alzheimer's disease resulted in the development of very effective Multi-Target Designed Ligands (MTDL) that act on both the cholinergic and monoaminergic systems, and also retard the progression of neurodegeneration by inhibiting amyloid aggregation. Many compounds already in databases have been investigated as ligands for multiple targets in drug-discovery programs. A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. Based on all these findings, it is concluded that multipotent ligands

  19. 3D surface coordinate inspection of formed sheet material parts using optical measurement systems and virtual distortion compensation

    NASA Astrophysics Data System (ADS)

    Weckenmann, Albert A.; Gall, P.; Gabbia, A.

    2005-02-01

    Modern forming technology allows the production of highly sophisticated free form sheet material components, affording great flexibility to the design and manufacturing processes across a wide range of industries. This increased design and manufacturing potential places an ever growing demand on the accompanying inspection metrology. As a consequence of their surface shape, these parts underlie a reversible geometrical deformation caused by variations of the material and the manufacturing process, as well as by gravity. This distortion is removed during the assembly process, usually performed in automated robotic processes. For this reason, the part's tolerated parameters have to be inspected in a defined state, simulating the assembly process' boundary conditions. Thus, the inspection process chain consists of six steps: picking the workpiece up, manual fixation of the workpiece, tactile measurement of the surface's coordinates using a defined measurement strategy, manual removal of the fixation and removal of the workpiece from the inspection area. These steps are both laborious and time consuming (for example, the inspection of a car door can take up to a working day to complete). Using optical measuring systems and virtual distortion compensation, this process chain can be dramatically shortened. Optical measuring systems provide as a measurement result a point cloud representing a sample of all nearest surfaces in the measuring range containing the measurand. From this data, a surface model of the measurand can be determined, independent of its position in the measuring range. For thin sheet material parts an approximating finite element model can be deduced from such a surface model. By means of pattern recognition, assembly relevant features of the measurand can be identified and located on this model. Together with the boundary conditions given by the assembly process, the shape of the surface in its assembled state can be calculated using the finite

  20. Promoting Health in Virtual Worlds: Lessons From Second Life

    PubMed Central

    Mäntymäki, Matti; Söderlund, Sari

    2014-01-01

    Background Social media services can help empower people to take greater responsibility for their health. For example, virtual worlds are media-rich environments that have many technically advantageous characteristics that can be used for Health 2.0 purposes. Second Life has been used to build environments where people can obtain information and interact with other users for peer support and advice from health care professionals. Objective The intent of the study was to find out whether Second Life is a working and functional platform supporting the empowerment of people in health-related issues. Methods We conducted a review of the current health-related activity in Second Life, coupled with an extensive series of observations and interactions with the respective resources inside Second Life. Results A total of 24 operative health resources were found in Second Life, indicating that health-related activity is rather limited in Second Life, though at first glance it appears to contain very rich health-related content. The other main shortcomings of Second Life relate to a lack of activity, a low number of resource users, problems with Second Life’s search features, and the difficulty of finding trustworthy information. Conclusions For the average user, Second Life offers very little unique value compared to other online health resources. PMID:25313009

  1. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    PubMed

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. PMID:23212750

  2. Reorienting in Virtual 3D Environments: Do Adult Humans Use Principal Axes, Medial Axes or Local Geometry?

    PubMed Central

    Ambosta, Althea H.; Reichert, James F.; Kelly, Debbie M.

    2013-01-01

    Studies have shown that animals, including humans, use the geometric properties of environments to orient. It has been proposed that orientation is accomplished primarily by encoding the principal axes (i.e., global geometry) of an environment. However, recent research has shown that animals use local information such as wall length and corner angles as well as local shape parameters (i.e., medial axes) to orient. The goal of the current study was to determine whether adult humans reorient according to global geometry based on principal axes or whether reliance is on local geometry such as wall length and sense information or medial axes. Using a virtual environment task, participants were trained to select a response box located at one of two geometrically identical corners within a featureless rectangular-shaped environment. Participants were subsequently tested in a transformed L-shaped environment that allowed for a dissociation of strategies based on principal axes, medial axes and local geometry. Results showed that participants relied primarily on a medial axes strategy to reorient in the L-shaped test environment. Importantly, the search behaviour of participants could not be explained by a principal axes-based strategy. PMID:24223869

  3. Lifestyles of virtual world residents: living in the on-line game "lineage".

    PubMed

    Whang, Leo Sang-min; Chang, Geunyoung

    2004-10-01

    This study was conducted to explore the lifestyles of online game players who have adopted the virtual world as part of their life. An online survey was conducted on players of an Internet-based game, Lineage. Lineage is the largest online game where people assume new identities and play various roles in a virtual environment, accommodating over 6 million users worldwide. A total of 4,786 game players participated in this survey, and their lifestyles were compared with their values and attitudes in the virtual world. Upon classification of their real-world lifestyles, their tendencies and desires were compared to lifestyles in the virtual world. This study showed that game players have developed their own distinctive lifestyles, and their lifestyles were a strong criterion for explaining behavior patterns and desires in the virtual world. Lifestyles were classified into three general categories: (1) single-oriented player, (2) community-oriented player, and (3) off-Real world player. Each group displayed distinct differences in their values and game activities, as well as in their anti-social behavior tendencies. The differences reflected not only their personality but also their socio-economic status within the virtual world, which is constructed through game activities. This study serves as a model to understand how players from different real-life backgrounds will behave in various game features and how they adopt the virtual world for their new social identities. PMID:15667054

  4. Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function.

