Science.gov

Sample records for 3d volume visualization

  1. Faster, higher quality volume visualization for 3D medical imaging

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Laine, Andrew F.; Song, Ting

    2008-03-01

    The two major volume visualization methods used in biomedical applications are Maximum Intensity Projection (MIP) and Volume Rendering (VR), both of which involve the process of creating sets of 2D projections from 3D images. We have developed a new method for very fast, high-quality volume visualization of 3D biomedical images, based on the fact that the inverse of this process (transforming 2D projections into a 3D image) is essentially equivalent to tomographic image reconstruction. This new method uses the 2D projections acquired by the scanner, thereby obviating the need for the two computationally expensive steps currently required in the complete process of biomedical visualization, that is, (i) reconstructing the 3D image from 2D projection data, and (ii) computing the set of 2D projections from the reconstructed 3D image As well as improvements in computation speed, this method also results in improvements in visualization quality, and in the case of x-ray CT we can exploit this quality improvement to reduce radiation dosage. In this paper, demonstrate the benefits of developing biomedical visualization techniques by directly processing the sensor data acquired by body scanners, rather than by processing the image data reconstructed from the sensor data. We show results of using this approach for volume visualization for tomographic modalities, like x-ray CT, and as well as for MRI.

  2. 3D volume visualization in remote radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Yun, David Y.; Garcia, Hong-Mei C.; Mun, Seong K.; Rogers, James E.; Tohme, Walid G.; Carlson, Wayne E.; May, Stephen; Yagel, Roni

    1996-03-01

    This paper reports a novel applications of 3D visualization in an ARPA-funded remote radiation treatment planning (RTP) experiment, utilizing supercomputer 3D volumetric modeling power and NASA ACTS (Advanced Communication Technology Satellite) communication bandwidths at the Ka-band range. The objective of radiation treatment is to deliver a tumorcidal dose of radiation to a tumor volume while minimizing doses to surrounding normal tissues. High performance graphics computers are required to allow physicians to view a 3D anatomy, specify proposed radiation beams, and evaluate the dose distribution around the tumor. Supercomputing power is needed to compute and even optimize dose distribution according to pre-specified requirements. High speed communications offer possibilities for sharing scarce and expensive computing resources (e.g., hardware, software, personnel, etc.) as well as medical expertise for 3D treatment planning among hospitals. This paper provides initial technical insights into the feasibility of such resource sharing. The overall deployment of the RTP experiment, visualization procedures, and parallel volume rendering in support of remote interactive 3D volume visualization will be described.

  3. Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1997-01-01

    This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

  4. Volume rendering segmented data using 3D textures: a practical approach for intra-operative visualization

    NASA Astrophysics Data System (ADS)

    Subramanian, Navneeth; Mullick, Rakesh; Vaidya, Vivek

    2006-03-01

    Volume rendering has high utility in visualization of segmented datasets. However, volume rendering of the segmented labels along with the original data causes undesirable intermixing/bleeding artifacts arising from interpolation at the sharp boundaries. This issue is further amplified in 3D textures based volume rendering due to the inaccessibility of the interpolation stage. We present an approach which helps minimize intermixing artifacts while maintaining the high performance of 3D texture based volume rendering - both of which are critical for intra-operative visualization. Our approach uses a 2D transfer function based classification scheme where label distinction is achieved through an encoding that generates unique gradient values for labels. This helps ensure that labelled voxels always map to distinct regions in the 2D transfer function, irrespective of interpolation. In contrast to previously reported algorithms, our algorithm does not require multiple passes for rendering and supports greater than 4 masks. It also allows for real-time modification of the colors/opacities of the segmented structures along with the original data. Additionally, these capabilities are available with minimal texture memory requirements amongst comparable algorithms. Results are presented on clinical and phantom data.

  5. 3D colour visualization of label images using volume rendering techniques.

    PubMed

    Vandenhouten, R; Kottenhoff, R; Grebe, R

    1995-01-01

    Volume rendering methods for the visualization of 3D image data sets have been developed and collected in a C library. The core algorithm consists of a perspective ray casting technique for a natural and realistic view of the 3D scene. New edge operator shading methods are employed for a fast and information preserving representation of surfaces. Control parameters of the algorithm can be tuned to have either smoothed surfaces or a very detailed rendering of the geometrical structure. Different objects can be distinguished by different colours. Shadow ray tracing has been implemented to improve the realistic impression of the 3D image. For a simultaneous representation of objects in different depths, hiding each other, two types of transparency mode are used (wireframe and glass transparency). Single objects or groups of objects can be excluded from the rendering (peeling). Three orthogonal cutting planes or one arbitrarily placed cutting plane can be applied to the rendered objects in order to get additional information about inner structures, contours, and relative positions. PMID:8569308

  6. Area and volume coherence for efficient visualization of 3D scalar functions

    SciTech Connect

    Max, N. California Univ., Davis, CA ); Hanrahan, P. ); Crawfis, R. )

    1990-01-01

    We present an algorithm for compositing a combination of density clouds and contour surfaces used to represent a scalar function on a 3-D volume. The volume is divided into convex polyhedra, at whose vertices the function is known, and the polyhedra are sorted in depth before compositing. For data given at scattered 3-D points, we show that this sorting can be done in O(n) time if we chose the tetrahedra in the Delaunay triangulation as the polyhedra. The integrals for cloud opacity and visible cloud intensity along a ray through a convex polyhedron are computed analytically, and this computation is coherent across the polyhedron's area. 33 refs.

  7. Visualization of liver in 3-D

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Chou, Jin-Shin; Giger, Maryellen L.; Kahn, Charles E., Jr.; Bae, Kyongtae T.; Lin, Wei-Chung

    1991-05-01

    Visualization of the liver in three dimensions (3-D) can improve the accuracy of volumetric estimation and also aid in surgical planning. We have developed a method for 3-D visualization of the liver using x-ray computed tomography (CT) or magnetic resonance (MR) images. This method includes four major components: (1) segmentation algorithms for extracting liver data from tomographic images; (2) interpolation techniques for both shape and intensity; (3) schemes for volume rendering and display, and (4) routines for electronic surgery and image analysis. This method has been applied to cases from a living-donor liver transplant project and appears to be useful for surgical planning.

  8. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  9. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  10. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  11. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  12. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  13. Volume rendering for interactive 3D segmentation

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Derz, Claus

    1997-05-01

    Combined emission/absorption and reflection/transmission volume rendering is able to display poorly segmented structures from 3D medical image sequences. Visual cues such as shading and color let the user distinguish structures in the 3D display that are incompletely extracted by threshold segmentation. In order to be truly helpful, analyzed information needs to be quantified and transferred back into the data. We extend our previously presented scheme for such display be establishing a communication between visual analysis and the display process. The main tool is a selective 3D picking device. For being useful on a rather rough segmentation, the device itself and the display offer facilities for object selection. Selective intersection planes let the user discard information prior to choosing a tissue of interest. Subsequently, a picking is carried out on the 2D display by casting a ray into the volume. The picking device is made pre-selective using already existing segmentation information. Thus, objects can be picked that are visible behind semi-transparent surfaces of other structures. Information generated by a later connected- component analysis can then be integrated into the data. Data examination is continued on an improved display letting the user actively participate in the analysis process. Results of this display-and-interaction scheme proved to be very effective. The viewer's ability to extract relevant information form a complex scene is combined with the computer's ability to quantify this information. The approach introduces 3D computer graphics methods into user- guided image analysis creating an analysis-synthesis cycle for interactive 3D segmentation.

  14. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  15. 3D Visualization of Recent Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  16. Breast Tissue 3D Segmentation and Visualization on MRI

    PubMed Central

    Cui, Xiangfei; Sun, Feifei

    2013-01-01

    Tissue segmentation and visualization are useful for breast lesion detection and quantitative analysis. In this paper, a 3D segmentation algorithm based on Kernel-based Fuzzy C-Means (KFCM) is proposed to separate the breast MR images into different tissues. Then, an improved volume rendering algorithm based on a new transfer function model is applied to implement 3D breast visualization. Experimental results have been shown visually and have achieved reasonable consistency. PMID:23983676

  17. Microtomography with 3-D visualization

    SciTech Connect

    Peskin, A.; Andrews, B.; Dowd, B.; Jones, K.; Siddons, P.

    1996-11-01

    The facility has been developed for producing high quality tomographs of order one micrometer resolution. Three dimensional volumes derived from groups of adjacent tomographic slices are then viewed and navigated in a stereographic viewing facility. This facility is being applied to problems in geological evaluation of oil reservoir rock, medical imaging, protein chemistry, and CADCAM.

  18. Visualization of 3D Geological Models on Google Earth

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  19. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  20. Visualization of 3D Geological Data using COLLADA and KML

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Um, Jeong-Gi; Park, Myong-Ho

    2013-04-01

    This study presents a method to visualize 3D geological data using COLLAborative Design Activity(COLLADA, an open standard XML schema for establishing interactive 3D applications) and Keyhole Markup Language(KML, the XML-based scripting language of Google Earth).We used COLLADA files to represent different 3D geological data such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes(a set of triangles connected by their common edges or corners). The COLLADA files were imported into the 3D render window of Google Earth using KML codes. An application to the Grosmont formation in Alberta, Canada showed that the combination of COLLADA and KML enables Google Earth to visualize 3D geological structures and properties.

