Science.gov

Sample records for 3d volume measurement

  1. Variation in the measurement of cranial volume and surface area using 3D laser scanning technology.

    PubMed

    Sholts, Sabrina B; Wärmländer, Sebastian K T S; Flores, Louise M; Miller, Kevin W P; Walker, Phillip L

    2010-07-01

    Three-dimensional (3D) laser scanner models of human crania can be used for forensic facial reconstruction, and for obtaining craniometric data useful for estimating age, sex, and population affinity of unidentified human remains. However, the use of computer-generated measurements in a casework setting requires the measurement precision to be known. Here, we assess the repeatability and precision of cranial volume and surface area measurements using 3D laser scanner models created by different operators using different protocols for collecting and processing data. We report intraobserver measurement errors of 0.2% and interobserver errors of 2% of the total area and volume values, suggesting that observer-related errors do not pose major obstacles for sharing, combining, or comparing such measurements. Nevertheless, as no standardized procedure exists for area or volume measurements from 3D models, it is imperative to report the scanning and postscanning protocols employed when such measurements are conducted in a forensic setting.

  2. Early pregnancy placental bed and fetal vascular volume measurements using 3-D virtual reality.

    PubMed

    Reus, Averil D; Klop-van der Aa, Josine; Rifouna, Maria S; Koning, Anton H J; Exalto, Niek; van der Spek, Peter J; Steegers, Eric A P

    2014-08-01

    In this study, a new 3-D Virtual Reality (3D VR) technique for examining placental and uterine vasculature was investigated. The validity of placental bed vascular volume (PBVV) and fetal vascular volume (FVV) measurements was assessed and associations of PBVV and FVV with embryonic volume, crown-rump length, fetal birth weight and maternal parity were investigated. One hundred thirty-two patients were included in this study, and measurements were performed in 100 patients. Using V-Scope software, 100 3-D Power Doppler data sets of 100 pregnancies at 12 wk of gestation were analyzed with 3D VR in the I-Space Virtual Reality system. Volume measurements were performed with semi-automatic, pre-defined parameters. The inter-observer and intra-observer agreement was excellent with all intra-class correlation coefficients >0.93. PBVVs of multiparous women were significantly larger than the PBVVs of primiparous women (p = 0.008). In this study, no other associations were found. In conclusion, V-Scope offers a reproducible method for measuring PBVV and FVV at 12 wk of gestation, although we are unsure whether the volume measured represents the true volume of the vasculature. Maternal parity influences PBVV.

  3. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification.

    PubMed

    Long, A; Rouet, L; Debreuve, A; Ardon, R; Barbe, C; Becquemin, J P; Allaire, E

    2013-08-01

    The clinical reliability of 3-D ultrasound imaging (3-DUS) in quantification of abdominal aortic aneurysm (AAA) was evaluated. B-mode and 3-DUS images of AAAs were acquired for 42 patients. AAAs were segmented. A 3-D-based maximum diameter (Max3-D) and partial volume (Vol30) were defined and quantified. Comparisons between 2-D (Max2-D) and 3-D diameters and between orthogonal acquisitions were performed. Intra- and inter-observer reproducibility was evaluated. Intra- and inter-observer coefficients of repeatability (CRs) were less than 5.18 mm for Max3-D. Intra-observer and inter-observer CRs were respectively less than 6.16 and 8.71 mL for Vol30. The mean of normalized errors of Vol30 was around 7%. Correlation between Max2-D and Max3-D was 0.988 (p < 0.0001). Max3-D and Vol30 were not influenced by a probe rotation of 90°. Use of 3-DUS to quantify AAA is a new approach in clinical practice. The present study proposed and evaluated dedicated parameters. Their reproducibility makes the technique clinically reliable.

  4. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  5. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  6. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  7. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement.

    PubMed

    Ying, Michael; Yung, Dennis M C; Ho, Karen K L

    2008-01-01

    This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p < 0.05). There was a significantly larger thyroid volume estimation error when thyroid glands with nodules were examined (p < 0.05). With the use of the appropriate thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.

  8. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. A 3D assessment tool for accurate volume measurement for monitoring the evolution of cutaneous leishmaniasis wounds.

    PubMed

    Zvietcovich, Fernando; Castañeda, Benjamin; Valencia, Braulio; Llanos-Cuentas, Alejandro

    2012-01-01

    Clinical assessment and outcome metrics are serious weaknesses identified on the systematic reviews of cutaneous Leishmaniasis wounds. Methods with high accuracy and low-variability are required to standarize study outcomes in clinical trials. This work presents a precise, complete and noncontact 3D assessment tool for monitoring the evolution of cutaneous Leishmaniasis (CL) wounds based on a 3D laser scanner and computer vision algorithms. A 3D mesh of the wound is obtained by a commercial 3D laser scanner. Then, a semi-automatic segmentation using active contours is performed to separate the ulcer from the healthy skin. Finally, metrics of volume, area, perimeter and depth are obtained from the mesh. Traditional manual 3D and 3D measurements are obtained as a gold standard. Experiments applied to phantoms and real CL wounds suggest that the proposed 3D assessment tool provides higher accuracy (error <2%) and precision rates (error <4%) than conventional manual methods (precision error < 35%). This 3D assessment tool provides high accuracy metrics which deserve more formal prospective study.

  10. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  11. [Measurement of left atrial and ventricular volumes in real-time 3D echocardiography. Validation by nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Qin, J. X.; White, R. D.; Thomas, J. D.

    2001-01-01

    The measurement of the left ventricular ejection fraction is important for the evaluation of cardiomyopathy and depends on the measurement of left ventricular volumes. There are no existing conventional echocardiographic means of measuring the true left atrial and ventricular volumes without mathematical approximations. The aim of this study was to test anew real time 3-dimensional echocardiographic system of calculating left atrial and ventricular volumes in 40 patients after in vitro validation. The volumes of the left atrium and ventricle acquired from real time 3-D echocardiography in the apical view, were calculated in 7 sections parallel to the surface of the probe and compared with atrial (10 patients) and ventricular (30 patients) volumes calculated by nuclear magnetic resonance with the simpson method and with volumes of water in balloons placed in a cistern. Linear regression analysis showed an excellent correlation between the real volume of water in the balloons and volumes given in real time 3-dimensional echocardiography (y = 0.94x + 5.5, r = 0.99, p < 0.001, D = -10 +/- 4.5 ml). A good correlation was observed between real time 3-dimensional echocardiography and nuclear magnetic resonance for the measurement of left atrial and ventricular volumes (y = 0.95x - 10, r = 0.91, p < 0.001, D = -14.8 +/- 19.5 ml and y = 0.87x + 10, r = 0.98, P < 0.001, D = -8.3 +/- 18.7 ml, respectively. The authors conclude that real time three-dimensional echocardiography allows accurate measurement of left heart volumes underlying the clinical potential of this new 3-D method.

  12. Microcomputer-based technique for 3-D reconstruction and volume measurement of computer tomographic images. Part 1: Phantom studies.

    PubMed

    Albright, R E; Fram, E K

    1988-12-01

    This paper presents a microcomputer-based technique that accurately quantifies volumes from computed tomographic (CT) scans of irregularly shaped objects as well as displaying 3-D reconstructions. The method uses standard CT film, allowing analysis of previous or outside CT studies. The planimetry method showed less than 5% error in measuring irregular 2-D areas larger than 6 mm2. The method is demonstrated to be significantly more accurate than spherical, ellipsoid, or rectangular geometric models in quantifying object volume by CT (P less than .001). With a single gantry angle, planimetry showed a two standard deviation error under 10% in measuring the volume of irregular objects compared with an error over 30% for ellipsoid models. The inaccuracy of the spherical model (80% error) and the rectangular prism model (192% error) renders them impractical to provide quantitative object volume. Microcomputer planimetry provides an accurate and versatile means to measure the volume and produce 3-D reconstructions of objects scanned with CT, and it has potential application in quantifying tumor response with CT and magnetic resonance imaging.

  13. Accurate assessment of breast volume: a study comparing the volumetric gold standard (direct water displacement measurement of mastectomy specimen) with a 3D laser scanning technique.

    PubMed

    Yip, Jia Miin; Mouratova, Naila; Jeffery, Rebecca M; Veitch, Daisy E; Woodman, Richard J; Dean, Nicola R

    2012-02-01

    Preoperative assessment of breast volume could contribute significantly to the planning of breast-related procedures. The availability of 3D scanning technology provides us with an innovative method for doing this. We performed this study to compare measurements by this technology with breast volume measurement by water displacement. A total of 30 patients undergoing 39 mastectomies were recruited from our center. The volume of each patient's breast(s) was determined with a preoperative 3D laser scan. The volume of the mastectomy specimen was then measured in the operating theater by water displacement. There was a strong linear association between breast volumes measured using the 2 different methods when using a Pearson correlation (r = 0.95, P < 0.001). The mastectomy mean volume was defined by the equation: mastectomy mean volume = (scan mean volume × 1.03) -70.6. This close correlation validates the Cyberware WBX Scanner as a tool for assessment of breast volume.

  14. Measurement of complex joint trajectories using slice-to-volume 2D/3D registration and cine MR

    NASA Astrophysics Data System (ADS)

    Bloch, C.; Figl, M.; Gendrin, C.; Weber, C.; Unger, E.; Aldrian, S.; Birkfellner, W.

    2010-02-01

    A method for studying the in vivo kinematics of complex joints is presented. It is based on automatic fusion of single slice cine MR images capturing the dynamics and a static MR volume. With the joint at rest the 3D scan is taken. In the data the anatomical compartments are identified and segmented resulting in a 3D volume of each individual part. In each of the cine MR images the joint parts are segmented and their pose and position are derived using a 2D/3D slice-to-volume registration to the volumes. The method is tested on the carpal joint because of its complexity and the small but complex motion of its compartments. For a first study a human cadaver hand was scanned and the method was evaluated with artificially generated slice images. Starting from random initial positions of about 5 mm translational and 12° rotational deviation, 70 to 90 % of the registrations converged successfully to a deviation better than 0.5 mm and 5°. First evaluations using real data from a cine MR were promising. The feasibility of the method was demonstrated. However we experienced difficulties with the segmentation of the cine MR images. We therefore plan to examine different parameters for the image acquisition in future studies.

  15. The effect of CT scanner parameters and 3D volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible

    PubMed Central

    Whyms, B.J.; Vorperian, H.K.; Gentry, L.R.; Schimek, E.M.; Bersu, E.T.; Chung, M.K.

    2013-01-01

    Objectives This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional multi-detector computed tomography (3D-CT) mandible renderings. A broader range of acceptable parameters can increase the availability of CT studies for retrospective analysis. Study Design Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view, and reconstruction algorithm and three different threshold-based segmentations. Measurements of 3D-CT models and specimens were compared. Results Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Conclusions Linear, angular and volumetric measurements of mandible 3D-CT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam-CT. PMID:23601224

  16. Microcomputer-based technique for 3-D reconstruction and volume measurement of computed tomographic images. Part 2: Anaplastic primary brain tumors.

    PubMed

    Albright, R E; Fram, E K

    1988-12-01

    Serial computed tomography (CT) plays an integral part in monitoring effects of therapy for primary anaplastic brain tumors. Despite advances in CT technology, clinicians often cannot obtain accurate quantitative volume information to complement the qualitative assessment of tumor change. This paper presents a microcomputer-based method that provides both quantitative volume measurements and 3-D reconstructions of primary anaplastic brain tumors based on their hard copy CT or magnetic resonance imaging studies. The findings of this study demonstrate that planimetry is feasible for routine clinical use and is superior in accuracy to the spherical geometric model, which is shown to significantly overestimate tumor volume. The findings of 62 quantitative tumor studies (17 patients) showed a direct relationship between the total tumor volume and the volume of the hypodense intratumor core. There was no evidence of a relationship between the total tumor volume and the amount of peritumor low density (edema).

  17. Use of a non-contact 3D digitiser to measure the volume of keloid scars: a useful tool for scar assessment.

    PubMed

    Taylor, Ben; McGrouther, D Angus; Bayat, Ardeshir

    2007-01-01

    Keloid scars often fail to respond to treatment, so research into new therapeutic regimes is important. However, research is limited by a scarcity of reliable, objective scar assessment tools. The volume of a keloid scar should decrease with successful treatment. This study demonstrates the use of a non-contact 3D digitiser to measure digitally the volume of a keloid scar. The scanner was used to scan 62 keloid scars and one fine-line normal scar. The scan took approximately 9s to complete. The volume was measured using 3D reverse modelling software. A previously validated scar assessment scale was used to score the scars according to their physical parameters. A significant correlation was found between volume and the scar score (Pearson's r=0.627, p<0.001). Linear regression was also statistically significant (p<0.001, R(2)=0.44). Therefore it was possible to predict the scar score from the measured volume. This technique could allow monitoring of a patient on treatment, or comparison of treatments in a research setting. It overcomes previous problems with the measurement of scar volume as it is quantitatively objective and well-tolerated.

  18. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  19. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  20. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  1. Quantification of thyroid volume using 3-D ultrasound imaging.

    PubMed

    Kollorz, E K; Hahn, D A; Linke, R; Goecke, T W; Hornegger, J; Kuwert, T

    2008-04-01

    Ultrasound (US) is among the most popular diagnostic techniques today. It is non-invasive, fast, comparably cheap, and does not require ionizing radiation. US is commonly used to examine the size, and structure of the thyroid gland. In clinical routine, thyroid imaging is usually performed by means of 2-D US. Conventional approaches for measuring the volume of the thyroid gland or its nodules may therefore be inaccurate due to the lack of 3-D information. This work reports a semi-automatic segmentation approach for the classification, and analysis of the thyroid gland based on 3-D US data. The images are scanned in 3-D, pre-processed, and segmented. Several pre-processing methods, and an extension of a commonly used geodesic active contour level set formulation are discussed in detail. The results obtained by this approach are compared to manual interactive segmentations by a medical expert in five representative patients. Our work proposes a novel framework for the volumetric quantification of thyroid gland lobes, which may also be expanded to other parenchymatous organs.

  2. 3D Medical Volume Reconstruction Using Web Services

    PubMed Central

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-01-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called Data to Knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the Image to Knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope. PMID:18336808

  3. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  4. IGES Interface for Medical 3-D Volume Data.

    PubMed

    Chen, Gong; Yi, Hong; Ni, Zhonghua

    2005-01-01

    Although there are many medical image processing and virtual surgery systems that provide rather consummate 3D-visualization and data manipulation techniques, few of them can export the volume data for engineering analyze. The thesis presents an interface implementing IGES (initial graphics exchange specification). Volume data such as bones, skins and other tissues can be exported as IGES files to be directly used for engineering analysis.

  5. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes.

  6. SOLIDFELIX: a transportable 3D static volume display

    NASA Astrophysics Data System (ADS)

    Langhans, Knut; Kreft, Alexander; Wörden, Henrik Tom

    2009-02-01

    Flat 2D screens cannot display complex 3D structures without the usage of different slices of the 3D model. Volumetric displays like the "FELIX 3D-Displays" can solve the problem. They provide space-filling images and are characterized by "multi-viewer" and "all-round view" capabilities without requiring cumbersome goggles. In the past many scientists tried to develop similar 3D displays. Our paper includes an overview from 1912 up to today. During several years of investigations on swept volume displays within the "FELIX 3D-Projekt" we learned about some significant disadvantages of rotating screens, for example hidden zones. For this reason the FELIX-Team started investigations also in the area of static volume displays. Within three years of research on our 3D static volume display at a normal high school in Germany we were able to achieve considerable results despite minor funding resources within this non-commercial group. Core element of our setup is the display volume which consists of a cubic transparent material (crystal, glass, or polymers doped with special ions, mainly from the rare earth group or other fluorescent materials). We focused our investigations on one frequency, two step upconversion (OFTS-UC) and two frequency, two step upconversion (TFTSUC) with IR-Lasers as excitation source. Our main interest was both to find an appropriate material and an appropriate doping for the display volume. Early experiments were carried out with CaF2 and YLiF4 crystals doped with 0.5 mol% Er3+-ions which were excited in order to create a volumetric pixel (voxel). In addition to that the crystals are limited to a very small size which is the reason why we later investigated on heavy metal fluoride glasses which are easier to produce in large sizes. Currently we are using a ZBLAN glass belonging to the mentioned group and making it possible to increase both the display volume and the brightness of the images significantly. Although, our display is currently

  7. Unsupervised partial volume estimation using 3D and statistical priors

    NASA Astrophysics Data System (ADS)

    Tardif, Pierre M.

    2001-07-01

    Our main objective is to compute the volume of interest of images from magnetic resonance imaging (MRI). We suggest a method based on maximum a posteriori. Using texture models, we propose a new partial volume determination. We model tissues using generalized gaussian distributions fitted from a mixture of their gray levels and texture information. Texture information relies on estimation errors from multiresolution and multispectral autoregressive models. A uniform distribution solves large estimation errors, when dealing with unknown tissues. An initial segmentation, needed by the multiresolution segmentation deterministic relaxation algorithm, is found using an anatomical atlas. To model the a priori information, we use a full 3-D extension of Markov random fields. Our 3-D extension is straightforward, easily implemented, and includes single label probability. Using initial segmentation map and initial tissues models, iterative updates are made on the segmentation map and tissue models. Updating tissue models remove field inhomogeneities. Partial volumes are computed from final segmentation map and tissue models. Preliminary results are encouraging.

  8. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  9. Measurement of Contrast Ratios for 3D Display

    DTIC Science & Technology

    2000-07-01

    stereoscopic, autostereoscopic , 3D , display ABSTRACT 3D image display devices have wide applications in medical and entertainment areas. Binocular (stereoscopic...and system crosstalk. In many 3D display systems viewer’ crosstalk is an important issue for good performance, especial in autostereoscopic display...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11343 TITLE: Measurement of Contrast Ratios for 3D Display

  10. Standardization of noncontact 3D measurement

    NASA Astrophysics Data System (ADS)

    Takatsuji, Toshiyuki; Osawa, Sonko; Sato, Osamu

    2008-08-01

    As the global R&D competition is intensified, more speedy measurement instruments are required both in laboratories and production process. In machinery areas, while contact type coordinate measuring machines (CMM) have been widely used, noncontact type CMMs are growing its market share which are capable of measuring enormous number of points at once. Nevertheless, since no industrial standard concerning an accuracy test of noncontact CMMs exists, each manufacturer writes the accuracy of their product according to their own rules, and this situation gives confusion to customers. The working group ISO/TC 213/WG 10 is trying to make a new ISO standard which stipulates an accuracy test of noncontact CMMs. The concept and the situation of discussion of this new standard will be explained. In National Metrology Institute of Japan (NMIJ), we are collecting measurement data which serves as a technical background of the standards together with a consortium formed by users and manufactures. This activity will also be presented.

  11. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  12. PRESAGE 3D dosimetry accurately measures Gamma Knife output factors

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.

    2014-12-01

    Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and 2D detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ±0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors.

  13. 3D morphological measurement of whole slide histological vasculature reconstructions

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. G.; Nong, Zengxuan; Ward, Aaron D.

    2016-03-01

    Properties of the microvasculature that contribute to tissue perfusion can be assessed using immunohistochemistry on 2D histology sections. However, the vasculature is inherently 3D and the ability to measure and visualize the vessel wall components in 3D will aid in detecting focal pathologies. Our objectives were (1) to develop a method for 3D measurement and visualization of microvasculature in 3D, (2) to compare the normal and regenerated post-ischemia mouse hind limb microvasculature, and (3) to compare the 2D and 3D vessel morphology measures. Vessels were stained for smooth muscle using 3,3'-Diaminobenzidine (DAB) immunostain for both normal (n = 6 mice) and regenerated vasculature (n = 5 mice). 2D vessel segmentations were reconstructed into 3D using landmark based registration. No substantial bias was found in the 2D measurements relative to 3D, but larger differences were observed for individual vessels oriented non-orthogonally to the plane of sectioning. A larger value of area, perimeter, and vessel wall thickness was found in the normal vasculature as compared to the regenerated vasculature, for both the 2D and 3D measurements (p < 0.01). Aggregated 2D measurements are sufficient for identifying morphological differences between groups of mice; however, one must interpret individual 2D measurements with caution if the vessel centerline direction is unknown. Visualization of 3D measurements permits the detection of localized vessel morphology aberrations that are not revealed by 2D measurements. With vascular measure visualization methodologies in 3D, we are now capable of locating focal pathologies on a whole slide level.

  14. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  15. Analysis of the variation in OCT measurements of a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head, PIMD-Average [02π

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2016-03-01

    The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can

  16. Accommodation response measurements for integral 3D image

    NASA Astrophysics Data System (ADS)

    Hiura, H.; Mishina, T.; Arai, J.; Iwadate, Y.

    2014-03-01

    We measured accommodation responses under integral photography (IP), binocular stereoscopic, and real object display conditions, and viewing conditions of binocular and monocular viewing conditions. The equipment we used was an optometric device and a 3D display. We developed the 3D display for IP and binocular stereoscopic images that comprises a high-resolution liquid crystal display (LCD) and a high-density lens array. The LCD has a resolution of 468 dpi and a diagonal size of 4.8 inches. The high-density lens array comprises 106 x 69 micro lenses that have a focal length of 3 mm and diameter of 1 mm. The lenses are arranged in a honeycomb pattern. The 3D display was positioned 60 cm from an observer under IP and binocular stereoscopic display conditions. The target was presented at eight depth positions relative to the 3D display: 15, 10, and 5 cm in front of the 3D display, on the 3D display panel, and 5, 10, 15 and 30 cm behind the 3D display under the IP and binocular stereoscopic display conditions. Under the real object display condition, the target was displayed on the 3D display panel, and the 3D display was placed at the eight positions. The results suggest that the IP image induced more natural accommodation responses compared to the binocular stereoscopic image. The accommodation responses of the IP image were weaker than those of a real object; however, they showed a similar tendency with those of the real object under the two viewing conditions. Therefore, IP can induce accommodation to the depth positions of 3D images.

  17. Superfast 3D absolute shape measurement using five binary patterns

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  18. 3D measurement system based on computer-generated gratings

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  19. Fresnel Volume Migration of the ISO89-3D data set

    NASA Astrophysics Data System (ADS)

    Hloušek, F.; Buske, S.

    2016-11-01

    This paper demonstrates the capabilities of Fresnel Volume Migration (FVM) for 3-D single-component seismic data in a crystalline environment. We show its application to the ISO89-3D data set, which was acquired in 1989 at the German continental deep drilling site (KTB) near Windischeschenbach (Southeast Germany). A key point in FVM is the derivation of the emergent angle for the recorded wavefield. This angle is used as the initial condition of the ray-tracing-algorithm within FVM. In order to limit the migration operator to the physically relevant part of a reflector, it is restricted to the Fresnel-volume around the backpropagated ray. We discuss different possibilities for an adequate choice of the used aperture for a local slant-stack algorithm using the semblance as a measure of the coherency for different emergent angles. Furthermore, we reduce the number of used receivers for this procedure using the Voronoi diagram, thereby leading to a more equal distribution of the receivers within the selected aperture. We demonstrate the performance of these methods for a simple 3-D synthetic example and show the results for the ISO89-3D data set. For the latter, our approach yields images of significantly better quality compared to previous investigations and allows for a detailed characterization of the subsurface. Even in migrated single shot gathers, structures are clearly visible due to the focusing achieved by FVM.

  20. Multimodal evaluation of 2-D and 3-D ultrasound, computed tomography and magnetic resonance imaging in measurements of the thyroid volume using universally applicable cross-sectional imaging software: a phantom study.

    PubMed

    Freesmeyer, Martin; Wiegand, Steffen; Schierz, Jan-Henning; Winkens, Thomas; Licht, Katharina

    2014-07-01

    A precise estimate of thyroid volume is necessary for making adequate therapeutic decisions and planning, as well as for monitoring therapy response. The goal of this study was to compare the precision of different volumetry methods. Thyroid-shaped phantoms were subjected to volumetry via 2-D and 3-D ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI). The 3-D US scans were performed using sensor navigation and mechanical sweeping methods. Volumetry calculation ensued with the conventional ellipsoid model and the manual tracing method. The study confirmed the superiority of manual tracing with CT and MRI volumetry of the thyroid, but extended this knowledge also to the superiority of the 3-D US method, regardless of whether sensor navigation or mechanical sweeping is used. A novel aspect was successful use of the same universally applicable cross-imaging software for all modalities.

  1. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation.

    PubMed

    Lee, Yejin; Hong, Kyunghi; Hong, Sung-Ae

    2007-05-01

    Garment fit and resultant air volume is a crucial factor in thermal insulation, and yet, it has been difficult to quantify the air volume of clothing microclimate and relate it to the thermal insulation value just using the information on the size of clothing pattern without actual 3D volume measurement in wear condition. As earlier methods for the computation of air volume in clothing microclimate, vacuum over suit and circumference model have been used. However, these methods have inevitable disadvantages in terms of cost or accuracy due to the limitations of measurement equipment. In this paper, the phase-shifting moiré topography was introduced as one of the 3D scanning tools to measure the air volume of clothing microclimate quantitatively. The purpose of this research is to adopt a non-contact image scanning technology, phase-shifting moiré topography, to ascertain relationship between air volume and insulation value of layered clothing systems in wear situations where the 2D fabric creates new conditions in 3D spaces. The insulation of vests over shirts as a layered clothing system was measured with a thermal manikin in the environmental condition of 20 degrees C, 65% RH and air velocity of 0.79 m/s. As the pattern size increased, the insulation of the clothing system was increased. But beyond a certain limit, the insulation started to decrease due to convection and ventilation, which is more apparent when only the vest was worn over the torso of manikin. The relationship between clothing air volume and insulation was difficult to predict with a single vest due to the extreme openings which induced active ventilation. But when the vest was worn over the shirt, the effects of thickness of the fabrics on insulation were less pronounced compared with that of air volume. In conclusion, phase-shifting moiré topography was one of the efficient and accurate ways of quantifying air volume and its distribution across the clothing microclimate. It is also noted

  2. 3D Left Ventricular Strain from Unwrapped Harmonic Phase Measurements

    PubMed Central

    Venkatesh, Bharath Ambale; Gupta, Himanshu; Lloyd, Steven G.; ‘Italia, Louis Dell; Denney, Thomas S.

    2010-01-01

    Purpose To validate a method for measuring 3D left ventricular (LV) strain from phase-unwrapped harmonic phase (HARP) images derived from tagged cardiac magnetic resonance imaging (MRI). Materials and Methods A set of 40 human subjects were imaged with tagged MRI. In each study HARP phase was computed and unwrapped in each short-axis and long-axis image. Inconsistencies in unwrapped phase were resolved using branch cuts manually placed with a graphical user interface. 3D strain maps were computed for all imaged timeframes in each study. The strain from unwrapped phase (SUP) and displacements were compared to those estimated by a feature-based (FB) technique and a HARP technique. Results 3D strain was computed in each timeframe through systole and mid diastole in approximately 30 minutes per study. The standard deviation of the difference between strains measured by the FB and the SUP methods was less than 5% of the average of the strains from the two methods. The correlation between peak circumferential strain measured using the SUP and HARP techniques was over 83%. Conclusion The SUP technique can reconstruct full 3-D strain maps from tagged MR images through the cardiac cycle in a reasonable amount of time and user interaction compared to other 3D analysis methods. PMID:20373429

  3. The numerical measure of symmetry for 3D stick creatures.

    PubMed

    Jaśkowski, Wojciech; Komosinski, Maciej

    2008-01-01

    This work introduces a numerical, continuous measure of symmetry for 3D stick creatures and solid 3D objects. Background information about the property of symmetry is provided, and motivations for developing a symmetry measure are described. Three approaches are mentioned, and two of them are presented in detail using formal mathematical language. The best approach is used to sort a set of creatures according to their symmetry. Experiments with a mixed set of 84 individuals originating from both human design and evolution are performed to examine symmetry within these two sources, and to determine if human designers and evolutionary processes prefer symmetry or asymmetry.

  4. A 3-D measurement system using object-oriented FORTH

    SciTech Connect

    Butterfield, K.B.

    1989-01-01

    Discussed is a system for storing 3-D measurements of points that relates the coordinate system of the measurement device to the global coordinate system. The program described here used object-oriented FORTH to store the measured points as sons of the measuring device location. Conversion of local coordinates to absolute coordinates is performed by passing messages to the point objects. Modifications to the object-oriented FORTH system are also described. 1 ref.

  5. 3-D measuring of engine camshaft based on machine vision

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxin; Tan, Liang; Xu, Xiaodong

    2008-12-01

    The non-touch 3D measuring based on machine vision is introduced into camshaft precise measuring. Currently, because CCD 3-dimensional measuring can't meet requirements for camshaft's measuring precision, it's necessary to improve its measuring precision. In this paper, we put forward a method to improve the measuring method. A Multi-Character Match method based on the Polygonal Non-regular model is advanced with the theory of Corner Extraction and Corner Matching .This method has solved the problem of the matching difficulty and a low precision. In the measuring process, the use of the Coded marked Point method and Self-Character Match method can bring on this problem. The 3D measuring experiment on camshaft, which based on the Multi-Character Match method of the Polygonal Non-regular model, proves that the normal average measuring precision is increased to a new level less than 0.04mm in the point-clouds photo merge. This measuring method can effectively increase the 3D measuring precision of the binocular CCD.

  6. 3D shape measurement with thermal pattern projection

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Reetz, Edgar; Schindwolf, Simon; Correns, Martin; Kühmstedt, Peter; Notni, Gunther

    2016-12-01

    Structured light projection techniques are well-established optical methods for contactless and nondestructive three-dimensional (3D) measurements. Most systems operate in the visible wavelength range (VIS) due to commercially available projection and detection technology. For example, the 3D reconstruction can be done with a stereo-vision setup by finding corresponding pixels in both cameras followed by triangulation. Problems occur, if the properties of object materials disturb the measurements, which are based on the measurement of diffuse light reflections. For example, there are existing materials in the VIS range that are too transparent, translucent, high absorbent, or reflective and cannot be recorded properly. To overcome these challenges, we present an alternative thermal approach that operates in the infrared (IR) region of the electromagnetic spectrum. For this purpose, we used two cooled mid-wave (MWIR) cameras (3-5 μm) to detect emitted heat patterns, which were introduced by a CO2 laser. We present a thermal 3D system based on a GOBO (GOes Before Optics) wheel projection unit and first 3D analyses for different system parameters and samples. We also show a second alternative approach based on an incoherent (heat) source, to overcome typical disadvantages of high-power laser-based systems, such as industrial health and safety considerations, as well as high investment costs. Thus, materials like glass or fiber-reinforced composites can be measured contactless and without the need of additional paintings.

  7. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  8. Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans

    PubMed Central

    Simavli, Huseyin; Que, Christian John; Akduman, Mustafa; Rizzo, Jennifer L.; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.

    2015-01-01

    Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal thickness (RT) measurements from 3-dimensional (3D) volume scans for primary open angle glaucoma (POAG). Design Cross-sectional study. Methods Setting Institutional Study population 156 patients (89 POAG and 67 normal subjects) Observation procedures One eye of each subject was included. SD-OCT peripapillary RT values from 3D volume scans were calculated for four quadrants of three different sized annuli. Peripapillary retinal nerve fiber layer (RNFL) thickness values were also determined. Main outcome measures Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Results The top five RT AUROCs for all glaucoma patients and for a subset of early glaucoma patients were for the inferior quadrant of outer circumpapillary annulus of circular grid (OCA) 1 (0.959, 0.939), inferior quadrant of OCA2 (0.945, 0.921), superior quadrant of OCA1 (0.890, 0.811), inferior quadrant of OCA3 (0.887, 0.854), and superior quadrant of OCA2 (0.879, 0.807). Smaller RT annuli OCA1 and OCA2 consistently showed better diagnostic performance than the larger RT annulus OCA3. For both RNFL and RT measurements, best AUROC values were found for inferior RT OCA1 and OCA2, followed by inferior and overall RNFL thickness. Conclusion Peripapillary RT measurements from 3D volume scans showed excellent diagnostic performance for detecting both glaucoma and early glaucoma patients. Peripapillary RT values have the same or better diagnostic capability compared to peripapillary RNFL thickness measurements, while also having fewer algorithm errors. PMID:25498354

  9. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  10. 3D optical measuring technologies for dimensional inspection

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.

    2005-01-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented.

  11. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  12. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  13. A flexible fast 3D profilometry based on modulation measurement

    NASA Astrophysics Data System (ADS)

    Dou, Yunfu; Su, Xianyu; Chen, Yanfei; Wang, Ying

    2011-03-01

    This paper proposes a flexible fast profilometry based on modulation measurement. Two orthogonal gratings through a beam splitter are vertically projected on an object surface, and the measured object is placed between the imaging planes of the two gratings. Then the image of the object surface modulated by the orthogonal gratings can be obtained by a CCD camera in the same direction as the grating projection. This image is processed by the operations consisting of performing the Fourier transform, spatial frequency filtering and inverse Fourier transform. Using the modulation distributions of two grating patterns, we can reconstruct the 3D shape of the object. In the measurement process, we only need to capture one fringe pattern, so it is faster than the MMP and remains the advantages of it. In the article, the principle of this method, the setup of the measurement system, some simulations and primary experiment results are given. The simulative and experimental result proves it can restore the 3D shape of the complex object fast and comparatively accurate. Because only one fringe pattern is needed in the testing, our method has a promising extensive application prospect in real-time acquiring and dynamic measurement of 3D data of complex objects.