    PubMed

    Patton, J L; Dawe, G; Scharver, C; Mussa-Ivaldi, F A; Kenyon, R

    2004-01-01

    We have been developing and combining state-of-art devices that allow humans to visualize and feel synthetic objects superimposed on the real world. This effort stems from the need of platform for extending experiments on motor control and learning to realistic human motor tasks and environments, not currently represented in the practice of research. This paper's goal is to outline our motivations, progress, and objectives. Because the system is a general tool, we also hope to motivate researchers in related fields to join in. The platform under development, an augmented reality system combined with a haptic-interface robot, will be a new tool for contributing to the scientific knowledge base in the area of human movement control and rehabilitation robotics. Because this is a prototype, the system will also guide new methods by probing the levels of quality necessary for future design cycles and related technology. Inevitably, it should also lead the way to commercialization of such systems. PMID:17271395

  5. A novel orthogonal transmission-virtual grating method and its applications in measuring micro 3-D shape of deformed liquid surface

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Huang, Xianfu; Xie, Huimin

    2013-02-01

    Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.

  6. Modeling and Accuracy Assessment for 3D-VIRTUAL Reconstruction in Cultural Heritage Using Low-Cost Photogrammetry: Surveying of the "santa MARÍA Azogue" Church's Front

    NASA Astrophysics Data System (ADS)

    Robleda Prieto, G.; Pérez Ramos, A.

    2015-02-01

    Sometimes it could be difficult to represent "on paper" an architectural idea, a solution, a detail or a newly created element, depending on the complexity what it want be conveyed through its graphical representation but it may be even harder to represent the existing reality. (a building, a detail,...), at least with an acceptable degree of definition and accuracy. As a solution to this hypothetical problem, this paper try to show a methodology to collect measure data by combining different methods or techniques, to obtain the characteristic geometry of architectonic elements, especially in those highly decorated and/or complex geometry, as well as to assess the accuracy of the results obtained, but in an accuracy level enough and not very expensive costs. In addition, we can obtain a 3D recovery model that allows us a strong support, beyond point clouds obtained through another more expensive methods as using laser scanner, to obtain orthoimages. This methodology was used in the study case of the 3D-virtual reconstruction of a main medieval church façade because of the geometrical complexity in many elements as the existing main doorway with archivolts and many details, as well as the rose window located above it so it's inaccessible due to the height.

  7. Halting HIV/AIDS with avatars and havatars: a virtual world approach to modelling epidemics

    PubMed Central

    2009-01-01

    Background A major deficit of all approaches to epidemic modelling to date has been the need to approximate or guess at human behaviour in disease-transmission-related contexts. Avatars are generally human-like figures in virtual computer worlds controlled by human individuals. Methods We introduce the concept of a "havatar", which is a (human, avatar) pairing. Evidence is mounting that this pairing behaves in virtual contexts much like the human in the pairing might behave in analogous real-world contexts. Results We propose that studies of havatars, in a virtual world, may give a realistic approximation of human behaviour in real-world contexts. If the virtual world approximates the real world in relevant details (geography, transportation, etc.), virtual epidemics in that world could accurately simulate real-world epidemics. Havatar modelling of epidemics therefore offers a complementary tool for tackling how best to halt epidemics, including perhaps HIV/AIDS, since sexual behaviour is a significant component of some virtual worlds, such as Second Life. Conclusion Havatars place the control parameters of an epidemic in the hands of each individual. By providing tools that everyone can understand and use, we could democratise epidemiology. PMID:19922683

  8. Towards a virtual C. elegans: a framework for simulation and visualization of the neuromuscular system in a 3D physical environment.

    PubMed

    Palyanov, Andrey; Khayrulin, Sergey; Larson, Stephen D; Dibert, Alexander

    The nematode C. elegans is the only animal with a known neuronal wiring diagram, or "connectome". During the last three decades, extensive studies of the C. elegans have provided wide-ranging data about it, but few systematic ways of integrating these data into a dynamic model have been put forward. Here we present a detailed demonstration of a virtual C. elegans aimed at integrating these data in the form of a 3D dynamic model operating in a simulated physical environment. Our current demonstration includes a realistic flexible worm body model, muscular system and a partially implemented ventral neural cord. Our virtual C. elegans demonstrates successful forward and backward locomotion when sending sinusoidal patterns of neuronal activity to groups of motor neurons. To account for the relatively slow propagation velocity and the attenuation of neuronal signals, we introduced "pseudo neurons" into our model to simulate simplified neuronal dynamics. The pseudo neurons also provide a good way of visualizing the nervous system's structure and activity dynamics. PMID:22935967

  9. Virtual Worlds; Real Learning: Design Principles for Engaging Immersive Environments

    NASA Technical Reports Server (NTRS)

    Wu (u. Sjarpm)

    2012-01-01

    The EMDT master's program at Full Sail University embarked on a small project to use a virtual environment to teach graduate students. The property used for this project has evolved our several iterations and has yielded some basic design principles and pedagogy for virtual spaces. As a result, students are emerging from the program with a better grasp of future possibilities.