  1. Spatial Visualization by Realistic 3D Views

    ERIC Educational Resources Information Center

    Yue, Jianping

    2008-01-01

    In this study, the popular Purdue Spatial Visualization Test-Visualization by Rotations (PSVT-R) in isometric drawings was recreated with CAD software that allows 3D solid modeling and rendering to provide more realistic pictorial views. Both the original and the modified PSVT-R tests were given to students and their scores on the two tests were…

  2. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  3. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  4. Texture splats for 3D vector and scalar field visualization

    SciTech Connect

    Crawfis, R.A.; Max, N.

    1993-04-06

    Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

  5. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  6. Visual inertia of rotating 3-D objects.

    PubMed

    Jiang, Y; Pantle, A J; Mark, L S

    1998-02-01

    Five experiments were designed to determine whether a rotating, transparent 3-D cloud of dots (simulated sphere) could influence the perceived direction of rotation of a subsequent sphere. Experiment 1 established conditions under which the direction of rotation of a virtual sphere was perceived unambiguously. When a near-far luminance difference and perspective depth cues were present, observers consistently saw the sphere rotate in the intended direction. In Experiment 2, a near-far luminance difference was used to create an unambiguous rotation sequence that was followed by a directionally ambiguous rotation sequence that lacked both the near-far luminance cue and the perspective cue. Observers consistently saw the second sequence as rotating in the same direction as the first, indicating the presence of 3-D visual inertia. Experiment 3 showed that 3-D visual inertia was sufficiently powerful to bias the perceived direction of a rotation sequence made unambiguous by a near-far luminance cue. Experiment 5 showed that 3-D visual inertia could be obtained using an occlusion depth cue to create an unambiguous inertia-inducing sequence. Finally, Experiments 2, 4, and 5 all revealed a fast-decay phase of inertia that lasted for approximately 800 msec, followed by an asymptotic phase that lasted for periods as long as 1,600 msec. The implications of these findings are examined with respect to motion mechanisms of 3-D visual inertia. PMID:9529911

  7. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  8. Techniques for interactive 3-D scientific visualization

    SciTech Connect

    Glinert, E.P. . Dept. of Computer Science); Blattner, M.M. Hospital and Tumor Inst., Houston, TX . Dept. of Biomathematics California Univ., Davis, CA . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Becker, B.G. . Dept. of Applied Science Lawrence Livermore National La

    1990-09-24

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  9. Java 3D Interactive Visualization for Astrophysics

    NASA Astrophysics Data System (ADS)

    Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.

    2003-05-01

    We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  10. Amazing Space: Explanations, Investigations, & 3D Visualizations

    NASA Astrophysics Data System (ADS)

    Summers, Frank

    2011-05-01

    The Amazing Space website is STScI's online resource for communicating Hubble discoveries and other astronomical wonders to students and teachers everywhere. Our team has developed a broad suite of materials, readings, activities, and visuals that are not only engaging and exciting, but also standards-based and fully supported so that they can be easily used within state and national curricula. These products include stunning imagery, grade-level readings, trading card games, online interactives, and scientific visualizations. We are currently exploring the potential use of stereo 3D in astronomy education.

  11. 3-D Volume Rendering of Sand Specimen

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Computed tomography (CT) images of resin-impregnated Mechanics of Granular Materials (MGM) specimens are assembled to provide 3-D volume renderings of density patterns formed by dislocation under the external loading stress profile applied during the experiments. Experiments flown on STS-79 and STS-89. Principal Investigator: Dr. Stein Sture

  12. 3D Stereoscopic Visualization of Fenestrated Stent Grafts

    SciTech Connect

    Sun Zhonghua; Squelch, Andrew; Bartlett, Andrew; Cunningham, Kylie; Lawrence-Brown, Michael

    2009-09-15

    The purpose of this study was to present a technique of stereoscopic visualization in the evaluation of patients with abdominal aortic aneurysm treated with fenestrated stent grafts compared with conventional 2D visualizations. Two patients with abdominal aortic aneurysm undergoing fenestrated stent grafting were selected for inclusion in the study. Conventional 2D views including axial, multiplanar reformation, maximum-intensity projection, and volume rendering and 3D stereoscopic visualizations were assessed by two experienced reviewers independently with regard to the treatment outcomes of fenestrated repair. Interobserver agreement was assessed with Kendall's W statistic. Multiplanar reformation and maximum-intensity projection visualizations were scored the highest in the evaluation of parameters related to the fenestrated stent grafting, while 3D stereoscopic visualization was scored as valuable in the evaluation of appearance (any distortions) of the fenestrated stent. Volume rendering was found to play a limited role in the follow-up of fenestrated stent grafting. 3D stereoscopic visualization adds additional information that assists endovascular specialists to identify any distortions of the fenestrated stents when compared with 2D visualizations.

  13. Volumetric visualization of 3D data

    NASA Technical Reports Server (NTRS)

    Russell, Gregory; Miles, Richard

    1989-01-01

    In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.

  14. Visualization of 3D optical lattices

    NASA Astrophysics Data System (ADS)

    Lee, Hoseong; Clemens, James

    2016-05-01

    We describe the visualization of 3D optical lattices based on Sisyphus cooling implemented with open source software. We plot the adiabatic light shift potentials found by diagonalizing the effective Hamiltonian for the light shift operator. Our program incorporates a variety of atomic ground state configurations with total angular momentum ranging from j = 1 / 2 to j = 4 and a variety of laser beam configurations including the two-beam lin ⊥ lin configuration, the four-beam umbrella configuration, and four beams propagating in two orthogonal planes. In addition to visualizing the lattice the program also evaluates lattice parameters such as the oscillation frequency for atoms trapped deep in the wells. The program is intended to help guide experimental implementations of optical lattices.

  15. Dynamic 3D Visualization of Vocal Tract Shaping During Speech

    PubMed Central

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I.; Narayanan, Shrikanth S.; Nayak, Krishna S.

    2014-01-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3D dynamic MRI would be a major advance, as it would provide 3D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3D dynamic movies of vocal tract shaping based on the acquisition of 2D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /aɹa/, /asa/ and /aʃa/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms. PMID:23204279

  16. Recent Advances in Visualizing 3D Flow with LIC

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  17. Visualization of 3-D tensor fields

    NASA Technical Reports Server (NTRS)

    Hesselink, L.

    1996-01-01

    Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.

  18. Glnemo2: Interactive Visualization 3D Program

    NASA Astrophysics Data System (ADS)

    Lambert, Jean-Charles

    2011-10-01

    Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface. Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

  19. Immersive 3D Visualization of Astronomical Data

    NASA Astrophysics Data System (ADS)

    Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.

    2015-09-01

    The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.

  20. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  1. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  2. 3-D Visualizations At (Almost) No Expense

    NASA Astrophysics Data System (ADS)

    Sedlock, R. L.

    2003-12-01

    Like most teaching-oriented public universities, San José State University (part of the California State University system) currently faces severe budgetary constraints. These circumstances prohibit the construction of one or more Geo-Walls on-campus. Nevertheless, the Department of Geology has pursued alternatives that enable our students to benefit from 3-D visualizations such as those used with the Geo-Wall. This experience - a sort of virtual virtuality - depends only on the availability of a computer lab and an optional plotter. Starting in June 2003, we have used the methods described here with two diverse groups of participants: middle- and high-school teachers taking professional development workshops through grants funded by NSF and NASA, and regular university students enrolled in introductory earth science and geology laboratory courses. We use two types of three-dimensional images with our students: visualizations from the on-line Gallery of Virtual Topography (Steve Reynolds), and USGS digital topographic quadrangles that have been transformed into anaglyph files for viewing with 3-D glasses. The procedure for transforming DEMs into these anaglyph files, developed by Paul Morin, is available at http://geosun.sjsu.edu/~sedlock/anaglyph.html. The resulting images can be used with students in one of two ways. First, maps can be printed on a suitable plotter, laminated (optional but preferable), and used repeatedly with different classes. Second, the images can be viewed in school computer labs or by students on their own computers. Chief advantages of the plotter option are (1) full-size maps (single or tiled) viewable in their entirety, and (2) dependability (independent of Internet connections and electrical power). Chief advantages of the computer option are (1) minimal preparation time and no other needed resources, assuming a computer lab with Internet access, and (2) students can work with the images outside of regularly scheduled courses. Both

  3. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  4. 3-D Flow Visualization with a Light-field Camera

    NASA Astrophysics Data System (ADS)

    Thurow, B.

    2012-12-01

    Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.

  5. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  6. 3-D visualization of ensemble weather forecasts - Part 1: The visualization tool Met.3D (version 1.0)

    NASA Astrophysics Data System (ADS)

    Rautenhaus, M.; Kern, M.; Schäfler, A.; Westermann, R.

    2015-02-01

    We present Met.3D, a new open-source tool for the interactive 3-D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output - 3-D visualization, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantitites. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 campaign.

  7. 3D diffraction tomography for visualization of contrast media

    NASA Astrophysics Data System (ADS)

    Pai, Vinay M.; Stein, Ashley; Kozlowski, Megan; George, Ashvin; Kopace, Rael; Bennett, Eric; Auxier, Julie A.; Wen, Han

    2011-03-01

    In x-ray CT, the ability to selectively isolate a contrast agent signal from the surrounding soft tissue and bone can greatly enhance contrast visibility and enable quantification of contrast concentration. We present here a 3D diffraction tomography implementation for selectively retaining volumetric diffraction signal from contrast agent particles that are within a banded size range while suppressing the background signal from soft tissue and bone. For this purpose, we developed a CT implementation of a single-shot x-ray diffraction imaging technique utilizing gratings. This technique yields both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. A solution of iron oxide nano-particles, having very different x-ray diffraction properties from tissue, was injected into ex vivo chicken wing and in vivo rat specimens respectively and imaged in a 3D diffraction CT setup. Following parallel beam reconstruction, it is noted that while the soft tissue, bone and contrast media are observed in the absorption volume reconstruction, only the contrast media is observed in the diffraction volume reconstruction. This 3D diffraction tomographic reconstruction permits the visualization and quantification of the contrast agent isolated from the soft tissue and bone background.