  14. Pavement cracking measurements using 3D laser-scan images

    NASA Astrophysics Data System (ADS)

    Ouyang, W.; Xu, B.

    2013-10-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel-1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s-1, allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions.

  15. An endoscope designed with 3D measurement functions

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-hai; Li, Zheng-lin; Wang, Li-qiang; Zhao, Chang-Ming; Xu, Peng

    2016-10-01

    The endoscopic system is widely used in medical and industrial areas, but how to realize the high-precision three-dimensional measurement in the limited space scale still faces many challenges. A method based on the four-step phase-shifting structured light illumination is proposed in this paper for endoscopic 3D measurements. Structured light of which the adjacent phase shift is 90 degrees is generated by the different parts of the time-sharing lighting stripe grating of the optical fiber bundle; CMOS camera is used to collect four structured light images with the phase shift. Finally, the method of four-step phase-shifting is used to demodulate 3D information from the images, and a relative measurement accuracy of 95% within the range of 15-200mm can be obtained. The endoscope with a field of view of 90 degrees, a image resolution of 1280 * 800 and 3D depth calculation time of 0.2 seconds has advantages of simple structure, large field of view, high accuracy and good real-time measurement.

  16. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  17. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan

    2012-02-01

    The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.

  18. 3-D Velocity Measurement of Natural Convection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Shinoki, Masatoshi; Ozawa, Mamoru; Okada, Toshifumi; Kimura, Ichiro

    This paper describes quantitative three-dimensional measurement method for flow field of a rotating Rayleigh-Benard convection in a cylindrical cell heated below and cooled above. A correlation method for two-dimensional measurement was well advanced to a spatio-temporal correlation method. Erroneous vectors, often appeared in the correlation method, was successfully removed using Hopfield neural network. As a result, calculated 3-D velocity vector distribution well corresponded to the observed temperature distribution. Consequently, the simultaneous three-dimensional measurement system for temperature and flow field was developed.

  19. 3D shape measurement with phase correlation based fringe projection

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Munckelt, Christoph; Heinze, Matthias; Bräuer-Burchardt, Christian; Notni, Gunther

    2007-06-01

    Here we propose a method for 3D shape measurement by means of phase correlation based fringe projection in a stereo arrangement. The novelty in the approach is characterized by following features. Correlation between phase values of the images of two cameras is used for the co-ordinate calculation. This work stands in contrast to the sole usage of phase values (phasogrammetry) or classical triangulation (phase values and image co-ordinates - camera raster values) for the determination of the co-ordinates. The method's main advantage is the insensitivity of the 3D-coordinates from the absolute phase values. Thus it prevents errors in the determination of the co-ordinates and improves robustness in areas with interreflections artefacts and inhomogeneous regions of intensity. A technical advantage is the fact that the accuracy of the 3D co-ordinates does not depend on the projection resolution. Thus the achievable quality of the 3D co-ordinates can be selectively improved by the use of high quality camera lenses and can participate in improvements in modern camera technologies. The presented new solution of the stereo based fringe projection with phase correlation makes a flexible, errortolerant realization of measuring systems within different applications like quality control, rapid prototyping, design and CAD/CAM possible. In the paper the phase correlation method will be described in detail. Furthermore, different realizations will be shown, i.e. a mobile system for the measurement of large objects and an endoscopic like system for CAD/CAM in dental industry.

  20. Real-time structured light intraoral 3D measurement pipeline

    NASA Astrophysics Data System (ADS)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  1. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  2. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard

    2015-03-01

    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  3. Extended gray level co-occurrence matrix computation for 3D image volume

    NASA Astrophysics Data System (ADS)

    Salih, Nurulazirah M.; Dewi, Dyah Ekashanti Octorina

    2017-02-01

    Gray Level Co-occurrence Matrix (GLCM) is one of the main techniques for texture analysis that has been widely used in many applications. Conventional GLCMs usually focus on two-dimensional (2D) image texture analysis only. However, a three-dimensional (3D) image volume requires specific texture analysis computation. In this paper, an extended 2D to 3D GLCM approach based on the concept of multiple 2D plane positions and pixel orientation directions in the 3D environment is proposed. The algorithm was implemented by breaking down the 3D image volume into 2D slices based on five different plane positions (coordinate axes and oblique axes) resulting in 13 independent directions, then calculating the GLCMs. The resulted GLCMs were averaged to obtain normalized values, then the 3D texture features were calculated. A preliminary examination was performed on a 3D image volume (64 x 64 x 64 voxels). Our analysis confirmed that the proposed technique is capable of extracting the 3D texture features from the extended GLCMs approach. It is a simple and comprehensive technique that can contribute to the 3D image analysis.

  4. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-04-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  5. Drill site geohazard identification facilitated by rework of suitable existing 3D seismic data volumes

    SciTech Connect

    Cowlard, A.P.

    1996-12-31

    3D seismic volumes are increasingly being used to assist in the mapping and identification of drilling hazards. A method of reworking the 3D volume, termed the Short Offset method, is proposed which offers the benefit of optimized resolution in the shallow section and therefore provides the interpreter with an enhanced image of the near surface geology. The processing sequence contrasts markedly with conventional 3D processing and involves the inclusion of only near normal incidence traces. Two case histories are described which illustrate the application of the Short Offset method and its robustness even in conditions not conducive to enhancing frequency bandwidth. In summary, Short Offset reprocessing results in a product which offers considerably improved resolution when compared to a conventional 3D volume and far finer areal sampling when compared to a traditional 2D site survey thus providing the industry with a valuable tool for drilling hazard investigation.

  6. Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1997-01-01

    This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

  7. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  8. Sinusoidal phase modulating interferometry system for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fu-kai, Zhang; Fan, Feng

    2014-07-01

    We describe a fiber-optic sinusoidal phase modulating (SPM) interferometer for three-dimensional (3D) profilometry, which is insensitive to external disturbances such as mechanical vibration and temperature fluctuation. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer (PZT) with a sinusoidal wave. The external disturbances that cause phase drift in the interference signal and decrease measuring accuracy are effectively eliminated by building a closed-loop feedback system. The phase stability can be measured with a precision of 2.75 mrad, and the external disturbances can be reduced to 53.43 mrad for the phase of fringe patterns. By measuring the dynamic deformation of the rubber membrane, the RMSE is about 0.018 mm, and a single measurement takes less than 250 ms. The feasibility for real-time application has been verified.

  9. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-11-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum and (iii) debiasing the resulting estimates. For (i), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.

  10. 3D ultrasound estimation of the effective volume for popliteal block at the level of division.

    PubMed

    Sala-Blanch, X; Franco, J; Bergé, R; Marín, R; López, A M; Agustí, M

    2017-03-01

    Local anaesthetic injection between the tibial and commmon peroneal nerves within connective tissue sheath results in a predictable diffusion and allows for a reduction in the volume needed to achieve a consistent sciatic popliteal block. Using 3D ultrasound volumetric acquisition, we quantified the visible volume in contact with the nerve along a 5cm segment.

  11. Volume Attenuation and High Frequency Loss as Auditory Depth Cues in Stereoscopic 3D Cinema

    NASA Astrophysics Data System (ADS)

    Manolas, Christos; Pauletto, Sandra

    2014-09-01

    Assisted by the technological advances of the past decades, stereoscopic 3D (S3D) cinema is currently in the process of being established as a mainstream form of entertainment. The main focus of this collaborative effort is placed on the creation of immersive S3D visuals. However, with few exceptions, little attention has been given so far to the potential effect of the soundtrack on such environments. The potential of sound both as a means to enhance the impact of the S3D visual information and to expand the S3D cinematic world beyond the boundaries of the visuals is large. This article reports on our research into the possibilities of using auditory depth cues within the soundtrack as a means of affecting the perception of depth within cinematic S3D scenes. We study two main distance-related auditory cues: high-end frequency loss and overall volume attenuation. A series of experiments explored the effectiveness of these auditory cues. Results, although not conclusive, indicate that the studied auditory cues can influence the audience judgement of depth in cinematic 3D scenes, sometimes in unexpected ways. We conclude that 3D filmmaking can benefit from further studies on the effectiveness of specific sound design techniques to enhance S3D cinema.

  12. Measurement of Laser Weld Temperatures for 3D Model Input

    SciTech Connect

    Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  13. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  14. The effect of motion on IMRT - looking at interplay with 3D measurements

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Yan, H.; Oldham, M.; Juang, T.; Adamovics, J.; Yin, F. F.

    2013-06-01

    Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

  15. A 3D modeling and measurement system for cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Du, Guoguang; Zhou, Mingquan; Ren, Pu; Shui, Wuyang; Zhou, Pengbo; Wu, Zhongke

    2015-07-01

    Cultural Heritage reflects the human production, life style and environmental conditions of various historical periods. It exists as one of the major national carriers of national history and culture. In order to do better protection and utilization for these cultural heritages, a system of three-dimensional (3D) reconstruction and statistical measurement is proposed in this paper. The system solves the problems of cultural heritage's data storage, measurement and analysis. Firstly, for the high precision modeling and measurement problems, range data registration and integration algorithm used to achieve high precision 3D reconstruction. Secondly, multi-view stereo reconstruction method is used to solve the problem of rapid reconstruction by procedures such as the original image data pre-processing, camera calibration, point cloud modeling. At last, the artifacts' measure underlying database is established by calculating the measurements of the 3D model's surface. These measurements contain Euclidean distance between the points on the surface, geodesic distance between the points, normal and curvature in each point, superficial area of a region, volume of model's part and some other measurements. These measurements provide a basis for carrying out information mining of cultural heritage. The system has been applied to the applications of 3D modeling, data measurement of the Terracotta Warriors relics, Tibetan architecture and some other relics.

  16. [Current status of 3D/4D volume ultrasound of the breast].

    PubMed

    Weismann, C; Hergan, K

    2007-06-01

    3D/4D volume ultrasound is an established method that offers various options for analyzing and presenting ultrasound volume data. The following imaging techniques are based on automatically acquired ultrasound volumes. The multiplanar view is the typical mode of 3D ultrasound data presentation. The niche mode view is a cut open view of the volume data set. The surface mode is a rendering technique that represents the data within a volume of interest (VOI) with different slice thicknesses (typically 1-4 mm) with a contrast-enhanced surface algorithm. Related to the diagnostic target, the transparency mode helps to present echopoor or echorich structures and their spatial relationships within the ultrasound volume. Glass body rendering is a special type of transparency mode that makes the grayscale data transparent and shows the color flow data in a surface render mode. The inversion mode offers a three-dimensional surface presentation of echopoor lesions. Volume Contrast Imaging (VCI) works with static 3D volume data and is able to be used with 4D for dynamic scanning. Volume calculation of a lesion and virtual computer-assisted organ analysis of the same lesion is performed with VoCal software. Tomographic Ultrasound Imaging (TUI) is the perfect tool to document static 3D ultrasound volumes. 3D/4D volume ultrasound of the breast provides diagnostic information of the coronal plane. In this plane benign lesions show the compression pattern sign, while malignant lesions show the retraction pattern or star pattern sign. The indeterminate pattern of a lesion combines signs of compression and retraction or star pattern in the coronal plane. Glass body rendering in combination with Power-Doppler, Color-Doppler or High-Definition Flow Imaging presents the intra- and peritumoral three-dimensional vascular architecture. 3D targeting shows correct or incorrect needle placement in all three planes after 2D or 4D needle guidance. In conclusion, it is safe to say that 3D/4D

  17. 3D-Assisted Quantitative Assessment of Orbital Volume Using an Open-Source Software Platform in a Taiwanese Population

    PubMed Central

    Shyu, Victor Bong-Hang; Hsu, Chung-En; Chen, Chih-hao; Chen, Chien-Tzung

    2015-01-01

    Orbital volume evaluation is an important part of pre-operative assessments in orbital trauma and congenital deformity patients. The availability of the affordable, open-source software, OsiriX, as a tool for preoperative planning increased the popularity of radiological assessments by the surgeon. A volume calculation method based on 3D volume rendering-assisted region-of-interest computation was used to determine the normal orbital volume in Taiwanese patients after reorientation to the Frankfurt plane. Method one utilized 3D points for intuitive orbital rim outlining. The mean normal orbital volume for left and right orbits was 24.3±1.51 ml and 24.7±1.17 ml in male and 21.0±1.21 ml and 21.1±1.30 ml in female subjects. Another method (method two) based on the bilateral orbital lateral rim was also used to calculate orbital volume and compared with method one. The mean normal orbital volume for left and right orbits was 19.0±1.68 ml and 19.1±1.45 ml in male and 16.0±1.01 ml and 16.1±0.92 ml in female subjects. The inter-rater reliability and intra-rater measurement accuracy between users for both methods was found to be acceptable for orbital volume calculations. 3D-assisted quantification of orbital volume is a feasible technique for orbital volume assessment. The normal orbital volume can be used as controls in cases of unilateral orbital reconstruction with a mean size discrepancy of less than 3.1±2.03% in females and 2.7±1.32% in males. The OsiriX software can be used reliably by the individual surgeon as a comprehensive preoperative planning and imaging tool for orbital volume measurement and computed tomography reorientation. PMID:25774683

  18. 3D refractive index measurements of special optical fibers

    NASA Astrophysics Data System (ADS)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  19. Open-GL-based stereo system for 3D measurements

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Gehrhoff, Anja; Neifer, Markus

    2000-05-01

    A stereo system designed and used for the measurement of 3D- coordinates within metric stereo image pairs will be presented. First, the motivation for the development is shown, allowing to evaluate stereo images. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing the measuring functionality required. The presented stereo system is based on PC-hardware equipped with a graphic board and uses an object oriented programming technique. The specific needs of a measuring system are shown and the corresponding requirements which have to be met by the system. The key role of OpenGL is described, which supplies some elementary graphic functions, being directly supported by graphic boards and thus provides the performance needed. Further important aspects as modularity and hardware independence and their value for the solution are shown. Finally some sample functions concerned with image display and handling are presented in more detail.

  20. 3D Plenoptic PIV Measurements of a Shock Wave Boundary Layer Interaction

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Bolton, Johnathan; Arora, Nishul; Alvi, Farrukh

    2016-11-01

    Plenoptic particle image velocimetry (PIV) is a relatively new technique that uses the computational refocusing capability of a single plenoptic camera and volume illumination with a double-pulsed light source to measure the instantaneous 3D/3C velocity field of a flow field seeded with particles. In this work, plenoptic PIV is used to perform volumetric velocity field measurements of a shock-wave turbulent boundary layer interaction (SBLI). Experiments were performed in a Mach 2.0 flow with the SBLI produced by an unswept fin at 15°angle of attack. The measurement volume was 38 x 25 x 32 mm3 and illuminated with a 400 mJ/pulse Nd:YAG laser with 1.7 microsecond inter-pulse time. Conventional planar PIV measurements along two planes within the volume are used for comparison. 3D visualizations of the fin generated shock and subsequent SBLI are presented. The growth of the shock foot and separation region with increasing distance from the fin tip is observed and agrees with observations made using planar PIV. Instantaneous images depict 3D fluctuations in the position of the shock foot from one image to the next. The authors acknowledge the support of the Air Force Office of Scientific Research.

  1. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing.

    PubMed

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is ±0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  2. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    NASA Astrophysics Data System (ADS)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  3. 3D cell-printing of large-volume tissues: Application to ear regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byung Soo; Seo, Dong Hwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-01-17

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, humidifier, and Peltier system, which provides a suitable printing environment for production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  4. GPU-accelerated 3D mipmap for real-time visualization of ultrasound volume data.

    PubMed

    Kwon, Koojoo; Lee, Eun-Seok; Shin, Byeong-Seok

    2013-10-01

    Ultrasound volume rendering is an efficient method for visualizing the shape of fetuses in obstetrics and gynecology. However, in order to obtain high-quality ultrasound volume rendering, noise removal and coordinates conversion are essential prerequisites. Ultrasound data needs to undergo a noise filtering process; otherwise, artifacts and speckle noise cause quality degradation in the final images. Several two-dimensional (2D) noise filtering methods have been used to reduce this noise. However, these 2D filtering methods ignore relevant information in-between adjacent 2D-scanned images. Although three-dimensional (3D) noise filtering methods are used, they require more processing time than 2D-based methods. In addition, the sampling position in the ultrasonic volume rendering process has to be transformed between conical ultrasound coordinates and Cartesian coordinates. We propose a 3D-mipmap-based noise reduction method that uses graphics hardware, as a typical 3D mipmap requires less time to be generated and less storage capacity. In our method, we compare the density values of the corresponding points on consecutive mipmap levels and find the noise area using the difference in the density values. We also provide a noise detector for adaptively selecting the mipmap level using the difference of two mipmap levels. Our method can visualize 3D ultrasound data in real time with 3D noise filtering.

  5. Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations.

    PubMed

    Malandain, Grégoire; Bardinet, Eric; Nelissen, Koen; Vanduffel, Wim

    2004-09-01

    In the past years, the development of 3-D medical imaging has enabled the 3-D imaging of in vivo tissues, from an anatomical (MR, CT) or even functional (fMRI, PET, SPECT) point of view. However, despite immense technological progress, the resolution of these images is still short of the level of anatomical or functional details that in vitro imaging (e.g., histology, autoradiography) permits. The motivation of this work is to compare fMRI activations to activations observed in autoradiographic images from the same animals. We aim to fuse post-mortem autoradiographic data with a pre-mortem anatomical MR image. We first reconstruct a 3-D volume from the 2-D autoradiographic sections, coherent both in geometry and intensity. Then, this volume is fused with the MR image. This way, we ensure that the reconstructed 3-D volume can be superimposed onto the MR image that represents the reference anatomy. We demonstrate that this fusion can be achieved by using only simple global transformations (rigid and/or affine, 2-D and 3-D), while yielding very satisfactory results.

  6. A 3D measurement of the offset in paleoseismological studies

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Echeverria, Anna; Masana, Eulàlia; Martínez-Díaz, José J.; Sharp, Warren D.

    2016-05-01

    The slip rate of a seismogenic fault is a crucial parameter for establishing the contribution of the fault to the seismic hazard. It is calculated from measurements of the offset of linear landforms, such channels, produced by the fault combined with their age. The three-dimensional measurement of offset in buried paleochannels is subject to uncertainties that need to be quantitatively assessed and propagated into the slip rate. Here, we present a set of adapted scripts to calculate the net, lateral and vertical tectonic offset components caused by faults, together with their associated uncertainties. This technique is applied here to a buried channel identified in the stratigraphic record during a paleoseismological study at the El Saltador site (Alhama de Murcia fault, Iberian Peninsula). After defining and measuring the coordinates of the key points of a buried channel in the walls of eight trenches excavated parallel to the fault, we (a) adjusted a 3D straight line to these points and then extrapolated the tendency of this line onto a simplified fault plane; (b) repeated these two steps for the segment of the channel in the other side of the fault; and (c) measured the distance between the two resulting intersection points with the fault plane. In doing so, we avoided the near fault modification of the channel trace and obtained a three-dimensional measurement of offset and its uncertainty. This methodology is a substantial modification of previous procedures that require excavating progressively towards the fault, leading to possible underestimation of offset due to diffuse deformation near the fault. Combining the offset with numerical dating of the buried channel via U-series on soil carbonate, we calculated a maximum estimate of the net slip rate and its vertical and lateral components for the Alhama de Murcia fault.

  7. High-resolution DTI of a localized volume using 3D single-shot diffusion-weighted STimulated echo-planar imaging (3D ss-DWSTEPI).

    PubMed

    Jeong, Eun-Kee; Kim, Seong-Eun; Kholmovski, Eugene G; Parker, Dennis L

    2006-12-01

    Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.

  8. Frequency Domain Beamformer for a 3-D Sediment Volume Imaging Synthetic Aperture Sonar

    DTIC Science & Technology

    2010-06-01

    Frequency Domain Beamformer for a 3-D Sediment Volume Imaging Synthetic Aperture Sonar Jonathan R. Pearson Magoon,a Matthew A. Nelson,a Daniel D...synthetic aperture sonars (SAS). The beamformer, designed for systems with receiver arrays oriented transverse to the vehicle, performs standard delay and...volume imaging synthetic aperture sonars (SAS). The beamformer is designed for systems with receiver arrays oriented transverse to the vehicle such

  9. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  10. Adapted morphing model for 3D volume reconstruction applied to abdominal CT images

    NASA Astrophysics Data System (ADS)

    Fadeev, Aleksey; Eltonsy, Nevine; Tourassi, Georgia; Martin, Robert; Elmaghraby, Adel

    2005-04-01

    The purpose of this study was to develop a 3D volume reconstruction model for volume rendering and apply this model to abdominal CT data. The model development includes two steps: (1) interpolation of given data for a complete 3D model, and (2) visualization. First, CT slices are interpolated using a special morphing algorithm. The main idea of this algorithm is to take a region from one CT slice and locate its most probable correspondence in the adjacent CT slice. The algorithm determines the transformation function of the region in between two adjacent CT slices and interpolates the data accordingly. The most probable correspondence of a region is obtained using correlation analysis between the given region and regions of the adjacent CT slice. By applying this technique recursively, taking progressively smaller subregions within a region, a high quality and accuracy interpolation is obtained. The main advantages of this morphing algorithm are 1) its applicability not only to parallel planes like CT slices but also to general configurations of planes in 3D space, and 2) its fully automated nature as it does not require control points to be specified by a user compared to most morphing techniques. Subsequently, to visualize data, a specialized volume rendering card (TeraRecon VolumePro 1000) was used. To represent data in 3D space, special software was developed to convert interpolated CT slices to 3D objects compatible with the VolumePro card. Visual comparison between the proposed model and linear interpolation clearly demonstrates the superiority of the proposed model.

  11. Multidimensional measurement by using 3-D PMD sensors

    NASA Astrophysics Data System (ADS)

    Ringbeck, T.; Möller, T.; Hagebeuker, B.

    2007-06-01

    Optical Time-of-Flight measurement gives the possibility to enhance 2-D sensors by adding a third dimension using the PMD principle. Various applications in the automotive (e.g. pedestrian safety), industrial, robotics and multimedia fields require robust three-dimensional data (Schwarte et al., 2000). These applications, however, all have different requirements in terms of resolution, speed, distance and target characteristics. PMDTechnologies has developed 3-D sensors based on standard CMOS processes that can provide an optimized solution for a wide field of applications combined with high integration and cost-effective production. These sensors are realized in various layout formats from single pixel solutions for basic applications to low, middle and high resolution matrices for applications requiring more detailed data. Pixel pitches ranging from 10 micrometer up to a 300 micrometer or larger can be realized and give the opportunity to optimize the sensor chip depending on the application. One aspect of all optical sensors based on a time-of-flight principle is the necessity of handling background illumination. This can be achieved by various techniques, such as optical filters and active circuits on chip. The sensors' usage of the in-pixel so-called SBI-circuitry (suppression of background illumination) makes it even possible to overcome the effects of bright ambient light. This paper focuses on this technical requirement. In Sect. 2 we will roughly describe the basic operation principle of PMD sensors. The technical challenges related to the system characteristics of an active optical ranging technique are described in Sect. 3, technical solutions and measurement results are then presented in Sect. 4. We finish this work with an overview of actual PMD sensors and their key parameters (Sect. 5) and some concluding remarks in Sect. 6.

  12. Volume estimation of tonsil phantoms using an oral camera with 3D imaging

    PubMed Central

    Das, Anshuman J.; Valdez, Tulio A.; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C.; Raskar, Ramesh

    2016-01-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky’s classification of tonsillar hypertrophy as well as intraoperative volume estimations. PMID:27446667

  13. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  14. Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Sheng, Jian

    2011-11-01

    Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.

  15. GPU-Based 3D Cone-Beam CT Image Reconstruction for Large Data Volume

    PubMed Central

    Zhao, Xing; Hu, Jing-jing; Zhang, Peng

    2009-01-01

    Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation. PMID:19730744

  16. The Effect of Ethnicity on 2D and 3D Frontomaxillary Facial Angle Measurement in the First Trimester

    PubMed Central

    Clarke, Jill

    2013-01-01

    Objectives. To determine the existence and extent of ethnic differences in 2D or 3D fetal frontomaxillary facial angle (FMFA) measurements. Methods. During routine 11–14 weeks nuchal translucency screening undertaken in a private ultrasound practice in Sydney, Australia, 2D images and 3D volumes of the fetal profile were collected from consenting patients. FMFA was measured on a frozen 2D ultrasound image in the appropriate plane and, after a delay of at least 48 hours, was also measured on the reconstructed 3D ultrasound volume offline. Results. Overall 416 patients were included in the study; 220 Caucasian, 108 north Asian, 36 east Asian and 52 south Asian patients. Caucasians had significantly lower median FMFA measurements than Asians in both 2D (2.2°; P < 0.001) and 3D (3.4°; P < 0.001) images. Median 2D measurements were significantly higher than 3D measurements in the Caucasian and south Asian groups (P < 0.001 and P = 0.04), but not in north and east Asian groups (P = 0.08 and P = 0.41). Conclusions. Significant ethnic variations in both 2D and 3D FMFA measurements exist. These differences may indicate the need to establish ethnic-specific reference ranges for both 2D and 3D imaging. PMID:24288543

  17. Measuring the Visual Salience of 3D Printed Objects.

    PubMed

    Wang, Xi; Lindlbauer, David; Lessig, Christian; Maertens, Marianne; Alexa, Marc

    2016-01-01

    To investigate human viewing behavior on physical realizations of 3D objects, the authors use an eye tracker with scene camera and fiducial markers on 3D objects to gather fixations on the presented stimuli. They use this data to validate assumptions regarding visual saliency that so far have experimentally only been analyzed for flat stimuli. They provide a way to compare fixation sequences from different subjects and developed a model for generating test sequences of fixations unrelated to the stimuli. Their results suggest that human observers agree in their fixations for the same object under similar viewing conditions. They also developed a simple procedure to validate computational models for visual saliency of 3D objects and found that popular models of mesh saliency based on center surround patterns fail to predict fixations.

  18. Status of 3D Ice Shape Measurement Effort

    NASA Technical Reports Server (NTRS)

    Lee, Sam

    2011-01-01

    (1) Main goal of the Airframe Icing Technical Challenge is to achieve acceptance of experimental and computational icing simulation tools -SupercooledLarge Droplet Icing (SLD) conditions -3D airframe components including swept wings; (2) It is necessary to develop suitable means of recording and archiving fully 3D descriptions of experimental ice accretion geometry; (3) Past research has shown that commercial laser scanners have the potential to be adapted to this task; and (4) A research plan has been developed to implement and validate the use of this technology for experimental ice accretions.

  19. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Pryor, S. C.; Churchfield, Matthew

    2016-11-01

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  20. Wind turbine wake characterization from temporally disjunct 3-D measurements

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Pryor, S. C.; Churchfield, Matthew

    2016-11-10

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  1. Wind turbine wake characterization from temporally disjunct 3-D measurements

    DOE PAGES

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; ...

    2016-11-10

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less

  2. Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

    2006-03-01

    Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0° in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4°) and intraobserver variability (5.2mm, 3.3mm, 7.0°), and better than the error before registration (9.4mm, 9.0mm, 9.9°). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

  3. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    PubMed

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale.

  4. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    NASA Astrophysics Data System (ADS)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  5. 3D precision measurements of meter sized surfaces using low cost illumination and camera techniques

    NASA Astrophysics Data System (ADS)

    Ekberg, Peter; Daemi, Bita; Mattsson, Lars

    2017-04-01

    Using dedicated stereo camera systems and structured light is a well-known method for measuring the 3D shape of large surfaces. However the problem is not trivial when high accuracy, in the range of few tens of microns, is needed. Many error sources need to be handled carefully in order to obtain high quality results. In this study, we present a measurement method based on low-cost camera and illumination solutions combined with high-precision image analysis and a new approach in camera calibration and 3D reconstruction. The setup consists of two ordinary digital cameras and a Gobo projector as a structured light source. A matrix of dots is projected onto the target area. The two cameras capture the images of the projected pattern on the object. The images are processed by advanced subpixel resolution algorithms prior to the application of the 3D reconstruction technique. The strength of the method lays in a different approach for calibration, 3D reconstruction, and high-precision image analysis algorithms. Using a 10 mm pitch pattern of the light dots, the method is capable of reconstructing the 3D shape of surfaces. The precision (1σ repeatability) in the measurements is  <10 µm over a volume of 60  ×  50  ×  10 cm3 at a hardware cost of ~2% of available advanced measurement techniques. The expanded uncertainty (95% confidence level) is estimated to be 83 µm, with the largest uncertainty contribution coming from the absolute length of the metal ruler used as reference.

  6. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  7. Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system

    NASA Astrophysics Data System (ADS)

    Peng, Zhao; Guo-Qiang, Ni

    2010-04-01

    A simultaneous measurement scheme for multiple three-dimensional (3D) objects' surface boundary perimeters is proposed. This scheme consists of three steps. First, a binocular stereo vision measurement system with two CCD cameras is devised to obtain the two images of the detected objects' 3D surface boundaries. Second, two geodesic active contours are applied to converge to the objects' contour edges simultaneously in the two CCD images to perform the stereo matching. Finally, the multiple spatial contours are reconstructed using the cubic B-spline curve interpolation. The true contour length of every spatial contour is computed as the true boundary perimeter of every 3D object. An experiment on the bent surface's perimeter measurement for the four 3D objects indicates that this scheme's measurement repetition error decreases to 0.7 mm.

  8. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy; Kreeger, Richard; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3-D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion.The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scanrapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the moldcasting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  9. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  10. 3D volume reconstruction of a mouse brain histological sections using warp filtering

    SciTech Connect

    Ju, Tao; Warren, Joe; Carson, James P.; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  11. 3D volume reconstruction of a mouse brain from histological sections using warp filtering.

    PubMed

    Ju, Tao; Warren, Joe; Carson, James; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  12. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  13. Ozone Measurements and a 3D Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Frith, Stacey; Steenrod, Steven; Polansky, Brian

    2004-01-01

    We have used our three-dimensional chemical transport model (CTM) to calculate the expected reponse of stratospheric composition over the past 30 years to forcing by chlorine and bromine compounds, solar ultraviolet, and volcanic aerosols. The CTM uses off-line winds and temperatures fiom a 50-year run of the finite volume general circulation model (FVGCM). We compare the total column ozone and the ozone profile fiom the CTM output to a variety of data sources. These include a merged total ozone data set from TOMS and SBUV using the new version 8 algorithm. Total ozone fiom the CTM are compared to ground-station measurements of total ozone at specific locations. Ozone profiles are compared to satellite meausrements fiom SBUV, SAGE, and HALOE. Profiles are also compared to ozonesondes over several locations. The results of the comparisons are quantified by using a time-series statistical analysis to determine trends, solar cycle, and volcanic reponse in both the model and in the data. Initial results indicate that the model responds to forcings in a way that is similar to the observed atmospheric response. The model does seem to be more sensitive to the chlorine and bromine perturbation ihan is the data. Further details and comparisons wiii be discussed.

  14. Estimation of single cell volume from 3D confocal images using automatic data processing

    NASA Astrophysics Data System (ADS)

    Chorvatova, A.; Cagalinec, M.; Mateasik, A.; Chorvat, D., Jr.

    2012-06-01

    Cardiac cells are highly structured with a non-uniform morphology. Although precise estimation of their volume is essential for correct evaluation of hypertrophic changes of the heart, simple and unified techniques that allow determination of the single cardiomyocyte volume with sufficient precision are still limited. Here, we describe a novel approach to assess the cell volume from confocal microscopy 3D images of living cardiac myocytes. We propose a fast procedure based on segementation using active deformable contours. This technique is independent on laser gain and/or pinhole settings and it is also applicable on images of cells stained with low fluorescence markers. Presented approach is a promising new tool to investigate changes in the cell volume during normal, as well as pathological growth, as we demonstrate in the case of cell enlargement during hypertension in rats.

  15. 3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts

    PubMed Central

    Linden, Katharina; Dewald, Oliver; Gatzweiler, Eva; Seehase, Matthias; Duerr, Georg Daniel; Dörner, Jonas; Kleppe, Stephanie

    2016-01-01

    Background Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data. Methods In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets. Results Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters. Conclusions PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This

  16. Application of 3D scanned imaging methodology for volume, surface area, and envelope density evaluation of densified biomass.

    PubMed

    Igathinathane, C; Davis, J D; Purswell, J L; Columbus, E P

    2010-06-01

    Measurement of volume, surface area, and density is an essential for quantifying, evaluating, and designing the biomass densification, storage, and transport operations. Acquiring accurate and repeated measurements of these parameters for hygroscopic densified biomass are not straightforward and only a few methods are available. A 3D laser scanner was used as a measurement device and the 3D images were analyzed using image processing software. The validity of the method was verified using reference objects of known geometry and the accuracy obtained was in excess of 98%. Cotton gin trash briquettes, switchgrass pellets, switchgrass cubes, hardwood pellets, and softwood chips were tested. Most accurate results of the volume and surface area required the highest possible resolution of the scanner, which increased the total scan-process times, and image file size. Physical property determination using the 3D scanning and image analysis is highly repeatable (coefficient of variation <0.3%), non-invasive, accurate, and alternative methodology. The various limitations and merits of the developed method were also enumerated.