  10. Combining Face-to-Face Learning with Online Learning in Virtual Worlds

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2012-01-01

    This paper focuses on the development of videogame-like applications in a 3D virtual environment as a complement to the face-to-face teaching and learning. With the changing role of teaching and learning and the increasing use of "blended learning," instructors are increasingly expected to explore new ways to attend to the needs of their students.…

  11. This is Not a Game - Social Virtual Worlds, Fun, and Learning

    NASA Astrophysics Data System (ADS)

    Bell, Mark W.; Smith-Robbins, Sarah; Withnail, Greg

    This chapter asks a simple question: what is required to make learning fun in social virtual worlds? Several scholars have connected fun with learning but most of these have centered on the function of games in learning. Studies of learning in massive multiplayer online role playing games connect the game mechanics to how learning occurs. However, few have asked whether learning in a virtual world can be fun if there is no game. In a social virtual world, like Second Life (SL) there are no game mechanics (unlike game worlds like World of Warcraft [WoW]). There are no quests, challenges, rewards or other game elements in SL. So can a virtual world that has no game-content provided be a place where fun learning can take place? We define fun and explore how fun has been related to learning. We explore theories of fun from Koster, Crawford, Csíkszentmihályi and others as well as views of the ways fun is explored as related to the learning experience. With these models in mind, we explore how fun is different in a social virtual world. Drawing on definitions of fun from Castronova and others, we see game structures in virtual worlds may not be needed to have fun. These fun activities include game creation, business interactions, and most importantly, identity play and socialization in a social virtual world. Finally, we propose that if learning is to be successful and fun in a social virtual world it should pay close attention to these two activities.

  12. A posthuman liturgy? Virtual worlds, robotics, and human flourishing.

    PubMed

    Shatzer, Jacob

    2013-01-01

    In order to inspire a vision of biotechnology that affirms human dignity and human flourishing, the author poses questions about virtual reality and the use of robotics in health care. Using the concept of 'liturgy' and an anthropology of humans as lovers, the author explores how virtual reality and robotics in health care shape human moral agents, and how such shaping could influence the way we do or do not pursue a 'posthuman' future. PMID:24707596

  13. Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and Pléiades-1A stereo images for 3D information extraction

    NASA Astrophysics Data System (ADS)

    Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.

    2015-02-01

    Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.

  14. Social Virtual Worlds for Technology-Enhanced Learning on an Augmented Learning Platform

    ERIC Educational Resources Information Center

    Jin, Li; Wen, Zhigang; Gough, Norman

    2010-01-01

    Virtual worlds have been linked with e-learning applications to create virtual learning environments (VLEs) for the past decade. However, while they can support many educational activities that extend both traditional on-campus teaching and distance learning, they are used primarily for learning content generated and managed by instructors. With…

  15. Curricular Implications of Virtual World Technology: A Review of Business Applications

    ERIC Educational Resources Information Center

    Cyphert, Dale; Wurtz, M. Susan; Duclos, Leslie K.

    2013-01-01

    As business organizations grow increasingly virtual, traditional principles of organizational communication require examination and modification. This article considers the curricular implications of the growing business uses of virtual world technology through three different lenses--students as employee-users, students as strategic designers and…

  16. Introducing Case Management to Students in a Virtual World: An Exploratory Study

    ERIC Educational Resources Information Center

    Levine, Joanne; Adams, Ruifang Hope

    2013-01-01

    This paper discusses a small, exploratory study introducing students to case management using role-plays conducted in a virtual world. Data from pre- and posttest questionnaires (to assess self-efficacy regarding a range of case management tasks) suggest students felt more confident in their abilities after virtual role-play participation. Also…

  17. Inhabited Virtual Learning Worlds and Impacts on Learning Behaviors in Young School Learners

    ERIC Educational Resources Information Center

    Lin, Chi-Syan; Chou, C. Candace; Kuo, Ming-Shiou

    2007-01-01

    The paper outlines a new paradigm and its underlying rationales for implementing networked learning environments that is emerging from new technologies such as multi-user platform, virtual worlds, virtual learning community, and intelligent agents. The proposed paradigm of the networked learning environments is described as inhabited virtual…

  18. Pedagogical Challenges of Spoken English Learning in the Second Life Virtual World: A Case Study

    ERIC Educational Resources Information Center

    Zhang, Haisen

    2013-01-01

    As one of the emerging technologies, the Second Life virtual world provides learners of English as a Foreign Language with a unique opportunity of learning authentic language with native and non-native speakers of English in a virtual environment. It enables them to learn the target language in a real-life-like social communication environment. To…