  8. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  9. Diffractive optical element for creating visual 3D images.

    PubMed

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2016-05-01

    A method is proposed to compute and synthesize the microrelief of a diffractive optical element to produce a new visual security feature - the vertical 3D/3D switch effect. The security feature consists in the alternation of two 3D color images when the diffractive element is tilted up/down. Optical security elements that produce the new security feature are synthesized using electron-beam technology. Sample optical security elements are manufactured that produce 3D to 3D visual switch effect when illuminated by white light. Photos and video records of the vertical 3D/3D switch effect of real optical elements are presented. The optical elements developed can be replicated using standard equipment employed for manufacturing security holograms. The new optical security feature is easy to control visually, safely protected against counterfeit, and designed to protect banknotes, documents, ID cards, etc. PMID:27137530

  10. Visualization using 3D voxelization of full lidar waveforms

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Ramnath, Vinod; Feygels, Victor

    2014-11-01

    Airborne bathymetric lidar (Light Detection and Ranging) systems measure photoelectrons on the optical path (range and angle) at the photocathode of a returned laser pulse at high rates, such as every nanosecond. The collected measurement of a single pulse in a time series is called a waveform. Based on the calibration of the lidar system, the return signal is converted into units of received power. This converted value from the lidar waveform data is used to compute an estimate of the reflectance from the returned backscatter, which contains environmental information from along the optical path. This concept led us to develop a novel tool to visualize lidar data in terms of the returned backscatter, and to use this as a data analysis and editing tool. The full lidar waveforms along the optical path, from laser points collected in the region of interest (ROI), are voxelized into a 3D image cube. This allows lidar measurements to be analyzed in three orthogonal directions simultaneously. The laser pulse return (reflection) from the seafloor is visible in the waveform as a pronounced "bump" above the volume backscatter. Floating or submerged objects in the water may also be visible. Similarly, forest canopies and tree branches can be identified in the 3D voxelization. This paper discusses the possibility of using this unique three-orthogonal volume visualizing tool to extract environmental information for carrying out rapid environmental assessments over forests and water.

  11. EarthServer - 3D Visualization on the Web

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  12. 3D visualization of port simulation.

    SciTech Connect

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.

    1999-06-14

    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  13. MRI Volume Fusion Based on 3D Shearlet Decompositions.

    PubMed

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  14. MRI Volume Fusion Based on 3D Shearlet Decompositions

    PubMed Central

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods. PMID:24817880

  15. 3D visualization of middle ear structures

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Schmitt, Thomas

    1998-06-01

    The achievement of volume geometry data from middle ear structures and surrounding components performs a necessary supposition for the finite element simulation of the vibrational and transfer characteristics of the ossicular chain. So far those models base on generalized figures and size data from anatomy textbooks or particular manual and one- or two-dimensional distance measurements of single ossicles, mostly obtained by light microscopy, respectively. Therefore the goal of this study is to create a procedure for complete three-dimensional imaging of real middle ear structures (tympanic membrane, ossicles, ligaments) in vitro or even in vivo. The main problems are their microscopic size with relevant structures from 10 micrometer to 5 mm, representing various tissue properties (bone, soft tissue). Additionally, these structures are surrounded by the temporal bone, the most solid bone of the human body. Generally there exist several established diagnostic tools for medical imaging that could be used for geometry data acquisition, e.g., X-ray computed tomography and magnetic resonance imaging. Basically they image different tissue parameters, either bony structures (ossicles), or soft tissue (tympanic membrane, ligaments). But considering this application those standard techniques allow low spatial resolution only, usually in the 0.5 - 1mm range, at least in one spatial direction. Thus particular structures of the middle ear region could even be missed completely because of their spatial location. In vitro there is a way out by collecting three complete data sets, each distinguished by 90 degree rotation of a cube-shaped temporal bone specimen. That allows high-resolution imaging in three orthogonal planes, which essentially supports the three-dimensional interpolation of the unknown elements, starting from the regularly set elements of the cubic grid with an edge extension given by the original two-dimensional matrix. A different approach represents the

  16. Integrating 3D Visualization and GIS in Planning Education

    ERIC Educational Resources Information Center

    Yin, Li

    2010-01-01

    Most GIS-related planning practices and education are currently limited to two-dimensional mapping and analysis although 3D GIS is a powerful tool to study the complex urban environment in its full spatial extent. This paper reviews current GIS and 3D visualization uses and development in planning practice and education. Current literature…

  17. DspaceOgre 3D Graphics Visualization Tool

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Myin, Steven; Pomerantz, Marc I.

    2011-01-01

    This general-purpose 3D graphics visualization C++ tool is designed for visualization of simulation and analysis data for articulated mechanisms. Examples of such systems are vehicles, robotic arms, biomechanics models, and biomolecular structures. DspaceOgre builds upon the open-source Ogre3D graphics visualization library. It provides additional classes to support the management of complex scenes involving multiple viewpoints and different scene groups, and can be used as a remote graphics server. This software provides improved support for adding programs at the graphics processing unit (GPU) level for improved performance. It also improves upon the messaging interface it exposes for use as a visualization server.

  18. SOLIDFELIX: a transportable 3D static volume display

    NASA Astrophysics Data System (ADS)

    Langhans, Knut; Kreft, Alexander; Wörden, Henrik Tom

    2009-02-01

    Flat 2D screens cannot display complex 3D structures without the usage of different slices of the 3D model. Volumetric displays like the "FELIX 3D-Displays" can solve the problem. They provide space-filling images and are characterized by "multi-viewer" and "all-round view" capabilities without requiring cumbersome goggles. In the past many scientists tried to develop similar 3D displays. Our paper includes an overview from 1912 up to today. During several years of investigations on swept volume displays within the "FELIX 3D-Projekt" we learned about some significant disadvantages of rotating screens, for example hidden zones. For this reason the FELIX-Team started investigations also in the area of static volume displays. Within three years of research on our 3D static volume display at a normal high school in Germany we were able to achieve considerable results despite minor funding resources within this non-commercial group. Core element of our setup is the display volume which consists of a cubic transparent material (crystal, glass, or polymers doped with special ions, mainly from the rare earth group or other fluorescent materials). We focused our investigations on one frequency, two step upconversion (OFTS-UC) and two frequency, two step upconversion (TFTSUC) with IR-Lasers as excitation source. Our main interest was both to find an appropriate material and an appropriate doping for the display volume. Early experiments were carried out with CaF2 and YLiF4 crystals doped with 0.5 mol% Er3+-ions which were excited in order to create a volumetric pixel (voxel). In addition to that the crystals are limited to a very small size which is the reason why we later investigated on heavy metal fluoride glasses which are easier to produce in large sizes. Currently we are using a ZBLAN glass belonging to the mentioned group and making it possible to increase both the display volume and the brightness of the images significantly. Although, our display is currently

  19. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  20. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  1. Examination of 3D visual attention in stereoscopic video content

    NASA Astrophysics Data System (ADS)

    Huynh-Thu, Quan; Schiatti, Luca

    2011-03-01

    Recent advances in video technology and digital cinema have made it possible to produce entertaining 3D stereoscopic content that can be viewed for an extended duration without necessarily causing extreme fatigue, visual strain and discomfort. Viewers focus naturally their attention on specific areas of interest in their visual field. Visual attention is an important aspect of perception and its understanding is therefore an important aspect for the creation of 3D stereoscopic content. Most of the studies on visual attention have focused on the case of still images or 2D video. Only a very few studies have investigated eye movement patterns in 3D stereoscopic moving sequences, and how these may differ from viewing 2D video content. In this paper, we present and discuss the results of a subjective experiment that we conducted using an eye-tracking apparatus to record observers' gaze patterns. Participants were asked to watch the same set of video clips in a free-viewing task. Each clip was shown in a 3D stereoscopic version and 2D version. Our results indicate that the extent of areas of interests is not necessarily wider in 3D. We found a very strong content dependency in the difference of density and locations of fixations between 2D and 3D stereoscopic content. However, we found that saccades were overall faster and that fixation durations were overall lower when observers viewed the 3D stereoscopic version.

  2. 3d visualization of atomistic simulations on every desktop

    NASA Astrophysics Data System (ADS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  3. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  4. Estimating a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head from a commercial OCT device

    NASA Astrophysics Data System (ADS)

    Malmberg, Filip; Sandberg-Melin, Camilla; Söderberg, Per G.

    2016-03-01

    The aim of this project was to investigate the possibility of using OCT optic nerve head 3D information captured with a Topcon OCT 2000 device for detection of the shortest distance between the inner limit of the retina and the central limit of the pigment epithelium around the circumference of the optic nerve head. The shortest distance between these boundaries reflects the nerve fiber layer thickness and measurement of this distance is interesting for follow-up of glaucoma.

  5. Automatic visualization of 3D geometry contained in online databases

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; John, Nigel W.

    2003-04-01

    In this paper, the application of the Virtual Reality Modeling Language (VRML) for efficient database visualization is analyzed. With the help of JAVA programming, three examples of automatic visualization from a database containing 3-D Geometry are given. The first example is used to create basic geometries. The second example is used to create cylinders with a defined start point and end point. The third example is used to processs data from an old copper mine complex in Cheshire, United Kingdom. Interactive 3-D visualization of all geometric data in an online database is achieved with JSP technology.