  17. Fully analytical integration over the 3D volume bounded by the β sphere in topological atoms.

    PubMed

    Popelier, Paul L A

    2011-11-17

    Atomic properties of a topological atom are obtained by 3D integration over the volume of its atomic basin. Algorithms that compute atomic properties typically integrate over two subspaces: the volume bounded by the so-called β sphere, which is centered at the nucleus and completely contained within the atomic basin, and the volume of the remaining part of the basin. Here we show how the usual quadrature over the β sphere volume can be replaced by a fully analytical 3D integration leading to the atomic charge (monopole moment) for s, p, and d functions. Spherical tensor multipole moments have also been implemented and tested up to hexadecupole for s functions only, and up to quadrupole for s and p functions. The new algorithm is illustrated by operating on capped glycine (HF/6-31G, 35 molecular orbitals (MOs), 322 Gaussian primitives, 19 nuclei), the protein crambin (HF/3-21G, 1260 MOs, 5922 primitives and 642 nuclei), and tin (Z = 50) in Sn(2)(CH(3))(2) (B3LYP/cc-pVTZ and LANL2DZ, 59 MOs, 1352 primitives).

  18. Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder.

    PubMed

    Shi, Jinlong; Sun, Zhengxing; Bai, Suqin

    2015-04-01

    This paper presents a three-dimensional (3D) measurement method of large-scale objects by integrating a 3D scanner and a laser rangefinder. The 3D scanner, used to perform partial section measurement, is fixed on a robotic arm which can slide on a guide rail. The laser rangefinder, used to compute poses of the 3D scanner, is rigidly connected to the 3D scanner. During large-scale measurement, after measuring a partial section, the 3D scanner is straightly moved forward along the guide rail to measure another section. Meanwhile, the poses of the 3D scanner are estimated according to its moved distance for different partial section alignments. The performance and effectiveness are evaluated by experiments.

  19. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  20. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  1. In vivo pediatric shoulder muscle volumes and their relationship to 3D strength.

    PubMed

    Im, Hyun Soo; Alter, Katharine E; Brochard, Sylvain; Pons, Christelle; Sheehan, Frances T

    2014-08-22

    In the pediatric shoulder, injury and pathology can disrupt the muscle force balance, resulting in severe functional losses. As little data exists pertaining to in vivo pediatric shoulder muscle function, musculoskeletal data are crucially needed to advance the treatment of pediatric shoulder pathology/injury. Therefore, the purpose of this study was to develop a pediatric database of in vivo volumes for the major shoulder muscles and correlate these volumes with maximum isometric flexion/extension, internal/external rotation, and abduction/adduction joint moments. A methodology was developed to derive 3D shoulder muscle volumes and to divide the deltoid into sub-units with unique torque producing capabilities, based on segmentation of three-dimensional magnetic resonance images. Eleven typically developing children/adolescents (4F/7M, 12.0 ± 3.2 years, 150.8 ± 16.7 cm, 49.2 ± 16.4 kg) participated. Correlation and regression analyses were used to evaluate the relationship between volume and maximum, voluntary, isometric joint torques. The deltoid demonstrated the largest (30.4 ± 1.2%) and the supraspinatus the smallest (4.8 ± 0.5%) percent of the total summed volume of all six muscles evaluated. The anterior and posterior deltoid sections were 43.4 ± 3.9% and 56.6 ± 3.9% of the total deltoid volume. The percent volumes were highly consistent across subjects. Individual muscle volumes demonstrated moderate-high correlations with torque values (0.70-0.94, p<0.001). This study presents a comprehensive database documenting normative pediatric shoulder muscle volume. Using these data a clear relationship between shoulder volume and the torques they produce was established in all three rotational degrees-of-freedom. This study furthers the understanding of shoulder muscle function and serves as a foundation for evaluating shoulder injury/pathology in the pediatric/adolescent population.

  2. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    PubMed

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique.

  3. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.

    PubMed

    Shah, Aj; Wollak, C; Shah, J B

    2013-12-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.(1) Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.(7,9) The clinical practice of measuring wounds has not improved even today.(2,3) A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.(2,3) Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.(2) Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving

  4. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner

    PubMed Central

    Shah, Aj; Wollak, C.; Shah, J.B.

    2015-01-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.1 Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.7,9 The clinical practice of measuring wounds has not improved even today.2,3 A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.2,3 Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.2 Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving the

  5. Modulation measuring profilometry with cross grating projection and single shot for dynamic 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Lu, Mingteng; Su, Xianyu; Cao, Yiping; You, Zhisheng; Zhong, Min

    2016-12-01

    In order to determine Dynamic 3-D shape with vertical measurement mode, a fast modulation measuring profilometry (MMP) with a cross grating projection and single shot is proposed. Unlike the previous methods, in our current projection system, one cross grating is projected by a special projection lens consisting of a common projection lens and a cylindrical lens. Due to the characteristics of cylindrical lens, the image of the vertical component and the horizontal component of the cross grating is separated in the image space, and the measuring range is just the space between the two image planes. Through a beam splitter, the CCD camera can coaxially capture the fringe pattern of the cross grating modulated by the testing object's shape. In one fringe pattern, by applying Fourier transform, filtering and inverse Fourier transform, the modulation corresponding to the vertical and horizontal components of the cross grating can be obtained respectively. Then the 3-D shape of the object can be reconstructed according to the mapping relationship between modulation and height, which was established by calibration process in advance. So the 3-D shape information can be recorded at the same speed of the frame rate of the CCD camera. This paper gives the principle of the proposed method and the set-up for measuring experiment and system calibration. The 3-D shape of a still object and a dynamic process of liquid vortex were measured and reconstructed in the experiments, and the results proved the method's feasibility. The advantage of the proposed method is that only one fringe pattern is needed to extract the modulation distribution and to reconstruct the 3-D shape of the object. Therefore, the proposed method can achieve high speed measurement and vertical measurement without shadow and occlusion. It can be used in the dynamic 3-D shape measurement and vibration analysis.

  6. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  7. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    PubMed

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  8. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.

    2009-12-01

    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  9. Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces.

    PubMed

    Li, Da; Cheung, Chi Fai; Ren, MingJun; Whitehouse, David; Zhao, Xing

    2015-11-15

    This paper presents a disparity pattern-based autostereoscopic (DPA) 3D metrology system that makes use of a microlens array to capture raw 3D information of the measured surface in a single snapshot through a CCD camera. Hence, a 3D digital model of the target surface with the measuring data is generated through a system-associated direct extraction of disparity information (DEDI) method. The DEDI method is highly efficient for performing the direct 3D mapping of the target surface based on tomography-like operation upon every depth plane with the defocused information excluded. Precise measurement results are provided through an error-elimination process based on statistical analysis. Experimental results show that the proposed DPA 3D metrology system is capable of measuring 3D microstructured surfaces with submicrometer measuring repeatability for high precision and in situ measurement of microstructured surfaces.

  10. 3D volume MR temperature mapping for HIFU heating trajectory comparisons

    NASA Astrophysics Data System (ADS)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L.

    2012-10-01

    Many areas of MR-guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large 3-D volume. This paper describes an approach to achieve these goals that is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified 3-D segmented EPI sequence and creates images using a temporally constrained reconstruction algorithm. The 3-D images can be zero-filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency (PRF) shift technique. During HIFU heating experiments, the proposed method was used to obtain temperature maps with 1.5×1.5×3.0 mm resolution, 288×162×78 mm field of view, and 1.7 second temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing HIFU-induced temperature distributions. An example application is presented where the method is used to analyze and compare different HIFU volumetric heating trajectories.

  11. Web-based volume slicer for 3D electron-microscopy data from EMDB

    PubMed Central

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J.; Patwardhan, Ardan

    2016-01-01

    We describe the functionality and design of the Volume slicer – a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  12. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.

    PubMed

    Lee, W; Kim, T-S; Cho, M; Lee, S

    2005-01-01

    In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.

  13. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices

    PubMed Central

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-01-01

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given. PMID:26703624

  14. Automatic quantification of aortic regurgitation using 3D full volume color doppler echocardiography: a validation study with cardiac magnetic resonance imaging.

    PubMed

    Choi, Jaehuk; Hong, Geu-Ru; Kim, Minji; Cho, In Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Mancina, Joel; Ha, Jong-Won; Chung, Namsik

    2015-10-01

    Recent advances in real-time three-dimensional (3D) echocardiography provide the automated measurement of mitral inflow and aortic stroke volume without the need to assume the geometry of the heart. The aim of this study is to explore the ability of 3D full volume color Doppler echocardiography (FVCDE) to quantify aortic regurgitation (AR). Thirty-two patients with more than a moderate degree of AR were enrolled. AR volume was measured by (1) two-dimensional-CDE, using the proximal isovelocity surface area (PISA) and (2) real-time 3D-FVCDE with (3) phase-contrast cardiac magnetic resonance imaging (PC-CMR) as the reference method. Automated AR quantification using 3D-FVCDE was feasible in 30 of the 32 patients. 2D-PISA underestimated the AR volume compared to 3D-FVCDE and PC-CMR (38.6 ± 9.9 mL by 2D-PISA; 49.5 ± 10.2 mL by 3D-FVCDE; 52.3 ± 12.6 mL by PC-CMR). The AR volume assessed by 3D-FVCDE showed better correlation and agreement with PC-CMR (r = 0.93, p < 0.001, 2SD: 9.5 mL) than did 2D-PISA (r = 0.76, p < 0.001, 2SD: 15.7 mL). When used to classify AR severity, 3D-FVCDE agreed better with PC-CMR (k = 0.94) than did 2D-PISA (k = 0.53). In patients with eccentric jets, only 30% were correctly graded by 2D-PISA. Conversely, almost all patients with eccentric jets (86.7%) were correctly graded by 3D-FVCDE. In patients with multiple jets, only 3 out of 10 were correctly graded by 2D-PISA, while 3D-FVCDE correctly graded 9 out of 10 of these patients. Automated quantification of AR using the 3D-FVCDE method is clinically feasible and more accurate than the current 2D-based method. AR quantification by 2D-PISA significantly misclassified AR grade in patients with eccentric or multiple jets. This study demonstrates that 3D-FVCDE is a valuable tool to accurately measure AR volume regardless of AR characteristics.

  15. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  16. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness.

    PubMed

    Lautscham, Lena A; Kämmerer, Christoph; Lange, Janina R; Kolb, Thorsten; Mark, Christoph; Schilling, Achim; Strissel, Pamela L; Strick, Reiner; Gluth, Caroline; Rowat, Amy C; Metzner, Claus; Fabry, Ben

    2015-09-01

    In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.

  17. Correlation of preoperative MRI and intraoperative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Lee, Belinda K. H.; Peters, Terence M.

    2001-05-01

    B-Mode ultrasound is often used during neurosurgery to provide intra-operative images of the brain though a craniotomy, but the use of 3D ultrasound during surgery is still in its infancy. We have developed a system that provides real-time freehand 3D ultrasound reconstruction at a reduced resolution. The reconstruction proceeds incrementally and the 3D image is overlayed, via a computer, on a pre-operative 3D MRI scan. This provides the operator with the necessary feedback to maintain a constant freehand sweep-rate, and also ensures that the sweep covers the desired anatomical volume. All of the ultrasound video frames are buffered, and a full-resolution, compounded reconstruction proceeds once the manual sweep is complete. We have also developed tools for manual tagging of homologous landmarks in the 3D MRI and 3D ultrasound volumes that use a piecewise cubic approximation of thin-plate spline interpolation to achieve interactive nonlinear registration and warping of the MRI volume to the ultrasound volume: Each time a homologous point-pair is identified by the use, the image of the warped MRI is updated on the computer screen after less than 0.5 s.

  18. Real-time 3D vibration measurements in microstructures

    NASA Astrophysics Data System (ADS)

    Kowarsch, Robert; Ochs, Wanja; Giesen, Moritz; Dräbenstedt, Alexander; Winter, Marcus; Rembe, Christian

    2012-04-01

    The real-time measurement of three-dimensional vibrations is currently a major interest of academic research and industrial device characterization. The most common and practical solution used so far consists of three single-point laser-Doppler vibrometers which measure vibrations of a scattering surface from three directions. The resulting three velocity vectors are transformed into a Cartesian coordinate system. This technique does also work for microstructures but has some drawbacks: (1) The surface needs to scatter light, (2) the three laser beams can generate optical crosstalk if at least two laser frequencies match within the demodulation bandwidth, and (3) the laser beams have to be separated on the surface under test to minimize optical crosstalk such that reliable measurements are possible. We present a novel optical approach, based on the direction-dependent Doppler effect, which overcomes all the drawbacks of the current technology. We have realized a demonstrator with a measurement spot of < 3.5 μm diameter that does not suffer from optical crosstalk because only one laser beam impinges the specimen surface while the light is collected from three different directions.

  19. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-10-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

  20. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration

    PubMed Central

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui

    2013-01-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474

  1. Model-based measurement of food portion size for image-based dietary assessment using 3D/2D registration.

    PubMed

    Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D; Sun, Mingui

    2013-10-01

    Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.

  2. Measuring heterogenous stress fields in a 3D colloidal glass

    NASA Astrophysics Data System (ADS)

    Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai

    Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.

  3. 3-D Measurement of Recycling and Radiation in MST

    NASA Astrophysics Data System (ADS)

    Norval, Ryan; Goetz, John; Schmitz, Oliver

    2016-10-01

    The MST reversed-field pinch (RFP) can undergo spontaneous transition to a helical core state, associated with the growth of the innermost resonant magnetic mode. Currently multiple 2-D imaging cameras are in place allowing for nearly full vessel viewing and measurement of recycling and impurities fluxes. The transition from the standard to helical RFP causes an observable change in edge plasma. While in the helical state the plasma wall interaction (PWI) on MSTs poloidal limiter strongly correlates with the helicity of the core mode. PWI on the toroidal limiter overall is reduced, with the remaining PWI sites corresponding the helicity of the core mode, or the locations of diagnostic limiters and the error fields they create. EIRENE, a neutral particle code use for modeling edge plasmas, is used to compute the neutral profiles based on measured recycling fluxes. EIRENE computes the radiative and charge exchange power losses. Comparison is made between the standard and helical RFP plasmas. Bolometer measurements of total radiation are currently in progress to supplement the modeling. This work is supported by the U.S. Department of Energy.

  4. Tangible 3D printouts of scientific data volumes with FOSS - an emerging field for research

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Klump, Jens; Wickert, Jens; Ludwig, Marcel; Frigeri, Alessandro

    2013-04-01

    Humans are very good in using both hands and eyes for tactile pattern recognition: The german verb for understanding, "begreifen" literally means "getting a (tactile) grip on a matter". This proven and time honoured concept has been in use since prehistoric times. While the amount of scientific data continues to grow, researchers still need all the support to help them visualize the data content before their inner eye. Immersive data-visualisations are helpful, yet fail to provide tactile feedback as provided from tangible objects. The need for tangible representations of geospatial information to solve real world problems eventually led to the advent of 3d-globes by M. Behaim in the 15th century and has continued since. The production of a tangible representation of a scientific data set with some fidelity is just the final step of an arc, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or a model, by a sensor which produces a data stream which is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3d-printout. Finally, the new specimen has to be linked to its metadata to ensure its scientific meaning and context. On the technical side, the production of a tangible data-print has been realized as a pilot workflow based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview to convert scientific data volume into stereolithography datasets (stl) for printing on a RepRap printer. The initial motivation to use tangible representations of complex data was the task of quality assessments on tsunami simulation data sets in the FP7 TRIDEC project (www.tridec-online.eu). For this, 3d-prints of space time cubes of tsunami wave spreading patterns were produced. This was followed by print-outs of volume data derived from radar sounders (MARSIS, SHARAD) imaging

  5. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  6. 3D-profile measurement of advanced semiconductor features by reference metrology

    NASA Astrophysics Data System (ADS)

    Takamasu, Kiyoshi; Iwaki, Yuuki; Takahashi, Satoru; Kawada, Hiroki; Ikota, Masami; Lorusso, Gian F.; Horiguchi, Naoto

    2016-03-01

    A method of sub-nanometer uncertainty for the 3D-profile measurement using TEM (Transmission Electron Microscope) images is proposed to standardize 3D-profile measurement through reference metrology. The proposed method has been validated for profiles of Si lines, photoresist features and advanced-FinFET (Fin-shaped Field-Effect Transistor) features in our previous investigations. However, efficiency of 3D-profile measurement using TEM is limited by measurement time including processing of the sample. In this article, we demonstrate a novel on-wafer 3D-profile metrology as "FIB-to-CDSEM method" with FIB (Focused Ion Beam) slope cut and CD-SEM (Critical Dimension Secondary Electron Microscope) measuring. Using the method, a few micrometer wide on a wafer is coated and cut by 45 degree slope using FIB tool. Then, the wafer is transferred to CD-SEM to measure the cross section image by top down CD-SEM measurement. We apply FIB-to-CDSEM method to CMOS sensor device. 3D-profile and 3D-profile parameters such as top line width and side wall angles of CMOS sensor device are evaluated. The 3D-profile parameters also are measured by TEM images as reference metrology. We compare the 3D-profile parameters by TEM method and FIB-to-CDSEM method. The average values and correlations on the wafer are agreed well between TEM and FIB-to- CDSEM methods.

  7. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  8. Robust automatic measurement of 3D scanned models for the human body fat estimation.

    PubMed

    Giachetti, Andrea; Lovato, Christian; Piscitelli, Francesco; Milanese, Chiara; Zancanaro, Carlo

    2015-03-01

    In this paper, we present an automatic tool for estimating geometrical parameters from 3-D human scans independent on pose and robustly against the topological noise. It is based on an automatic segmentation of body parts exploiting curve skeleton processing and ad hoc heuristics able to remove problems due to different acquisition poses and body types. The software is able to locate body trunk and limbs, detect their directions, and compute parameters like volumes, areas, girths, and lengths. Experimental results demonstrate that measurements provided by our system on 3-D body scans of normal and overweight subjects acquired in different poses are highly correlated with the body fat estimates obtained on the same subjects with dual-energy X-rays absorptiometry (DXA) scanning. In particular, maximal lengths and girths, not requiring precise localization of anatomical landmarks, demonstrate a good correlation (up to 96%) with the body fat and trunk fat. Regression models based on our automatic measurements can be used to predict body fat values reasonably well.

  9. YieldStar based reticle 3D measurements and its application

    NASA Astrophysics Data System (ADS)

    Vaenkatesan, Vidya; Finders, Jo; ten Berge, Peter; Plug, Reinder; Sijben, Anko; Schellekens, Twan; Dillen, Harm; Pocobiej, Wojciech; Jorge, Vasco G.; van Dijck, Jurgen

    2016-09-01

    YieldStar (YS) is an established ASML-built scatterometer that is capable of measuring wafer Critical Dimension (CD), Overlay and Focus. In a recent work, the application range of YS was extended to measure 3D CD patterns on a reticle (pattern CD, height, Side Wall Angle-SWA). The primary motivation for this study came from imaging studies that indicated a need for measuring and controlling reticle 3D topography. CD scanning electron microscope (CD-SEM), Atomic force microscope (AFM), 3D multiple detector SEM (3D-SEM) are the preferred tools for reticle metrology. While these tools serve the industry well, the current research to the impact of reticle 3D involves extensive costs, logistic challenges and increased reticle lead time. YS provides an attractive alternative as it can measure pattern CD, SWA and height in a single measurement and at high throughput. This work demonstrates the capability of YS as a reticle metrology tool.

  10. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes

    PubMed Central

    Eapen, Maya; Korah, Reeba; Geetha, G.

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  11. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  12. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  13. NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.

    PubMed

    Hinrichs, R N; McLean, S P

    1995-10-01

    This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.

  14. Automatic Dent-landmark detection in 3-D CBCT dental volumes.

    PubMed

    Cheng, Erkang; Chen, Jinwu; Yang, Jie; Deng, Huiyang; Wu, Yi; Megalooikonomou, Vasileios; Gable, Bryce; Ling, Haibin

    2011-01-01

    Orthodontic craniometric landmarks provide critical information in oral and maxillofacial imaging diagnosis and treatment planning. The Dent-landmark, defined as the odontoid process of the epistropheus, is one of the key landmarks to construct the midsagittal reference plane. In this paper, we propose a learning-based approach to automatically detect the Dent-landmark in the 3D cone-beam computed tomography (CBCT) dental data. Specifically, a detector is learned using the random forest with sampled context features. Furthermore, we use spacial prior to build a constrained search space other than use the full three dimensional space. The proposed method has been evaluated on a dataset containing 73 CBCT dental volumes and yields promising results.

  15. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  16. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  17. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction.

    PubMed

    Andersson, Malin; Groseclose, M Reid; Deutch, Ariel Y; Caprioli, Richard M

    2008-01-01

    As large genomic and proteomic datasets are generated from homogenates of various tissues, the need for information on the spatial localization of their encoded products has become more pressing. Matrix-assisted laser desorption-ionization (MALDI) imaging mass spectrometry (IMS) offers investigators the means with which to unambiguously study peptides and proteins with molecular specificity, and to determine their distribution in two and three dimensions. In the past few years, several parameters have been optimized for IMS, including sample preparation, matrix application and instrumental acquisition parameters (Box 1). These developments have resulted in a high degree of reproducibility in mass accuracy and peak intensities (Supplementary Fig. 1 online). Recently, we have optimized our protocol to be able to increase the number of molecular species analyzed by collecting two sets of sections, covering one set of sections with sinapinic acid for optimal detection of proteins and adjacent sections with 2,5-dihydroxybenzoic acid (DHB) matrix for the optimal detection of low-mass species, including peptides. Approximately 1,000 peaks can be observed in each dataset (Fig. 1). Furthermore, the sections are collected at an equal distance, 200 mum instead of 400-500 mum used previously, thus enabling the use of virtual z-stacks and three-dimensional (3D) volume renderings to investigate differential localization patterns in much smaller brain structures such as the substantia nigra and the interpeduncular nucleus. Here we present our optimized step-by-step procedure based on previous work in our laboratory, describing how to make 3D volume reconstructions of MALDI IMS data, as applied to the rat brain.

  18. An open source workflow for 3D printouts of scientific data volumes

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J. F.; Wickert, J.; Ludwig, M.; Frigeri, A.

    2013-12-01

    As the amount of scientific data continues to grow, researchers need new tools to help them visualize complex data. Immersive data-visualisations are helpful, yet fail to provide tactile feedback and sensory feedback on spatial orientation, as provided from tangible objects. The gap in sensory feedback from virtual objects leads to the development of tangible representations of geospatial information to solve real world problems. Examples are animated globes [1], interactive environments like tangible GIS [2], and on demand 3D prints. The production of a tangible representation of a scientific data set is one step in a line of scientific thinking, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or from a data stream generated by an environmental sensor. This data stream is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3D printout. As a last, but crucial step, this new object has to be documented and linked to the associated metadata, and curated in long term repositories to preserve its scientific meaning and context. The workflow to produce tangible 3D data-prints from science data at the German Research Centre for Geosciences (GFZ) was implemented as a software based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview. The workflow was successfully validated in various application scenarios at GFZ using a RapMan printer to create 3D specimens of elevation models, geological underground models, ice penetrating radar soundings for planetology, and space time stacks for Tsunami model quality assessment. While these first pilot applications have demonstrated the feasibility of the overall approach [3], current research focuses on the provision of the workflow as Software as a Service (SAAS), thematic generalisation of information content and

  19. Measuring Fracture Properties of Meteorites: 3D Scans and Disruption Experiments.

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Morris, Melissa A.; Garvie, Laurence

    2014-11-01

    The Arizona State University (ASU) Center for Meteorite Studies (CMS) houses over 30,000 specimens that represent almost every known meteorite type. A number of these are available for fragmentation experiments in small samples, but in most cases non-destructive experiments are desired in order to determine the fundamental mechanical properties of meteorites, and by extension, the Near-Earth Asteroids (NEAs) and other planetary bodies they derive from. We present results from an ongoing suite of measurements and experiments, featuring automated 3D topographic scans of a comprehensive suite of meteorites in the CMS collection, basic mechanical studies, and culminating in catastrophic fragmentation of four representative meteorites: Tamdakht (H5), Allende (CV3), Northwest Africa 869 (L3-6) and Chelyabinsk (LL5). Results will include high-resolution 3D color-shape models of meteorites, including specimens such as the 349g oriented and fusion crusted Martian (shergottite) Tissint, and the delicately fusion crusted and oriented 131g Whetstone Mountains (H5) ordinary chondrite. The 3D color-shape models will allow us to obtain basic physical properties (such as volume to derive density) and to derive fractal dimensions of fractured surfaces. Fractal dimension is closely related to the internal structural heterogeneity and fragmentation of the material, to macroscopic optical properties, and to rubble friction and cohesion. Freshly fractured surfaces of fragments that will result from catastrophic hypervelocity impact experiments will be subsequently scanned and analyzed in order to determine whether fractal dimension is preserved or if it changes with surface maturation.

  20. 3D measurements in the polar mesosphere using coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zecha, M.; Sommer, S.; Rapp, M.; Stober, G.; Latteck, R.

    2012-12-01

    Radars provide the opportunity of continuous measurements in the interesting area of the polar mesosphere. Usually the spatial resolution of measurements by pulsed VHF radars is limited by the radar beam width, transmitting pulse length, and sampling time. Due to these technical restrictions the typical small-scale structures in the mesosphere often cannot be resolved. Furthermore the quality of the estimation of dynamic atmosphere parameters is reduced if the position and direction of scatter returns cannot determined exactly. Radar interferometry methods have been developed to reduce these limitations. The coherent radar imaging method gives a high resolving image of the scatter structure insight the radar beam volume. In recent years the VHF radar MAARSY was installed in Andenes/Norway (69°N). This new radar was designed to allow improved three-dimensional observations in the atmosphere. It consists of 433 Yagis and allows a minimum beam width of about 4 degree. The beam direction can be changed pulse-by-pulse freely in azimuth angle and practicable up to 40 degree in zenith angle. The pulse length can be varied from a couple of km down to 50 m. Up to 16 receiving channels of spaced antennas can be used. In this presentation we show the detection of the angles-of-arrival of radar echoes and the correction of the wind measurements. We demonstrate the improvement of measurement results by using coherent radar imaging. The differences to the results of conventional methods depend on the beam width, range resolution, antenna distances, and beam tilting. We show that the application of interferometry is necessary to improve considerably the quality of 3D-measurement results. Furthermore we demonstrate the synthesis of high resolved images to get a real 3D image of the mesosphere.

  1. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  2. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  3. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  4. TFaNS Tone Fan Noise Design/Prediction System. Volume 1; System Description, CUP3D Technical Documentation and Manual for Code Developers

    NASA Technical Reports Server (NTRS)

    Topol, David A.

    1999-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Lewis (presently NASA Glenn). The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. These effects have been added to an existing annular duct/isolated stator noise prediction capability. TFaNS consists of: The codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and write them to files. Cup3D: Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions. AWAKEN: CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so it can be used by the system. This volume of the report provides technical background for TFaNS including the organization of the system and CUP3D technical documentation. This document also provides information for code developers who must write Acoustic Property Files in the CUP3D format. This report is divided into three volumes: Volume I: System Description, CUP3D Technical Documentation, and Manual for Code Developers; Volume II: User's Manual, TFaNS Vers. 1.4; Volume III: Evaluation of System Codes.

  5. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations

    NASA Astrophysics Data System (ADS)

    Beberniss, Timothy J.; Ehrhardt, David A.

    2017-03-01

    A review of the extensive studies on the feasibility and practicality of utilizing high-speed 3 dimensional digital image correlation (3D-DIC) for various random vibration measurement applications is presented. Demonstrated capabilities include finite element model updating utilizing full-field 3D-DIC static displacements, modal survey natural frequencies, damping, and mode shape results from 3D-DIC are baselined against laser Doppler vibrometry (LDV), a comparison between foil strain gage and 3D-DIC strain, and finally the unique application to a high-speed wind tunnel fluid-structure interaction study. Results show good agreement between 3D-DIC and more traditional vibration measurement techniques. Unfortunately, 3D-DIC vibration measurement is not without its limitations, which are also identified and explored in this study. The out-of-plane sensitivity required for vibration measurement for 3D-DIC is orders of magnitude less than LDV making higher frequency displacements difficult to sense. Furthermore, the digital cameras used to capture the DIC images have no filter to eliminate temporal aliasing of the digitized signal. Ultimately DIC is demonstrated as a valid alternative means to measure structural vibrations while one unique application achieves success where more traditional methods would fail.

  6. High fidelity digital inline holographic PTV for 3D flow measurements: from microfluidics to wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin

    2016-11-01

    Three-dimensional PIV and PTV provides the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other commercialized 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (namely DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. Here we will report our latest work on improving DIH-PTV method through an integration of deconvolution algorithm, iterative removal method and GPU computation to overcome some of abovementioned limitations. We will also present the application of our DIH-PTV for measurements in the following sample cases: (i) flows in bio-filmed microchannel with 50-60 μm vector spacing within sampling volumes of 1 mm (streamwise) x 1 mm (wall-normal) x 1 mm (spanwise); (ii) turbulent flows over smooth and rough surfaces (1.1 mm vector spacing within 15 mm x 50 mm x 15 mm); (iii) 3D distribution and kinematics of inertial particles in turbulent air duct flow.

  7. Time lapse 3D geoelectric measurements for monitoring of in-situ remediation

    NASA Astrophysics Data System (ADS)

    Tildy, Péter; Neducza, Boriszláv; Nagy, Péter; Kanli, Ali Ismet; Hegymegi, Csaba

    2017-01-01

    In the last decade, different kinds of in-situ methods have been increasingly used for hydrocarbon contamination remediation due to their effectiveness. One of these techniques operates by injection of chemical oxidant solution to remove (degrade) the subsurface contaminants. Our aim was to develop a surface (non-destructive) measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations, the effect of conductive groundwater and the high clay content of the targeted layer. Therefore a site specific synthetic modelling was necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. The results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils because of chemical biodegradation. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. Based on the sophisticated tests and synthetic modelling 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation to help in-field design of such techniques.

  8. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    estimates of the main dimensions of the gully (length, slope profile and total volume) for both methods. This analysis proved useful to define the field of application for each technique, considering their accuracy, cost and processing requirements. References Castillo, C., R. Perez, M.R. James, J.N. Quinton, E.V. Taguas, J.A. Gómez. 2012. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Science Society of America Journal 76: 1319-1332. James, M. and Robson, S. 2012. Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research, 117.

  9. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  10. 3D Measurements of Ignition Processes at 20 kHz in a Supersonic Combustor

    DTIC Science & Technology

    2015-03-05

    measurements obtained via PIV [2], though quantitative com- parison is difficult due to the 2D nature of previous results and the 3D nature of the current...1 3 DOI 10.1007/s00340-015-6066-4 Appl. Phys. B (2015) 119:313–318 3D measurements of ignition processes at 20 kHz in a supersonic combustor Lin Ma...image velocimetry (PIV) [2]. Results from these past efforts all reveal highly transient and 3D flow and flame structures during the ignition processes

  11. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    NASA Astrophysics Data System (ADS)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  12. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  13. A volume of intersection approach for on-the-fly system matrix calculation in 3D PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Lougovski, A.; Hofheinz, F.; Maus, J.; Schramm, G.; Will, E.; van den Hoff, J.

    2014-02-01

    The aim of this study is the evaluation of on-the-fly volume of intersection computation for system’s geometry modelling in 3D PET image reconstruction. For this purpose we propose a simple geometrical model in which the cubic image voxels on the given Cartesian grid are approximated with spheres and the rectangular tubes of response (ToRs) are approximated with cylinders. The model was integrated into a fully 3D list-mode PET reconstruction for performance evaluation. In our model the volume of intersection between a voxel and the ToR is only a function of the impact parameter (the distance between voxel centre to ToR axis) but is independent of the relative orientation of voxel and ToR. This substantially reduces the computational complexity of the system matrix calculation. Based on phantom measurements it was determined that adjusting the diameters of the spherical voxel size and the ToR in such a way that the actual voxel and ToR volumes are conserved leads to the best compromise between high spatial resolution, low noise, and suppression of Gibbs artefacts in the reconstructed images. Phantom as well as clinical datasets from two different PET systems (Siemens ECAT HR+ and Philips Ingenuity-TF PET/MR) were processed using the developed and the respective vendor-provided (line of intersection related) reconstruction algorithms. A comparison of the reconstructed images demonstrated very good performance of the new approach. The evaluation showed the respective vendor-provided reconstruction algorithms to possess 34-41% lower resolution compared to the developed one while exhibiting comparable noise levels. Contrary to explicit point spread function modelling our model has a simple straight-forward implementation and it should be easy to integrate into existing reconstruction software, making it competitive to other existing resolution recovery techniques.

  14. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].