  19. A Decade of Research on the Use of Three-Dimensional Virtual Worlds in Health Care: A Systematic Literature Review

    PubMed Central

    Ghapanchi, Amir Hossein; Blumenstein, Michael; Talaei-Khoei, Amir

    2014-01-01

    Background A three-dimensional virtual world (3DVW) is a computer-simulated electronic 3D virtual environment that users can explore, inhabit, communicate, and interact with via avatars, which are graphical representations of the users. Since the early 2000s, 3DVWs have emerged as a technology that has much to offer the health care sector. Objective The purpose of this study was to characterize different application areas of various 3DVWs in health and medical context and categorize them into meaningful categories. Methods This study employs a systematic literature review on the application areas of 3DVWs in health care. Our search resulted in 62 papers from five top-ranking scientific databases published from 1990 to 2013 that describe the use of 3DVWs for health care specific purposes. We noted a growth in the number of academic studies on the topic since 2006. Results We found a wide range of application areas for 3DVWs in health care and classified them into the following six categories: academic education, professional education, treatment, evaluation, lifestyle, and modeling. The education category, including professional and academic education, contains the largest number of papers (n=34), of which 23 are related to the academic education category and 11 to the professional education category. Nine papers are allocated to treatment category, and 8 papers have contents related to evaluation. In 4 of the papers, the authors used 3DVWs for modeling, and 3 papers targeted lifestyle purposes. The results indicate that most of the research to date has focused on education in health care. We also found that most studies were undertaken in just two countries, the United States and the United Kingdom. Conclusions 3D virtual worlds present several innovative ways to carry out a wide variety of health-related activities. The big picture of application areas of 3DVWs presented in this review could be of value and offer insights to both the health care community and

  20. Open Virtual Worlds as Pedagogical Research Tools: Learning from the Schome Park Programme

    NASA Astrophysics Data System (ADS)

    Twining, Peter; Peachey, Anna

    This paper introduces the term Open Virtual Worlds and argues that they are ‘unclaimed educational spaces’, which provide a valuable tool for researching pedagogy. Having explored these claims the way in which Teen Second Life® virtual world was used for pedagogical experimentation in the initial phases of the Schome Park Programme is described. Four sets of pedagogical dimensions that emerged are presented and illustrated with examples from the Schome Park Programme.

  1. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    NASA Astrophysics Data System (ADS)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  2. Re-entry: online virtual worlds as a healing space for veterans

    NASA Astrophysics Data System (ADS)

    Morie, Jacquelyn Ford

    2009-02-01

    We describe a project designed to use the power of online virtual worlds as a place of camaraderie and healing for returning United States military veterans-a virtual space that can help them deal with problems related to their time of service and also assist in their reintegration into society. This veterans' space is being built in Second Life®, a popular immersive world, under consultation with medical experts and psychologists, with several types of both social and healing activities planned. In addition, we address several barrier issues with virtual worlds, including lack of guides or helpers to ensure the participants have a quality experience. To solve some of these issues, we are porting the advanced intelligence of the ICT's virtual human characters to avatars in Second Life®, so they will be able to greet the veterans, converse with them, guide them to relevant activities, and serve as informational agents for healing options. In this way such "avatar agents" will serve as autonomous intelligent characters that bring maximum engagement and functionality to the veterans' space. This part of the effort expands online worlds beyond their existing capabilities, as currently a human being must operate each avatar in the virtual world; few autonomous characters exist. As this project progresses we will engage in an iterative design process with veteran participants who will be able to advise us, along with the medical community, on what efforts are well suited to, and most effective within, the virtual world.

  3. Web 3D for public, environmental and occupational health: early examples from second life.

    PubMed

    Kamel Boulos, Maged N; Ramloll, Rameshsharma; Jones, Ray; Toth-Cohen, Susan

    2008-12-01

    Over the past three years (2006-2008), the medical/health and public health communities have shown a growing interest in using online 3D virtual worlds like Second Life(R) (http://secondlife.com/) for health education, community outreach, training and simulations purposes. 3D virtual worlds are seen as the precursors of 'Web 3D' , the next major iteration of the Internet that will follow in the coming years. This paper provides a tour of several flagship Web 3D experiences in Second Life(R), including Play2Train Islands (emergency preparedness training), the US Centers for Disease Control and Prevention--CDC Island (public health), Karuna Island (AIDS support and information), Tox Town at Virtual NLM Island (US National Library of Medicine--environmental health), and Jefferson's Occupational Therapy Center. We also discuss the potential and future of Web 3D. These are still early days of 3D virtual worlds, and there are still many more untapped potentials and affordances of 3D virtual worlds that are yet to be explored, as the technology matures further and improves over the coming months and years. PMID:19190358

  4. Understanding the Adaptive Use of Virtual World Technology Capabilities and Trust in Virtual Teams

    ERIC Educational Resources Information Center

    Owens, Dawn

    2012-01-01

    In an environment of global competition and constant technological change, the use of virtual teams has become commonplace for many organizations. Virtual team members are geographically and temporally dispersed, experience cultural diversity, and lack shared social context and face-to-face encounters considered as irreplaceable for building and…

  5. UbiWorld: An environment integrating virtual reality, supercomputing, and design

    SciTech Connect

    Disz, T.; Papka, M.E.; Stevens, R.

    1997-07-01

    UbiWorld is a concept being developed by the Futures Laboratory group at Argonne National Laboratory that ties together the notion of ubiquitous computing (Ubicomp) with that of using virtual reality for rapid prototyping. The goal is to develop an environment where one can explore Ubicomp-type concepts without having to build real Ubicomp hardware. The basic notion is to extend object models in a virtual world by using distributed wide area heterogeneous computing technology to provide complex networking and processing capabilities to virtual reality objects.