  6. 3D Visualization of Astronomical Data with Blender

    NASA Astrophysics Data System (ADS)

    Kent, B. R.

    2015-09-01

    We present the innovative use of Blender, a 3D graphics package, for astronomical visualization. With a Python API and feature rich interface, Blender lends itself well to many 3D data visualization scenarios including data cube rendering, N-body simulations, catalog displays, and surface maps. We focus on the aspects of the software most useful to astronomers such as visual data exploration, applying data to Blender object constructs, and using graphics processing units (GPUs) for rendering. We share examples from both observational data and theoretical models to illustrate how the software can fit into an astronomer's toolkit.

  7. Creating 3D visualizations of MRI data: A brief guide

    PubMed Central

    Madan, Christopher R.

    2015-01-01

    While magnetic resonance imaging (MRI) data is itself 3D, it is often difficult to adequately present the results papers and slides in 3D. As a result, findings of MRI studies are often presented in 2D instead. A solution is to create figures that include perspective and can convey 3D information; such figures can sometimes be produced by standard functional magnetic resonance imaging (fMRI) analysis packages and related specialty programs. However, many options cannot provide functionality such as visualizing activation clusters that are both cortical and subcortical (i.e., a 3D glass brain), the production of several statistical maps with an identical perspective in the 3D rendering, or animated renderings. Here I detail an approach for creating 3D visualizations of MRI data that satisfies all of these criteria. Though a 3D ‘glass brain’ rendering can sometimes be difficult to interpret, they are useful in showing a more overall representation of the results, whereas the traditional slices show a more local view. Combined, presenting both 2D and 3D representations of MR images can provide a more comprehensive view of the study’s findings. PMID:26594340

  8. Advanced Data Visualization in Astrophysics: The X3D Pathway

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Owen, Chris I.; Verdes-Montenegro, Lourdes; Borthakur, Sanchayeeta

    2016-02-01

    Most modern astrophysical data sets are multi-dimensional; a characteristic that can nowadays generally be conserved and exploited scientifically during the data reduction/simulation and analysis cascades. However, the same multi-dimensional data sets are systematically cropped, sliced, and/or projected to printable two-dimensional diagrams at the publication stage. In this article, we introduce the concept of the “X3D pathway” as a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3D) diagrams. The X3D pathway exploits the facts that (1) the X3D 3D file format lies at the center of a product tree that includes interactive HTML documents, 3D printing, and high-end animations, and (2) all high-impact-factor and peer-reviewed journals in astrophysics are now published (some exclusively) online. We argue that the X3D standard is an ideal vector for sharing multi-dimensional data sets because it provides direct access to a range of different data visualization techniques, is fully open source, and is a well-defined standard from the International Organization for Standardization. Unlike other earlier propositions to publish multi-dimensional data sets via 3D diagrams, the X3D pathway is not tied to specific software (prone to rapid and unexpected evolution), but instead is compatible with a range of open-source software already in use by our community. The interactive HTML branch of the X3D pathway is also actively supported by leading peer-reviewed journals in the field of astrophysics. Finally, this article provides interested readers with a detailed set of practical astrophysical examples designed to act as a stepping stone toward the implementation of the X3D pathway for any other data set.

  9. Development of visual 3D virtual environment for control software

    NASA Technical Reports Server (NTRS)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  10. Advanced Visualization and Analysis of Climate Data using DV3D and UV-CDAT

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.

    2012-12-01

    This paper describes DV3D, a Vistrails package of high-level modules for the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) interactive visual exploration system that enables exploratory analysis of diverse and rich data sets stored in the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. The application builds on VTK, an open-source, object-oriented library, for visualization and analysis. DV3D provides the high-level interfaces, tools, and application integrations required to make the analysis and visualization power of VTK readily accessible to users without exposing burdensome details such as actors, cameras, renderers, and transfer functions. It can run as a desktop application or distributed over a set of nodes for hyperwall or distributed visualization applications. DV3D is structured as a set of modules which can be linked to create workflows in Vistrails. Figure 1 displays a typical DV3D workflow as it would appear in the Vistrails workflow builder interface of UV-CDAT and, on the right, the visualization spreadsheet output of the workflow. Each DV3D module encapsulates a complex VTK pipeline with numerous supporting objects. Each visualization module implements a unique interactive 3D display. The integrated Vistrails visualization spreadsheet offers multiple synchronized visualization displays for desktop or hyperwall. The currently available displays include volume renderers, volume slicers, 3D isosurfaces, 3D hovmoller, and various vector plots. The DV3D GUI offers a rich selection of interactive query, browse, navigate, and configure options for all displays. All configuration operations are saved as Vistrails provenance. DV3D's seamless integration with UV-CDAT's climate data management system (CDMS) and other climate data analysis tools provides a wide range of climate data analysis operations, e

  11. Vizcano: Student development of 3-D Volcanic Visualizations

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Smith-Konter, B. R.

    2008-12-01

    The development and use of 3-D visualizations of volcanoes in the classroom provides a unique way to balance common student curiosity about volcanoes with interests in computer technology and opportunities for exploration. Through the inclusion of multiple scientific datasets, students can develop 3-D volcano visualizations and use these unique tools to investigate relationships between geological, geophysical, and geochemical datasets. This type of exercise allows undergraduates to become familiar with research-type exploration, while graduate students can focus on more specific research questions. This Fall, students enrolled in the Volcanology course at the University of Texas at El Paso will develop 3-D visualizations of major volcanoes on Earth, using Fledermaus and GRASS visualization software. Each visualization project will utilize SRTM v.4 topography data and available LandSat imagery. These data will allow for an initial investigation of the structure of the volcano, including recognition of recent volcanic features. Students will also use seismic data from a variety of online resources to evaluate earthquake locations and earthquake swarms as indicators of volcanic activity. Each visualization project will be archived on a website hosted at UTEP (http://www.geo.utep.edu/pub/jasper/volcano), making each visualization product globally accessible to students, teachers, researchers, and the general public. These student-generated visualizations form an important part of a practical resource for not only students and teachers, but also Earth scientists that are interested in placing their own research in a geospatial context.

  12. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  13. 3D web visualization of huge CityGML models

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  14. Measuring visual discomfort associated with 3D displays

    NASA Astrophysics Data System (ADS)

    Lambooij, M.; Fortuin, M.; Ijsselsteijn, W. A.; Heynderickx, I.

    2009-02-01

    Some people report visual discomfort when watching 3D displays. For both the objective measurement of visual fatigue and the subjective measurement of visual discomfort, we would like to arrive at general indicators that are easy to apply in perception experiments. Previous research yielded contradictory results concerning such indicators. We hypothesize two potential causes for this: 1) not all clinical tests are equally appropriate to evaluate the effect of stereoscopic viewing on visual fatigue, and 2) there is a natural variation in susceptibility to visual fatigue amongst people with normal vision. To verify these hypotheses, we designed an experiment, consisting of two parts. Firstly, an optometric screening was used to differentiate participants in susceptibility to visual fatigue. Secondly, in a 2×2 within-subjects design (2D vs 3D and two-view vs nine-view display), a questionnaire and eight optometric tests (i.e. binocular acuity, fixation disparity with and without fusion lock, heterophoria, convergent and divergent fusion, vergence facility and accommodation response) were administered before and immediately after a reading task. Results revealed that participants found to be more susceptible to visual fatigue during screening showed a clinically meaningful increase in fusion amplitude after having viewed 3D stimuli. Two questionnaire items (i.e., pain and irritation) were significantly affected by the participants' susceptibility, while two other items (i.e., double vision and sharpness) were scored differently between 2D and 3D for all participants. Our results suggest that a combination of fusion range measurements and self-report is appropriate for evaluating visual fatigue related to 3D displays.

  15. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  16. Distributed 3D Information Visualization - Towards Integration of the Dynamic 3D Graphics and Web Services

    NASA Astrophysics Data System (ADS)

    Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris

    This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.

  17. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  18. 3D visualization techniques for the STEREO-mission

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Podlipnik, B.; Inhester, B.; Feng, L.; Ruan, P.

    The forthcoming STEREO-mission will observe the Sun from two different viewpoints We expect about 2GB data per day which ask for suitable data presentation techniques A key feature of STEREO is that it will provide for the first time a 3D-view of the Sun and the solar corona In our normal environment we see objects three dimensional because the light from real 3D objects needs different travel times to our left and right eye As a consequence we see slightly different images with our eyes which gives us information about the depth of objects and a corresponding 3D impression Techniques for the 3D-visualization of scientific and other data on paper TV computer screen cinema etc are well known e g two colour anaglyph technique shutter glasses polarization filters and head-mounted displays We discuss advantages and disadvantages of these techniques and how they can be applied to STEREO-data The 3D-visualization techniques are not limited to visual images but can be also used to show the reconstructed coronal magnetic field and energy and helicity distribution In the advent of STEREO we test the method with data from SOHO which provides us different viewpoints by the solar rotation This restricts the analysis to structures which remain stationary for several days Real STEREO-data will not be affected by these limitations however

  19. Volumetric image display for complex 3D data visualization

    NASA Astrophysics Data System (ADS)

    Tsao, Che-Chih; Chen, Jyh Shing

    2000-05-01

    A volumetric image display is a new display technology capable of displaying computer generated 3D images in a volumetric space. Many viewers can walk around the display and see the image from omni-directions simultaneously without wearing any glasses. The image is real and possesses all major elements in both physiological and psychological depth cues. Due to the volumetric nature of its image, the VID can provide the most natural human-machine interface in operations involving 3D data manipulation and 3D targets monitoring. The technology creates volumetric 3D images by projecting a series of profiling images distributed in the space form a volumetric image because of the after-image effect of human eyes. Exemplary applications in biomedical image visualization were tested on a prototype display, using different methods to display a data set from Ct-scans. The features of this display technology make it most suitable for applications that require quick understanding of the 3D relations, need frequent spatial interactions with the 3D images, or involve time-varying 3D data. It can also be useful for group discussion and decision making.