    PubMed

    Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou

    2014-02-01

    fixed angles to estimate crown projections, and (2) different regular volume formula to simulate crown volume according to the tree crown shapes. Based on the high-resolution 3D LIDAR point cloud data of individual tree, tree crown structure was reconstructed at a high rate of speed with high accuracy, and crown projection and volume of individual tree were extracted by this automatical untouched method, which can provide a reference for tree crown structure studies and be worth to popularize in the field of precision forestry.

  15. Correlation of pre-operative MRI and intra-operative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Comeau, Roch M.; Lee, Belinda K. H.; Peters, Terence M.

    2000-04-01

    The usefulness of stereotactic neurosurgery performed via a craniotomy is limited because the craniotomy leads to a brain tissue shift of 10 mm on average. We have recently completed an examination of 2D intra-operative ultrasound as a means of visualization and measurement of brain shift. A commercial 3D tracking system was used for real-time registration of the ultrasound video to pre-operative MR images, and annotation of the images was used to measure the shift. More than 15 surgical cases have been performed thus far with the 2D system. We are now undertaking phantom studies with tracked 3D ultrasound, and have developed sophisticated tools for real- time overlay of ultrasound and MRI volumes. These tools include a virtual-reality view of the ultrasound probe with live ultrasound video superimposed over a 3D -rendered MRI of the brain, as well as 3D ultrasound/MRI transparency overlay views. Algorithms to automatically extract landmarks from MRI and 3D ultrasound images are under development. We aim to use these landmarks to automatically generate nonlinear warp transformations to correct the pre-operative MRI as well as surgical target coordinates for brain shift. Portions of the C++ code developed for this project have been contributed to the open-source Visualization Toolkit (VTK).

  16. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  17. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation.

    PubMed

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  18. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    . In the ARTEC digital mock-up for example, it shows the ability to select the individual frames, already polygonal and geo-referenced at the time of capture; however, it is not possible to make an automated texturization differently from the low-cost environment which allows to produce a good graphics' definition. Once the final 3D models were obtained, we have proceeded to do a geometric and graphic comparison of the results. Therefore, in order to provide an accuracy requirement and an assessment for the 3D reconstruction we have taken into account the following benchmarks: cost, captured points, noise (local and global), shadows and holes, operability, degree of definition, quality and accuracy. Subsequently, these studies carried out in an empirical way on the virtual reconstructions, a 3D documentation was codified with a procedural method endorsing the use of terrestrial sensors for the documentation of antlers. The results thus pursued were compared with the standards set by the current provisions (see "Manual de medición" of Government of Andalusia-Spain); to date, in fact, the identification is based on data such as length, volume, colour, texture, openness, tips, structure, etc. Data, which is currently only appreciated with traditional instruments, such as tape measure, would be well represented by a process of virtual reconstruction and cataloguing.

  19. Label-free characterization of white blood cells by measuring 3D refractive index maps

    PubMed Central

    Yoon, Jonghee; Kim, Kyoohyun; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs. PMID:26504637

  20. 3D surface measurements with isogeometric stereocorrelation-Application to complex shapes

    NASA Astrophysics Data System (ADS)

    Dufour, John-Eric; Leclercq, Sylvain; Schneider, Julien; Roux, Stéphane; Hild, François

    2016-12-01

    The aim of the present study is to measure complex shapes of tested objects by using a priori information given by their CAD model via stereocorrelation. To follow a 3D object during its deformation and to determine 3D surface displacement fields, a first measurement of the object shape is necessary. It is achieved by updating the CAD reference via a global approach to stereocorrelation. Once the 3D shape has been determined, the next step is to measure 3D displacement fields during loading. The kinematics of the deformed shape is assumed to be written within the same isogeometric framework. Isogeometric stereocorrelation is applied to analyze a compression test on a ribbed cylinder in two different configurations of the stereo rig.

  1. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  2. 3D flame topography obtained by tomographic chemiluminescence with direct comparison to planar Mie scattering measurements.

    PubMed

    Xu, Wenjiang; Wickersham, A J; Wu, Yue; He, Fan; Ma, Lin

    2015-03-20

    This work reports the measurements of 3D flame topography using tomographic chemiluminescence and its validation by direct comparison against planar Mie scattering measurements. Tomographic measurements of the 3D topography of various well-controlled laboratory flames were performed using projections measured by seven cameras, and a simultaneous Mie scattering measurement was performed to measure a 2D cross section of the 3D flame topography. The tomographic measurements were based on chemiluminescence emissions from the flame, and the Mie scattering measurements were based on micrometer-size oil droplets seeded into the flow. The flame topography derived from the 3D tomographic and the Mie scattering measurement was then directly compared. The results show that the flame topography obtained from tomographic chemiluminescence and the Mie measurement agreed qualitatively (i.e., both methods yielded the same profile of the flame fronts), but a quantitative difference on the order of millimeters was observed between these two methods. These results are expected to be useful for understanding the capabilities and limitations of the 3D tomographic and Mie scattering techniques in combustion diagnostics.

  3. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  4. Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.

    PubMed

    Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young

    2016-01-01

    Introduction. We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods. We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results. The real values and the PACS measurement changes according to tilt value have no significant correlations (p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements (p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion. Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.

  5. Method of Individual Adjustment for 3D CT Analysis: Linear Measurement

    PubMed Central

    Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae

    2016-01-01

    Introduction. We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods. We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results. The real values and the PACS measurement changes according to tilt value have no significant correlations (p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements (p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion. Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction. PMID:28070517

  6. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  7. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  8. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  9. SRB-3D Solid Rocket Booster performance prediction program. Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The programmer's manual for the Modified Solid Rocket Booster Performance Prediction Program (SRB-3D) describes the major control routines of SRB-3D, followed by a super index listing of the program and a cross-reference of the program variables.

  10. Scanning laser optical computed tomography system for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  11. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  12. SU-E-T-341: DVH-Based Comparison of True 3D Measurements to a Delta4 System

    SciTech Connect

    Crockett, E; Oldham, M; Ren, L

    2015-06-15

    Purpose: Delta4 dosimetric software can be used to calculate DVH-based metrics for patient-specific quality assurance from measurements made by a Delta4 QA device. This study investigates the effectiveness of a novel transform method that transposes measurements made with a full-density 3D dosimeter onto patient anatomy, enabling the calculation of DVHs. This allows for DVH comparisons from the transformed dose distribution, which are based on true 3D measurements, to those from the Delta4 system, which are based on semi-3D measurements and interpolation. Methods: A double-arc VMAT treatment for a head-and-neck case was delivered to a 1kg PRESAGE 3D dosimeter inserted into a polyurethane head phantom. The dosimeter was readout using an in-house optical-CT scanner to gather full-density 3D dosimetric data. The transform method is achieved by multiplication of the measured doses with a “transformation matrix” which accounts for heterogeneities and differences in geometry between the patient and the phantom. The transformation matrix is a voxel-by-voxel division of the patient planned dose by the phantom planned dose, both calculated in the treatment planning system (Eclipse). The transformed distribution was then overlaid on the patient CT data, enabling the calculation of DVHs. The same VMAT treatment was delivered to the Delta4 phantom and DVH data was calculated using its associated software. Results: The transformed dose distribution showed good agreement with calculated patient values, determined by similarity in dose profiles between the two distributions and a 3D gamma index passing rate of 94.87% for 3%/3mm criteria. For every structure contained within the dosimeter volume, the transformed DVHs demonstrated better agreement than the Delta4 DVHs, when compared to the values calculated in the treatment planning system. Conclusion: The coupled technique of full-density 3D dose measurements and the presented transform method enables clinical patient

  13. Geometric-model-free tracking of extended targets using 3D lidar measurements

    NASA Astrophysics Data System (ADS)

    Steinemann, Philipp; Klappstein, Jens; Dickmann, Juergen; von Hundelshausen, Felix; Wünsche, Hans-Joachim

    2012-06-01

    Tracking of extended targets in high definition, 360-degree 3D-LIDAR (Light Detection and Ranging) measurements is a challenging task and a current research topic. It is a key component in robotic applications, and is relevant to path planning and collision avoidance. This paper proposes a new method without a geometric model to simultaneously track and accumulate 3D-LIDAR measurements of an object. The method itself is based on a particle filter and uses an object-related local 3D grid for each object. No geometric object hypothesis is needed. Accumulation allows coping with occlusions. The prediction step of the particle filter is governed by a motion model consisting of a deterministic and a probabilistic part. Since this paper is focused on tracking ground vehicles, a bicycle model is used for the deterministic part. The probabilistic part depends on the current state of each particle. A function for calculating the current probability density function for state transition is developed. It is derived in detail and based on a database consisting of vehicle dynamics measurements over several hundreds of kilometers. The adaptive probability density function narrows down the gating area for measurement data association. The second part of the proposed method addresses weighting the particles with a cost function. Different 3D-griddependent cost functions are presented and evaluated. Evaluations with real 3D-LIDAR measurements show the performance of the proposed method. The results are also compared to ground truth data.

  14. Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition

    NASA Astrophysics Data System (ADS)

    Mei, Qing; Gao, Jian; Lin, Hui; Chen, Yun; Yunbo, He; Wang, Wei; Zhang, Guanjin; Chen, Xin

    2016-11-01

    We designed a new three-dimensional (3D) measurement system for micro components: a structure light telecentric stereoscopic vision 3D measurement system based on the Scheimpflug condition. This system creatively combines the telecentric imaging model and the Scheimpflug condition on the basis of structure light stereoscopic vision, having benefits of a wide measurement range, high accuracy, fast speed, and low price. The system measurement range is 20 mm×13 mm×6 mm, the lateral resolution is 20 μm, and the practical vertical resolution reaches 2.6 μm, which is close to the theoretical value of 2 μm and well satisfies the 3D measurement needs of micro components such as semiconductor devices, photoelectron elements, and micro-electromechanical systems. In this paper, we first introduce the principle and structure of the system and then present the system calibration and 3D reconstruction. We then present an experiment that was performed for the 3D reconstruction of the surface topography of a wafer, followed by a discussion. Finally, the conclusions are presented.

  15. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    PubMed Central

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-01-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390

  16. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  17. 3D velocity measurement by a single camera using Doppler phase-shifting holography

    NASA Astrophysics Data System (ADS)

    Ninomiya, Nao; Kubo, Yamato; Barada, Daisuke; Kiire, Tomohiro

    2016-10-01

    In order to understand the details of the flow field in micro- and nano-fluidic devices, it is necessary to measure the 3D velocities under a microscopy. Thus, there is a strong need for the development of a new measuring technique for 3D velocity by a single camera. One solution is the use of holography, but it is well known that the accuracy in the depth direction is very poor for the commonly used in-line holography. At present, the Doppler phase-shifting holography is used for the 3D measurement of an object. This method extracts the signal of a fixed frequency caused by the Doppler beat between the object light and the reference light. It can measure the 3D shape precisely. Here, the frequency of the Doppler beat is determined by the velocity difference between the object light and the reference light. This implies that the velocity of an object can be calculated by the Doppler frequency. In this study, a Japanese 5 yen coin was traversed at a constant speed and its holography has been observed by a high-speed camera. By extracting only the first order diffraction signal at the Doppler frequency, a precise measurement of the shape and the position of a 5 yen coin has been achieved. At the same time, the longitudinal velocity of a 5 yen coin can be measured by the Doppler frequency. Furthermore, the lateral velocities are obtained by particle image velocimetry (PIV) method. A 5 yen coin has been traversed at different angles and its shapes and the 3D velocities have been measured accurately. This method can be applied to the particle flows in the micro- or nano-devices, and the 3D velocities will be measured under microscopes.

  18. Precision frequency measurements of He,43 2 3P→3 3D transitions at 588 nm

    NASA Astrophysics Data System (ADS)

    Luo, Pei-Ling; Peng, Jin-Long; Hu, Jinmeng; Feng, Yan; Wang, Li-Bang; Shy, Jow-Tsong

    2016-12-01

    We report the frequency measurements of the 2 3P→3 3D transitions in He,43 at 588 nm using an optical frequency comb stabilized laser system. The Doppler-free spectra of the 2 3P→3 3D transitions are demonstrated in an rf discharged sealed-off helium cell using intermodulated fluorescence spectroscopy. The measured absolute frequency of the 4He2 3P0→3 3D1 transition is 510 059 755.352(28) MHz, which is more precise than the previous measurement by two orders of magnitude. The ionization energies of the 4He2 3P0 and 2 3S1 states can be derived from our result and agree very well with the previous experimental values. More importantly, the Lamb shift of the 2 3S1 state can be deduced to be 4057.086(34) MHz, which is two times more precise than the previous result. In addition, the absolute frequencies of the 2 3P0,1 /2→3 3D1,3 /2 , 2 3P0,1 /2→3 3D1,1 /2 , and 2 3P0,1 /2→3 3D2,3 /2 transitions in 3He are measured. Our precision surpasses the theoretical calculations by more than one to two orders of magnitude. The hyperfine separations of the 3 3D states in 3He and the frequency differences between 4He and 3He transitions are also presented.

  19. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  20. Digital holography particle image velocimetry for the measurement of 3D t-3c flows

    NASA Astrophysics Data System (ADS)

    Shen, Gongxin; Wei, Runjie

    2005-10-01

    In this paper a digital in-line holographic recording and reconstruction system was set up and used in the particle image velocimetry for the 3D t-3c (the three-component (3c), velocity vector field measurements in a three-dimensional (3D), space field with time history ( t)) flow measurements that made up of the new full-flow field experimental technique—digital holographic particle image velocimetry (DHPIV). The traditional holographic film was replaced by a CCD chip that records instantaneously the interference fringes directly without the darkroom processing, and the virtual image slices in different positions were reconstructed by computation using Fresnel-Kirchhoff integral method from the digital holographic image. Also a complex field signal filter (analyzing image calculated by its intensity and phase from real and image parts in fast fourier transform (FFT)) was applied in image reconstruction to achieve the thin focus depth of image field that has a strong effect with the vertical velocity component resolution. Using the frame-straddle CCD device techniques, the 3c velocity vector was computed by 3D cross-correlation through space interrogation block matching through the reconstructed image slices with the digital complex field signal filter. Then the 3D-3c-velocity field (about 20 000 vectors), 3D-streamline and 3D-vorticiry fields, and the time evolution movies (30 field/s) for the 3D t-3c flows were displayed by the experimental measurement using this DHPIV method and techniques.

  1. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  2. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement.

    PubMed

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-12-17

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target's 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects' flight behaviors and 3-D coordinates' variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects.

  3. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement

    PubMed Central

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-01-01

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target’s 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects’ flight behaviors and 3-D coordinates’ variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects. PMID:27999317

  4. 3D porous sol-gel matrix incorporated microdevice for effective large volume cell sample pretreatment.

    PubMed

    Lee, Chan Joo; Jung, Jae Hwan; Seo, Tae Seok

    2012-06-05

    In this study, we demonstrated an effective sample pretreatment microdevice that could perform the capture, purification, and release of pathogenic bacteria with a large-volume sample and at a high speed and high-capture yield. We integrated a sol-gel matrix into the microdevice which forms three-dimensional (3D) micropores for the cell solution to pass through and provides a large surface area for the immobilization of antibodies to capture the target Staphylococcus aureus (S. aureus) cells. The antibody was linked to the surface of the sol-gel via a photocleavable linker, allowing the cell-captured antibody moiety to be released by UV irradiation. In addition to the optimization of the antibody immobilization and UV cleavage processes, the cell-capture efficiency was maximized by controlling the sample flow rate with a pumping scheme (3 steps, 5 steps: 3 steps with one flutter step, 7 steps: 3 steps with two flutter steps) and the pumping time (100, 200, and 300 ms). A quantitative capture analysis was performed by targeting a specific gene site of protein A of S. aureus in real-time PCR (RT-PCR). While the 3-step process with an actuation time of 100 ms showed the fastest flow rate (1 mL sample processing time in 10 min), the pumping scheme with the 7-step process and the 300 ms actuation time revealed the highest cell-capture efficiency. A limit of detection study with the 7-step and the 300 ms pumping scheme demonstrated that 100 cells per 100 μL were detected with a 70% yield, and even a single cell could be analyzed via on-chip sample preparation. Thus, our novel sol-gel based microdevice was proven more cost-effective, simple, and efficient in terms of its sample pretreatment ability compared to the use of a conventional 2D flat microdevice. This proposed sample pretreatment device can be further incorporated to an analytical functional unit to realize a micrototal analysis system (μTAS) with sample-in-answer-out capability in the fields of biomedical

  5. Assessment of eye fatigue caused by 3D displays based on multimodal measurements.

    PubMed

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-09-04

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively.

  6. Holographic particle velocimetry - A 3D measurement technique for vortex interactions, coherent structures and turbulence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Hussain, Fazle

    1991-10-01

    To understand the topology and dynamics of coherent structures (CS), the interactions of CS with fine-scale turbulence, and the effects of CS on entrainment, mixing and combustion, experimental tools are needed that can measure velocity (preferably vorticity) vector fields in both 3D space and time. While traditional measurement techniques are not able to serve this purpose, holographic particle velocimetry (HPV) appears to be promising. In a demonstration experiment, the instantaneous 3D velocity vector fields in some simple vortical flows have been obtained using the HPV technique. In this preliminary report, the principles of the HPV technique are illustrated and the key issues in its implementation are discussed.

  7. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  8. Segmentation and length measurement of the abdominal blood vessels in 3-D MRI images.

    PubMed

    Babin, Danilo; Vansteenkiste, Ewout; Pizurica, Aleksandra; Philips, Wilfried

    2009-01-01

    In diagnosing diseases and planning surgeries the structure and length of blood vessels is of great importance. In this research we develop a novel method for the segmentation of 2-D and 3-D images with an application to blood vessel length measurements in 3-D abdominal MRI images. Our approach is robust to noise and does not require contrast-enhanced images for segmentation. We use an effective algorithm for skeletonization, graph construction and shortest path estimation to measure the length of blood vessels of interest.

  9. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  10. Geometry modeling and grid generation using 3D NURBS control volume

    NASA Technical Reports Server (NTRS)

    Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin

    1995-01-01

    The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.

  11. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  12. Using LiDAR Data to Measure the 3D Green Biomass of Beijing Urban Forest in China

    PubMed Central

    He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu

    2013-01-01

    The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m3, of which coniferous was 28.7871 million m3 and broad-leaf was 370.3424 million m3. The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities. PMID:24146792

  13. Using LiDAR data to measure the 3D green biomass of Beijing urban forest in China.

    PubMed

    He, Cheng; Convertino, Matteo; Feng, Zhongke; Zhang, Siyu

    2013-01-01

    The purpose of the paper is to find a new approach to measure 3D green biomass of urban forest and to testify its precision. In this study, the 3D green biomass could be acquired on basis of a remote sensing inversion model in which each standing wood was first scanned by Terrestrial Laser Scanner to catch its point cloud data, then the point cloud picture was opened in a digital mapping data acquisition system to get the elevation in an independent coordinate, and at last the individual volume captured was associated with the remote sensing image in SPOT5(System Probatoired'Observation dela Tarre)by means of such tools as SPSS (Statistical Product and Service Solutions), GIS (Geographic Information System), RS (Remote Sensing) and spatial analysis software (FARO SCENE and Geomagic studio11). The results showed that the 3D green biomass of Beijing urban forest was 399.1295 million m(3), of which coniferous was 28.7871 million m(3) and broad-leaf was 370.3424 million m(3). The accuracy of 3D green biomass was over 85%, comparison with the values from 235 field sample data in a typical sampling way. This suggested that the precision done by the 3D forest green biomass based on the image in SPOT5 could meet requirements. This represents an improvement over the conventional method because it not only provides a basis to evalue indices of Beijing urban greenings, but also introduces a new technique to assess 3D green biomass in other cities.

  14. The 3D scanner for measuring body surface area: a simplified calculation in the Chinese adult.

    PubMed

    Yu, Chi-Yuan; Lo, Yu-Hung; Chiou, Wen-Ko

    2003-05-01

    Three-dimensional (3D) surface anthropometry enables us to extend the study to 3D geometry and morphology of mainly external human body tissues. A model is presented for estimation of human body surface area (BSA), which is identical in form to the one proposed in 1916 by DuBois and DuBois is presented. The purpose of this study is to measure BSA, using 3D scanner, and to derive a simple BSA estimation formula for the Chinese adults. In as little as 12s, the Chang Gung Whole-Body Scanner (CGWBS) allows you to capture the shape of the entire human body. The total error in BSA measurement due to scanning measurement and software computational error is less than 1%. The 3D anthropometric measures in a healthy population (n=3951) were investigated, and the results were used to derive a BSA estimation formula. The results seem to be comparable to previous data that measured BSA using traditional methods. The BSA estimation model of this study also validated using 300 new measurements along with the formulae proposed in previous researches. The result suggests that our formula better fits our adults.

  15. A measurement method for micro 3D shape based on grids-processing and stereovision technology

    NASA Astrophysics Data System (ADS)

    Li, Chuanwei; Liu, Zhanwei; Xie, Huimin

    2013-04-01

    An integrated measurement method for micro 3D surface shape by a combination of stereovision technology in a scanning electron microscope (SEM) and grids-processing methodology is proposed. The principle of the proposed method is introduced in detail. By capturing two images of the tested specimen with grids on the surface at different tilt angles in an SEM, the 3D surface shape of the specimen can be obtained. Numerical simulation is applied to analyze the feasibility of the proposed method. A validation experiment is performed here. The surface shape of the metal-wire/polymer-membrane structures with thermal deformation is reconstructed. By processing the surface grids of the specimen, the out-of-plane displacement field of the specimen surface is also obtained. Compared with the measurement results obtained by a 3D digital microscope, the experimental error of the proposed method is discussed

  16. a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums

    NASA Astrophysics Data System (ADS)

    Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.

    2012-07-01

    Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.

  17. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  18. A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.

    PubMed

    Pisaruka, Jelena; Dymond, Marcus K

    2016-10-01

    We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol.

  19. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  20. Pipeline inwall 3D measurement system based on the cross structured light

    NASA Astrophysics Data System (ADS)

    Shen, Da; Lin, Zhipeng; Xue, Lei; Zheng, Qiang; Wang, Zichi

    2014-01-01

    In order to accurately realize the defect detection of pipeline inwall, this paper proposes a measurement system made up of cross structured light, single CCD camera and a smart car, etc. Based on structured light measurement technology, this paper mainly introduces the structured light measurement system, the imaging mathematical model, and the parameters and method of camera calibration. Using these measuring principles and methods, the camera in remote control car platform achieves continuous shooting of objects and real-time rebound processing as well as utilizing established model to extract 3D point cloud coordinate to reconstruct pipeline defects, so it is possible to achieve 3D automatic measuring, and verifies the correctness and feasibility of this system. It has been found that this system has great measurement accuracy in practice.

  1. Volume-rendering on a 3D hyperwall: A molecular visualization platform for research, education and outreach.

    PubMed

    MacDougall, Preston J; Henze, Christopher E; Volkov, Anatoliy

    2016-11-01

    We present a unique platform for molecular visualization and design that uses novel subatomic feature detection software in tandem with 3D hyperwall visualization technology. We demonstrate the fleshing-out of pharmacophores in drug molecules, as well as reactive sites in catalysts, focusing on subatomic features. Topological analysis with picometer resolution, in conjunction with interactive volume-rendering of the Laplacian of the electronic charge density, leads to new insight into docking and catalysis. Visual data-mining is done efficiently and in parallel using a 4×4 3D hyperwall (a tiled array of 3D monitors driven independently by slave GPUs but displaying high-resolution, synchronized and functionally-related images). The visual texture of images for a wide variety of molecular systems are intuitive to experienced chemists but also appealing to neophytes, making the platform simultaneously useful as a tool for advanced research as well as for pedagogical and STEM education outreach purposes.

  2. Development of a 3-D Measuring System for Upper Limb Movements Using Image Processing

    NASA Astrophysics Data System (ADS)

    Ogata, Kohichi; Toume, Tadashi; Nakanishi, Ryoji

    This paper describes a 3-D motion capture system for the quantitative evaluation of a finger-nose test using image processing. In the field of clinical medicine, qualitative and quantitative evaluation of voluntary movements is necessary for correct diagnosis of disorders. For this purpose, we have developed a 3-D measuring system with a multi-camera system. The configuration of the system is described and examples of movement data are shown for normal subjects and patients. In the finger-nose test at a fast trial speed, a discriminant analysis using Maharanobis generalized distances shows a discriminant rate of 93% between normal subjects and spinocerebellar degeneration(SCD) patients.

  3. Quick and low cost measurement of soil parameters using a Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    Hut, R.; Van De Giesen, N.; Hagenaars, R.

    2013-12-01

    Retrieval of basic soil parameters such as bulk density and soil moisture from soil samples is a costly and time-consuming activity. Although indirect methods (heat or electromagnetic probes, radar backscatter, etc) are abundant, field truth measurement of soil parameters will remain important, if only to calibrate these other methods. We present a quick, field mountable setup to make 3D scans of surfaces up to 30 x 30 cm using a Kinect 3D scanner. By making scans before and after samples are taken, parameters such as bulk density and moisture content can easily be calculated.

  4. 3D shape measurement of shoeprint impression with structured illumination and fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Cao, Yiping; Xiang, Liqun; Chen, Wenjing

    2002-06-01

    The shoeprint impressions of suspect left at the crime scene can sometimes tell investigators what type of shoes to be looked for. These shoeprint impressions as one of the important evidence are useful in the detection of criminals. In this paper we propose a novel technique for identifying and analyzing the 3D characteristics of shoeprint impressions. We also design 3D shoeprint impression analysis system based on the combination the 3D shape measurement with structured illumination and fringe pattern analysis. We give a detail discussion on the principle and configuration of the system. Laboratory experiments show the technique is efficient in the detection of shoeprint and in the offering the reference for judicial evidence.

  5. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  6. Application of robust color composite fringe in flip-chip solder bump 3-D measurement

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Feng Jeffrey; Wu, Han-Cheng

    2017-04-01

    This study developed a 3-D measurement system based on flip-chip solder bump, used fringes with different modulation intensities in color channels, in order to produce color composite fringe with robustness, and proposed a multi-channel composite phase unwrapping algorithm, which uses fringe modulation weights of different channels to recombine the phase information for better measurement accuracy and stability. The experimental results showed that the average measurement accuracy is 0.43μm and the standard deviation is 1.38 μm. The results thus proved that the proposed 3-D measurement system is effective in measuring a plane with a height of 50 μm. In the flip-chip solder bump measuring experiment, different fringe modulation configurations were tested to overcome the problem of reflective coefficient between the flip-chip base board and the solder bump. The proposed system has a good measurement results and robust stability in the solder bump measurement, and can be used for the measurement of 3-D information for micron flip-chip solder bump application.

  7. Full-field 3D shape measurement of specular surfaces by direct phase to depth relationship

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Liu, Yue; Huang, Shujun; Niu, Zhenqi; Guo, Jiao; Gao, Nan; Gao, Feng; Jiang, Xiangqian

    2016-11-01

    This paper presents a new Phase Measuring Deflectometry (PMD) method to measure specular object having discontinuous surfaces. A mathematical model is established to directly relate absolute phase and depth, instead of phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a beam splitter to change the optical path, and two LCD screens to display the same sinusoidal fringe patterns. By using model-based and machine vision method, system calibration is accomplished to provide the required parameters and conditions. The verification tests are given to evaluate the effectiveness of the developed system. The 3D shape of an artificial step having multiple specular surfaces and a concave mirror has been measured. Initial experimental results show that the proposed measurement method can obtain 3D shape of specular objects with discontinuous surface effectively.

  8. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).

    PubMed

    Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck

    2017-02-01

    Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.

  9. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  10. 3D nonrigid medical image registration using a new information theoretic measure

    NASA Astrophysics Data System (ADS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  11. Real-time, high-accuracy 3D imaging and shape measurement.

    PubMed

    Nguyen, Hieu; Nguyen, Dung; Wang, Zhaoyang; Kieu, Hien; Le, Minh

    2015-01-01

    In spite of the recent advances in 3D shape measurement and geometry reconstruction, simultaneously achieving fast-speed and high-accuracy performance remains a big challenge in practice. In this paper, a 3D imaging and shape measurement system is presented to tackle such a challenge. The fringe-projection-profilometry-based system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display. Experiments have shown that the proposed system can acquire and display high-quality 3D reconstructed images and/or video stream at a speed of 45 frames per second with relative accuracy of 0.04% or at a reduced speed of 22.5 frames per second with enhanced accuracy of 0.01%. The 3D imaging and shape measurement system shows great promise of satisfying the ever-increasing demands of scientific and engineering applications.

  12. Validity Study of Vertebral Rotation Measurement Using 3-D Ultrasound in Adolescent Idiopathic Scoliosis.

    PubMed

    Wang, Qian; Li, Meng; Lou, Edmond H M; Chu, Winnie C W; Lam, Tsz-Ping; Cheng, Jack C Y; Wong, Man-Sang

    2016-07-01

    This study aimed to assess the validity of 3-D ultrasound measurements on the vertebral rotation of adolescent idiopathic scoliosis (AIS) under clinical settings. Thirty curves (mean Cobb angle: 21.7° ± 15.9°) from 16 patients with AIS were recruited. 3-D ultrasound and magnetic resonance imaging scans were performed at the supine position. Each of the two raters measured the apical vertebral rotation using the center of laminae (COL) method in the 3-D ultrasound images and the Aaro-Dahlborn method in the magnetic resonance images. The intra- and inter-reliability of the COL method was demonstrated by the intra-class correlation coefficient (ICC) (both [2, K] >0.9, p < 0.05). The COL method showed no significant difference (p < 0.05) compared with the Aaro-Dahlborn method. Furthermore, the agreement between these two methods was demonstrated by the Bland-Altman method, and high correlation was found (r > 0.9, p < 0.05). These results validated the proposed 3-D ultrasound method in the measurements of vertebral rotation in the patients with AIS.

  13. New 3-D vision-sensor for shape-measurement applications

    NASA Astrophysics Data System (ADS)

    Moring, Ilkka; Myllyla, Risto A.; Honkanen, Esa; Kaisto, Ilkka P.; Kostamovaara, Juha T.; Maekynen, Anssi J.; Manninen, Markku

    1990-04-01

    In this paper we describe a new 3D-vision sensor developed in cooperation with the Technical Research Centre of Finland, the University of Oulu, and Prometrics Oy Co. The sensor is especially intended for the non-contact measurement of the shapes and dimensions of large industrial objects. It consists of a pulsed time-of-flight laser rangefinder, a target point detection system, a mechanical scanner, and a PC-based computer system. Our 3D-sensor has two operational modes: one for range image acquisition and the other for the search and measurement of single coordinate points. In the range image mode a scene is scanned and a 3D-image of the desired size is obtained. In the single point mode the sensor automatically searches for cooperative target points on the surface of an object and measures their 3D-coordinates. This mode can be used, e.g. for checking the dimensions of objects and for calibration. The results of preliminary performance tests are presented in the paper.

  14. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  15. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  16. Fusion of autoradiographies with an MR volume using 2-D and 3-D linear transformations.

    PubMed

    Malandain, Grégoire; Bardinet, Eric

    2003-07-01

    The recent development of 3-D medical imaging devices has given access to the 3-D imaging of in vivo tissues, from an anatomical (MR, CT) or even functional point of view (fMRI, PET, SPECT). However, the resolution of these images is still not sufficient to image anatomical or functional details, that can only be revealed by in vitro imaging (e.g. histology, autoradiography). The deep motivation of this work is the comparison of activations detected by fMRI series analysis to the ones that can be observed in autoradiographic images. The aim of the presented work is to fuse the autoradiographic data with the pre-mortem anatomical MR image, to facilitate the above-mentioned comparison. We show that this fusion can be achieved by using only simple global transformations (rigid and affine), yielding a very satisfactory result.

  17. Analysis of Uncertainty in a Middle-Cost Device for 3D Measurements in BIM Perspective

    PubMed Central

    Sánchez, Alonso; Naranjo, José-Manuel; Jiménez, Antonio; González, Alfonso

    2016-01-01

    Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM). This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS) methods) for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005–0.027 m for measurements by Photogrammetry and 0.013–0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m) according to the BIM Guide for 3D Imaging (General Services Administration); similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor) and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device. PMID:27669245

  18. Analysis of Uncertainty in a Middle-Cost Device for 3D Measurements in BIM Perspective.

    PubMed

    Sánchez, Alonso; Naranjo, José-Manuel; Jiménez, Antonio; González, Alfonso

    2016-09-22

    Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM). This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS) methods) for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005-0.027 m for measurements by Photogrammetry and 0.013-0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m) according to the BIM Guide for 3D Imaging (General Services Administration); similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor) and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device.

  19. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    PubMed Central

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  20. Quantification of Shunt Volume Through Ventricular Septal Defect by Real-Time 3-D Color Doppler Echocardiography: An in Vitro Study.