  6. Using SecondLife Online Virtual World Technology to Introduce Educators to the Digital Culture

    NASA Technical Reports Server (NTRS)

    Jamison, John

    2008-01-01

    The rapidly changing culture resulting from new technologies and digital gaming has created an increasing language gap between traditional educators and today's learners (Natkin, 2006; Seely-Brown, 2000). This study seeks to use the online virtual world of SecondLife.com as a tool to introduce educators to this new environment for learning. This study observes the activities and perceptions of a group of educators given unscripted access to this virtual environment. The results 'suggest that although serious technology limitations do currently exist, the potential of this virtual world environment as a learning experience for educators is strong.

  7. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. 3D scene modeling from multiple range views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  10. Enhancing Pre-Service Teachers' Awareness to Pupils' Test-Anxiety with 3D Immersive Simulation

    ERIC Educational Resources Information Center

    Passig, David; Moshe, Ronit

    2008-01-01

    This study investigated whether participating in a 3D immersive virtual reality world simulating the experience of test-anxiety would affect preservice teachers' awareness to the phenomenon. Ninety subjects participated in this study, and were divided into three groups. The experimental group experienced a 3D immersive simulation which made…

  11. A common feature-based 3D-pharmacophore model generation and virtual screening: identification of potential PfDHFR inhibitors.

    PubMed

    Adane, Legesse; Bharatam, Prasad V; Sharma, Vikas

    2010-10-01

    A four-feature 3D-pharmacophore model was built from a set of 24 compounds whose activities were reported against the V1/S strain of the Plasmodium falciparum dihydrofolate reductase (PfDHFR) enzyme. This is an enzyme harboring Asn51Ile + Cys59Arg + Ser108Asn + Ile164Leu mutations. The HipHop module of the Catalyst program was used to generate the model. Selection of the best model among the 10 hypotheses generated by HipHop was carried out based on rank and best-fit values or alignments of the training set compounds onto a particular hypothesis. The best model (hypo1) consisted of two H-bond donors, one hydrophobic aromatic, and one hydrophobic aliphatic features. Hypo1 was used as a query to virtually screen Maybridge2004 and NCI2000 databases. The hits obtained from the search were subsequently subjected to FlexX and Glide docking studies. Based on the binding scores and interactions in the active site of quadruple-mutant PfDHFR, a set of nine hits were identified as potential inhibitors. PMID:19995305

  12. 2.5D/3D Models for the enhancement of architectural-urban heritage. An Virtual Tour of design of the Fascist headquarters in Littoria

    NASA Astrophysics Data System (ADS)

    Ippoliti, E.; Calvano, M.; Mores, L.

    2014-05-01

    Enhancement of cultural heritage is not simply a matter of preserving material objects but comes full circle only when the heritage can be enjoyed and used by the community. This is the rationale behind this presentation: an urban Virtual Tour to explore the 1937 design of the Fascist Headquarters in Littoria, now part of Latina, by the architect Oriolo Frezzotti. Although the application is deliberately "simple", it was part of a much broader framework of goals. One such goal was to create "friendly and perceptively meaningful" interfaces by integrating different "3D models" and so enriching. In fact, by exploiting the activation of natural mechanisms of visual perception and the ensuing emotional emphasis associated with vision, the illusionistic simulation of the scene facilitates access to the data even for "amateur" users. A second goal was to "contextualise the information" on which the concept of cultural heritage is based. In the application, communication of the heritage is linked to its physical and linguistic context; the latter is then used as a basis from which to set out to explore and understand the historical evidence. A third goal was to foster the widespread dissemination and sharing of this heritage of knowledge. On the one hand we worked to make the application usable from the Web, on the other, we established a reliable, rapid operational procedure with high quality processed data and ensuing contents. The procedure was also repeatable on a large scale.

  13. Designing for Real-World Scientific Inquiry in Virtual Environments

    ERIC Educational Resources Information Center

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  14. Internet, Multimedia and Virtual Laboratories in a 'Third World' Environment.

    ERIC Educational Resources Information Center

    Monge-Najera, Julian Antonio; Rivas Rossi, Marta; Mendez-Estrada, Victor Hugo

    2001-01-01

    Describes the development of low-cost multimedia courses and materials for use on the Internet, as well as virtual laboratories, at the Universidad Estatal a Distancia (Costa Rica). Explains how simultaneous production of traditional printed materials and online courses, outsourcing, and the use of HTML and Java can reduce costs for developing…

  15. Teachers Make the Move to the Virtual World

    ERIC Educational Resources Information Center

    Ash, Katie

    2011-01-01

    Making the move from a regular classroom to a virtual setting is about more than the technology. Individualizing instruction, creating an engaging and supportive online classroom, and learning how to communicate with students who aren't physically present are among the challenges. Communicating with students and building relationships with them…

  16. Learning the Virtual Life: Public Pedagogy in a Digital World

    ERIC Educational Resources Information Center

    Trifonas, Peter Pericles, Ed.