  20. Point Cloud Visualization in AN Open Source 3d Globe

    NASA Astrophysics Data System (ADS)

    De La Calle, M.; Gómez-Deck, D.; Koehler, O.; Pulido, F.

    2011-09-01

    During the last years the usage of 3D applications in GIS is becoming more popular. Since the appearance of Google Earth, users are familiarized with 3D environments. On the other hand, nowadays computers with 3D acceleration are common, broadband access is widespread and the public information that can be used in GIS clients that are able to use data from the Internet is constantly increasing. There are currently several libraries suitable for this kind of applications. Based on these facts, and using libraries that are already developed and connected to our own developments, we are working on the implementation of a real 3D GIS with analysis capabilities. Since a 3D GIS such as this can be very interesting for tasks like LiDAR or Laser Scanner point clouds rendering and analysis, special attention is given to get an optimal handling of very large data sets. Glob3 will be a multidimensional GIS in which 3D point clouds could be explored and analysed, even if they are consist of several million points.The latest addition to our visualization libraries is the development of a points cloud server that works regardless of the cloud's size. The server receives and processes petitions from a 3d client (for example glob3, but could be any other, such as one based on WebGL) and delivers the data in the form of pre-processed tiles, depending on the required level of detail.

  1. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  2. 3D Visualization for Phoenix Mars Lander Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol

    2012-01-01

    Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.

  3. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    PubMed Central

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  4. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  5. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  6. Improvements in the Visualization of Stereoscopic 3D Imagery

    NASA Astrophysics Data System (ADS)

    Gurrieri, Luis E.

    2015-09-01

    A pleasant visualization of stereoscopic imagery must take into account factors that may produce eye strain and fatigue. Fortunately, our binocular vision system has embedded mechanisms to perceive depth for extended periods of time without producing eye fatigue; however, stereoscopic imagery may still induce visual discomfort in certain displaying scenarios. An important source of eye fatigue originates in the conflict between vergence eye movement and focusing mechanisms. Today's eye-tracking technology makes possible to know the viewers' gaze direction; hence, 3D imagery can be dynamically corrected based on this information. In this paper, I introduce a method to improve the visualization of stereoscopic imagery on planar displays based on emulating vergence and accommodation mechanisms of binocular human vision. Unlike other methods to improve the visual comfort that introduce depth distortions, in the stereoscopic visual media, this technique aims to produce a gentler and more natural binocular viewing experience without distorting the original depth of the scene.

  7. Volume Attenuation and High Frequency Loss as Auditory Depth Cues in Stereoscopic 3D Cinema

    NASA Astrophysics Data System (ADS)

    Manolas, Christos; Pauletto, Sandra

    2014-09-01

    Assisted by the technological advances of the past decades, stereoscopic 3D (S3D) cinema is currently in the process of being established as a mainstream form of entertainment. The main focus of this collaborative effort is placed on the creation of immersive S3D visuals. However, with few exceptions, little attention has been given so far to the potential effect of the soundtrack on such environments. The potential of sound both as a means to enhance the impact of the S3D visual information and to expand the S3D cinematic world beyond the boundaries of the visuals is large. This article reports on our research into the possibilities of using auditory depth cues within the soundtrack as a means of affecting the perception of depth within cinematic S3D scenes. We study two main distance-related auditory cues: high-end frequency loss and overall volume attenuation. A series of experiments explored the effectiveness of these auditory cues. Results, although not conclusive, indicate that the studied auditory cues can influence the audience judgement of depth in cinematic 3D scenes, sometimes in unexpected ways. We conclude that 3D filmmaking can benefit from further studies on the effectiveness of specific sound design techniques to enhance S3D cinema.

  8. 3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef

    2010-03-01

    Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).

  9. Visual fatigue evaluation based on depth in 3D videos

    NASA Astrophysics Data System (ADS)

    Wang, Feng-jiao; Sang, Xin-zhu; Liu, Yangdong; Shi, Guo-zhong; Xu, Da-xiong

    2013-08-01

    In recent years, 3D technology has become an emerging industry. However, visual fatigue always impedes the development of 3D technology. In this paper we propose some factors affecting human perception of depth as new quality metrics. These factors are from three aspects of 3D video--spatial characteristics, temporal characteristics and scene movement characteristics. They play important roles for the viewer's visual perception. If there are many objects with a certain velocity and the scene changes fast, viewers will feel uncomfortable. In this paper, we propose a new algorithm to calculate the weight values of these factors and analyses their effect on visual fatigue.MSE (Mean Square Error) of different blocks is taken into consideration from the frame and inter-frame for 3D stereoscopic videos. The depth frame is divided into a number of blocks. There are overlapped and sharing pixels (at half of the block) in the horizontal and vertical direction. Ignoring edge information of objects in the image can be avoided. Then the distribution of all these data is indicated by kurtosis with regard of regions which human eye may mainly gaze at. Weight values can be gotten by the normalized kurtosis. When the method is used for individual depth, spatial variation can be achieved. When we use it in different frames between current and previous one, we can get temporal variation and scene movement variation. Three factors above are linearly combined, so we can get objective assessment value of 3D videos directly. The coefficients of three factors can be estimated based on the liner regression. At last, the experimental results show that the proposed method exhibits high correlation with subjective quality assessment results.

  10. 3D medical volume reconstruction using web services.

    PubMed

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-04-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called data to knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the image to knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope. PMID:18336808

  11. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  12. Ideal Positions: 3D Sonography, Medical Visuality, Popular Culture.

    PubMed

    Seiber, Tim

    2016-03-01

    As digital technologies are integrated into medical environments, they continue to transform the experience of contemporary health care. Importantly, medicine is increasingly visual. In the history of sonography, visibility has played an important role in accessing fetal bodies for diagnostic and entertainment purposes. With the advent of three-dimensional (3D) rendering, sonography presents the fetus visually as already a child. The aesthetics of this process and the resulting imagery, made possible in digital networks, discloses important changes in the relationship between technology and biology, reproductive health and political debates, and biotechnology and culture. PMID:26164291

  13. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy

    PubMed Central

    Sustercic, Dusan; Sersa, Igor

    2012-01-01

    Background Precise assessment of dental pulp anatomy is of an extreme importance for a successful endodontic treatment. As standard radiographs of teeth provide very limited information on dental pulp anatomy, more capable methods are highly appreciated. One of these is 3D magnetic resonance (MR) microscopy of which diagnostic capabilities in terms of a better dental pulp anatomy assessment were evaluated in the study. Materials and methods Twenty extracted human teeth were scanned on a 2.35 T MRI system for MR microscopy using the 3D spin-echo method that enabled image acquisition with isotropic resolution of 100 μm. The 3D images were then post processed by ImageJ program (NIH) to obtain advanced volume rendered views of dental pulps. Results MR microscopy at 2.35 T provided accurate data on dental pulp anatomy in vitro. The data were presented as a sequence of thin 2D slices through the pulp in various orientations or as volume rendered 3D images reconstructed form arbitrary view-points. Sequential 2D images enabled only an approximate assessment of the pulp, while volume rendered 3D images were more precise in visualization of pulp anatomy and clearly showed pulp diverticles, number of pulp canals and root canal anastomosis. Conclusions This in vitro study demonstrated that MR microscopy could provide very accurate 3D visualization of dental pulp anatomy. A possible future application of the method in vivo may be of a great importance for the endodontic treatment. PMID:22933973

  14. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  15. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  16. Server-based approach to web visualization of integrated 3-D medical image data.

    PubMed Central

    Poliakov, A. V.; Albright, E.; Corina, D.; Ojemann, G.; Martin, R. F.; Brinkley, J. F.

    2001-01-01

    Although computer processing power and network bandwidth are rapidly increasing, the average desktop is still not able to rapidly process large datasets such as 3-D medical image volumes. We have therefore developed a server side approach to this problem, in which a high performance graphics server accepts commands from web clients to load, process and render 3-D image volumes and models. The renderings are saved as 2-D snapshots on the server, where they are uploaded and displayed on the client. User interactions with the graphic interface on the client side are translated into additional commands to manipulate the 3-D scene, after which the server re-renders the scene and sends a new image to the client. Example forms-based and Java-based clients are described for a brain mapping application, but the techniques should be applicable to multiple domains where 3-D medical image visualization is of interest. PMID:11825248

  17. Research and implementation of visualization techniques for 3D explosion fields

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen

    2015-12-01

    The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.

  18. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  19. Visual storytelling in 2D and stereoscopic 3D video: effect of blur on visual attention

    NASA Astrophysics Data System (ADS)

    Huynh-Thu, Quan; Vienne, Cyril; Blondé, Laurent

    2013-03-01

    Visual attention is an inherent mechanism that plays an important role in the human visual perception. As our visual system has limited capacity and cannot efficiently process the information from the entire visual field, we focus our attention on specific areas of interest in the image for detailed analysis of these areas. In the context of media entertainment, the viewers' visual attention deployment is also influenced by the art of visual storytelling. To this date, visual editing and composition of scenes in stereoscopic 3D content creation still mostly follows those used in 2D. In particular, out-of-focus blur is often used in 2D motion pictures and photography to drive the viewer's attention towards a sharp area of the image. In this paper, we study specifically the impact of defocused foreground objects on visual attention deployment in stereoscopic 3D content. For that purpose, we conducted a subjective experiment using an eyetracker. Our results bring more insights on the deployment of visual attention in stereoscopic 3D content viewing, and provide further understanding on visual attention behavior differences between 2D and 3D. Our results show that a traditional 2D scene compositing approach such as the use of foreground blur does not necessarily produce the same effect on visual attention deployment in 2D and 3D. Implications for stereoscopic content creation and visual fatigue are discussed.