    PubMed

    Zhu, Meihua; Ashraf, Muhammad; Tam, Lydia; Streiff, Cole; Kimura, Sumito; Shimada, Eriko; Sahn, David J

    2016-05-01

    Quantification of shunt volume is important for ventricular septal defects (VSDs). The aim of the in vitro study described here was to test the feasibility of using real-time 3-D color Doppler echocardiography (RT3-D-CDE) to quantify shunt volume through a modeled VSD. Eight porcine heart phantoms with VSDs ranging in diameter from 3 to 25 mm were studied. Each phantom was passively driven at five different stroke volumes from 30 to 70 mL and two stroke rates, 60 and 120 strokes/min. RT3-D-CDE full volumes were obtained at color Doppler volume rates of 15, 20 and 27 volumes/s. Shunt flow derived from RT3-D-CDE was linearly correlated with pump-driven stroke volume (R = 0.982). RT3-D-CDE-derived shunt volumes from three color Doppler flow rate settings and two stroke rate acquisitions did not differ (p > 0.05). The use of RT3-D-CDE to determine shunt volume though VSDs is feasible. Different color volume rates/heart rates under clinically/physiologically relevant range have no effect on VSD 3-D shunt volume determination.

  1. Accurate and high-performance 3D position measurement of fiducial marks by stereoscopic system for railway track inspection

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Serikova, Mariya G.; Pantyushina, Ekaterina N.; Volkova, Daria A.

    2016-04-01

    Modern demands for railway track measurements require high accuracy (about 2-5 mm) of rails placement along the track to ensure smooth, safe and fast transportation. As a mean for railways geometry measurements we suggest a stereoscopic system which measures 3D position of fiducial marks arranged along the track by image processing algorithms. The system accuracy was verified during laboratory tests by comparison with precise laser tracker indications. The accuracy of +/-1.5 mm within a measurement volume 150×400×5000 mm was achieved during the tests. This confirmed that the stereoscopic system demonstrates good measurement accuracy and can be potentially used as fully automated mean for railway track inspection.

  2. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions.

    PubMed

    Berg, Mark A; Darvin, Jason R

    2016-08-07

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  3. Regional Differences in End-Diastolic Volumes between 3D Echo and CMR in HLHS Patients

    PubMed Central

    Gomez, Alberto; Oktay, Ozan; Rueckert, Daniel; Penney, Graeme P.; Schnabel, Julia A.; Simpson, John M.; Pushparajah, Kuberan

    2016-01-01

    Ultrasound is commonly thought to underestimate ventricular volumes compared to magnetic resonance imaging (MRI), although the reason for this and the spatial distribution of the volume difference is not well understood. In this paper, we use landmark-based image registration to spatially align MRI and ultrasound images from patients with hypoplastic left heart syndrome and carry out a qualitative and quantitative spatial comparison of manual segmentations of the ventricular volume obtained from the respective modalities. In our experiments, we have found a trend showing volumes estimated from ultrasound to be smaller than those obtained from MRI (by approximately up to 20 ml), and that important contributors to this difference are the presence of artifacts such as shadows in the echo images and the different criteria to include or exclude image features as part of the ventricular volume. PMID:28018895

  4. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  5. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    PubMed Central

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-01-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryo-image volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pull-back images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34±2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland-Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01±0.43 mm2. DICE coefficients were 0.91±0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (±200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities. PMID:27162417

  6. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  7. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals.

  8. Analysis of a 3-D system function measured for magnetic particle imaging.

    PubMed

    Rahmer, Jürgen; Weizenecker, Jürgen; Gleich, Bernhard; Borgert, Jörn

    2012-06-01

    Magnetic particle imaging (MPI) is a new tomographic imaging approach that can quantitatively map magnetic nanoparticle distributions in vivo. It is capable of volumetric real-time imaging at particle concentrations low enough to enable clinical applications. For image reconstruction in 3-D MPI, a system function (SF) is used, which describes the relation between the acquired MPI signal and the spatial origin of the signal. The SF depends on the instrumental configuration, the applied field sequence, and the magnetic particle characteristics. Its properties reflect the quality of the spatial encoding process. This work presents a detailed analysis of a measured SF to give experimental evidence that 3-D MPI encodes information using a set of 3-D spatial patterns or basis functions that is stored in the SF. This resembles filling 3-D k-space in magnetic resonance imaging, but is faster since all information is gathered simultaneously over a broad acquisition bandwidth. A frequency domain analysis shows that the finest structures that can be encoded with the presented SF are as small as 0.6 mm. SF simulations are performed to demonstrate that larger particle cores extend the set of basis functions towards higher resolution and that the experimentally observed spatial patterns require the existence of particles with core sizes of about 30 nm in the calibration sample. A simple formula is presented that qualitatively describes the basis functions to be expected at a certain frequency.

  9. Do skeletal cephalometric characteristics correlate with condylar volume, surface and shape? A 3D analysis

    PubMed Central

    2012-01-01

    Objective The purpose of this study was to determine the condylar volume in subjects with different mandibular divergence and skeletal class using cone-beam computed tomography (CBCT) and analysis software. Materials and methods For 94 patients (46 females and 48 males; mean age 24.3 ± 6.5 years), resultant rendering reconstructions of the left and right temporal mandibular joints (TMJs) were obtained. Subjects were then classified on the base of ANB angle the GoGn-SN angle in three classes (I, II, III) . The data of the different classes were compared. Results No significant difference was observed in the whole sample between the right and the left sides in condylar volume. The analysis of mean volume among low, normal and high mandibular plane angles revealed a significantly higher volume and surface in low angle subjects (p < 0.01) compared to the other groups. Class III subjects also tended to show a higher condylar volume and surface than class I and class II subjects, although the difference was not significant. Conclusions Higher condylar volume was a common characteristic of low angle subjects compared to normal and high mandibular plane angle subjects. Skeletal class also appears to be associated to condylar volume and surface. PMID:22587445

  10. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  11. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    NASA Astrophysics Data System (ADS)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  12. Performance analysis of 3-D shape measurement algorithm with a short baseline projector-camera system.

    PubMed

    Liu, Jianyang; Li, Youfu

    A number of works for 3-D shape measurement based on structured light have been well-studied in the last decades. A common way to model the system is to use the binocular stereovision-like model. In this model, the projector is treated as a camera, thus making a projector-camera-based system unified with a well-established traditional binocular stereovision system. After calibrating the projector and camera, a 3-D shape information is obtained by conventional triangulation. However, in such a stereovision-like system, the short baseline problem exists and limits the measurement accuracy. Hence, in this work, we present a new projecting-imaging model based on fringe projection profilometry (FPP). In this model, we first derive a rigorous mathematical relationship that exists between the height of an object's surface, the phase difference distribution map, and the parameters of the setup. Based on this model, we then study the problem of how the uncertainty of relevant parameters, particularly the baseline's length, affects the 3-D shape measurement accuracy using our proposed model. We provide an extensive uncertainty analysis on the proposed model through partial derivative analysis, relative error analysis, and sensitivity analysis. Moreover, the Monte Carlo simulation experiment is also conducted which shows that the measurement performance of the projector-camera system has a short baseline.

  13. 3D real-time measurement system of seam with laser

    NASA Astrophysics Data System (ADS)

    Huang, Min-shuang; Huang, Jun-fen

    2014-02-01

    3-D Real-time Measurement System of seam outline based on Moiré Projection is proposed and designed. The system is composed of LD, grating, CCD, video A/D, FPGA, DSP and an output interface. The principle and hardware makeup of high-speed and real-time image processing circuit based on a Digital Signal Processor (DSP) and a Field Programmable Gate Array (FPGA) are introduced. Noise generation mechanism in poor welding field conditions is analyzed when Moiré stripes are projected on a welding workpiece surface. Median filter is adopted to smooth the acquired original laser image of seam, and then measurement results of a 3-D outline image of weld groove are provided.

  14. Measurement error analysis of the 3D four-wheel aligner

    NASA Astrophysics Data System (ADS)

    Zhao, Qiancheng; Yang, Tianlong; Huang, Dongzhao; Ding, Xun

    2013-10-01

    Positioning parameters of four-wheel have significant effects on maneuverabilities, securities and energy saving abilities of automobiles. Aiming at this issue, the error factors of 3D four-wheel aligner, which exist in extracting image feature points, calibrating internal and exeternal parameters of cameras, calculating positional parameters and measuring target pose, are analyzed respectively based on the elaborations of structure and measurement principle of 3D four-wheel aligner, as well as toe-in and camber of four-wheel, kingpin inclination and caster, and other major positional parameters. After that, some technical solutions are proposed for reducing the above error factors, and on this basis, a new type of aligner is developed and marketed, it's highly estimated among customers because the technical indicators meet requirements well.

  15. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  16. 3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.

    PubMed

    Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P

    2016-12-01

    There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.

  17. Characteristics measurement methodology of the large-size autostereoscopic 3D LED display

    NASA Astrophysics Data System (ADS)

    An, Pengli; Su, Ping; Zhang, Changjie; Cao, Cong; Ma, Jianshe; Cao, Liangcai; Jin, Guofan

    2014-11-01

    Large-size autostereoscopic 3D LED displays are commonly used in outdoor or large indoor space, and have the properties of long viewing distance and relatively low light intensity at the viewing distance. The instruments used to measure the characteristics (crosstalk, inconsistency, chromatic dispersion, etc.) of the displays should have long working distance and high sensitivity. In this paper, we propose a methodology for characteristics measurement based on a distribution photometer with a working distance of 5.76m and the illumination sensitivity of 0.001 mlx. A display panel holder is fabricated and attached on the turning stage of the distribution photometer. Specific test images are loaded on the display separately, and the luminance data at the distance of 5.76m to the panel are measured. Then the data are transformed into the light intensity at the optimum viewing distance. According to definitions of the characteristics of the 3D displays, the crosstalk, inconsistency, chromatic dispersion could be calculated. The test results and analysis of the characteristics of an autostereoscopic 3D LED display are proposed.

  18. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli

    NASA Astrophysics Data System (ADS)

    Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory

    2014-02-01

    Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.

  19. Embedded 3D shape measurement system based on a novel spatio-temporal coding method

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Tian, Jindong; Tian, Yong; Li, Dong

    2016-11-01

    Structured light measurement has been wildly used since 1970s in industrial component detection, reverse engineering, 3D molding, robot navigation, medical and many other fields. In order to satisfy the demand for high speed, high precision and high resolution 3-D measurement for embedded system, a new patterns combining binary and gray coding principle in space are designed and projected onto the object surface orderly. Each pixel corresponds to the designed sequence of gray values in time - domain, which is treated as a feature vector. The unique gray vector is then dimensionally reduced to a scalar which could be used as characteristic information for binocular matching. In this method, the number of projected structured light patterns is reduced, and the time-consuming phase unwrapping in traditional phase shift methods is avoided. This algorithm is eventually implemented on DM3730 embedded system for 3-D measuring, which consists of an ARM and a DSP core and has a strong capability of digital signal processing. Experimental results demonstrated the feasibility of the proposed method.

  20. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  1. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    NASA Astrophysics Data System (ADS)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  2. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  3. Production of 3D consistent image representation of outdoor scenery for multimedia ambiance communication from multiviewpoint range data measured with a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Imamura, Hiroshi; Sunaga, Shin-ichi; Komatsu, Takashi

    2002-03-01

    Toward future 3D image communication, we have started studying the Multimedia Ambiance Communication, a kind of shared-space communication, and adopted an approach to design the 3D-image space using actual images of outdoor scenery, by introducing the concept of the three-layer model of long-, mid- and short-range views. The long- and mid-range views do not require precise representation of their 3D structure, and hence we employ the setting representation like stage settings to approximate their 3D structure according to the slanting-plane-model. We deal with an approach to produce the consistent setting representation for describing long- and mid-range views from range and texture data measured with a laser scanner and a digital camera located at multiple viewpoints. The production of such a representation requires the development of several techniques: nonlinear smoothing of raw range data, plane segmentation of range data, registration of multi-viewpoint range data, integration of multi-viewpoint setting representations and texture mapping onto each setting plane. In this paper, we concentrate on the plane segmentation and the multi-viewpoint data registration. Our plane segmentation method is based on the concept of the region competition, and can precisely extract fitting planes from the range data. Our registration method uses the equations of the segmented planes corresponding between two different viewpoints to determine the 3D Euclidean transformation between them. A unifying consistent setting representation can be constructed by integrating multiple setting representations for multiple viewpoints.

  4. Image Forces on 3-D Dislocation Structures in Crystals of Finite Volume

    SciTech Connect

    El-Azab, Anter ); V.V. Bulatov

    1999-01-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  5. Image forces on 3d dislocation structures in crystals of finite volume

    SciTech Connect

    El-Azab, A.

    1999-07-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  6. Analysis of 3d Magnetotelluric Measurements Over the Coso Geothermal Field

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Gasperikova, E.; Hoversten, M.

    2007-12-01

    We have carried out an investigation of the Coso Geothermal field utilizing a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling over the east flank of the field. Motivation for this study is that electrical resistivity/conductivity mapping can contribute to better understanding of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. Initial analysis of the Coso MT data was carried out using 2D MT imaging technology to construct a starting 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model was then refined through a 3D inversion process. The 3D resisitivity model clearly showed the controlling geological structures influencing well production at Coso and shows correlations with mapped surface features such as faults and regional geoelectric strike. We have also correlated the model with an acoustic and shear velocity model of the field to show that the near-vertical high conductivity (low resistivity) structure on the eastern flank of the producing field is also a zone of increase acoustic velocity and increased Vp/Vs ratio.

  7. Evolution in boron-based GEM detectors for diffraction measurements: from planar to 3D converters

    NASA Astrophysics Data System (ADS)

    Albani, Giorgia; Perelli Cippo, Enrico; Croci, Gabriele; Muraro, Andrea; Schooneveld, Erik; Scherillo, Antonella; Hall-Wilton, Richard; Kanaki, Kalliopi; Höglund, Carina; Hultman, Lars; Birch, Jens; Claps, Gerardo; Murtas, Fabrizio; Rebai, Marica; Tardocchi, Marco; Gorini, Giuseppe

    2016-11-01

    The so-called ‘3He-crisis’ has motivated the neutron detector community to undertake an intense R&D programme in order to develop technologies alternative to standard 3He tubes and suitable for neutron detection systems in future spallation sources such as the European spallation source (ESS). Boron-based GEM (gas electron multiplier) detectors are a promising ‘3He-free’ technology for thermal neutron detection in neutron scattering experiments. In this paper the evolution of boron-based GEM detectors from planar to 3D converters with an application in diffraction measurements is presented. The use of 3D converters coupled with GEMs allows for an optimization of the detector performances. Three different detectors were used for diffraction measurements on the INES instrument at the ISIS spallation source. The performances of the GEM-detectors are compared with those of conventional 3He tubes installed on the INES instrument. The conceptual detector with the 3D converter used in this paper reached a count rate per unit area of about 25% relative to the currently installed 3He tube. Its timing resolution is similar and the signal-to-background ratio (S/B) is 2 times lower.

  8. Stratified shear flow in an inclined duct: near-instantaneous 3D velocity and density measurements

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie; Lefauve, Adrien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    We present results from a new experimental setup to study the exchange flow in an inclined square duct between two reservoirs containing fluids of different densities. This system can exhibit stratified shear wave motions, and has a distinct parameter threshold above which turbulence is triggered and progressively fills a larger fraction of the duct. To probe these intrinsically 3D flows, we introduce a new setup in which a traversing laser sheet allows us to obtain near-instantaneous 3D velocity and density fields. Three components of velocity are measured on successive 2D planes using stereo particle image velocimetry (PIV) with density information obtained simultaneously using laser induced fluorescence (LIF). Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".

  9. Measurement of anastomosis geometry in lower extremity bypass grafts with 3-D ultrasound imaging.

    PubMed

    Leotta, Daniel F; Primozich, Jean F; Lowe, Christopher M; Karr, Leni N; Bergelin, Robert O; Beach, Kirk W; Zierler, R Eugene

    2005-10-01

    The attachment sites of lower extremity bypass grafts are known to exhibit a wide range of geometries. Factors that determine the geometry of a given anastomosis include graft material, graft site, native vessel size, graft size and individual patient anatomy. Therefore, it is difficult to specify a standard anastomosis geometry before surgery and difficult to predict the effect of the geometry on long-term graft patency. We have used 3-D ultrasound imaging to study 46 proximal anastomoses of lower limb bypass grafts. We have developed methods to characterize the 3-D geometry of the anastomosis in terms of component sizes and angles. These detailed geometric measurements describe a range of anastomosis geometries and establish standardized parameters across cases that can be used to relate anastomosis geometry to outcome.

  10. Structured light 3D tracking system for measuring motions in PET brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Jørgensen, Morten R.; Paulsen, Rasmus R.; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-02-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure where the projector is treated as a camera. Additionally, the surface reconstructions are corrected for the non-linear projector output prior to image capture. The results are convincing and a first step toward a fully automated tracking system for measuring head motions in PET imaging.

  11. Wound Volume Measurement.

    DTIC Science & Technology

    1992-01-01

    III and IV decubitus ulcers ). Wounds can also be classified by etiology as (a) surgical, (b) traumatic (such as mechanical or thermal injuries), and...had either decubitus ulcers or venous stasis ulcers . Each patient’s wound was measured with each of the three methods. First, the wound was...standardized and clinically available method to estimate wound volume is needed to determine rate of pressure ulcer healing. This quasi-experimental

  12. SRB-3D Solid Rocket Booster performance prediction program. Volume 2: Sample case

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The sample case presented in this volume is an asymmetrical eight sector thermal gradient performance prediction for the solid rocket motor. This motor is the TC-227A-75 grain design and the initial grain geometry is assumed to be symmetrical about the motors longitudinal axis.

  13. Effects of computing parameters and measurement locations on the estimation of 3D NPS in non-stationary MDCT images.

    PubMed

    Miéville, Frédéric A; Bolard, Gregory; Bulling, Shelley; Gudinchet, François; Bochud, François O; Verdun, François R

    2013-11-01

    The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.

  14. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Fenster, Aaron

    2016-03-01

    We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.

  15. Tri-color composite volume H-PDLC grating and its application to 3D color autostereoscopic display.

    PubMed

    Wang, Kangni; Zheng, Jihong; Gao, Hui; Lu, Feiyue; Sun, Lijia; Yin, Stuart; Zhuang, Songlin

    2015-11-30

    A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display.

  16. Quantum Nondemolition Measurement of a Quantum Squeezed State Beyond the 3 dB Limit

    NASA Astrophysics Data System (ADS)

    Lei, C. U.; Weinstein, A. J.; Suh, J.; Wollman, E. E.; Kronwald, A.; Marquardt, F.; Clerk, A. A.; Schwab, K. C.

    2016-09-01

    We use a reservoir engineering technique based on two-tone driving to generate and stabilize a quantum squeezed state of a micron-scale mechanical oscillator in a microwave optomechanical system. Using an independent backaction-evading measurement to directly quantify the squeezing, we observe 4.7 ±0.9 dB of squeezing below the zero-point level surpassing the 3 dB limit of standard parametric squeezing techniques. Our measurements also reveal evidence for an additional mechanical parametric effect. The interplay between this effect and the optomechanical interaction enhances the amount of squeezing obtained in the experiment.

  17. 3D measurement of the human body for apparel mass customization

    NASA Astrophysics Data System (ADS)

    Xu, Bugao; Lin, Sheng; Chen, Tong

    2000-12-01

    An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body-scanning system using the multi-line triangulation technique, and methods for body size extraction and body modeling. The scanning system can rapidly acquire the surface data of a body, provide accurate body dimensions, many of which are not measurable with conventional methods, and also construct a body form based on the scanned data as a digital model of the body for 3D garment design and for virtual try-on of a designed garment.

  18. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  19. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  20. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  1. 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells.

    PubMed

    Yoshimori, Takashi; Takamatsu, Hiroshi

    2009-02-01

    Cell dehydration during freezing results from an elevated concentration of electrolytes in the extracellular medium that is deeply involved in cellular injury. We undertook real-time threedimensional (3-D) observation of osmotic dehydration of cells, motivated by a comparison of cellular responses between isolated cells in suspension and cultured cells adhering to a surface since several studies have suggested a difference in freeze tolerance between cell suspensions and monolayers. A laser confocal scanner was used with a perfusion microscope to capture sectional images of chloromethylbenzamido (DiI)-stained PC-3 cells that were exposed to an increase in NaCl concentration from 0.15 to 0.5M at 23 degrees C. Change in cell volume was determined from reconstructed 3-D images taken every 2.5s. When cells were exposed to an elevated NaCl concentration, isolated cells contracted and markedly distorted from their original spherical shape. In contrast, adhered cells showed only a reduction in height and kept their basal area constant. Apparent membrane hydraulic conductivity did not vary considerably between isolated and adhered cells, suggesting a negligible effect of the cytoskeletal structure on the rate of water transport. The surface area that contributed to water transport in adhered PC-3 cells was nearly equal to or slightly smaller than that present in isolated cells. Therefore, the similarity in properties and dimensions between isolated and adhered cells indicate that there will be similar extents of dehydration, resulting in a similar degree of supercooling during freezing.

  2. Theoretical analysis of volume moiré tomography based on double orthogonal gratings for real 3D flow fields diagnosis

    NASA Astrophysics Data System (ADS)

    Sun, Nan; Song, Yang; Wang, Jia; Li, Zhen-hua; He, An-zhi

    2012-11-01

    Moiré tomography is an important technique to diagnose the flow field. However, the traditional moiré deflectometry cannot meet the requirements of Volume Moiré Tomography (VMT). In this Letter, an improved moiré deflected system based on double orthogonal gratings is introduced for real 3-D reconstruction. The proposed method could obtain the first-order partial derivatives in two vertical directions of the projection in one time. Comparing with the traditional moiré deflectometry, the proposed system is more effective and easier to realize the multi-direction data acquisition.

  3. 3D Magnetic Measurements of Kink and Locked Modes in DIII-D

    NASA Astrophysics Data System (ADS)

    King, J. D.; Strait, E. J.; Hanson, J. M.; Paz-Soldan, C.; Logan, N. C.; Lanctot, M. J.; Shiraki, D.

    2013-10-01

    The DIII-D magnetics diagnostic has been greatly expanded to fully characterize non-axisymmetric ``3D'' fields. Five poloidal locations now recover n <= 3 , while new HFS arrays provide poloidal spectral resolution of 7.4 cm. Initial measurements suggest externally driven kink structures deviate from MARS-F and IPEC models. These variations extend to the ideal regime, where toroidal agreement is observed. The plasma response to an n = 3 RMP increases monotonically as beta increases and q95 decreases, contrary to predictions of a screening to kink valley. Finally, the temporal evolution of the 3D eigenstructure of a slowly rotating (5 Hz) quasi-static, born locked, tearing mode provides the first evidence of an appreciable n = 2 error field, and an estimate of the phase for future correction. This new 3D capability will be used to understand and optimize control of RWMs, NTV torque, ELMs, and error field correction to extend stable tokamak operation. Work supported in part by the US Department of Energy under DE-AC05-00OR22725, DE-FC02-04ER54698, DE-FG02-95ER54309, DE-AC02-09CH11466, DE-FG02-04ER54761 and DE-AC52-07NA27344.

  4. Computed tomography measurement of 3D combustion chemiluminescence using single camera

    NASA Astrophysics Data System (ADS)

    Wang, Kuanliang; Li, Fei; Zeng, Hui; Zhang, Shaohua; Yu, Xilong

    2016-10-01

    Instantaneous measurement of flame spatial structure has been long desired for complicated combustion condition (gas turbine, ramjet et.). Three dimensional computed tomography of chemiluminescence (3D-CTC) is a potential testing technology for its simplicity, low cost, high temporal and spatial resolution. In most former studies, multi-lens and multi-CCD are used to capture projects from different view angles. In order to improve adaptability, only one CCD was utilized to build 3D-CTC system combined with customized fiber-based endoscopes (FBEs). It makes this technique more economic and simple. Validate experiments were made using 10 small CH4 diffusion flame arranging in a ring structure. Based on one instantaneous image, computed tomography can be conducted using Algebraic Reconstruction Technique (ART) algorithm. The reconstructed results, including the flame number, ring shape of the flames, the inner and outer diameter of ring, all well match the physical structure. It indicates that 3D combustion chemiluminescence could be well reconstructed using single camera.

  5. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    PubMed Central

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  6. Flow measurements in a model centrifugal pump by 3-D PIV

    NASA Astrophysics Data System (ADS)

    Yang, H.; Xu, H. R.; Liu, C.

    2012-11-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity Wr appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity Wr moves from the pressure side to the suction side. At the same time, the tangential component velocity Wθ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  7. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    PubMed

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-08-22

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

  8. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    PubMed Central

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  9. A 3D High-Order Unstructured Finite-Volume Algorithm for Solving Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Kwak, Dochan (Technical Monitor)

    1995-01-01

    A three-dimensional finite-volume algorithm based on arbitrary basis functions for time-dependent problems on general unstructured grids is developed. The method is applied to the time-domain Maxwell equations. Discrete unknowns are volume integrals or cell averages of the electric and magnetic field variables. Spatial terms are converted to surface integrals using the Gauss curl theorem. Polynomial basis functions are introduced in constructing local representations of the fields and evaluating the volume and surface integrals. Electric and magnetic fields are approximated by linear combinations of these basis functions. Unlike other unstructured formulations used in Computational Fluid Dynamics, the new formulation actually does not reconstruct the field variables at each time step. Instead, the spatial terms are calculated in terms of unknowns by precomputing weights at the beginning of the computation as functions of cell geometry and basis functions to retain efficiency. Since no assumption is made for cell geometry, this new formulation is suitable for arbitrarily defined grids, either smooth or unsmooth. However, to facilitate the volume and surface integrations, arbitrary polyhedral cells with polygonal faces are used in constructing grids. Both centered and upwind schemes are formulated. It is shown that conventional schemes (second order in Cartesian grids) are equivalent to the new schemes using first degree polynomials as the basis functions and the midpoint quadrature for the integrations. In the new formulation, higher orders of accuracy are achieved by using higher degree polynomial basis functions. Furthermore, all the surface and volume integrations are carried out exactly. Several model electromagnetic scattering problems are calculated and compared with analytical solutions. Examples are given for cases based on 0th to 3rd degree polynomial basis functions. In all calculations, a centered scheme is applied in the interior, while an upwind

  10. Proof of Concept of Integrated Load Measurement in 3D Printed Structures

    PubMed Central

    Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick

    2017-01-01

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779

  11. Proof of Concept of Integrated Load Measurement in 3D Printed Structures.

    PubMed

    Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick

    2017-02-09

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).

  12. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements

    NASA Astrophysics Data System (ADS)

    Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.

    2016-01-01

    We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.

  13. 3-D density imaging with muon flux measurements from underground galleries

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Cabrera, J.; Marteau, J.

    2017-03-01

    Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.

  14. Practical resolution requirements of measurement instruments for precise characterization of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Collomb-Patton, Véronique; Bignon, Thibault

    2014-03-01

    Different ways to evaluate the optical performances of auto-stereoscopic 3D displays are reviewed. Special attention is paid to the crosstalk measurements that can be performed by measuring, either the precise angular emission at one or few locations on the display surface, or the full display surface emission from very specific locations in front of the display. Using measurements made in the two ways with different instruments on different auto-stereoscopic displays, we show that measurement instruments need to match the resolution of the human eye to obtain reliable results in both cases. Practical requirements in terms of angular resolution for viewing angle measurement instruments and in terms of spatial resolution for imaging instruments are derived and verified on practical examples.

  15. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  16. Detection and Purging of Specular Reflective and Transparent Object Influences in 3d Range Measurements

    NASA Astrophysics Data System (ADS)

    Koch, R.; May, S.; Nüchter, A.

    2017-02-01

    3D laser scanners are favoured sensors for mapping in mobile service robotics at indoor and outdoor applications, since they deliver precise measurements at a wide scanning range. The resulting maps are detailed since they have a high resolution. Based on these maps robots navigate through rough terrain, fulfil advanced manipulation, and inspection tasks. In case of specular reflective and transparent objects, e.g., mirrors, windows, shiny metals, the laser measurements get corrupted. Based on the type of object and the incident angle of the incoming laser beam there are three results possible: a measurement point on the object plane, a measurement behind the object plane, and a measurement of a reflected object. It is important to detect such situations to be able to handle these corrupted points. This paper describes why it is difficult to distinguish between specular reflective and transparent surfaces. It presents a 3DReflection- Pre-Filter Approach to identify specular reflective and transparent objects in point clouds of a multi-echo laser scanner. Furthermore, it filters point clouds from influences of such objects and extract the object properties for further investigations. Based on an Iterative-Closest-Point-algorithm reflective objects are identified. Object surfaces and points behind surfaces are masked according to their location. Finally, the processed point cloud is forwarded to a mapping module. Furthermore, the object surface corners and the type of the surface is broadcasted. Four experiments demonstrate the usability of the 3D-Reflection-Pre-Filter. The first experiment was made in a empty room containing a mirror, the second experiment was made in a stairway containing a glass door, the third experiment was made in a empty room containing two mirrors, the fourth experiment was made in an office room containing a mirror. This paper demonstrate that for single scans the detection of specular reflective and transparent objects in 3D is possible. It

  17. Application of 3D Scanned Imaging Methodology for Volume, Surface Area, and Envelope Density Evaluation of Densified Biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of surface area, volume, and density is an essential for quantifying, evaluating, and designing the biomass densification, storage, and transport operations. Acquiring accurate and repeated measurements of these parameters for hygroscopic densified biomass are not straightforward and on...

  18. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  19. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  20. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  1. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  2. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  3. Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure

    PubMed Central

    2014-01-01

    Microarrays have revolutionized biotechnological research. The analysis of new data generated represents a computational challenge due to the characteristics of these data. Clustering techniques are applied to create groups of genes that exhibit a similar behavior. Biclustering emerges as a valuable tool for microarray data analysis since it relaxes the constraints for grouping, allowing genes to be evaluated only under a subset of the conditions. However, if a third dimension appears in the data, triclustering is the appropriate tool for the analysis. This occurs in longitudinal experiments in which the genes are evaluated under conditions at several time points. All clustering, biclustering, and triclustering techniques guide their search for solutions by a measure that evaluates the quality of clusters. We present an evaluation measure for triclusters called Mean Square Residue 3D. This measure is based on the classic biclustering measure Mean Square Residue. Mean Square Residue 3D has been applied to both synthetic and real data and it has proved to be capable of extracting groups of genes with homogeneous patterns in subsets of conditions and times, and these groups have shown a high correlation level and they are also related to their functional annotations extracted from the Gene Ontology project. PMID:25143987

  4. Assessing the potential of low-cost 3D cameras for the rapid measurement of plant woody structure.

    PubMed

    Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian

    2013-11-27

    Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2-13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future.

  5. Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure

    PubMed Central

    Nock, Charles A; Taugourdeau, Olivier; Delagrange, Sylvain; Messier, Christian

    2013-01-01

    Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height). Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future. PMID:24287538

  6. 3D shape measurement of optical free-form surface based on fringe projection

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; Liu, Shugui; Zhang, Hongwei

    2011-05-01

    Present a novel method of 3D shape measurement of optical free-from surface based on fringe projection. A virtual reference surface is proposed which can be used to improve the detection efficiency and realize the automation of measuring process. Sinusoidal fringe patterns are projected to the high reflected surface of the measured object. The deflection fringe patterns that modulated by the object surface are captured by the CCD camera. The slope information can be obtained by analyzing the relationship between the phase deflectometry and the slope of the object surface. The wave-front reconstruction method is used to reconstruct the surface. With the application of fringe projection technology the accuracy of optical free-form surfaces measurement could reach the level of tens of micrometer or even micrometer.

  7. 3-D volume reconstruction of skin lesions for melanin and blood volume estimation and lesion severity analysis.

    PubMed

    D'Alessandro, Brian; Dhawan, Atam P

    2012-11-01

    Subsurface information about skin lesions, such as the blood volume beneath the lesion, is important for the analysis of lesion severity towards early detection of skin cancer such as malignant melanoma. Depth information can be obtained from diffuse reflectance based multispectral transillumination images of the skin. An inverse volume reconstruction method is presented which uses a genetic algorithm optimization procedure with a novel population initialization routine and nudge operator based on the multispectral images to reconstruct the melanin and blood layer volume components. Forward model evaluation for fitness calculation is performed using a parallel processing voxel-based Monte Carlo simulation of light in skin. Reconstruction results for simulated lesions show excellent volume accuracy. Preliminary validation is also done using a set of 14 clinical lesions, categorized into lesion severity by an expert dermatologist. Using two features, the average blood layer thickness and the ratio of blood volume to total lesion volume, the lesions can be classified into mild and moderate/severe classes with 100% accuracy. The method therefore has excellent potential for detection and analysis of pre-malignant lesions.

  8. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  9. Reproducibility of 3D kinematics and surface electromyography measurements of mastication.