    2011-01-01

    Digital technologies have transformed cultural perceptions of learning and what it means to be literate, expanding the importance of experience alongside interpretation and reflection. "Living the Virtual Life" offers ways to consider the local and global effects of digital media on educational environments, as well as the cultural transformations…

  17. Virtual Worlds Come Alive at AECT 2008 Convention

    ERIC Educational Resources Information Center

    Atkinson, Tom; Daugherty, Janet; Etelamaki, Lisa

    2009-01-01

    In 2007, Mary Herring, AECT (Association for Educational Communications and Technology) President-Elect, assembled a task force to focus on issues and opportunities presented by virtual environments in the context of global leadership in professional development, research, scholarship, and practice, and the opportunity for social interaction and…

  18. Acceptance, Usability and Health Applications of Virtual Worlds by Older Adults: A Feasibility Study

    PubMed Central

    Winkler, Sandra L

    2016-01-01

    Background Virtual worlds allow users to communicate and interact across various environments, scenarios, and platforms. Virtual worlds present opportunities in health care to reduce the burden of illness and disability by supporting education, rehabilitation, self-management, and social networking. The application of virtual worlds to older adults who bear the burden and cost of health conditions associated with age has not been evaluated. Objective The aim of this study is to explore the usability, ease of use, and enjoyment of a virtual world by older adults, the types of virtual world activities that older adults may engage in, and the perceptions of older adults regarding the application of virtual worlds in health care. Methods This quasi-experimental pre-post design research was guided by the Technology Acceptance Model (TAM). Participants were recruited from a Lifelong Learning Institute (LLI) program at Nova Southeastern University. Participants attended four training sessions over a 5-week period in the Second Life (SL) virtual world. Subjects were surveyed before and after the training on perceived ease of use, attitudes towards technology, behavioral intention to use the system, facilitating conditions, effort expectancy, and self-efficacy. Results Older adults (N=19) completed the informed consent and attended the first training session, and 11 participants (58%, 11/19) completed the full training and the post survey. Completers (82%, 9/11) were more likely than non-completers (37%, 3/8) to consider themselves technologically savvy (P=.048), and to express confidence in being able to use the virtual world (100%, 11/11 vs 37%, 3/8; P=.002). All completers (100%, 11/11) perceived that SL has application in health behaviors and disease and reducing social isolation among people who are homebound. Of the completers, 10 (91%, 10/11) responded that they enjoyed learning how to use SL. Completers suggested that future trainings include more assistants and

  19. The Best of All Worlds: Immersive Interfaces for Art Education in Virtual and Real World Teaching and Learning Environments

    ERIC Educational Resources Information Center

    Grenfell, Janette

    2013-01-01

    Selected ubiquitous technologies encourage collaborative participation between higher education students and educators within a virtual socially networked e-learning landscape. Multiple modes of teaching and learning, ranging from real world experiences, to text and digital images accessed within the Deakin studies online learning management…

  20. Virtual World, Real Education: A Descriptive Study of Instructional Design in Second Life

    ERIC Educational Resources Information Center

    Kingston, Linda S.

    2011-01-01

    Virtual worlds like Second Life are emerging technologies that have gained popularity among educators. As these worlds emerged, greater focus has been placed on the design of the environments themselves rather than the design of instruction within them. Educators have begun using these environments for teaching and instructional designers are now…

  1. Learning in Virtual Worlds: Using Communities of Practice to Explain How People Learn from Play

    ERIC Educational Resources Information Center

    Oliver, Martin; Carr, Diane

    2009-01-01

    Although there is interest in the educational potential of online multiplayer games and virtual worlds, there is still little evidence to explain specifically what and how people learn from these environments. This paper addresses this issue by exploring the experiences of couples that play "World of Warcraft" together. Learning outcomes were…

  2. 3D augmented reality with integral imaging display

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-06-01

    In this paper, a three-dimensional (3D) integral imaging display for augmented reality is presented. By implementing the pseudoscopic-to-orthoscopic conversion method, elemental image arrays with different capturing parameters can be transferred into the identical format for 3D display. With the proposed merging algorithm, a new set of elemental images for augmented reality display is generated. The newly generated elemental images contain both the virtual objects and real world scene with desired depth information and transparency parameters. The experimental results indicate the feasibility of the proposed 3D augmented reality with integral imaging.

  3. 3D Graphics Through the Internet: A "Shoot-Out"

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    3D graphics through the Internet needs to move beyond the current lowest common denominator of pre-computed movies, which consume bandwidth and are non-interactive. Panelists will demonstrate and compare 3D graphical tools for accessing, analyzing, and collaborating on information through the Internet and World-wide web. The "shoot-out" will illustrate which tools are likely to be the best for the various types of information, including dynamic scientific data, 3-D objects, and virtual environments. The goal of the panel is to encourage more effective use of the Internet by encouraging suppliers and users of information to adopt the next generation of graphical tools.

  4. What Happens in a Virtual World Has a Real-World Impact, a Scholar Finds

    ERIC Educational Resources Information Center

    Foster, Andrea L.

    2008-01-01

    Forget the pills, hypnosis, and meditation. Losing weight or boosting self-confidence can be achieved by adopting an avatar and living in virtual reality, says Jeremy N. Bailenson, an assistant professor of communications at Stanford University. As the director of Stanford's Virtual Human Interaction Lab, Mr. Bailenson has explored ways that…

  5. Web 3D for Public, Environmental and Occupational Health: Early Examples from Second Life®

    PubMed Central

    Kamel Boulos, Maged N.; Ramloll, Rameshsharma; Jones, Ray; Toth-Cohen, Susan

    2008-01-01

    Over the past three years (2006–2008), the medical/health and public health communities have shown a growing interest in using online 3D virtual worlds like Second Life® (http://secondlife.com/) for health education, community outreach, training and simulations purposes. 3D virtual worlds are seen as the precursors of ‘Web 3D’, the next major iteration of the Internet that will follow in the coming years. This paper provides a tour of several flagship Web 3D experiences in Second Life®, including Play2Train Islands (emergency preparedness training), the US Centers for Disease Control and Prevention—CDC Island (public health), Karuna Island (AIDS support and information), Tox Town at Virtual NLM Island (US National Library of Medicine - environmental health), and Jefferson’s Occupational Therapy Center. We also discuss the potential and future of Web 3D. These are still early days of 3D virtual worlds, and there are still many more untapped potentials and affordances of 3D virtual worlds that are yet to be explored, as the technology matures further and improves over the coming months and years. PMID:19190358

  6. Tangible display systems: bringing virtual surfaces into the real world

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2012-03-01

    We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.