  20. Comparative visual analysis of 3D urban wind simulations

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  1. Visualization and Analysis of 3D Gene Expression Data

    SciTech Connect

    Bethel, E. Wes; Rubel, Oliver; Weber, Gunther H.; Hamann, Bernd; Hagen, Hans

    2007-10-25

    Recent methods for extracting precise measurements ofspatial gene expression patterns from three-dimensional (3D) image dataopens the way for new analysis of the complex gene regulatory networkscontrolling animal development. To support analysis of this novel andhighly complex data we developed PointCloudXplore (PCX), an integratedvisualization framework that supports dedicated multi-modal, physical andinformation visualization views along with algorithms to aid in analyzingthe relationships between gene expression levels. Using PCX, we helpedour science stakeholders to address many questions in 3D gene expressionresearch, e.g., to objectively define spatial pattern boundaries andtemporal profiles of genes and to analyze how mRNA patterns arecontrolled by their regulatory transcription factors.

  2. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  3. 3D Immersive Visualization: An Educational Tool in Geosciences

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  4. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  5. Volume Visual Attention Maps (VVAM) in ray-casting rendering.

    PubMed

    Beristain, Andoni; Congote, John; Ruiz, Oscar

    2012-01-01

    This paper presents an extension visual attention maps for volume data visualization, where eye fixation points become rays in the 3D space, and the visual attention map becomes a volume. This Volume Visual Attention Map (VVAM) is used to interactively enhance a ray-casting based direct volume rendering (DVR) visualization. The practical application of this idea into the biomedical image visualization field is explored for interactive visualization. PMID:22356956

  6. Interactive 3D visualization speeds well, reservoir planning

    SciTech Connect

    Petzet, G.A.

    1997-11-24

    Texaco Exploration and Production has begun making expeditious analyses and drilling decisions that result from interactive, large screen visualization of seismic and other three dimensional data. A pumpkin shaped room or pod inside a 3,500 sq ft, state-of-the-art facility in Southwest Houston houses a supercomputer and projection equipment Texaco said will help its people sharply reduce 3D seismic project cycle time, boost production from existing fields, and find more reserves. Oil and gas related applications of the visualization center include reservoir engineering, plant walkthrough simulation for facilities/piping design, and new field exploration. The center houses a Silicon Graphics Onyx2 infinite reality supercomputer configured with 8 processors, 3 graphics pipelines, and 6 gigabytes of main memory.

  7. 3D Healpix-based Skymaps Visualization using Java

    NASA Astrophysics Data System (ADS)

    Joliet, E.; O'Mullane, W.; Górski, K. M.; Banday, A. J.; Hivon, E.; Carr, R.

    2008-08-01

    HEALPix {http://healpix.jpl.nasa.gov/} is useful for data analysis and visualization. Gaia is the ESA space astrometry cornerstone mission the main objective of wich is to astrometrically and spectro-photometrically map 10^{9} celestial objects (mostly in our galaxy) with unprecedented accuracy. The data will be organized and stored in a central database at ESAC (Spain). The data treatment needs data analysis and visualization tools to accomplish a successful mission. The 3D Healpix-based skymaps are used as part of the interactive diagnostic tools as well as within the core processing. We present the HEALPix Java library and give some examples of its use within Gaia and Planck processing.

  8. A web-based solution for 3D medical image visualization

    NASA Astrophysics Data System (ADS)

    Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo

    2015-03-01

    In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.

  9. 3D Building Evacuation Route Modelling and Visualization

    NASA Astrophysics Data System (ADS)

    Chan, W.; Armenakis, C.

    2014-11-01

    The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.

  10. Planetary subsurface investigation by 3D visualization model .

    NASA Astrophysics Data System (ADS)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  11. Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization

    NASA Astrophysics Data System (ADS)

    Johnston, Semay; Renambot, Luc; Sauter, Daniel

    2013-03-01

    Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.

  12. Visualizing 3D velocity fields near contour surfaces

    SciTech Connect

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  13. Visualizing 3D fracture morphology in granular media

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2015-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  14. Visualizing 3D Fracture Morphology in Granular Media

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2015-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Recent work has pointed to the importance of capillary forces in some relevant regimes of fracturing of granular materials (Sandnes et al., Nat. Comm. 2011), leading to the term hydro-capillary fracturing (Holtzman et al., PRL 2012). Most of these experimental and computational investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a 3D granular bed, and control the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We determine the key dimensionless groups that control the behavior of the system, and elucidate different regimes of the invasion pattern. We present result for the 3D morphology of the invasion, with particular emphasis on the fracturing regime.

  15. 3D virtual colonoscopy with real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Wan, Ming; Li, Wei J.; Kreeger, Kevin; Bitter, Ingmar; Kaufman, Arie E.; Liang, Zhengrong; Chen, Dongqing; Wax, Mark R.

    2000-04-01

    In our previous work, we developed a virtual colonoscopy system on a high-end 16-processor SGI Challenge with an expensive hardware graphics accelerator. The goal of this work is to port the system to a low cost PC in order to increase its availability for mass screening. Recently, Mitsubishi Electric has developed a volume-rendering PC board, called VolumePro, which includes 128 MB of RAM and vg500 rendering chip. The vg500 chip, based on Cube-4 technology, can render a 2563 volume at 30 frames per second. High image quality of volume rendering inside the colon is guaranteed by the full lighting model and 3D interpolation supported by the vg500 chip. However, the VolumePro board is lacking some features required by our interactive colon navigation. First, VolumePro currently does not support perspective projection which is paramount for interior colon navigation. Second, the patient colon data is usually much larger than 2563 and cannot be rendered in real-time. In this paper, we present our solutions to these problems, including simulated perspective projection and axis aligned boxing techniques, and demonstrate the high performance of our virtual colonoscopy system on low cost PCs.

  16. A workflow for the 3D visualization of meteorological data

    NASA Astrophysics Data System (ADS)

    Helbig, Carolin; Rink, Karsten

    2014-05-01

    In the future, climate change will strongly influence our environment and living conditions. To predict possible changes, climate models that include basic and process conditions have been developed and big data sets are produced as a result of simulations. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. For our case study we use results of the weather research and forecasting (WRF) model of two regions at different scales that include various landscapes in Northern Central Europe and Baden-Württemberg. We visualize these simulation results in combination with observation data and geographic data, such as river networks, to evaluate processes and analyze if the model represents the atmospheric system sufficiently. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to visualization using open source software (e.g. OpenGeoSys Data Explorer, ParaView) is developed. These visualizations can be displayed on a desktop computer or in an interactive virtual reality environment. We established a concept that includes recommended 3D representations and a color scheme for the variables of the data based on existing guidelines and established traditions in the specific domain. To examine changes over time in observation and simulation data, we added the temporal dimension to the visualization. In a first step of the analysis, the visualizations are used to get an overview of the data and detect areas of interest such as regions of convection or wind turbulences. Then, subsets of data sets are extracted and the included variables can be examined in detail. An evaluation by experts from the domains of visualization and atmospheric sciences establish if they are self-explanatory and clearly arranged. These easy-to-understand visualizations of complex data sets are the basis for scientific communication. In addition, they have

  17. 3D visualization of numeric planetary data using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.

    2013-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.

  18. Self-Discovery of Structural Geology Concepts using Interactive 3D Visualization

    NASA Astrophysics Data System (ADS)

    Billen, M. I.; Saunders, J.

    2010-12-01

    Mastering structural geology concepts that depend on understanding three-dimensional (3D) geometries and imagining relationships among unseen subsurface structures are fundamental skills for geologists. Traditionally these skills are developed first, through use of 2D drawings of 3D structures that can be difficult to decipher or 3D physical block models that show only a limited set of relationships on the surfaces of the blocks, followed by application and testing of concepts in field settings. We hypothesize that this learning process can be improved by providing repeated opportunities to evaluate and explore synthetic 3D structures using interactive 3D visualization software. We present laboratory modules designed for undergraduate structural geology curriculum using a self-discovery approach to teach concepts such as: the Rule of V’s, structure separation versus fault slip, and the more general dependence of structural exposure on surface topography. The laboratory modules are structured to allow students to discover and articulate each concept from observations of synthetic data both on traditional maps and using the volume visualization software 3DVisualizer. Modules lead students through exploration of data (e.g., a dipping layered structure exposed in ridge-valley topography or obliquely offset across a fault) by allowing them to interactively view (rotate, pan, zoom) the exposure of structures on topographic surfaces and to toggle on/off the full 3D structure as a transparent colored volume. This tool allows student to easily visually understand the relationships between, for example a dipping structure and its exposure on valley walls, as well as how the structure extends beneath the surface. Using this method gives students more opportunities to build a mental library of previously-seen relationships from which to draw-on when applying concepts in the field setting. These laboratory modules, the data and software are freely available from KeckCAVES.