    PubMed

    Remijn, Lianne; Groen, Brenda E; Speyer, Renée; van Limbeek, Jacques; Nijhuis-van der Sanden, Maria W G

    2016-03-01

    The aim of this study was to determine the measurement reproducibility for a procedure evaluating the mastication process and to estimate the smallest detectable differences of 3D kinematic and surface electromyography (sEMG) variables. Kinematics of mandible movements and sEMG activity of the masticatory muscles were obtained over two sessions with four conditions: two food textures (biscuit and bread) of two sizes (small and large). Twelve healthy adults (mean age 29.1 years) completed the study. The second to the fifth chewing cycle of 5 bites were used for analyses. The reproducibility per outcome variable was calculated with an intraclass correlation coefficient (ICC) and a Bland-Altman analysis was applied to determine the standard error of measurement relative error of measurement and smallest detectable differences of all variables. ICCs ranged from 0.71 to 0.98 for all outcome variables. The outcome variables consisted of four bite and fourteen chewing cycle variables. The relative standard error of measurement of the bite variables was up to 17.3% for 'time-to-swallow', 'time-to-transport' and 'number of chewing cycles', but ranged from 31.5% to 57.0% for 'change of chewing side'. The relative standard error of measurement ranged from 4.1% to 24.7% for chewing cycle variables and was smaller for kinematic variables than sEMG variables. In general, measurements obtained with 3D kinematics and sEMG are reproducible techniques to assess the mastication process. The duration of the chewing cycle and frequency of chewing were the best reproducible measurements. Change of chewing side could not be reproduced. The published measurement error and smallest detectable differences will aid the interpretation of the results of future clinical studies using the same study variables.

  10. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis.

    PubMed

    Islam, Monsur; Natu, Rucha; Larraga-Martinez, Maria Fernanda; Martinez-Duarte, Rodrigo

    2016-05-01

    Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved.

  11. A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids

    SciTech Connect

    Vijayan, P.; Kallinderis, Y. )

    1994-08-01

    The paper describes the development and application of a new Euler solver for adaptive tetrahedral grids. Spatial discretization uses a finite-volume, node-based scheme that is of central-differencing type. A second-order Taylor series expansion is employed to march the solution in time according to the Lax-Wendroff approach. Special upwind-like smoothing operators for unstructured grids are developed for shock-capturing, as well as for suppression of solution oscillations. The scheme is formulated so that all operations are edge-based, which reduces the computational effort significantly. An adaptive grid algorithm is employed in order to resolve local flow features. This is achieved by dividing the tetrahedral cells locally, guided by a flow feature detection algorithm. Application cases include transonic flow around the ONERA M6 wing and transonic flow past a transport aircraft configuration. Comparisons with experimental data evaluate accuracy of the developed adaptive solver. 31 refs., 33 figs.

  12. On-machine measurement of the grinding wheels' 3D surface topography using a laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Pan, Yongcheng; Zhao, Qingliang; Guo, Bing

    2014-08-01

    A method of non-contact, on-machine measurement of three dimensional surface topography of grinding wheels' whole surface was developed in this paper, focusing on an electroplated coarse-grained diamond grinding wheel. The measuring system consists of a Keyence laser displacement sensor, a Keyence controller and a NI PCI-6132 data acquisition card. A resolution of 0.1μm in vertical direction and 8μm in horizontal direction could be achieved. After processing the data by LabVIEW and MATLAB, the 3D topography of the grinding wheel's whole surface could be reconstructed. When comparing the reconstructed 3D topography of the grinding wheel's marked area to its real topography captured by a high-depth-field optical digital microscope (HDF-ODM) and scanning electron microscope (SEM), they were very similar to each other, proving that this method is accurate and effective. By a subsequent data processing, the topography of every grain could be extracted and then the active grain number, the active grain volume and the active grain's bearing ration could be calculated. These three parameters could serve as the criterion to evaluate the grinding performance of coarse-grained diamond grinding wheels. Then the performance of the grinding wheel could be evaluated on-machine accurately and quantitatively.

  13. 3D measurements in conventional X-ray imaging with RGB-D sensors.

    PubMed

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2017-04-01

    A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and X-ray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.

  14. Model-based correction of velocity measurements in navigated 3-D ultrasound imaging during neurosurgical interventions.

    PubMed

    Iversen, Daniel Hoyer; Lindseth, Frank; Unsgaard, Geirmund; Torp, Hans; Lovstakken, Lasse

    2013-09-01

    In neurosurgery, information of blood flow is important to identify and avoid damage to important vessels. Three-dimensional intraoperative ultrasound color-Doppler imaging has proven useful in this respect. However, due to Doppler angle-dependencies and the complexity of the vascular architecture, clinical valuable 3-D information of flow direction and velocity is currently not available. In this work, we aim to correct for angle-dependencies in 3-D flow images based on a geometric model of the neurovascular tree generated on-the-fly from free-hand 2-D imaging and an accurate position sensor system. The 3-D vessel model acts as a priori information of vessel orientation used to angle-correct the Doppler measurements, as well as provide an estimate of the average flow direction. Based on the flow direction we were also able to do aliasing correction to approximately double the measurable velocity range. In vitro experiments revealed a high accuracy and robustness for estimating the mean direction of flow. Accurate angle-correction of axial velocities were possible given a sufficient beam-to-flow angle for at least parts of a vessel segment . In vitro experiments showed an absolute relative bias of 9.5% for a challenging low-flow scenario. The method also showed promising results in vivo, improving the depiction of flow in the distal branches of intracranial aneurysms and the feeding arteries of an arteriovenous malformation. Careful inspection by an experienced surgeon confirmed the correct flow direction for all in vivo examples.

  15. Simultaneous 3D location and size measurement of bubbles and sand particles in a flow using interferometric particle imaging.

    PubMed

    Ouldarbi, L; Pérret, G; Lemaitre, P; Porcheron, E; Coëtmellec, S; Gréhan, G; Lebrun, D; Brunel, M

    2015-09-01

    We present a system to characterize a triphasic flow in a 3D volume (air bubbles and solid irregular particles in water) using only one CCD sensor. A cylindrical interferometric out-of-focus imaging setup is used to determine simultaneously the 3D position and the size of bubbles and irregular sand particles in a flow. The 3D position of the particles is deduced from the ellipticity of their out-of-focus image. The size of bubbles is deduced from analysis of interference fringes. The characteristics of irregular sand particles are obtained from analysis of their speckle-like pattern. Experiments are confirmed by simulations.

  16. Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.

    PubMed

    Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun

    2012-02-27

    We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.

  17. Registration of Feature-Poor 3D Measurements from Fringe Projection

    PubMed Central

    von Enzberg, Sebastian; Al-Hamadi, Ayoub; Ghoneim, Ahmed

    2016-01-01

    We propose a novel method for registration of partly overlapping three-dimensional surface measurements for stereo-based optical sensors using fringe projection. Based on two-dimensional texture matching, it allows global registration of surfaces with poor and ambiguous three-dimensional features, which are common to surface inspection applications. No prior information about relative sensor position is necessary, which makes our approach suitable for semi-automatic and manual measurement. The algorithm is robust and works with challenging measurements, including uneven illumination, surfaces with specular reflection as well as sparsely textured surfaces. We show that precisions of 1 mm and below can be achieved along the surfaces, which is necessary for further local 3D registration. PMID:26927106

  18. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  19. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  20. A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking

    SciTech Connect

    Mayer, J.R.R. . Mechanical Engineering Dept.); Parker, G.A. . Dept. of Mechanical Engineering)

    1994-08-01

    The paper describes the development and validation of a 3-D measurement instrument capable of determining the static and dynamic performance of industrial robots to ISO standards. Using two laser beams to track an optical target attached to the robot end-effector, the target position coordinates may be estimated, relative to the instrument coordinate frame, to a high accuracy using triangulation principles. The effect of variations in the instrument geometry from the nominal model is evaluated through a kinematic model of the tracking head. Significant improvements of the measurement accuracy are then obtained by a simple adjustment of the main parameters. Extensive experimental test results are included to demonstrate the instrument performance. Finally typical static and dynamic measurement results for an industrial robot are presented to illustrate the effectiveness and usefulness of the instrument.

  1. A flexible new method for 3D measurement based on multi-view image sequences

    NASA Astrophysics Data System (ADS)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  2. 2D and 3D Non-planar Dynamic Rupture by a Finite Volume Method

    NASA Astrophysics Data System (ADS)

    Benjemaa, M.; Glinsky-Olivier, N.; Cruz-Atienza, V. M.; Virieux, J.; Piperno, S.; Lanteri, S.

    2006-12-01

    Understanding the physics of the rupture process requires very sophisticated and accurate tools in which both the geometry of the fault surface and realistic frictional behaviours could interact during rupture propagation. New formulations have been recently proposed for modelling the dynamic shear rupture of non-planar faults (Ando et al., 2004; Cruz-Atienza &Virieux, 2004; Huang &Costanzo, 2004) providing highly accurate field estimates nearby the crack edges at the expanse of a simple medium description or high computational cost. We propose a new method based on the finite volume formulation to model the dynamic rupture propagation of non-planar faults. After proper transformations of the velocity-stress elastodynamic system of partial differential equations following an explicit conservative law, we construct an unstructured time-domain numerical formulation of the crack problem. As a result, arbitrary non-planar faults can be explicitly represented without extra computational cost. The analysis of the total discrete energy through the fault surface leads us to the specification of dynamic rupture boundary conditions which insure the correct discrete energy time variation and, therefore, the system stability. These boundary conditions are set on stress fluxes and not on stress values, which makes the fracture to have no thickness. Different shapes of cracks are analysed. We present an example of a bidimensional non-planar spontaneous fault growth in heterogeneous media as well as preliminary results of a highly efficient extension to the three dimensional rupture model based on the standard MPI.

  3. On `light' fermions and proton stability in `big divisor' D3/ D7 large volume compactifications

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2011-06-01

    Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347-352, 2010), we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the "big divisor," using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi-Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.

  4. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-11-22

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  5. 1d, 2d, and 3d periodic structures: Electromagnetic characterization, design, and measurement

    NASA Astrophysics Data System (ADS)

    Brockett, Timothy John

    Periodic structures have many useful applications in electromagnetics including phased arrays, frequency selective surfaces, and absorbing interfaces. Their unique properties can be used to provide increased performance in antenna gain, electromagnetic propagation, and electromagnetic absorption. In antenna arrays, repeating elements create a larger eective aperture, increasing the gain of the antenna and the ability to scan the direction of the main beam. Three-dimensional periodic structures, such as an array of shaped pillars such as columns, cones, or prisms have the potential of improving electromagnetic absorption, improving performance in applications such as solar cell eciency and absorbing interfaces. Furthermore, research into periodic structures is a continuing endeavor where novel approaches and analysis in appropriate applications can be sought. This dissertation will address the analysis, diagnostics, and enhancement of 1D, 2D, and 3D periodic structures for antenna array applications and solar cell technology. In particular, a unique approach to array design will be introduced to prevent the appearance of undesirable grating lobes in large antenna arrays that employ subarrays. This approach, named the distortion diagnostic procedure, can apply directly to 1D and 2D periodic structures in the form of planar antenna arrays. Interesting corollaries included here are developments in millimeter-wave antenna measurements including spiral planar scanning, phaseless measurements, and addressing antennas that feature an internal source. Finally, analysis and enhancement of 3D periodic structures in nanostructure photovoltaic arrays and absorbing interfaces will be examined for their behavior and basic operation in regards to improved absorption of electromagnetic waves.

  6. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  7. A hybrid method for inversion of 3D DC resistivity logging measurements.

    PubMed

    Gajda-Zagórska, Ewa; Schaefer, Robert; Smołka, Maciej; Paszyński, Maciej; Pardo, David

    This paper focuses on the application of hp hierarchic genetic strategy (hp-HGS) for solution of a challenging problem, the inversion of 3D direct current (DC) resistivity logging measurements. The problem under consideration has been formulated as the global optimization one, for which the objective function (misfit between computed and reference data) exhibits multiple minima. In this paper, we consider the extension of the hp-HGS strategy, namely we couple the hp-HGS algorithm with a gradient based optimization method for a local search. Forward simulations are performed with a self-adaptive hp finite element method, hp-FEM. The computational cost of misfit evaluation by hp-FEM depends strongly on the assumed accuracy. This accuracy is adapted to the tree of populations generated by the hp-HGS algorithm, which makes the global phase significantly cheaper. Moreover, tree structure of demes as well as branch reduction and conditional sprouting mechanism reduces the number of expensive local searches up to the number of minima to be recognized. The common (direct and inverse) accuracy control, crucial for the hp-HGS efficiency, has been motivated by precise mathematical considerations. Numerical results demonstrate the suitability of the proposed method for the inversion of 3D DC resistivity logging measurements.

  8. [Application of PARAFAC method and 3-D fluorescence spectra in petroleum pollutant measurement and analysis].

    PubMed

    Pan, Zhao; Wang, Yu-tian; Shao, Xiao-qing; Wu, Xi-jun; Yang, Li-li

    2012-03-01

    A method for identification and concentration measurement of petroleum pollutant by combining three-dimensional (3-D) fluorescence spectra with parallel factor analysis (PARAFAC) was proposed. The main emphasis of research was the measurement of coexisting different kinds of petroleum. The CCl4 solutions of a 0# diesel sample, a 97# gasoline sample, and a kerosene sample were used as measurement objects. The condition of multiple petroleum coexistence was simulated by petroleum solutions with different mixed ratios. The character of PARAFAC in complex mixture coexisting system analysis was studied. The spectra of three kinds of solutions and the spectra of gasoline-diesel mixed samples, diesel-kerosene mixed samples, and gas oline-diesel mixed with small counts of kerosene interference samples were analyzed respectively. The core consistency diagnostic method and residual sum of squares method were applied to calculate the number of factors in PARAFAC. In gasoline-diesel experiment, gasoline or diesel can be identified and measured as a whole respectively by 2-factors parallel factors analysis. In diesel-kerosene experiment, 2-factors parallel factors analysis can only obtain the characters of diesel, and the 3rd factor is needed to separate the kerosene spectral character from the mixture spectrum. When small counts of kerosene exist in gasoline-diesel solution, gasoline and diesel still can be identified and measured as principal components by a 2-factors parallel factor analysis, and the effect of interference on qualitative analysis is not significant. The experiment verified that the PARAFAC method can obtain characteristic spectrum of each kind of petroleum, and the concentration of petroleum in solutions can be predicted simultaneously, with recoveries shown in the paper. The results showed the possibility of petroleum pollutant identification and concentration measurement based on the 3-D fluorescence spectra and PARAFAC.

  9. Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie

    2017-02-01

    Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves

  10. Reliability of trunk shape measurements based on 3-D surface reconstructions

    PubMed Central

    Cheriet, Farida; Danserau, Jean; Ronsky, Janet; Zernicke, Ronald F.; Labelle, Hubert

    2007-01-01

    This study aimed to estimate the reliability of 3-D trunk surface measurements for the characterization of external asymmetry associated with scoliosis. Repeated trunk surface acquisitions using the Inspeck system (Inspeck Inc., Montreal, Canada), with two different postures A (anatomical position) and B (‘‘clavicle’’ position), were obtained from patients attending a scoliosis clinic. For each acquisition, a 3-D model of the patient’s trunk was built and a series of measurements was computed. For each measure and posture, intraclass correlation coefficients (ICC) were obtained using a bivariate analysis of variance, and the smallest detectable difference was calculated. For posture A, reliability was fair to excellent with ICC from 0.91 to 0.99 (0.85 to 0.99 for the lower bound of the 95% confidence interval). For posture B, the ICC was 0.85 to 0.98 (0.74 to 0.99 for the lower bound of the 95% confidence interval). The smallest statistically significant differences for the maximal back surface rotation was 2.5 and 1.5° for the maximal trunk rotation. Apparent global asymmetry and axial trunk rotation indices were relatively robust to changes in arm posture, both in terms of mean values and within-subject variations, and also showed a good reliability. Computing measurements from cross-sectional analysis enabled a reduction in errors compared to the measurements based on markers’ position. Although not yet sensitive enough to detect small changes for monitoring of curve natural progression, trunk surface analysis can help to document the external asymmetry associated with different types of spinal curves as well as the cosmetic improvement obtained after surgical interventions. The anatomical posture is slightly more reliable as it allows a better coverage of the trunk surface by the digitizing system. PMID:17701228

  11. Automated Breast Volume Scanning: Identifying 3-D Coronal Plane Imaging Features May Help Categorize Complex Cysts.

    PubMed

    Wang, Hong-Yan; Jiang, Yu-Xin; Zhu, Qing-Li; Zhang, Jing; Xiao, Meng-Su; Liu, He; Dai, Qing; Li, Jian-Chu; Sun, Qiang

    2016-03-01

    The study described here sought to identify specific ultrasound (US) automated breast volume scanning (ABVS) features that distinguish benign from malignant lesions. Medical records of 750 patients with 792 breast lesions were retrospectively reviewed. Of the 750 patients, 101 with 122 cystic lesions were included in this study, and the results ABVS results were compared with biopsy pathology results. These lesions were classified into six categories based on ABVS sonographic features: type I = simple cyst; type II = clustered cyst; type III = cystic masses with thin septa; type IV = complex cyst; type V = predominantly cystic masses; and type VI = predominantly solid masses. Comparisons were conducted between the ABVS coronal plane features of the lesions and histopathology results, and the positive predictive value (PPV) was calculated for each feature. Of the 122 lesions, 90 (73.8%) were classified as benign, and 32 (26.2%) were classified as malignant. The sensitivity, specificity and accuracy associated with ABVS features for cystic lesions were 78.1%, 74.4% and 75.4%, respectively. The 11 cases (8.9%) of type I-IV cysts were all benign. Of the 22 (18.0%) type V cysts, 16 (13.1%) were benign and 6 (4.9%) were malignant. Of the 89 (72.9%) type VI cysts, 63 (51.7%) were benign and 26 (21.3%) were malignant. The typical symptoms of malignancy on ABVS include retraction (PPV = 100%, p < 0.05), hyper-echoic halos (PPV = 85.7%, p < 0.05), microcalcification (PPV = 66.7%, p < 0.05), thick walls or thick septa (PPV = 62.5%, p < 0.05), irregular shape (PPV: 51.2%, p < 0.05), indistinct margin (PPV: 48.6%, p < 0.05) and predominantly solid masses with eccentric cystic foci (PPV = 46.8%, p < 0.05). ABVS can reveal sonographic features of the lesions along the coronal plane, which may be of benefit in the detection of malignant, predominantly cystic masses and provide high clinical values.

  12. 3D measurement with active triangulation for spectacle lens optimization and individualization

    NASA Astrophysics Data System (ADS)

    Gehrmann, Julia; Tiemann, Markus; Seitz, Peter C.

    2015-05-01

    We present for the first time an active triangulation technique for video centration. This technique requires less manual selection than current methods and thus enables faster measurements while providing the same resolution. The suitability to measure physiological parameters is demonstrated in a measurement series. The active triangulation technique uses a laser line for illumination which is positioned such that it intersects with the pupils of the subject to be measured. For the illumination of human eyes, the wavelength and output power were carefully investigated to ensure photobiological safety at all times and reduce irritation of the subject being measured. A camera with a known orientation to the laser line images the subject. Physiological features on the subject and the frame are then selected in the acquired image yielding directly a 3D position if lying on the illuminated laser line. Distances to points off the laser line can be estimated from a scaling at the same depth. Focus is on two parameters: interpupillary distance (PD) and corneal face form angle (FFA). In our study we examined the repeatability of the measurements. We found an excellent repeatability with small deviations to the reference value. Furthermore a physiological study was carried out with the setup showing the applicability of this method for video centration measurements. A comparison to a reference measurement system shows only small differences.

  13. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  14. High-quality 3D shape measurement using saturated fringe patterns

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Zhang, Song

    2016-12-01

    This paper proposes a method to potentially conquer one of the challenges in the optical metrology community: optically measuring three-dimensional (3D) objects with high surface contrast. We discover that for digitally equally phase-shifted fringe patterns, if the fringe period P is an even number, the N = P / 2 × k , (k=1, 2, 3, …) step algorithm can accurately recover phase even if the fringe patterns are saturated; and if P is an odd number, N = P × k step algorithm can also accurately recover phase even if the fringe patterns are saturated. This finding leads to a novel method to optically measure shiny surfaces, where the saturation due to surface shininess could be substantially alleviated. Both simulations and experiments successfully verified the proposed method.

  15. 3D measurement and camera attitude estimation method based on trifocal tensor

    NASA Astrophysics Data System (ADS)

    Chen, Shengyi; Liu, Haibo; Yao, Linshen; Yu, Qifeng

    2016-11-01

    To simultaneously perform 3D measurement and camera attitude estimation, an efficient and robust method based on trifocal tensor is proposed in this paper, which only employs the intrinsic parameters and positions of three cameras. The initial trifocal tensor is obtained by using heteroscedastic errors-in-variables (HEIV) estimator and the initial relative poses of the three cameras is acquired by decomposing the tensor. Further the initial attitude of the cameras is obtained with knowledge of the three cameras' positions. Then the camera attitude and the interested points' image positions are optimized according to the constraint of trifocal tensor with the HEIV method. Finally the spatial positions of the points are obtained by using intersection measurement method. Both simulation and real image experiment results suggest that the proposed method achieves the same precision of the Bundle Adjustment (BA) method but be more efficient.

  16. Uncertainty studies of topographical measurements on steel surface corrosion by 3D scanning electron microscopy.

    PubMed

    Kang, K W; Pereda, M D; Canafoglia, M E; Bilmes, P; Llorente, C; Bonetto, R

    2012-02-01

    Pitting corrosion is a damage mechanism quite serious and dangerous in both carbon steel boiler tubes for power plants which are vital to most industries and stainless steels for orthopedic human implants whose demand, due to the increase of life expectation and rate of traffic accidents, has sharply increased. Reliable methods to characterize this kind of damage are becoming increasingly necessary, when trying to evaluate the advance of damage and to establish the best procedures for component inspection in order to determine remaining lives and failure mitigation. A study about the uncertainties on the topographies of corrosion pits from 3D SEM images, obtained at low magnifications (where errors are greater) and different stage tilt angles were carried out using an in-house software previously developed. Additionally, measurements of pit depths on biomaterial surfaces, subjected to two different surface treatments on stainless steels, were carried out. The different depth distributions observed were in agreement with electrochemical measurements.

  17. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity

    NASA Astrophysics Data System (ADS)

    Saparin, Peter I.; Skovhus Thomsen, Jesper; Prohaska, Steffen; Zaikin, Alexei; Kurths, Jürgen; Hege, Hans-Christian; Gowin, Wolfgang

    2005-05-01

    Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel.

  18. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  19. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.

    PubMed

    Steinle, Patrick

    2016-01-01

    Emissions from a desktop 3D printer based on fused deposition modeling (FDM) technology were measured in a test chamber and indoor air was monitored in office settings. Ultrafine aerosol (UFA) emissions were higher while printing a standard object with polylactic acid (PLA) than with acrylonitrile butadiene styrene (ABS) polymer (2.1 × 10(9) vs. 2.4 × 10(8) particles/min). Prolonged use of the printer led to higher emission rates (factor 2 with PLA and 4 with ABS, measured after seven months of occasional use). UFA consisted mainly of volatile droplets, and some small (100-300 nm diameter) iron containing and soot-like particles were found. Emissions of inhalable and respirable dust were below the limit of detection (LOD) when measured gravimetrically, and only slightly higher than background when measured with an aerosol spectrometer. Emissions of volatile organic compounds (VOC) were in the range of 10 µg/min. Styrene accounted for more than 50% of total VOC emitted when printing with ABS; for PLA, methyl methacrylate (MMA, 37% of TVOC) was detected as the predominant compound. Two polycyclic aromatic hydrocarbons (PAH), fluoranthene and pyrene, were observed in very low amounts. All other analyzed PAH, as well as inorganic gases and metal emissions except iron (Fe) and zinc (Zn), were below the LOD or did not differ from background without printing. A single 3D print (165 min) in a large, well-ventilated office did not significantly increase the UFA and VOC concentrations, whereas these were readily detectable in a small, unventilated room, with UFA concentrations increasing by 2,000 particles/cm(3) and MMA reaching a peak of 21 µg/m(3) and still being detectable in the room even 20 hr after printing.

  20. Error analysis in stereo vision for location measurement of 3D point

    NASA Astrophysics Data System (ADS)

    Li, Yunting; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.

  1. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGES

    Guo, Y.; Collins, D. M.; Tarleton, E.; ...

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  2. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  3. Laser cone beam computed tomography scanner geometry for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K. J.; Turnbull, D.; Batista, J. J.

    2013-06-01

    A new scanner geometry for fast optical cone-beam computed tomography is reported. The system consists of a low power laser beam, raster scanned, under computer control, through a transparent object in a refractive index matching aquarium. The transmitted beam is scattered from a diffuser screen and detected by a photomultiplier tube. Modest stray light is present in the projection images since only a single ray is present in the object during measurement and there is no imaging optics to introduce further stray light in the form of glare. A scan time of 30 minutes was required for 512 projections with a field of view of 12 × 18 cm. Initial performance from scanning a 15 cm diameter jar with black solutions is presented. Averaged reconstruction coefficients are within 2% along the height of the jar and within the central 85% of diameter, due to the index mismatch of the jar. Agreement with spectrometer measurements was better than 0.5% for a minimum transmission of 4% and within 4% for a dark, 0.1% transmission sample. This geometry's advantages include high dynamic range and low cost of scaling to larger (>15 cm) fields of view.

  4. An octahedral shear strain-based measure of SNR for 3D MR elastography

    NASA Astrophysics Data System (ADS)

    McGarry, M. D. J.; Van Houten, E. E. W.; Perriñez, P. R.; Pattison, A. J.; Weaver, J. B.; Paulsen, K. D.

    2011-07-01

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  5. An Octahedral Shear Strain Based measure of SNR for 3D MR Elastography

    PubMed Central

    McGarry, MDJ; Van Houten, EEW; Perriñez, PR; Pattison, AJ; Weaver, JB; Paulsen, KD

    2011-01-01

    A signal to noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for MR elastography, where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. PMID:21654044

  6. An octahedral shear strain-based measure of SNR for 3D MR elastography.

    PubMed

    McGarry, M D J; Van Houten, E E W; Perriñez, P R; Pattison, A J; Weaver, J B; Paulsen, K D

    2011-07-07

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  7. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.

  8. Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2017-01-01

    Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351

  9. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  10. Precision measurement of the 3 d 3/2 2D-state lifetime in a single trapped +40Ca

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Guan, H.; Qian, Y.; Gao, K.

    2016-10-01

    We present a high-precision measurement of the 3 d 3/2 2D-state lifetime in a single trapped +40Ca. The measurement was performed using a high-efficiency quantum-state detection technique to monitor quantum jumps and a high-precision and highly synchronous measurement sequence for laser control. A feature in our measurement is the pumping rate of the 729-nm laser that was corrected in a real-time way. The 3 d 3/2 2D-state lifetime was obtained through the measurement of the spontaneous decay rate after incoherent shelving of the ion to the 3 d 3/2 2D state with a wait time. Systematic errors, such as collisions with background gases, heating effects, impurity components, the shelving and pumping rates, and state detection, were carefully analyzed and estimated. We determined an improved value of the 3 d 3/2 2D-state lifetime to be τ3 /2=1.195 (8 ) s. Furthermore, the 3 d 3/2 2D →4 s 1/2 2S quadrupole transition matrix element was measured to be Sk i=7.936 (26 ) e a02 , and the ratio between the lifetimes of 3 d 2D3 /2 and 3 d 2D5 /2 was determined to be 1.018(11). Our method can be universally applied to lifetime measurements of other single ions and atoms with a similar structure.

  11. A σ-coordinate model for 3D free-surface flows using an unstructured finite-volume technique

    NASA Astrophysics Data System (ADS)

    Uh Zapata, Miguel

    2016-11-01

    The aim of this work is to develop a numerical solution of three-dimensional free-surface flows using a σ-coordinate model, a projection method and an unstructured finite-volume technique. The coordinate transformation is used in order to overcome difficulties arising from free surface elevation and irregular geometry. The projection method consists to combine the momentum and continuity equations in order to establish a Poisson-type equation for the non-hydrostatic pressure. A cell-centered finite volume method with a triangular mesh in the horizontal direction is used to simulate the flows with free-surfaces, in which the average values of conserved variables are stored at the centre of each element. A parallel algorithm is also presented for the finite volume discretization of the 3D Navier-Stokes equations. The proposed parallel method is formulated by using a multi-color SOR method, a block domain decomposition and interprocessor data communication techniques with Message Passing Interface. The model has been validated by several benchmarks which numerical simulations are in good agreement with the corresponding analytical and existing experimental results.

  12. 3-D EM exploration of the hepatic microarchitecture – lessons learned from large-volume in situ serial sectioning

    PubMed Central

    Shami, Gerald John; Cheng, Delfine; Huynh, Minh; Vreuls, Celien; Wisse, Eddie; Braet, Filip

    2016-01-01

    To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions. PMID:27834401

  13. 3-D EM exploration of the hepatic microarchitecture - lessons learned from large-volume in situ serial sectioning.

    PubMed

    Shami, Gerald John; Cheng, Delfine; Huynh, Minh; Vreuls, Celien; Wisse, Eddie; Braet, Filip

    2016-11-11

    To-date serial block-face scanning electron microscopy (SBF-SEM) dominates as the premier technique for generating three-dimensional (3-D) data of resin-embedded biological samples at an unprecedented depth volume. Given the infancy of the technique, limited literature is currently available regarding the applicability of SBF-SEM for the ultrastructural investigation of tissues. Herein, we provide a comprehensive and rigorous appraisal of five different SBF-SEM sample preparation protocols for the large-volume exploration of the hepatic microarchitecture at an unparalleled X, Y and Z resolution. In so doing, we qualitatively and quantitatively validate the use of a comprehensive SBF-SEM sample preparation protocol, based on the application of heavy metal fixatives, stains and mordanting agents. Employing the best-tested SBF-SEM approach, enabled us to assess large-volume morphometric data on murine parenchymal cells, sinusoids and bile canaliculi. Finally, we integrated the validated SBF-SEM protocol with a correlative light and electron microscopy (CLEM) approach. The combination of confocal scanning laser microscopy and SBF-SEM provided a novel way to picture subcellular detail. We appreciate that this multidimensional approach will aid the subsequent research of liver tissue under relevant experimental and disease conditions.

  14. Application of optical 3D measurement on thin film buckling to estimate interfacial toughness

    NASA Astrophysics Data System (ADS)

    Jia, H. K.; Wang, S. B.; Li, L. A.; Wang, Z. Y.; Goudeau, P.

    2014-03-01

    The shape-from-focus (SFF) method has been widely studied as a passive depth recovery and 3D reconstruction method for digital images. An important step in SFF is the calculation of the focus level for different points in an image by using a focus measure. In this work, an image entropy-based focus measure is introduced into the SFF method to measure the 3D buckling morphology of an aluminum film on a polymethylmethacrylate (PMMA) substrate at a micro scale. Spontaneous film wrinkles and telephone-cord wrinkles are investigated after the deposition of a 300 nm thick aluminum film onto the PMMA substrate. Spontaneous buckling is driven by the highly compressive stress generated in the Al film during the deposition process. The interfacial toughness between metal films and substrates is an important parameter for the reliability of the film/substrate system. The height profiles of different sections across the telephone-cord wrinkle can be considered a straight-sided model with uniform width and height or a pinned circular model that has a delamination region characterized by a sequence of connected sectors. Furthermore, the telephone-cord geometry of the thin film can be used to calculate interfacial toughness. The instability of the finite element model is introduced to fit the buckling morphology obtained by SFF. The interfacial toughness is determined to be 0.203 J/m2 at a 70.4° phase angle from the straight-sided model and 0.105 J/m2 at 76.9° from the pinned circular model.

  15. The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging.

    PubMed

    Lindsey, Brooks D; Light, Edward D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2011-06-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.

  16. 3D Measurement of Anatomical Cross-sections of Foot while Walking

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Mochimaru, Masaaki; Kanade, Takeo

    Recently, techniques for measuring and modeling of human body are taking attention, because human models are useful for ergonomic design in manufacturing. We aim to measure accurate shape of human foot that will be useful for the design of shoes. For such purpose, shape measurement of foot in motion is obviously important, because foot shape in the shoe is deformed while walking or running. In this paper, we propose a method to measure anatomical cross-sections of foot while walking. No one had ever measured dynamic shape of anatomical cross-sections, though they are very basic and popular in the field of biomechanics. Our proposed method is based on multi-view stereo method. The target cross-sections are painted in individual colors (red, green, yellow and blue), and the proposed method utilizes the characteristic of target shape in the camera captured images. Several nonlinear conditions are introduced in the process to find the consistent correspondence in all images. Our desired accuracy is less than 1mm error, which is similar to the existing 3D scanners for static foot measurement. In our experiments, the proposed method achieved the desired accuracy.

  17. Calibration of 3-D wind measurements on a single engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  18. Calibration of 3-D wind measurements on a single-engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  19. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  20. Doppler broadening of annihilation radiation measurements on 3d and 4f ferromagnets using polarized positrons

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Maekawa, M.; Fukaya, Y.; Yabuuchi, A.; Mochizuki, I.

    2012-01-01

    We measured the Doppler broadening of annihilation radiation (DBAR) spectra of 3d (Fe, Co, and Ni) and 4f (Gd, Tb, and Dy) ferromagnets under a magnetic field by using spin-polarized positrons from a 68Ge-68Ga source. The results showed that the DBAR spectra of these metals have notably different magnetic-field dependences. The differences among Fe, Co, and Ni reflect that the upper minority spin bands of Fe and Co are nearly empty while those of Ni are still mostly occupied. For the rare-earth metals instead of the inner 4f electrons, 5d electrons that mediate the exchange interaction of the 4f electrons are primarily responsible for the magnetic-field effects on the DBAR spectra. Furthermore, the magnetic-field effects on the DBAR spectra of Gd, Tb, and Dy vanished above the Curie temperatures of the magnetic-phase transition for these metals.