  7. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  8. Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases

    NASA Astrophysics Data System (ADS)

    Romero, Salvador J.; Fernandez-Luque, Luis; Sevillano, José L.; Vognild, Lars

    For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising.

  9. The role of cognitive apprenticeship in learning science in a virtual world

    NASA Astrophysics Data System (ADS)

    Ramdass, Darshanand

    2012-12-01

    This article extends the discussion started by Margaret Beier, Leslie Miller, and Shu Wang's (2012) paper, Science games and the development of possible selves. In this paper, I suggest that a theoretical framework based on a sociocultural theory of learning is critical in learning in a virtual environment. I will discuss relevant research on the application of various components of the sociocultural perspective of learning in classroom environments and the potential for applying them in virtual worlds. I propose that research in science education should explore the processes underlying cognitive apprenticeship and determine how these processes can be used in virtual environments to help students learn science successfully.

  10. The Use of Virtual Ethnography in Distance Education Research

    ERIC Educational Resources Information Center

    Uzun, Kadriye; Aydin, Cengiz Hakan

    2012-01-01

    3D virtual worlds can and have been used as a meeting place for distance education courses. Virtual worlds allow for group learning of the kind enjoyed by students gathered in a virtual classroom, where they know they are in a communal space, they are aware of the social process of learning and are affected by the presence and behaviour of their…

  11. UbiWorld: An environment integrating virtual reality, supercomputing and design

    SciTech Connect

    Papka, M.E.; Stevens, R.

    1996-12-31

    UbiWorld is a concept being developed by the Futures Lab Group at Argonne that ties together the notion of Ubiquitous Computing (Ubicomp) with that of using virtual reality for rapid prototyping. The goal is to develop an environment where one can explore Ubicomp type concepts without having to build real Ubicomp hardware. The basic notion is to extend object models in a virtual world using distributed wide area heterogeneous computing technology to provide complex networking and processing capabilities to virtual reality objects. It is relatively easy to imagine elements of Ubicomp systems (tables, curtains, wallpaper cups) but when Mark Weiser`s group at Xerox set out to work in this area they had to build experimental hardware and software systems to test the concepts. Building hardware is expensive and hard and in the end is always problematic because it has to build around the limitations of current computing technology. We imagine a different approach, and call it UbiWorld.

  12. Filling the gap between the quantum and classical worlds of nanoscale magnetism: giant molecular aggregates based on paramagnetic 3d metal ions.

    PubMed

    Papatriantafyllopoulou, Constantina; Moushi, Eleni E; Christou, George; Tasiopoulos, Anastasios J

    2016-03-14

    In this review, aspects of the syntheses, structures and magnetic properties of giant 3d and 3d/4f paramagnetic metal clusters in moderate oxidation states are discussed. The term "giant clusters" is used herein to denote metal clusters with nuclearity of 30 or greater. Many synthetic strategies towards such species have been developed and are discussed in this paper. Attempts are made to categorize some of the most successful methods to giant clusters, but it will be pointed out that the characteristics of the crystal structures of such compounds including nuclearity, shape, architecture, etc. are unpredictable depending on the specific structural features of the included organic ligands, reaction conditions and other factors. The majority of the described compounds in this review are of special interest not only for their fascinating nanosized structures but also because they sometimes display interesting magnetic phenomena, such as ferromagnetic exchange interactions, large ground state spin values, single-molecule magnetism behaviour or impressively large magnetocaloric effects. In addition, they often possess the properties of both the quantum and the classical world, and thus their systematic study offers the potential for the discovery of new physical phenomena, as well as a better understanding of the existing ones. The research field of giant clusters is under continuous evolution and their intriguing structural characteristics and magnetism properties that attract the interest of synthetic Inorganic Chemists promise a brilliant future for this class of compounds. PMID:26767319

  13. The Third Place in Second Life: Real Life Community in a Virtual World

    NASA Astrophysics Data System (ADS)

    Peachey, Anna

    In June 2006 The Open University (OU) purchased its first land in Second LifeTM (SL). Over a two and a half year period, the OU presence evolved and grew to a point where an average of between 150 and 250 unique users in any 7-day period are active in an OU area. This chapter charts the history of the development of the OU Second Life social community and considers the nature of that activity at a point of critical change, in January 2009, shortly before a new island is developed to provide a permanent home for the community. In order for the community to continue evolving it is necessary to understand the nature of the core activities of these users, and to consider this in a context of sustainable development. Through reference to aspects of socialisation and physical community, the author proposes that a virtual world environment can be described using the physical world concept of a Third Place in the information age, and considers the value of virtual space to a learning community. From a perspective of ethnography, this chapter captures a community development within SL and proposes that physical world concepts of community and Third Place are exhibited in a virtual world, and that there are equivalent benefits in the sense of support and belonging to a virtual world community.