  19. Automatic 3-D grayscale volume matching and shape analysis.

    PubMed

    Guétat, Grégoire; Maitre, Matthieu; Joly, Laurène; Lai, Sen-Lin; Lee, Tzumin; Shinagawa, Yoshihisa

    2006-04-01

    Recently, shape matching in three dimensions (3-D) has been gaining importance in a wide variety of fields such as computer graphics, computer vision, medicine, and biology, with applications such as object recognition, medical diagnosis, and quantitative morphological analysis of biological operations. Automatic shape matching techniques developed in the field of computer graphics handle object surfaces, but ignore intensities of inner voxels. In biology and medical imaging, voxel intensities obtained by computed tomography (CT), magnetic resonance imagery (MRI), and confocal microscopes are important to determine point correspondences. Nevertheless, most biomedical volume matching techniques require human interactions, and automatic methods assume matched objects to have very similar shapes so as to avoid combinatorial explosions of point. This article is aimed at decreasing the gap between the two fields. The proposed method automatically finds dense point correspondences between two grayscale volumes; i.e., finds a correspondent in the second volume for every voxel in the first volume, based on the voxel intensities. Mutiresolutional pyramids are introduced to reduce computational load and handle highly plastic objects. We calculate the average shape of a set of similar objects and give a measure of plasticity to compare them. Matching results can also be used to generate intermediate volumes for morphing. We use various data to validate the effectiveness of our method: we calculate the average shape and plasticity of a set of fly brain cells, and we also match a human skull and an orangutan skull. PMID:16617625

  20. The 3D visualization technology research of submarine pipeline based Horde3D GameEngine

    NASA Astrophysics Data System (ADS)

    Yao, Guanghui; Ma, Xiushui; Chen, Genlang; Ye, Lingjian

    2013-10-01

    With the development of 3D display and virtual reality technology, its application gets more and more widespread. This paper applies 3D display technology to the monitoring of submarine pipeline. We reconstruct the submarine pipeline and its surrounding submarine terrain in computer using Horde3D graphics rendering engine on the foundation database "submarine pipeline and relative landforms landscape synthesis database" so as to display the virtual scene of submarine pipeline based virtual reality and show the relevant data collected from the monitoring of submarine pipeline.

  1. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  2. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  3. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  4. 3D shape modeling by integration visual and tactile cues

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.

  5. Translation, Enhancement, Filtering, and Visualization of Large 3D Triangle Mesh

    1997-04-21

    The runthru system consists of five programs: workcell filter, just do it, transl8g, decim8, and runthru. The workcell filter program is useful if the source of your 3D triangle mesh model is IGRIP. It will traverse a directory structure of Deneb IGRIP files and filter out any IGRIP part files that are not referenced by an accompanying IGRIP work cell file. The just do it program automates translating and/or filtering of large numbers of partsmore » that are organized in hierarchical directory structures. The transl8g program facilitates the interchange, topology generation, error checking, and enhancement of large 3D triangle meshes. Such data is frequently used to represent conceptual designs, scientific visualization volume modeling, or discrete sample data. Interchange is provided between several popular commercial and defacto standard geometry formats. Error checking is included to identify duplicate and zero area triangles. Model engancement features include common vertex joining, consistent triangle vertex ordering, vertex noemal vector averaging, and triangle strip generation. Many of the traditional O(n2) algorithms required to provide the above features have been recast and are o(nlog(n)) which support large mesh sizes. The decim8 program is based on a data filter algorithm that significantly reduces the number of triangles required to represent 3D models of geometry, scientific visualization results, and discretely sampled data. It eliminates local patches of triangles whose geometries are not appreciably different and replaces them with fewer, larger triangles. The algorithm has been used to reduce triangles in large conceptual design models to facilitate virtual walk throughs and to enable interactive viewing of large 3D iso-surface volume visualizations. The runthru program provides high performance interactive display and manipulation of 3D triangle mesh models.« less

  6. Optimization of site characterization and remediation methods using 3-D geoscience modeling and visualization techniques

    SciTech Connect

    Hedegaard, R.F.; Ho, J.; Eisert, J.

    1996-12-31

    Three-dimensional (3-D) geoscience volume modeling can be used to improve the efficiency of the environmental investigation and remediation process. At several unsaturated zone spill sites at two Superfund (CERCLA) sites (Military Installations) in California, all aspects of subsurface contamination have been characterized using an integrated computerized approach. With the aide of software such as LYNX GMS{trademark}, Wavefront`s Data Visualizer{trademark} and Gstools (public domain), the authors have created a central platform from which to map a contaminant plume, visualize the same plume three-dimensionally, and calculate volumes of contaminated soil or groundwater above important health risk thresholds. The developed methodology allows rapid data inspection for decisions such that the characterization process and remedial action design are optimized. By using the 3-D geoscience modeling and visualization techniques, the technical staff are able to evaluate the completeness and spatial variability of the data and conduct 3-D geostatistical predictions of contaminant and lithologic distributions. The geometry of each plume is estimated using 3-D variography on raw analyte values and indicator thresholds for the kriged model. Three-dimensional lithologic interpretation is based on either {open_quote}linked{close_quote} parallel cross sections or on kriged grid estimations derived from borehole data coded with permeability indicator thresholds. Investigative borings, as well as soil vapor extraction/injection wells, are sighted and excavation costs are estimated using these results. The principal advantages of the technique are the efficiency and rapidity with which meaningful results are obtained and the enhanced visualization capability which is a desirable medium to communicate with both the technical staff as well as nontechnical audiences.

  7. Visualizer: 3D Gridded Data Visualization Software for Geoscience Education and Research

    NASA Astrophysics Data System (ADS)

    Harwood, C.; Billen, M. I.; Kreylos, O.; Jadamec, M.; Sumner, D. Y.; Kellogg, L. H.; Hamann, B.

    2008-12-01

    In both research and education learning is an interactive and iterative process of exploring and analyzing data or model results. However, visualization software often presents challenges on the path to learning because it assumes the user already knows the locations and types of features of interest, instead of enabling flexible and intuitive examination of results. We present examples of research and teaching using the software, Visualizer, specifically designed to create an effective and intuitive environment for interactive, scientific analysis of 3D gridded data. Visualizer runs in a range of 3D virtual reality environments (e.g., GeoWall, ImmersaDesk, or CAVE), but also provides a similar level of real-time interactivity on a desktop computer. When using Visualizer in a 3D-enabled environment, the software allows the user to interact with the data images as real objects, grabbing, rotating or walking around the data to gain insight and perspective. On the desktop, simple features, such as a set of cross-bars marking the plane of the screen, provide extra 3D spatial cues that allow the user to more quickly understand geometric relationships within the data. This platform portability allows the user to more easily integrate research results into classroom demonstrations and exercises, while the interactivity provides an engaging environment for self-directed and inquiry-based learning by students. Visualizer software is freely available for download (www.keckcaves.org) and runs on Mac OSX and Linux platforms.

  8. Volume estimation of tonsil phantoms using an oral camera with 3D imaging.

    PubMed

    Das, Anshuman J; Valdez, Tulio A; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C; Raskar, Ramesh

    2016-04-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky's classification of tonsillar hypertrophy as well as intraoperative volume estimations. PMID:27446667

  9. Volume estimation of tonsil phantoms using an oral camera with 3D imaging

    PubMed Central

    Das, Anshuman J.; Valdez, Tulio A.; Vargas, Jose Arbouin; Saksupapchon, Punyapat; Rachapudi, Pushyami; Ge, Zhifei; Estrada, Julio C.; Raskar, Ramesh

    2016-01-01

    Three-dimensional (3D) visualization of oral cavity and oropharyngeal anatomy may play an important role in the evaluation for obstructive sleep apnea (OSA). Although computed tomography (CT) and magnetic resonance (MRI) imaging are capable of providing 3D anatomical descriptions, this type of technology is not readily available in a clinic setting. Current imaging of the oropharynx is performed using a light source and tongue depressors. For better assessment of the inferior pole of the tonsils and tongue base flexible laryngoscopes are required which only provide a two dimensional (2D) rendering. As a result, clinical diagnosis is generally subjective in tonsillar hypertrophy where current physical examination has limitations. In this report, we designed a hand held portable oral camera with 3D imaging capability to reconstruct the anatomy of the oropharynx in tonsillar hypertrophy where the tonsils get enlarged and can lead to increased airway resistance. We were able to precisely reconstruct the 3D shape of the tonsils and from that estimate airway obstruction percentage and volume of the tonsils in 3D printed realistic models. Our results correlate well with Brodsky’s classification of tonsillar hypertrophy as well as intraoperative volume estimations. PMID:27446667

  10. New approach to the perception of 3D shape based on veridicality, complexity, symmetry and volume.

    PubMed

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng; Kropatsch, Walter G; Steinman, Robert M

    2010-01-01

    This paper reviews recent progress towards understanding 3D shape perception made possible by appreciating the significant role that veridicality and complexity play in the natural visual environment. The ability to see objects as they really are "out there" is derived from the complexity inherent in the 3D object's shape. The importance of both veridicality and complexity was ignored in most prior research. Appreciating their importance made it possible to devise a computational model that recovers the 3D shape of an object from only one of its 2D images. This model uses a simplicity principle consisting of only four a priori constraints representing properties of 3D shapes, primarily their symmetry and volume. The model recovers 3D shapes from a single 2D image as well, and sometimes even better, than a human being. In the rare recoveries in which errors are observed, the errors made by the model and human subjects are very similar. The model makes no use of depth, surfaces or learning. Recent elaborations of this model include: (i) the recovery of the shapes of natural objects, including human and animal bodies with limbs in varying positions (ii) providing the model with two input images that allowed it to achieve virtually perfect shape constancy from almost all viewing directions. The review concludes with a comparison of some of the highlights of our novel, successful approach to the recovery of 3D shape from a 2D image with prior, less successful approaches. PMID:19800910

  11. Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications

    EPA Science Inventory

    We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...