  1. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows.

    PubMed

    Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J

    2015-11-01

    We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed.

  2. A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System

    PubMed Central

    Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum

    2017-01-01

    In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414

  3. 3D-PTV measurement of the phototactic movement of algae in shear flow

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsuyuki; Ishikawa, Takuji; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yosuke; Yamaguchi, Takami

    2012-11-01

    Recently, swimming motion of algae cells is researched actively, because algae fuel is one of the hottest topic in engineering. It is known that algae swim toward the light for photosynthesis however, the effect of a background flow on the unidirectional swimming is unclear. In this study, we used Volvox as a model alga and placed them in a simple shear flow with or without light stimulus. The shear flow was generated by moving two flat sheets in the opposite direction tangentially. A red LED light (wave length 660 nm) was used as an observation light source, and a white LED light was used to stimulate cells for the phototaxis. The trajectories of individual cells were measured by a 3D-PTV system, consists of a pair of high-speed camera with macro lenses. The results were analyzed to understand the effect of the background shear flow on the phototaxis of cells.

  4. Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes

    NASA Astrophysics Data System (ADS)

    Gómez, F.; Fleta, C.; Esteban, S.; Quirion, D.; Pellegrini, G.; Lozano, M.; Prezado, Y.; Dos Santos, M.; Guardiola, C.; Montarou, G.; Prieto-Pena, J.; Pardo-Montero, Juan

    2016-06-01

    The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.

  5. Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes.

    PubMed

    Gómez, F; Fleta, C; Esteban, S; Quirion, D; Pellegrini, G; Lozano, M; Prezado, Y; Dos Santos, M; Guardiola, C; Montarou, G; Prieto-Pena, J; Pardo-Montero, Juan

    2016-06-07

    The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a (12)C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.

  6. Applying 3D measurements and computer matching algorithms to two firearm examination proficiency tests.

    PubMed

    Ott, Daniel; Thompson, Robert; Song, Junfeng

    2017-02-01

    In order for a crime laboratory to assess a firearms examiner's training, skills, experience, and aptitude, it is necessary for the examiner to participate in proficiency testing. As computer algorithms for comparisons of pattern evidence become more prevalent, it is of interest to test algorithm performance as well, using these same proficiency examinations. This article demonstrates the use of the Congruent Matching Cell (CMC) algorithm to compare 3D topography measurements of breech face impressions and firing pin impressions from a previously distributed firearms proficiency test. In addition, the algorithm is used to analyze the distribution of many comparisons from a collection of cartridge cases used to construct another recent set of proficiency tests. These results are provided along with visualizations that help to relate the features used in optical comparisons by examiners to the features used by computer comparison algorithms.

  7. In vitro measurement of muscle volume with 3-dimensional ultrasound.

    PubMed

    Delcker, A; Walker, F; Caress, J; Hunt, C; Tegeler, C

    1999-05-01

    The aim was to test the accuracy of muscle volume measurements with a new 3-dimensional (3-D) ultrasound system, which allows a freehand scanning of the transducer with an improved quality of the ultrasound images and therefore the outlines of the muscles. Five resected cadaveric hand muscles were insonated and the muscle volumes calculated by 3-D reconstructions of the acquired 2-D ultrasound sections. Intra-reader, inter-reader and follow-up variability were calculated, as well as the volume of the muscle tissue measured by water displacement. In the results, 3-D ultrasound and water displacement measurements showed an average deviation of 10.1%; Data of 3-D ultrasound measurements were: intra-reader variability 2.8%; inter-reader variability 2.4% and follow-up variability 2.3%. 3-D measurements of muscle volume are valid and reliable. Serial sonographic measurements of muscle may be able to quantitate changes in muscle volume that occur in disease and recovery.

  8. Angle estimation of simultaneous orthogonal rotations from 3D gyroscope measurements.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2011-01-01

    A 3D gyroscope provides measurements of angular velocities around its three intrinsic orthogonal axes, enabling angular orientation estimation. Because the measured angular velocities represent simultaneous rotations, it is not appropriate to consider them sequentially. Rotations in general are not commutative, and each possible rotation sequence has a different resulting angular orientation. None of these angular orientations is the correct simultaneous rotation result. However, every angular orientation can be represented by a single rotation. This paper presents an analytic derivation of the axis and angle of the single rotation equivalent to three simultaneous rotations around orthogonal axes when the measured angular velocities or their proportions are approximately constant. Based on the resulting expressions, a vector called the simultaneous orthogonal rotations angle (SORA) is defined, with components equal to the angles of three simultaneous rotations around coordinate system axes. The orientation and magnitude of this vector are equal to the equivalent single rotation axis and angle, respectively. As long as the orientation of the actual rotation axis is constant, given the SORA, the angular orientation of a rigid body can be calculated in a single step, thus making it possible to avoid computing the iterative infinitesimal rotation approximation. The performed test measurements confirm the validity of the SORA concept. SORA is simple and well-suited for use in the real-time calculation of angular orientation based on angular velocity measurements derived using a gyroscope. Moreover, because of its demonstrated simplicity, SORA can also be used in general angular orientation notation.

  9. 3D-optical measurement system using a new vignetting aperture procedure

    NASA Astrophysics Data System (ADS)

    Hofbauer, Engelbert; Rascher, Rolf; Wühr, Konrad; Friedke, Felix; Stubenrauch, Thomas; Pastötter, Benjamin; Schleich, Sebastian; Zöcke, Christine

    2014-05-01

    A newly developed measuring procedure uses vignetting to evaluate angles and angle changes, independently from the measurement distance. Further on, the same procedure enables the transmission of a digital readout and therefore a better automation of the electronic signal evaluation, for use as an alignment telescope. The fully extended readout by a simple 3-D reflector will provide the user with a measurement result with six degrees of freedom. The vignetting field stop procedure will be described. Firstly, considering artificial vignetting, the theoretical basics from geometric-optical view are represented. Secondly, the natural vignetting with photometric effects will be considered. The distribution of intensity in the image plane light spot, the so-called V-SPOT, is analytically deduced as a function of differently measured variables. Intensity shifts within the V-Spot are examined independently from different effects by numeric simulation. On these basics, the theoretical research regarding accuracy, linearity as well as results in 2 dimensional surface reconstruction on precision optical mirrors and also three dimensional measurements in mechanical engineering are examined. Effects and deviations will be discussed. The project WiPoVi is sponsored by "Ingenieur Nachwuchs - Qualifizierung von Ingenieurnachwuchs an Fachhochschulen" by Bavarian State Ministry of Education, Science and the Arts.

  10. 3D laser measurements of bare and shod feet during walking.

    PubMed

    Novak, Boštjan; Možina, Janez; Jezeršek, Matija

    2014-01-01

    This article presents a new system for 3D foot-shape measurements during walking. It is based on the laser-triangulation, multiple-line-illumination and color-modulation techniques. It consists of a walking stage and four measuring modules that simultaneously acquire the foot shape from the top, bottom and side views. The measuring speed is 30 fps. Custom-developed software makes it possible to analyze the foot's dimensions at an arbitrary cross-section by means of the width, height, girth and section orientation. Six subjects were measured during bare and shod walking, and the bare foot and the outside dimensions of the footwear during the entire stance phase are presented. The relative measurement repeatability of a single subject is 0.5% for bare foot and 1% for shod foot. This means that it is possible to study the differences between various influences on the foot-shape dynamics, such as a bare/shod foot, different loading conditions and the shoe's stiffness condition.

  11. Dust attenuation in z ~ 1 galaxies from Herschel and 3D-HST Hα measurements

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Rodighiero, G.; Franceschini, A.; Talia, M.; Cimatti, A.; Baronchelli, I.; Daddi, E.; Renzini, A.; Schawinski, K.; Mancini, C.; Silverman, J.; Gruppioni, C.; Lutz, D.; Berta, S.; Oliver, S. J.

    2016-02-01

    We combined the spectroscopic information from the 3D-HST survey with Herschel data to characterize the Hα dust attenuation properties of a sample of 79 main sequence star-forming galaxies at z ~ 1 in the GOODS-S field. The sample was selected in the far-IR at λ = 100 and/or 160 μm and only includes galaxies with a secure Hα detection (S/N > 3). From the low resolution 3D-HST spectra we measured the redshifts and the Hα fluxes for the whole sample. (A factor of 1/1.2 was applied to the observed fluxes to remove the [NII] contamination.) The stellar masses (M⋆), infrared (LIR), and UV luminosities (LUV) were derived from the spectral energy distributions by fitting multiband data from GALEX near-UV to SPIRE 500 μm. We estimated the continuum extinction Estar(B-V) from both the IRX = LIR/LUV ratio and the UV-slope, β, and found excellent agreement between the two. The nebular extinction was estimated from comparison of the observed SFRHα and SFRUV. We obtained f = Estar(B-V) /Eneb(B-V) = 0.93 ± 0.06, which is higher than the canonical value of f = 0.44 measured in the local Universe. Our derived dust correction produces good agreement between the Hα and IR+UV SFRs for galaxies with SFR ≳ 20M⊙/yr and M⋆ ≳ 5 × 1010M⊙, while objects with lower SFR and M⋆ seem to require a smaller f-factor (i.e. higher Hα extinction correction). Our results then imply that the nebular extinction for our sample is comparable to extinction in the optical-UV continuum and suggest that the f-factor is a function of both M⋆ and SFR, in agreement with previous studies.

  12. Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility.

    PubMed

    Ellouz, Rafaa; Chapurlat, Roland; van Rietbergen, Bert; Christen, Patrik; Pialat, Jean-Baptiste; Boutroy, Stephanie

    2014-06-01

    Definition of identical regions between repeated computed tomography (CT) scans is a key factor to monitor changes in bone microarchitecture. In longitudinal studies, accurate determination of the volume of interest (VOI), using three dimensional (3D) registration may improve precision. Therefore, the aim of our study was to investigate the short-term reproducibility of bone geometry, density, microstructure and biomechanical parameters assessed by HR-pQCT and micro-finite element (μFE) derived analyses, using the cross-sectional area (CSA) registration method in comparison with the use of 3D registration, to find overlapping regions between scans. Fifteen healthy individuals (aged 21-47 years) underwent 3 separate scans at the distal radius and tibia, within a one-month interval. Reproducibility was assessed after double contouring the cortical compartment and after applying three different methods to determine the common region between repeated scans: (i) the VOI was determined with no registration, i.e., on 110 slices, (ii) the VOI was determined after CSA-based registration, and (iii) the VOI was determined after 3D registration. Both pre- and post-registration short-term reproducibility for each subject was determined. With no registration, CVrms of geometry parameters ranged from 0.5 to 3.7%, showing a slight variation in the CSA between scans. When the CSA registration method was employed, the variability of geometry (CVrms<1.8%) and density parameters (CVrms<1.8%), was better than that obtained without registration. By removing the effect of repositioning, the 3D registration further improved the reproducibility of cortical bone measurements compared to other methods. Indeed, significant improvements were found for cortical geometry and microstructure measurements (CVrms ranged from 0.4% to 10.7% at both sites; p<0.05), whereas the impact on trabecular bone measurements was restricted to its geometry parameter. The repositioning error was significantly

  13. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment for LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-05-23

    Fast cookoff is of interest in the areas of fire hazard reduction and the development of directed energy systems for defense. During a fast cookoff (thermal explosion), high heat fluxes cause rapid temperature increases and ignition in thin boundary layers. We are developing ALE3D models to describe the thermal, chemical, and mechanical behavior during the heating, ignition, and explosive phases. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. Fast cookoff measurements were made in a Scaled-Thermal-Explosion-eXperiment (STEX) for LX-10 (94.7% HMX, 5.3% Viton A) confined in a 4130 steel tube with reinforced end caps. Gaps were present at the side and top of the explosive charge to allow for thermal expansion. The explosive was heated until explosion using radiant heaters. Temperatures were measured using thermocouples positioned on the tube wall and in the explosive. During the explosion, the tube expansion and fragment velocities were measured with strain gauges, Photonic-Doppler-Velocimeters (PDVs), and micropower radar units. A fragment size distribution was constructed from fragments captured in Lexan panels. ALE3D models for chemical, thermal, and mechanical behavior were developed for the heating and explosive processes. A multi-step chemical kinetics model is employed for the HMX while a one-step model is used for the Viton. A pressure-dependent deflagration model is employed during the expansion. A Steinberg-Guinan model represents the mechanical behavior of the solid constituents while polynomial and gamma-law expressions are used for the equation of state of the solid and gas species, respectively. Parameters for the kinetics model were specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate were employed to determine parameters in the burn front model. The simulations include radiative and conductive transport across the dynamic gaps between the

  14. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    PubMed

    Zheng, Guoyan

    2008-01-01

    This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.

  15. Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models

    NASA Astrophysics Data System (ADS)

    Sindram, M.; Machl, T.; Steuer, H.; Pültz, M.; Kolbe, T. H.

    2016-06-01

    Semantic 3D city models are increasingly used as a data source in planning and analyzing processes of cities. They represent a virtual copy of the reality and are a common information base and source of information for examining urban questions. A significant advantage of virtual city models is that important indicators such as the volume of buildings, topological relationships between objects and other geometric as well as thematic information can be derived. Knowledge about the exact building volume is an essential base for estimating the building energy demand. In order to determine the volume of buildings with conventional algorithms and tools, the buildings may not contain any topological and geometrical errors. The reality, however, shows that city models very often contain errors such as missing surfaces, duplicated faces and misclosures. To overcome these errors (Steuer et al., 2015) have presented a robust method for approximating the volume of building models. For this purpose, a bounding box of the building is divided into a regular grid of voxels and it is determined which voxels are inside the building. The regular arrangement of the voxels leads to a high number of topological tests and prevents the application of this method using very high resolutions. In this paper we present an extension of the algorithm using an octree approach limiting the subdivision of space to regions around surfaces of the building models and to regions where, in the case of defective models, the topological tests are inconclusive. We show that the computation time can be significantly reduced, while preserving the robustness against geometrical and topological errors.

  16. Reproducibility of crosstalk measurements on active glasses 3D LCD displays based on temporal characterization

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Wang, Kun; Bułat, Jarosław; Cousseau, Romain; Janowski, Lucjan; Brunnström, Kjell; Barkowsky, Marcus

    2012-03-01

    Crosstalk is one of the main display-related perceptual factors degrading image quality and causing visual discomfort on 3D-displays. It causes visual artifacts such as ghosting effects, blurring, and lack of color fidelity which are considerably annoying and can lead to difficulties to fuse stereoscopic images. On stereoscopic LCD with shutter-glasses, crosstalk is mainly due to dynamic temporal aspects: imprecise target luminance (highly dependent on the combination of left-view and right-view pixel color values in disparity regions) and synchronization issues between shutter-glasses and LCD. These different factors influence largely the reproducibility of crosstalk measurements across laboratories and need to be evaluated in several different locations involving similar and differing conditions. In this paper we propose a fast and reproducible measurement procedure for crosstalk based on high-frequency temporal measurements of both display and shutter responses. It permits to fully characterize crosstalk for any right/left color combination and at any spatial position on the screen. Such a reliable objective crosstalk measurement method at several spatial positions is considered a mandatory prerequisite for evaluating the perceptual influence of crosstalk in further subjective studies.

  17. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components.

    PubMed

    Malkov, Serghei; Shepherd, John

    2014-02-17

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  18. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    PubMed Central

    Malkov, Serghei; Shepherd, John

    2014-01-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed. PMID:25083118

  19. Combining 3D optical imaging and dual energy absorptiometry to measure three compositional components

    NASA Astrophysics Data System (ADS)

    Malkov, Serghei; Shepherd, John

    2014-02-01

    We report on the design of the technique combining 3D optical imaging and dual-energy absorptiometry body scanning to estimate local body area compositions of three compartments. Dual-energy attenuation and body shape measures are used together to solve for the three compositional tissue thicknesses: water, lipid, and protein. We designed phantoms with tissue-like properties as our reference standards for calibration purposes. The calibration was created by fitting phantom values using non-linear regression of quadratic and truncated polynomials. Dual-energy measurements were performed on tissue-mimicking phantoms using a bone densitometer unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the biological compositional compartments. The components for the solid phantom were tested and their high energy/low energy attenuation ratios are in good correspondent to water, lipid, and protein for the densitometer x-ray region. The three-dimensional body shape was reconstructed from the depth maps generated by Microsoft Kinect for Windows. We used open-source Point Cloud Library and freeware software to produce dense point clouds. Accuracy and precision of compositional and thickness measures were calculated. The error contributions due to two modalities were estimated. The preliminary phantom composition and shape measurements are found to demonstrate the feasibility of the method proposed.

  20. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  1. Comparison between 3D volumetric rendering and multiplanar slices on the reliability of linear measurements on CBCT images: an in vitro study

    PubMed Central

    FERNANDES, Thais Maria Freire; ADAMCZYK, Julie; POLETI, Marcelo Lupion; HENRIQUES, José Fernando Castanha; FRIEDLAND, Bernard; GARIB, Daniela Gamba

    2015-01-01

    Objective The purpose of this study was to determine the accuracy and reliability of two methods of measurements of linear distances (multiplanar 2D and tridimensional reconstruction 3D) obtained from cone-beam computed tomography (CBCT) with different voxel sizes. Material and Methods Ten dry human mandibles were scanned at voxel sizes of 0.2 and 0.4 mm. Craniometric anatomical landmarks were identified twice by two independent operators on the multiplanar reconstructed and on volume rendering images that were generated by the software Dolphin®. Subsequently, physical measurements were performed using a digital caliper. Analysis of variance (ANOVA), intraclass correlation coefficient (ICC) and Bland-Altman were used for evaluating accuracy and reliability (p<0.05). Results Excellent intraobserver reliability and good to high precision interobserver reliability values were found for linear measurements from CBCT 3D and multiplanar images. Measurements performed on multiplanar reconstructed images were more accurate than measurements in volume rendering compared with the gold standard. No statistically significant difference was found between voxel protocols, independently of the measurement method. Conclusions Linear measurements on multiplanar images of 0.2 and 0.4 voxel are reliable and accurate when compared with direct caliper measurements. Caution should be taken in the volume rendering measurements, because the measurements were reliable, but not accurate for all variables. An increased voxel resolution did not result in greater accuracy of mandible measurements and would potentially provide increased patient radiation exposure. PMID:25004053

  2. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    NASA Astrophysics Data System (ADS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  3. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method.

    PubMed

    Brunette, J; Mongrain, R; Laurier, J; Galaz, R; Tardif, J C

    2008-11-01

    Blood flow dynamics has an important role in atherosclerosis initiation, progression, plaque rupture and thrombosis eventually causing myocardial infarction. In particular, shear stress is involved in platelet activation, endothelium function and secondary flows have been proposed as possible variables in plaque erosion. In order to investigate these three-dimensional flow characteristics in the context of a mild stenotic coronary artery, a whole volume PIV method has been developed and applied to a scaled-up transparent phantom. Experimental three-dimensional velocity data was processed to estimate the 3D shear stress distributions and secondary flows within the flow volume. The results show that shear stress reaches values out of the normal and atheroprotective range at an early stage of the obstructive pathology and that important secondary flows are also initiated at an early stage of the disease. The results also support the concept of a vena contracta associated with the jet in the context of a coronary artery stenosis with the consequence of higher shear stresses in the post-stenotic region in the blood domain than at the vascular wall.

  4. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  5. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  6. Development of portable 3D optical measuring system using structured light projection method

    NASA Astrophysics Data System (ADS)

    Aoki, Hiroshi

    2014-05-01

    Three-dimensional (3D) scanners are becoming increasingly common in many industries. However most of these scanning technologies have drawbacks for practical use due to size, weight, accessibility, and ease-of-use. Depending on the application, speed, flexibility and portability can often be deemed more important than accuracy. We have developed a solution to address this market requirement and overcome the aforementioned limitations. To counteract shortcomings such as heavy weight and large size, an optical sensor is used that consists of a laser projector, a camera system, and a multi-touch screen. Structured laser light is projected onto the measured object with a newly designed laser projector employing a single Micro Electro Mechanical Systems (MEMS) mirror. The optical system is optimized for the combination of a Laser Diode (LD), the MEMS mirror and the size of measurement area to secure the ideal contrast of structured light. Also, we developed a new calibration algorithm for this sensor with MEMS laser projector that uses an optical camera model for point cloud calculation. These technical advancements make the sensor compact, save power consumption, and reduce heat generation yet still allows for rapid calculation. Due to the principle of the measurement, structured light triangulation utilizing phase-shifting technology, resolution is improved. To meet requirements for practical applications, the optics, electronics, image processing, display and data management capabilities have been integrated into a single compact unit.

  7. Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC

    NASA Astrophysics Data System (ADS)

    Velas, K. M.; Milroy, R. D.

    2012-10-01

    A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  8. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  9. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  10. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    SciTech Connect

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.; Hanson, J. D.

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  11. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    SciTech Connect

    Rohe, Daniel Peter

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  12. Stereometric body volume measurement

    NASA Technical Reports Server (NTRS)

    Herron, R. E.

    1975-01-01

    The following studies are reported: (1) effects of extended space flight on body form of Skylab astronauts using biostereometrics; (2) comparison of body volume determinations using hydrostatic weighing and biostereometrics; and (3) training of technicians in biostereometric principles and procedures.

  13. SRB-3D Solid Rocket Booster performance prediction program. Volume 1: Engineering description/users information manual

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The modified Solid Rocket Booster Performance Evaluation Model (SRB-3D) was developed as an extension to the internal ballistics module of the SRB-2 performance program. This manual contains the engineering description of SRB-3D which describes the approach used to develop the 3D concept and an explanation of the modifications which were necessary to implement these concepts.

  14. Countermovement jump performance assessment using a wearable 3D inertial measurement unit.

    PubMed

    Picerno, Pietro; Camomilla, Valentina; Capranica, Laura

    2011-01-01

    The aim of this study was to validate a wearable inertial measurement unit (IMU), containing a 3D accelerometer and gyroscope, for the estimation of countermovement jump height. The absolute vertical acceleration of the IMU positioned on the back of the participant at L5 level, compensated for trunk rotations, was used to obtain jump height by applying the equation of free-fall to the motion of the IMU. The methodology was tested on 28 participants performing five countermovement jumps each. A reference value for this quantity was obtained using stereophotogrammetry (35.4 cm, s = 4.9). Jump height scores obtained using the proposed methodology (35.9 cm, s = 5.5) presented no significant difference with respect to stereophotogrammetry (P = 0.61). A low bias of 0.6 cm confirmed the accuracy of the estimate, which also showed a high (r = 0.87) and significant (P < 0.0001) correlation with reference values. Furthermore, without compensating accelerations for trunk rotation, jump height was largely underestimated (P < 0.0001) (bias: -12.7 cm) and poorly associated (r = 0.31) with stereophotogrammetry. The results of this study show that the estimation of jump height using inertial sensors leads to accurate results when the measured accelerations are corrected for trunk rotations.

  15. Measurement of spiculation index in 3D for solitary pulmonary nodules in volumetric lung CT images

    NASA Astrophysics Data System (ADS)

    Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Alam, Naved; Khandelwal, Niranjan

    2013-02-01

    In this paper a differential geometry based method is proposed for calculating surface speculation of solitary pulmonary nodule (SPN) in 3D from lung CT images. Spiculation present in SPN is an important shape feature to assist radiologist for measurement of malignancy. Performance of Computer Aided Diagnostic (CAD) system depends on the accurate estimation of feature like spiculation. In the proposed method, the peak of the spicules is identified using the property of Gaussian and mean curvature calculated at each surface point on segmented SPN. Once the peak point for a particular SPN is identified, the nearest valley points for the corresponding peak point are determined. The area of cross-section of the best fitted plane passing through the valley points is the base of that spicule. The solid angle subtended by the base of spicule at peak point and the distance of peak point from nodule base are taken as the measures of spiculation. The speculation index (SI) for a particular SPN is the weighted combination of all the spicules present in that SPN. The proposed method is validated on 95 SPN from Imaging Database Resources Initiative (IDRI) public database. It has achieved 87.4% accuracy in calculating quantified spiculation index compared to the spiculation index provided by radiologists in IDRI database.

  16. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    PubMed

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  17. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  18. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  19. Quantifying bone weathering stages using the average roughness parameter Ra measured from 3D data

    NASA Astrophysics Data System (ADS)

    Vietti, Laura A.

    2016-09-01

    Bone surface texture is known to degrade in a predictable fashion due to subaerial exposure, and can thus act as a relative proxy for estimating temporal information from modern and ancient bone assemblages. To date, the majority of bone weathering data is collected on a categorical scale based on descriptive terms. While this qualitative classification of weathering data is well established, textural analyses of bone surfaces may provide means to quantify weathering stages but have yet to be tested. Here, I examined the suitability of textural analyses for bone weathering studies by first establishing bone surface regions most appropriate for weathering analyses. I then measured and compared the roughness texture of weathered bones at different stages. To establish regions of bone most suitable for textural analyses, Ra was measured from 3D scans of dorsal ribs of four adult ungulate taxa. Results indicate that the rib-shafts from unweathered ungulate skeletons were similar and are likely good candidates because differences in surface texture will not be due to differences in initial bone texture. To test if textural measurements could reliably characterize weathering stages, the average roughness values (Ra) were measured from weathered ungulate rib-shafts assigned to four descriptive weathering stages. Results from analyses indicate that the Ra was statistically distinct for each weathering stage and that roughness positively correlates with the degree of weathering. As such, results suggest that textural analyses may provide the means for quantifying bone-weathering stages. Using Ra and other quantifiable texture parameters may enable more reliable and comparative taphonomic analyses by reducing inter-observer variations and by providing numerical data more compatible for multivariate statistics.

  20. 3D Wind Reconstruction and Turbulence Estimation in the Boundary Layer from Doppler Lidar Measurements using Particle Method

    NASA Astrophysics Data System (ADS)

    Rottner, L.; Baehr, C.

    2014-12-01

    Turbulent phenomena in the atmospheric boundary layer (ABL) are characterized by small spatial and temporal scales which make them difficult to observe and to model.New remote sensing instruments, like Doppler Lidar, give access to fine and high-frequency observations of wind in the ABL. This study suggests to use a method of nonlinear estimation based on these observations to reconstruct 3D wind in a hemispheric volume, and to estimate atmospheric turbulent parameters. The wind observations are associated to particle systems which are driven by a local turbulence model. The particles have both fluid and stochastic properties. Therefore, spatial averages and covariances may be deduced from the particles. Among the innovative aspects, we point out the absence of the common hypothesis of stationary-ergodic turbulence and the non-use of particle model closure hypothesis. Every time observations are available, 3D wind is reconstructed and turbulent parameters such as turbulent kinectic energy, dissipation rate, and Turbulent Intensity (TI) are provided. This study presents some results obtained using real wind measurements provided by a five lines of sight Lidar. Compared with classical methods (e.g. eddy covariance) our technic renders equivalent long time results. Moreover it provides finer and real time turbulence estimations. To assess this new method, we suggest computing independently TI using different observation types. First anemometer data are used to have TI reference.Then raw and filtered Lidar observations have also been compared. The TI obtained from raw data is significantly higher than the reference one, whereas the TI estimated with the new algorithm has the same order.In this study we have presented a new class of algorithm to reconstruct local random media. It offers a new way to understand turbulence in the ABL, in both stable or convective conditions. Later, it could be used to refine turbulence parametrization in meteorological meso-scale models.

  1. 3D Equilibrium Reconstruction with Internal Measurements on Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Koliner, J. J.; Chapman, B. E.; Sarff, J. S.; Anderson, J. K.; Munaretto, S.; Capecchi, W.; Lin, L.; Hanson, J. D.; Cianciosa, M. R.

    2014-10-01

    Plasmas in the MST reversed field pinch (RFP) bifurcate to a helical equilibrium, forming a single helical axis (SHAx) at high plasma current (Ip ~ 500 kA) and low density (ne ~ 0.5 - 1019 m-3) . In order to understand the physics of confinement and self-organization in SHAx, 3D equilibrium reconstruction is needed. The V3FIT equilibrium reconstruction code is applied using measurements from the 11-chord interferometer-polarimeter, 22-point Thomson scattering system, 4-camera soft x-ray probes, and magnetics. Equilibria have been generated using a fixed plasma boundary with no external currents. Model signals fit well to observed signals, χ2 ~ 1, and the zero crossing of line-averaged neBz from Faraday rotation is matched by the model. External magnetics are shown to be an inadequate equilibrium constraint with the VMEC model, due to possible shear in the poloidal phase of the helical structure, as well as strong contribution to the edge magnetic field from currents in the conducting shell. To address this shortcoming, a filament current model has been created to simulate the conducting shell with many external currents for a free plasma boundary. Axisymmetric equilibria have been reconstructed using the filament model and compared to solutions obtained with the MSTFIT axisymmetric equilibrium reconstruction code. The filament model has been extended to allow reconstruction of helical equilibria. Supported by DoE.

  2. 3-D Lagrangian Measurements of Suspended Particles in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Allen, R. M.; Tse, I.; Variano, E. A.

    2013-12-01

    San Francisco Bay often appears brown. Its high suspended sediment concentrations give it the potential to move and mix large amounts of sediments from one environment, such as an urban stormwater outflow, to another, such as a wetland undergoing restoration. These sediments can carry with them persistent, bioaccumulative and toxic chemicals such as PCBs, mercury, or emerging contaminants. To predict sediment fate, almost all physical models describe the transport of suspended sediment with the advection-diffusion equation, which requires knowledge of the water currents and the diffusivity of sediment. Methods for estimating diffusivity to use in the model are not typically satisfying, and there remain fundamental questions about the accuracy and applicability of the typical approximation methods. We have developed a new tool that measures 3D tracks of suspended sediment in-situ, from which we compute diffusivity directly. We present here the results of the first deployment, in San Francisco Bay near the Berkeley shore. This site has highly active sediment and is important for transfer of sediment-associated contaminants, and sediment diffusivity is sensitive to wind, waves, tides and turbulence. We investigate these relationships using our preliminary, proof-of-concept, data. It also provides the foundation for future investigations of the behavior of sediment diffusivity and particle trajectories in different environments and the underlying theory of solute diffusivity in real-world conditions. In addition, these data enable the analysis of whether sediment particles in San Francisco Bay exhibit the 'preferential clustering' observed for some inertial particles in turbulent flow.

  3. Measuring 3D-orthodontic actions to guide clinical treatments involving coil springs and miniscrews.

    PubMed

    Mencattelli, Margherita; Donati, Elisa; Spinelli, Pasqua; Cultrone, Massimo; Luzi, Cesare; Cantarella, Daniele; Stefanini, Cesare

    2017-03-01

    The understanding of the phenomena at the base of tooth movement, due to orthodontic therapy, is an ambitious topic especially with regard to the "optimal forces" able to move teeth without causing irreversible tissue damages. To this aim, a measuring platform for detecting 3D orthodontic actions has been developed. It consists of customized load cells and dedicated acquisition electronics. The force sensors are able to detect, simultaneously and independently of each other, the six orthodontic components which a tooth is affected by. They have been calibrated and then applied on a clinical case that required NiTi closed coil springs and miniscrews for the treatment of upper post-extraction spaces closure. The tests have been conducted on teeth stumps belonging to a plaster cast of the patient's mouth. The load cells characteristics (sensor linearity and repeatability) have been analyzed (0.97 < R (2) < 1; 6.3*10 (-6) % < STD < 8.8 %) and, on the basis of calibration data, the actions exerted on teeth have been determined. The biomechanical behavior of the frontal group and clinical interpretation of the results are discussed.

  4. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    SciTech Connect

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  5. Quantitative measurement of eyestrain on 3D stereoscopic display considering the eye foveation model and edge information.

    PubMed

    Heo, Hwan; Lee, Won Oh; Shin, Kwang Yong; Park, Kang Ryoung

    2014-05-15

    We propose a new method for measuring the degree of eyestrain on 3D stereoscopic displays using a glasses-type of eye tracking device. Our study is novel in the following four ways: first, the circular area where a user's gaze position exists is defined based on the calculated gaze position and gaze estimation error. Within this circular area, the position where edge strength is maximized can be detected, and we determine this position as the gaze position that has a higher probability of being the correct one. Based on this gaze point, the eye foveation model is defined. Second, we quantitatively evaluate the correlation between the degree of eyestrain and the causal factors of visual fatigue, such as the degree of change of stereoscopic disparity (CSD), stereoscopic disparity (SD), frame cancellation effect (FCE), and edge component (EC) of the 3D stereoscopic display using the eye foveation model. Third, by comparing the eyestrain in conventional 3D video and experimental 3D sample video, we analyze the characteristics of eyestrain according to various factors and types of 3D video. Fourth, by comparing the eyestrain with or without the compensation of eye saccades movement in 3D video, we analyze the characteristics of eyestrain according to the types of eye movements in 3D video. Experimental results show that the degree of CSD causes more eyestrain than other factors.