  14. Modeling behavior dynamics using computational psychometrics within virtual worlds

    PubMed Central

    Cipresso, Pietro

    2015-01-01

    In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario. PMID:26594193

  15. Developing a Second Life Virtual Field Trip for University Students: An Action Research Approach

    ERIC Educational Resources Information Center

    Mathews, Shane; Andrews, Lynda; Luck, Edwina

    2012-01-01

    Background: Integrating 3D virtual world technologies into educational subjects continues to draw the attention of educators and researchers alike. The focus of this study is the use of a virtual world, Second Life, in higher education teaching. In particular, it explores the potential of using a virtual world experience as a learning component…

  16. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  17. Simulation for team training and assessment: case studies of online training with virtual worlds.

    PubMed

    LeRoy Heinrichs, William; Youngblood, Patricia; Harter, Phillip M; Dev, Parvati

    2008-02-01

    Individuals in clinical training programs concerned with critical medical care must learn to manage clinical cases effectively as a member of a team. However, practice on live patients is often unpredictable and frequently repetitive. The widely substituted alternative for real patients-high-fidelity, manikin-based simulators (human patient simulator)-are expensive and require trainees to be in the same place at the same time, whereas online computer-based simulations, or virtual worlds, allow simultaneous participation from different locations. Here we present three virtual world studies for team training and assessment in acute-care medicine: (1) training emergency department (ED) teams to manage individual trauma cases; (2) prehospital and in-hospital disaster preparedness training; (3) training ED and hospital staff to manage mass casualties after chemical, biological, radiological, nuclear, or explosive incidents. The research team created realistic virtual victims of trauma (6 cases), nerve toxin exposure (10 cases), and blast trauma (10 cases); the latter two groups were supported by rules-based, pathophysiologic models of asphyxia and hypovolemia. Evaluation of these virtual world simulation exercises shows that trainees find them to be adequately realistic to "suspend disbelief," and they quickly learn to use Internet voice communication and user interface to navigate their online character/avatar to work effectively in a critical care team. Our findings demonstrate that these virtual ED environments fulfill their promise of providing repeated practice opportunities in dispersed locations with uncommon, life-threatening trauma cases in a safe, reproducible, flexible setting. PMID:18188640

  18. Design and Evaluation of a Simulation for Pediatric Dentistry in Virtual Worlds

    PubMed Central

    Louloudiadis, Konstantinos; Tsiatsos, Thrasyvoulos-Konstantinos

    2013-01-01

    Background Three-dimensional virtual worlds are becoming very popular among educators in the medical field. Virtual clinics and patients are already used for case study and role play in both undergraduate and continuing education levels. Dental education can also take advantage of the virtual world’s pedagogical features in order to give students the opportunity to interact with virtual patients (VPs) and practice in treatment planning. Objective The objective of this study was to design and evaluate a virtual patient as a supplemental teaching tool for pediatric dentistry. Methods A child VP, called Erietta, was created by utilizing the programming and building tools that online virtual worlds offer. The case is about an eight-year old girl visiting the dentist with her mother for the first time. Communication techniques such as Tell-Show-Do and parents’ interference management were the basic elements of the educational scenario on which the VP was based. An evaluation of the simulation was made by 103 dental students in their fourth year of study. Two groups were formed: an experimental group which was exposed to the simulation (n=52) and a control group which did not receive the simulation (n=51). At the end, both groups were asked to complete a knowledge questionnaire and the results were compared. Results A statistically significant difference between the two groups was found by applying a t test for independent samples (P<.001), showing a positive learning effect from the VP. The majority of the participants evaluated the aspects of the simulation very positively while 69% (36/52) of the simulation group expressed their preference for using this module as an additional teaching tool. Conclusions This study demonstrated that a pediatric dentistry VP built in a virtual world offers significant learning potential when used as a supplement to the traditional teaching techniques. PMID:24168820

  19. Cognitive, Social and Teaching Presence in a Virtual World and a Text Chat

    ERIC Educational Resources Information Center

    Traphagan, Tomoko Watanabe; Chiang, Yueh-hui Vanessa; Chang, Hyeseung Maria; Wattanawaha, Benjaporn; Lee, Haekyung; Mayrath, Michael Charles; Woo, Jeongwon; Yoon, Hyo-Jin; Jee, Min Jung; Resta, Paul E.

    2010-01-01

    Using a framework of cognitive, social, and teaching presence, the nature of learning experiences in a three-dimensional virtual world environment (Second Life) and a text-chat learning environment without visuals (TeachNet) were investigated. A mixed method of code frequencies, coherence graphs, interviews, and a survey was used. The results…

  20. Virtual Worlds: Relationship between Real Life and Experience in Second Life

    ERIC Educational Resources Information Center

    Anstadt, Scott P.; Bradley, Shannon; Burnette, Ashley; Medley, Lesley L.

    2013-01-01

    Due to the unique applications of virtual reality in many modern contexts, Second Life (SL) offers inimitable opportunities for research and exploration and experiential learning as part of a distance learning curriculum assignment. A review of current research regarding SL examined real world social influences in online interactions and what the…