  6. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  7. State of the art of compact optical 3D profile measurement apparatuses: from outer surface to inner surface measurement

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka

    2013-06-01

    This paper is not an original paper, but a review paper passed on our previous papers. We have been developing a few apparatuses for 2D and/or 3D profile measurement because these systems, especially 3D profiling systems, have become indispensable tools in manufacturing industry. However, in surface profile measurement, conventional systems have several short comings including being very large in size and heavy in weight. Therefore we propose to realize a compact portable apparatus on the basis of pattern projection method using a single MEMS mirror scanning. On the other hand, in the case of inner profile measurement for pipes or tubes, we propose to use optical section method by means of disk beam produced by a conical mirror. In these systems development of elements and devices such as a MEMS mirror and/or cone mirror play important role to apply our fundamental principles to practical apparatuses. We introduce the state of the art of these systems including commercialized products for practical purpose.

  8. Nano-Structural Elucidation in Carbon Black Loaded NR Vulcanizate by 3D-TEM and In Situ WAXD Measurements

    SciTech Connect

    Ikeda,Y.; Kato, A.; Shimanuki, J.; Kohjiya, S.; Tosaka, M.; Poompradub, S.; Toki, S.; Hsiao, B.

    2007-01-01

    Three dimensional (3D) visualization of nanometer structure of carbon black dispersion in rubbery matrix has successfully been studied and reported in this paper. Use of 3D-TEM, which is computerized tomography combined with transmission electron microscopy (TEM), enabled us to reconstruct 3D images of carbon black aggregates in natural rubber (NR) matrix. The TEM measurements were conducted by a bright-field method on thin samples without any electron staining. The sample was subject to uni-axial tilting (+65 degree to -65 degree with 2 degree increment) in the sample chamber, and 66 TEM images were taken on each sample. These TEM images were used for computerized tomography to reconstruct the 3D image. This technique is designated as 3D-TEM. The nano-structural features observed by 3D-TEM were in conformity with the electron-conductivity results, and the percolation behavior was recognized. These results were further supplemented by in situ wide-angle X-ray diffraction (WAXD), i.e., simultaneous WAXD and tensile measurements on the sample to observe the strain-induced crystallization in NR vulcanizate. Upon tensile elongation, the crystallization was clearly observed in WAXD in the presence of carbon black, and it contributed to the tensile properties. In order to understand the performances of filled NR vulcanizates, it surely is necessary to know the structural states of the mixed nano-filler and the crystallites produced upon elongation.

  9. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  10. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm. PMID:22319408

  11. Development of a stereo vision measurement system for a 3D three-axial pneumatic parallel mechanism robot arm.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm.

  12. Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging

    NASA Astrophysics Data System (ADS)

    Stann, Barry; Redman, Brian C.; Lawler, William; Giza, Mark; Dammann, John; Krapels, Keith

    2007-04-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges, but cannot distinguish missiles from slowly moving false targets and clutter. In a joint Army-Navy program, the Army Research Laboratory (ARL) is developing a ladar to provide unambiguous range and velocity measurements of targets detected by the distributed aperture system (DAS) IRST system being developed by the Naval Research Laboratory (NRL) sponsored by the Office of Naval Research (ONR). By using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from incoming missiles. Because the ladar uses an array receiver, it can also provide three-dimensional (3-D) imagery of potential threats at closer ranges in support of the force protection/situational awareness mission. The ladar development is being accomplished in two phases. In Phase I, ARL designed, built, and reported on an initial breadboard ladar for proof-of-principle static platform field tests. In Phase II, ARL was tasked to design, and test an advanced breadboard ladar that corrected various shortcomings in the transmitter optics and receiver electronics and improved the signal processing and display code. The advanced breadboard will include a high power laser source utilizing a long pulse erbium amplifier built under contract. Because award of the contract for the erbium amplifier was delayed, final assembly of the advanced ladar is delayed. In the course of this year's work we built a "research receiver" to facilitate design revisions, and when combined with a low-power laser, enabled us to demonstrate the viability of the components and subsystems comprising the advanced ladar.

  13. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  14. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  15. Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac.

    PubMed

    Guardiola, C; Gómez, F; Fleta, C; Rodríguez, J; Quirion, D; Pellegrini, G; Lousa, A; Martínez-de-Olcoz, L; Pombar, M; Lozano, M

    2013-05-21

    The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.

  16. Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac

    NASA Astrophysics Data System (ADS)

    Guardiola, C.; Gómez, F.; Fleta, C.; Rodríguez, J.; Quirion, D.; Pellegrini, G.; Lousa, A.; Martínez-de-Olcoz, L.; Pombar, M.; Lozano, M.

    2013-05-01

    The accurate detection and dosimetry of neutrons in mixed and pulsed radiation fields is a demanding instrumental issue with great interest both for the industrial and medical communities. In recent studies of neutron contamination around medical linacs, there is a growing concern about the secondary cancer risk for radiotherapy patients undergoing treatment in photon modalities at energies greater than 6 MV. In this work we present a promising alternative to standard detectors with an active method to measure neutrons around a medical linac using a novel ultra-thin silicon detector with 3D electrodes adapted for neutron detection. The active volume of this planar device is only 10 µm thick, allowing a high gamma rejection, which is necessary to discriminate the neutron signal in the radiotherapy peripheral radiation field with a high gamma background. Different tests have been performed in a clinical facility using a Siemens PRIMUS linac at 6 and 15 MV. The results show a good thermal neutron detection efficiency around 2% and a high gamma rejection factor.

  17. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    PubMed

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  18. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy

    SciTech Connect

    Tsunashima, Yoshikazu . E-mail: tsunashima@pmrc.tsukuba.ac.jp; Sakae, Takeji; Shioyama, Yoshiyuki; Kagei, Kenji; Terunuma, Toshiyuki; Nohtomi, Akihiro; Akine, Yasuyuki

    2004-11-01

    Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use.

  19. New insights in catchment processes via distributed soil moisture measurements and 3D hydrological modeling

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Sciuto, G.; Rosenbaum, U.; Herbst, M.; Huisman, J. A.; Vereecken, H.; Diekkrueger, B.

    2010-12-01

    Hydrological analysis is often limited by the number of data available. Usually, discharge data and only little point information concerning soil moisture status are available. This might give a good representation of the temporal variability of runoff, but it does not provide insights into the spatial dynamics of soil moisture and water fluxes within the catchment. The small forested Wüstebach catchment (~27 ha) has been instrumented with a wireless sensor network consisting of 150 nodes and more than 1200 soil moisture sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories) [1]. This unique data set provides a consistent picture of the hydrological status of the catchment in a high spatial and temporal resolution. We present first results of a geostatistical analysis of the data and an application of the integrated surface/subsurface 3D finite element model HydroGeoSphere model to investigate the scale dependency of the temporal dynamics of soil moisture patterns. A variogram analysis showed that the sum of the sub-scale variability and the measurement error is close to time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil moisture, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to root water uptake, lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. The temporal patterns of runoff discharge were reproduced by the HydroGeoSphere model in a satisfying way. The observed soil

  20. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice

  1. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    SciTech Connect

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M.

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  2. Obstacle classification and 3D measurement in unstructured environments based on ToF cameras.

    PubMed

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-06-18

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient.

  3. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras

    PubMed Central

    Yu, Hongshan; Zhu, Jiang; Wang, Yaonan; Jia, Wenyan; Sun, Mingui; Tang, Yandong

    2014-01-01

    Inspired by the human 3D visual perception system, we present an obstacle detection and classification method based on the use of Time-of-Flight (ToF) cameras for robotic navigation in unstructured environments. The ToF camera provides 3D sensing by capturing an image along with per-pixel 3D space information. Based on this valuable feature and human knowledge of navigation, the proposed method first removes irrelevant regions which do not affect robot's movement from the scene. In the second step, regions of interest are detected and clustered as possible obstacles using both 3D information and intensity image obtained by the ToF camera. Consequently, a multiple relevance vector machine (RVM) classifier is designed to classify obstacles into four possible classes based on the terrain traversability and geometrical features of the obstacles. Finally, experimental results in various unstructured environments are presented to verify the robustness and performance of the proposed approach. We have found that, compared with the existing obstacle recognition methods, the new approach is more accurate and efficient. PMID:24945679

  4. The use of 3D surface scanning for the measurement and assessment of the human foot

    PubMed Central

    2010-01-01

    Background A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot. Methods The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review. Results Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out. Conclusions Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans. PMID:20815914

  5. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  6. Geomorphology of Late Quaternary Mass Movement Deposits using a Decimetre-Resolution 3D Seismic Volume: Case Studies from Windermere, UK, and Trondheimsfjorden, Norway

    NASA Astrophysics Data System (ADS)

    Vardy, M. E.; Dix, J. K.; Henstock, T.; Bull, J. M.; Pinson, L.; L'Heureux, J.; Longva, O.; Hansen, L.; Chand, S.; Gutowski, M.

    2009-12-01

    We present results from decimetre resolution 3D seismic volumes acquired over Late Quaternary mass movement deposits in both Lake Windermere, UK, and the Trondheim Harbour area, central Norway. Both deposits were imaged using the 3D Chirp sub-bottom profiler, which combines the known, highly repeatable source waveform of Chirp profilers with the coherent processing and interpretation afforded by true 3D seismic volumes. Reflector morphology from these two volumes are used to identify and map structure on scales of 10s cm to 100s metres. This shows the applicability of the method for the interpretation of failure mechanism, flow morphology and depositional style in these two environments. In Windermere, Younger Dryas deposits have been substantially reworked by the episodic redistribution of sediment from the steep lakesides into the basin. Within the 100 x 400 m 3D seismic volume we identify two small debris flow deposits (1500 m3 and 60,000 m3) and one large (500,000 m3) erosive mass flow deposit. These two depositional mechanisms are distinct. The debris flows have high amplitude, chaotic internal reflections, with a high amplitude reflector representing a lower erosional boundary, discontinuous low amplitude top reflector, and thin out rapidly with distance from the lake margin. The thicker mass flow unit lacks internal structure, and has high amplitude top and base reflectors,. In the Trondheim Harbour we image the down-slope extent of three large slide blocks (which have a net volume > 1 x 106 m3), mobilised by a landslide in 1990, in the 100 x 450 m 3D seismic volume. The morphology of these mass movement deposits is distinct again; demonstrating translational failure along a clear slip plane, leaving well defined slide scars, and forming prominent compressional/extensional structures.

  7. Validation of INSAT-3D sounder data with in situ measurements and other similar satellite observations over India

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, Madineni; Hemanth Kumar, Alladi; Jayaraman, Achuthan

    2016-11-01

    To date, several satellites measurements are available which can provide profiles of temperature and water vapour with reasonable accuracies. However, the temporal resolution has remained poor, particularly over the tropics, as most of them are polar orbiting. At this juncture, the launch of INSAT-3D (Indian National Satellite System) by the Indian Space Research Organization (ISRO) on 26 July 2013 carrying a multi-spectral imager covering visible to long-wave infrared made it possible to obtain profiles of temperature and water vapour over India with higher temporal and vertical resolutions and altitude coverage, besides other parameters. The initial validation of INSAT-3D data is made with the high temporal (3 h) resolution radiosonde observations launched over Gadanki (13.5° N, 79.2° E) during a special campaign and routine evening soundings obtained at 12:00 UTC (17:30 LT). We also compared INSAT-3D data with the radiosonde observations obtained from 34 India Meteorological Department stations. Comparisons were also made over India with data from other satellites like AIRS, MLS and SAPHIR and from ERA-Interim and NCEP reanalysis data sets. INSAT-3D is able to show better coverage over India with high spatial and temporal resolutions as expected. Good correlation in temperature between INSAT-3D and in situ measurements is noticed except in the upper tropospheric and lower stratospheric regions (positive bias of 2-3 K). There is a mean dry bias of 20-30 % in the water vapour mixing ratio. Similar biases are noticed when compared to other satellites and reanalysis data sets. INSAT-3D shows a large positive bias in temperature above 25° N in the lower troposphere. Thus, caution is advised when using these data for tropospheric studies. Finally it is concluded that temperature data from INSAT-3D are of high quality and can be directly assimilated for better forecasts over India.

  8. Quantifying Transient 3D Dynamical Phenomena of Single mRNA Particles in Live Yeast Cell Measurements

    PubMed Central

    Calderon, Christopher P.; Thompson, Michael A.; Casolari, Jason M.; Paffenroth, Randy C.; Moerner, W. E.

    2013-01-01

    Single-particle tracking (SPT) has been extensively used to obtain information about diffusion and directed motion in a wide range of biological applications. Recently, new methods have appeared for obtaining precise (10s of nm) spatial information in three dimensions (3D) with high temporal resolution (measurements obtained every 4ms), which promise to more accurately sense the true dynamical behavior in the natural 3D cellular environment. Despite the quantitative 3D tracking information, the range of mathematical methods for extracting information about the underlying system has been limited mostly to mean-squared displacement analysis and other techniques not accounting for complex 3D kinetic interactions. There is a great need for new analysis tools aiming to more fully extract the biological information content from in vivo SPT measurements. High-resolution SPT experimental data has enormous potential to objectively scrutinize various proposed mechanistic schemes arising from theoretical biophysics and cell biology. At the same time, methods for rigorously checking the statistical consistency of both model assumptions and estimated parameters against observed experimental data (i.e. goodness-of-fit tests) have not received great attention. We demonstrate methods enabling (1) estimation of the parameters of 3D stochastic differential equation (SDE) models of the underlying dynamics given only one trajectory; and (2) construction of hypothesis tests checking the consistency of the fitted model with the observed trajectory so that extracted parameters are not over-interpreted (the tools are applicable to linear or nonlinear SDEs calibrated from non-stationary time series data). The approach is demonstrated on high-resolution 3D trajectories of single ARG3 mRNA particles in yeast cells in order to show the power of the methods in detecting signatures of transient directed transport. The methods presented are generally relevant to a wide variety of 2D and 3D SPT

  9. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R.

    2012-11-01

    A new estimate of the Global Ocean 3D geostrophic circulation from the surface down to 1500 m depth (Surcouf3D) has been computed for the 1993-2008 period using an observation-based approach that combines altimetry with temperature and salinity through the thermal wind equation. The validity of this simple approach was tested using a consistent dataset from a model reanalysis. Away from the boundary layers, errors are less than 10% in most places, which indicate that the thermal wind equation is a robust approximation to reconstruct the 3D oceanic circulation in the ocean interior. The Surcouf3D current field was validated in the Atlantic Ocean against in-situ observations. We considered the ANDRO current velocities deduced at 1000 m depth from Argo float displacements as well as velocity measurements at 26.5°N from the RAPID-MOCHA current meter array. The Surcouf3D currents show similar skill to the 3D velocities from the GLORYS Mercator Ocean reanalysis in reproducing the amplitude and variability of the ANDRO currents. In the upper 1000 m, high correlations are also found with in-situ velocities measured by the RAPID-MOCHA current meters. The Surcouf3D current field was then used to compute estimates of the Atlantic Meridional Overturning Circulation (AMOC) through the 25°N section, showing good comparisons with hydrographic sections from 1998 and 2004. Monthly averaged AMOC time series are also consistent with the RAPID-MOCHA array and with the GLORYS Mercator Ocean reanalysis over the April 2004-September 2007 period. Finally a 15 years long time series of monthly estimates of the AMOC was computed. The AMOC strength has a mean value of 16 Sv with an annual (resp. monthly) standard deviation of 2.4 Sv (resp. 7.1 Sv) over the 1993-2008 period. The time series, characterized by a strong variability, shows no significant trend.

  10. Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Peterfy, Charles G.; Genant, Harry K.

    2001-07-01

    In osteoarthritis, articular cartilage loses integrity and becomes thinned. This usually occurs at sites which bear weight during normal use. Measurement of such loss from MRI scans, requires precise and reproducible techniques, which can overcome the difficulties of patient repositioning within the scanner. In this study, we combine a previously described technique for segmentation of cartilage from MRI of the knee, with a technique for 3D image registration that matches localized regions of interest at followup and baseline. Two patients, who had recently undergone meniscal surgery, and developed lesions during the 12 month followup period were examined. Image registration matched regions of interest (ROI) between baseline and followup, and changes within the cartilage lesions were estimate to be about a 16% reduction in cartilage volume within each ROI. This was more than 5 times the reproducibility of the measurement, but only represented a change of between 1 and 2% in total femoral cartilage volume. Changes in total cartilage volume may be insensitive for quantifying changes in cartilage morphology. A combined used of automated image segmentation, with 3D image registration could be a useful tool for the precise and sensitive measurement of localized changes in cartilage from MRI of the knee.

  11. Remote measurement methods for 3-D modeling purposes using BAE Systems' Software

    NASA Astrophysics Data System (ADS)

    Walker, Stewart; Pietrzak, Arleta

    2015-06-01

    Efficient, accurate data collection from imagery is the key to an economical generation of useful geospatial products. Incremental developments of traditional geospatial data collection and the arrival of new image data sources cause new software packages to be created and existing ones to be adjusted to enable such data to be processed. In the past, BAE Systems' digital photogrammetric workstation, SOCET SET®, met fin de siècle expectations in data processing and feature extraction. Its successor, SOCET GXP®, addresses today's photogrammetric requirements and new data sources. SOCET GXP is an advanced workstation for mapping and photogrammetric tasks, with automated functionality for triangulation, Digital Elevation Model (DEM) extraction, orthorectification and mosaicking, feature extraction and creation of 3-D models with texturing. BAE Systems continues to add sensor models to accommodate new image sources, in response to customer demand. New capabilities added in the latest version of SOCET GXP facilitate modeling, visualization and analysis of 3-D features.

  12. Comparison of 3D Orientation Distribution Functions Measured with Confocal Microscopy and Diffusion MRI

    PubMed Central

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  13. Optimised 3D surface measurement of hydroxyapatite layers using adapted white light scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pecheva, Emilia; Montgomery, Paul; Montaner, Denis; Pramatarova, Lilyana; Zanev, Zenko

    2006-09-01

    Biomineralization is intensively studied at present due to its importance in the formation of bones, teeth, cartilage, etc. Hydroxyapatite is one of the most common natural biomaterials and the primary structural component of bones and teeth. We have grown bio-like hydroxyapatite layers in-vitro on stainless steel, silicon and silica glass by using a biomimetic approach (immersion in a supersaturated aqueous solution resembling the ion composition of human blood plasma). Using classical techniques such as stylus profiling, AFM or SEM, it was found difficult, destructive or time-consuming to measure the topography, thickness and profile of the heterogeneous, thick and rough hydroxyapatite layers. White light scanning interferometry, on the other hand, has been found to be particularly useful for analyzing such bio-like layers, requiring no sample preparation and being rapid and non-destructive. The results have shown a typical layer thickness of up to 20 μm and a rms roughness of 4 μm. The hydroxyapatite presents nonetheless a challenge for this technique because of its semi-translucence, high roughness and the presence of cavities within its volume. This results in varying qualities of fringe pattern depending on the area, ranging from classical fringes on smooth surfaces, to complex speckle-like fringes on rough surfaces, to multiple fringe signals along the optical axis in the presence of buried layers. In certain configurations this can affect the measurement precision. In this paper we present the latest results for optimizing the measurement conditions in order to reduce such errors and to provide additional useful information concerning the layer.

  14. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  15. Rapid, simple and inexpensive production of custom 3D printed equipment for large-volume fluorescence microscopy

    PubMed Central

    Tyson, Adam L.; Hilton, Stephen T.; Andreae, Laura C.

    2015-01-01

    The cost of 3D printing has reduced dramatically over the last few years and is now within reach of many scientific laboratories. This work presents an example of how 3D printing can be applied to the development of custom laboratory equipment that is specifically adapted for use with the novel brain tissue clearing technique, CLARITY. A simple, freely available online software tool was used, along with consumer-grade equipment, to produce a brain slicing chamber and a combined antibody staining and imaging chamber. Using standard 3D printers we were able to produce research-grade parts in an iterative manner at a fraction of the cost of commercial equipment. 3D printing provides a reproducible, flexible, simple and cost-effective method for researchers to produce the equipment needed to quickly adopt new methods. PMID:25797056

  16. 3D registration of micro PET-CT for measurable correlates of dyspeptic symptoms in mice

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Simpson, Kathryn; Bardsley, Michael R.; Popko, Laura N.; Young, David L.; Kemp, Bradley J.; Lowe, Val; Ordog, Tamas; Robb, Richard

    2009-02-01

    Patients with chronic calorie insufficiency commonly suffer from upper gastrointestinal dysfunction and consequent dyspeptic symptoms, which may interfere with their nutritional rehabilitation. To investigate the relationship between gastric dysfunction and feeding behavior, we exposed mice to chronic caloric restriction and demonstrated gastric motor abnormalities in them. Gastric dysmotility is typically associated with dyspeptic symptoms but sensations cannot be directly assessed in animal models. Therefore, as an initial step toward establishing measurable correlates of postprandial symptoms in small animals, we have attempted to characterize central responses to food intake by positron emission tomography-computerized microtomography (PET-CT) in normal and calorically restricted mice. Animals consumed a standard test meal after an overnight fast before receiving 2-deoxy-2[18F]fluoro-D-glucose tracer. The same mice were also scanned in the fasting state on a separate day. We were able to bring the fed and fasting PET volume images into spatial registration with each other and with an MR-derived atlas of the mouse brain, so that the differences in uptake between the two states could be mapped quantitatively against the neuroanatomic regions of the atlas. Our approach is suitable for studying the effects of gastric dysmotilities on central responses to feeding.

  17. Measurement and ALE3D Simulation of Violence in a Deflagration Experiment With LX-10 and Aermet-100 Alloy

    SciTech Connect

    Knap, J; McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-22

    We describe the results of a Scaled-Thermal-Explosion-eXperiment (STEX) for LX-10 (94.7 % HMX, 5.3 % Viton A) confined in an AerMet 100 (iron-cobalt-nickel alloy) tube with reinforced end caps. The experimental measurements are compared with predictions of an Arbitrary-Lagrangian-Eulerian (ALE3D) computer model. ALE3D is a three-dimensional multi-physics computer code capable of solving coupled equations describing thermal, mechanical and chemical behavior of materials. In particular, we focus on the processes linked to fracture and fragmentation of the AerMet tube driven by the LX-10 deflagration.

  18. Combination of 3-D deformation and shape measurement by electronic speckle pattern interferometry for quantitative strain-stress analysis

    NASA Astrophysics Data System (ADS)

    Ettemeyer, Andreas

    2000-01-01

    Laser speckle interferometry as a full-field noncontact measuring technique offers interesting opportunities for strain-stress analysis on components. While its application in material testing and material research has already achieved some acceptance in research and industry, its application to complex industrial components like car bodies, gear boxes, engines, and suspensions has been limited. Basic difficulties have arisen from the relatively large rigid-body movements of components under test, harsh environmental conditions in the real test world, and the often complex shape of the analyzed component, especially in the most interesting areas. The commercial availability of a radically miniaturized 3D speckle interferometer has led to the new laser-optical measuring device, the MicroStarTM, which can be used for quantitative strain-stress measurement on nearly any industrial component. The device uses 3D speckle interferometry to measure the shape and the 3D deformation in the area of interest. The combination of shape and deformation provides all necessary data for quantitative 3D strain analysis. The principle stresses as well as the bending and tensile components of the strains can be easily determined. In this paper, the principle and applications of this new system are presented.

  19. 3D ELM fluctuation measurements with the new dual array ECE-Imaging diagnostic on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Classen, Ivo; Vanovac, Branka; Domier, Calvin; Luhmann, Neville; Bogomolov, Anton; Suttrop, Wolfgang; Tobias, Benjamin; ASDEX Upgrade Team

    2015-11-01

    In a major upgrade, the (2D) electron cyclotron emission imaging diagnostic (ECE-Imaging) at ASDEX Upgrade (AUG) has been equipped with a second detector array, and has been successfully commissioned. The two detector arrays observe the plasma through the same vacuum window, both under a slight toroidal angle, to enable quasi-3D measurements of the electron temperature. The system measures a total of 288 channels, in two toroidally separated 2D arrays of approximately 50 cm vertically by 10 cm radially. The toroidal separation between the two poloidal observation planes is about 40 cm, such that the majority of the field lines is observed by both arrays simultaneously, thereby enabling a direct measurement of the 3D properties of plasma instabilities like ELM filaments. The toroidal separation of 40 cm is sufficient for the accurate measurement of both phase differences and transit times of (rotating) plasma structures, enabling a distinction between time varying 2D structures and true 3D structures (not possible with 2D diagnostics). The research will mainly focus on the investigation of the 3D structure of the temperature fluctuations related to edge localized modes (ELMs), in particular precursors and filaments. The first results on ELMs will be reported.

  20. Optical low-cost and portable arrangement for full field 3D displacement measurement using a single camera

    NASA Astrophysics Data System (ADS)

    López-Alba, E.; Felipe-Sesé, L.; Schmeer, S.; Díaz, F. A.

    2016-11-01

    In the current paper, an optical low-cost system for 3D displacement measurement based on a single camera and 3D digital image correlation is presented. The conventional 3D-DIC set-up based on a two-synchronized-cameras system is compared with a proposed pseudo-stereo portable system that employs a mirror system integrated in a device for a straightforward application achieving a novel handle and flexible device for its use in many scenarios. The proposed optical system splits the image by the camera into two stereo images of the object. In order to validate this new approach and quantify its uncertainty compared to traditional 3D-DIC systems, solid rigid in and out-of-plane displacements experiments have been performed and analyzed. The differences between both systems have been studied employing an image decomposition technique which performs a full image comparison. Therefore, results of all field of view are compared with those using a stereoscopy system and 3D-DIC, discussing the accurate results obtained with the proposed device not having influence any distortion or aberration produced by the mirrors. Finally, the adaptability of the proposed system and its accuracy has been tested performing quasi-static and dynamic experiments using a silicon specimen under high deformation. Results have been compared and validated with those obtained from a conventional stereoscopy system showing an excellent level of agreement.

  1. Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling

    PubMed Central

    WATANABE, TOMONARI; HANAN, JIM S.; ROOM, PETER M.; HASEGAWA, TOSHIHIRO; NAKAGAWA, HIROSHI; TAKAHASHI, WATARU

    2005-01-01

    • Background and Aims The morphogenesis and architecture of a rice plant, Oryza sativa, are critical factors in the yield equation, but they are not well studied because of the lack of appropriate tools for 3D measurement. The architecture of rice plants is characterized by a large number of tillers and leaves. The aims of this study were to specify rice plant architecture and to find appropriate functions to represent the 3D growth across all growth stages. • Methods A japonica type rice, ‘Namaga’, was grown in pots under outdoor conditions. A 3D digitizer was used to measure the rice plant structure at intervals from the young seedling stage to maturity. The L-system formalism was applied to create ‘3D virtual rice’ plants, incorporating models of phenological development and leaf emergence period as a function of temperature and photoperiod, which were used to determine the timing of tiller emergence. • Key Results The relationships between the nodal positions and leaf lengths, leaf angles and tiller angles were analysed and used to determine growth functions for the models. The ‘3D virtual rice’ reproduces the structural development of isolated plants and provides a good estimation of the tillering process, and of the accumulation of leaves. • Conclusions The results indicated that the ‘3D virtual rice’ has a possibility to demonstrate the differences in the structure and development between cultivars and under different environmental conditions. Future work, necessary to reflect both cultivar and environmental effects on the model performance, and to link with physiological models, is proposed in the discussion. PMID:15820987

  2. Alignment of a 3-D Sensor and a 2-D Sensor Measuring Azimuth and Elevation

    DTIC Science & Technology

    1992-04-01

    alignment algorithm discussed in this report were developed by the Combat System Technologies Branch (N35) of the Engineering and Technology Division ( N30 ...removal of alignment errors in dissimilar sensors (e.g., active and passive sensors, 2-D and 3-D sensors, etc.). However, the alignment of dissimilar...G21 (CARSOLA) 1 G70 1 G71 1 G71 (BLAIR) 1 G71 (PALEN) 1 G71 (RICE) 10 G73 (FONTANA) 1 N 1 N05 (GASTON) 1 N24 (HENDERSON) 1 N30 1 N33 (ERVIN) 1 N33

  3. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  4. Automated 3D Segmentation of Intraretinal Surfaces in SD-OCT Volumes in Normal and Diabetic Mice

    PubMed Central

    Antony, Bhavna J.; Jeong, Woojin; Abràmoff, Michael D.; Vance, Joseph; Sohn, Elliott H.; Garvin, Mona K.

    2014-01-01

    Purpose To describe an adaptation of an existing graph-theoretic method (initially developed for human optical coherence tomography [OCT] images) for the three-dimensional (3D) automated segmentation of 10 intraretinal surfaces in mice scans, and assess the accuracy of the method and the reproducibility of thickness measurements. Methods Ten intraretinal surfaces were segmented in repeat spectral domain (SD)-OCT volumetric images acquired from normal (n = 8) and diabetic (n = 10) mice. The accuracy of the method was assessed by computing the border position errors of the automated segmentation with respect to manual tracings obtained from two experts. The reproducibility was statistically assessed for four retinal layers within eight predefined regions using the mean and SD of the differences in retinal thickness measured in the repeat scans, the coefficient of variation (CV) and the intraclass correlation coefficients (ICC; with 95% confidence intervals [CIs]). Results The overall mean unsigned border position error for the 10 surfaces computed over 97 B-scans (10 scans, 10 normal mice) was 3.16 ± 0.91 μm. The overall mean differences in retinal thicknesses computed from the normal and diabetic mice were 1.86 ± 0.95 and 2.15 ± 0.86 μm, respectively. The CV of the retinal thicknesses for all the measured layers ranged from 1.04% to 5%. The ICCs for the total retinal thickness in the normal and diabetic mice were 0.78 [0.10, 0.92] and 0.83 [0.31, 0.96], respectively. Conclusion The presented method (publicly available as part of the Iowa Reference Algorithms) has acceptable accuracy and reproducibility and is expected to be useful in the quantitative study of intraretinal layers in mice. Translational Relevance The presented method, initially developed for human OCT, has been adapted for mice, with the potential to be adapted for other animals as well. Quantitative in vivo assessment of the retina in mice allows changes to be measured longitudinally, decreasing

  5. Sex Assessment from the Volume of the First Metatarsal Bone: A Comparison of Linear and Volume Measurements.

    PubMed

    Gibelli, Daniele; Poppa, Pasquale; Cummaudo, Marco; Mattia, Mirko; Cappella, Annalisa; Mazzarelli, Debora; Zago, Matteo; Sforza, Chiarella; Cattaneo, Cristina

    2017-02-23

    Sexual dimorphism is a crucial characteristic of skeleton. In the last years, volumetric and surface 3D acquisition systems have enabled anthropologists to assess surfaces and volumes, whose potential still needs to be verified. This article aimed at assessing volume and linear parameters of the first metatarsal bone through 3D acquisition by laser scanning. Sixty-eight skeletons underwent 3D scan through laser scanner: Seven linear measurements and volume from each bone were assessed. A cutoff value of 13,370 mm(3) was found, with an accuracy of 80.8%. Linear measurements outperformed volume: metatarsal length and mediolateral width of base showed higher cross-validated accuracies (respectively, 82.1% and 79.1%, raising at 83.6% when both of them were included). Further studies are needed to verify the real advantage for sex assessment provided by volume measurements.

  6. SU-E-T-472: A Multi-Dimensional Measurements Comparison to Analyze a 3D Patient Specific QA Tool

    SciTech Connect

    Ashmeg, S; Jackson, J; Zhang, Y; Oldham, M; Yin, F; Ren, L

    2014-06-01

    Purpose: To quantitatively evaluate a 3D patient specific QA tool using 2D film and 3D Presage dosimetry. Methods: A brain IMRT case was delivered to Delta4, EBT2 film and Presage plastic dosimeter. The film was inserted in the solid water slabs at 7.5cm depth for measurement. The Presage dosimeter was inserted into a head phantom for 3D dose measurement. Delta4's Anatomy software was used to calculate the corresponding dose to the film in solid water slabs and to Presage in the head phantom. The results from Anatomy were compared to both calculated results from Eclipse and measured dose from film and Presage to evaluate its accuracy. Using RIT software, we compared the “Anatomy” dose to the EBT2 film measurement and the film measurement to ECLIPSE calculation. For 3D analysis, DICOM file of “Anatomy” was extracted and imported to CERR software, which was used to compare the Presage dose to both “Anatomy” calculation and ECLIPSE calculation. Gamma criteria of 3% - 3mm and 5% - 5mm was used for comparison. Results: Gamma passing rates of film vs “Anatomy”, “Anatomy” vs ECLIPSE and film vs ECLIPSE were 82.8%, 70.9% and 87.6% respectively when 3% - 3mm criteria is used. When the criteria is changed to 5% - 5mm, the passing rates became 87.8%, 76.3% and 90.8% respectively. For 3D analysis, Anatomy vs ECLIPSE showed gamma passing rate of 86.4% and 93.3% for 3% - 3mm and 5% - 5mm respectively. The rate is 77.0% for Presage vs ECLIPSE analysis. The Anatomy vs ECLIPSE were absolute dose comparison. However, film and Presage analysis were relative comparison Conclusion: The results show higher passing rate in 3D than 2D in “Anatomy” software. This could be due to the higher degrees of freedom in 3D than in 2D for gamma analysis.

  7. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium

    NASA Astrophysics Data System (ADS)

    Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.

    2014-02-01

    Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic inte