  12. Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies

    NASA Astrophysics Data System (ADS)

    Gérard, Maxime; Tang, An; Badoual, Anaïs.; Michaud, François; Bigot, Alexandre; Soulez, Gilles; Kadoury, Samuel

    2016-03-01

    Liver cancer represents the second most common cause of cancer-related mortality worldwide. The prognosis is poor with an overall mortality of 95%. Moreover, most hepatic tumors are unresectable due to their advanced stage at discovery or poor underlying liver function. Tumor embolization by intra-arterial approaches is the current standard of care for advanced cases of hepatocellular carcinoma. These therapies rely on the fact that the blood supply of primary hepatic tumors is predominantly arterial. Feedback on blood flow velocities in the hepatic arteries is crucial to ensure maximal treatment efficacy on the targeted masses. Based on these velocities, the intra-arterial injection rate is modulated for optimal infusion of the chemotherapeutic drugs into the tumorous tissue. While Doppler ultrasound is a well-documented technique for the assessment of blood flow, 3D visualization of vascular anatomy with ultrasound remains challenging. In this paper we present an image-guidance pipeline that enables the localization of the hepatic arterial branches within a 3D ultrasound image of the liver. A diagnostic Magnetic resonance angiography (MRA) is first processed to automatically segment the hepatic arteries. A non-rigid registration method is then applied on the portal phase of the MRA volume with a 3D ultrasound to enable the visualization of the 3D mesh of the hepatic arteries in the Doppler images. To evaluate the performance of the proposed workflow, we present initial results from porcine models and patient images.

  13. Registration and 3D visualization of large microscopy images

    NASA Astrophysics Data System (ADS)

    Mosaliganti, Kishore; Pan, Tony; Sharp, Richard; Ridgway, Randall; Iyengar, Srivathsan; Gulacy, Alexandra; Wenzel, Pamela; de Bruin, Alain; Machiraju, Raghu; Huang, Kun; Leone, Gustavo; Saltz, Joel

    2006-03-01

    Inactivation of the retinoblastoma gene in mouse embryos causes tissue infiltrations into critical sections of the placenta, which has been shown to affect fetal survivability. Our collaborators in cancer genetics are extremely interested in examining the three dimensional nature of these infiltrations given a stack of two dimensional light microscopy images. Three sets of wildtype and mutant placentas was sectioned serially and digitized using a commercial light microscopy scanner. Each individual placenta dataset consisted of approximately 1000 images totaling 700 GB in size, which were registered into a volumetric dataset using National Library of Medicine's (NIH/NLM) Insight Segmentation and Registration Toolkit (ITK). This paper describes our method for image registration to aid in volume visualization of tissue level intermixing for both wildtype and Rb - specimens. The registration process faces many challenges arising from the large image sizes, damages during sectioning, staining gradients both within and across sections, and background noise. These issues limit the direct application of standard registration techniques due to frequent convergence to local solutions. In this work, we develop a mixture of automated and semi-automated enhancements with ground-truth validation for the mutual information-based registration algorithm. Our final volume renderings clearly show tissue intermixing differences between both wildtype and Rb - specimens which are not obvious prior to registration.

  14. Frameless Volume Visualization.

    PubMed

    Petkov, Kaloian; Kaufman, Arie E

    2016-02-01

    We have developed a novel visualization system based on the reconstruction of high resolution and high frame rate images from a multi-tiered stream of samples that are rendered framelessly. This decoupling of the rendering system from the display system is particularly suitable when dealing with very high resolution displays or expensive rendering algorithms, where the latency of generating complete frames may be prohibitively high for interactive applications. In contrast to the traditional frameless rendering technique, we generate the lowest latency samples on the optimal sampling lattice in the 3D domain. This approach avoids many of the artifacts associated with existing sample caching and reprojection methods during interaction that may not be acceptable in many visualization applications. Advanced visualization effects are generated remotely and streamed into the reconstruction system using tiered samples with varying latencies and quality levels. We demonstrate the use of our visualization system for the exploration of volumetric data at stable guaranteed frame rates on high resolution displays, including a 470 megapixel tiled display as part of the Reality Deck immersive visualization facility. PMID:26731452

  15. Visualizing Terrestrial and Aquatic Systems in 3D

    EPA Science Inventory

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  16. PACS-based interface for 3D anatomical structure visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  17. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing

    NASA Astrophysics Data System (ADS)

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is +/-0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  18. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  19. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  20. Visual Short-Term Memory Benefit for Objects on Different 3-D Surfaces

    ERIC Educational Resources Information Center

    Xu, Yaoda; Nakayama, Ken

    2007-01-01

    Visual short-term memory (VSTM) plays an important role in visual cognition. Although objects are located on different 3-dimensional (3-D) surfaces in the real world, how VSTM capacity may be influenced by the presence of multiple 3-D surfaces has never been examined. By manipulating binocular disparities of visual displays, the authors found that…

  1. E3D, the Euro3D visualization tool II: Mosaics, VIMOS data and large IFUs of the future

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Becker, T.; Kelz, A.

    2004-03-01

    In this paper, we describe the capabilities of E3D, the Euro3D visualization tool, to handle and display data created by large Integral Field Units (IFUs) and by mosaics consisting of multiple pointings. The reliability of the software has been tested with real data, originating from the PMAS instrument in mosaic mode and from the VIMOS instrument, which features the largest IFU currently available. The capabilities and limitations of the current software are examined in view of future large IFUs, which will produce extremely large datasets.

  2. Visualization of a newborn's hip joint using 3D ultrasound and automatic image processing

    NASA Astrophysics Data System (ADS)

    Overhoff, Heinrich M.; Lazovic, Djordje; von Jan, Ute

    1999-05-01

    Graf's method is a successful procedure for the diagnostic screening of developmental dysplasia of the hip. In a defined 2-D ultrasound (US) scan, which virtually cuts the hip joint, landmarks are interactively identified to derive congruence indicators. As the indicators do not reflect the spatial joint structure, and the femoral head is not clearly visible in the US scan, here 3-D US is used to gain insight to the hip joint in its spatial form. Hip joints of newborns were free-hand scanned using a conventional ultrasound transducer and a localizer system fixed on the scanhead. To overcome examiner- dependent findings the landmarks were detected by automatic segmentation of the image volume. The landmark image volumes and an automatically determined virtual sphere approximating the femoral head were visualized color-coded on a computer screen. The visualization was found to be intuitive and to simplify the diagnostic substantially. By the visualization of the 3-D relations between acetabulum and femoral head the reliability of diagnostics is improved by finding the entire joint geometry.

  3. 3D PATTERN OF BRAIN ABNORMALITIES IN WILLIAMS SYNDROME VISUALIZED USING TENSOR-BASED MORPHOMETRY

    PubMed Central

    Chiang, Ming-Chang; Reiss, Allan L.; Lee, Agatha D.; Bellugi, Ursula; Galaburda, Albert M.; Korenberg, Julie R.; Mills, Debra L.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with deletion of ~20 contiguous genes in chromosome band 7q11.23. Individuals with WS exhibit mild to moderate mental retardation, but are relatively more proficient in specific language and musical abilities. We used tensor-based morphometry (TBM) to visualize the complex pattern of gray/white matter reductions in WS, based on fluid registration of structural brain images. Methods 3D T1-weighted brain MRIs of 41 WS subjects (age: 29.2±9.2SD years; 23F/18M) and 39 age-matched healthy controls (age: 27.5±7.4 years; 23F/16M) were fluidly registered to a minimum deformation target. Fine-scale volumetric differences were mapped between diagnostic groups. Local regions were identified where regional structure volumes were associated with diagnosis, and with intelligence quotient (IQ) scores. Brain asymmetry was also mapped and compared between diagnostic groups. Results WS subjects exhibited widely distributed brain volume reductions (~10–15% reduction; P < 0.0002, permutation test). After adjusting for total brain volume, the frontal lobes, anterior cingulate, superior temporal gyrus, amygdala, fusiform gyrus and cerebellum were found to be relatively preserved in WS, but parietal and occipital lobes, thalamus and basal ganglia, and midbrain were disproportionally decreased in volume (P < 0.0002). These regional volumes also correlated positively with performance IQ in adult WS subjects (age ≥ 30 years, P = 0.038). Conclusion TBM facilitates 3D visualization of brain volume reductions in WS. Reduced parietal/occipital volumes may be associated with visuospatial deficits in WS. By contrast, frontal lobes, amygdala, and cingulate gyrus are relatively preserved or even enlarged, consistent with unusual affect regulation and language production in WS. PMID:17512756

  4. NASA VERVE: Interactive 3D Visualization Within Eclipse

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar; Allan, Mark B.

    2014-01-01

    At NASA, we develop myriad Eclipse RCP applications to provide situational awareness for remote systems. The Intelligent Robotics Group at NASA Ames Research Center has developed VERVE - a high-performance, robot user interface that provides scientists, robot operators, and mission planners with powerful, interactive 3D displays of remote environments.VERVE includes a 3D Eclipse view with an embedded Java Ardor3D scenario, including SWT and mouse controls which interact with the Ardor3D camera and objects in the scene. VERVE also includes Eclipse views for exploring and editing objects in the Ardor3D scene graph, and a HUD (Heads Up Display) framework allows Growl-style notifications and other textual information to be overlayed onto the 3D scene. We use VERVE to listen to telemetry from robots and display the robots and associated scientific data along the terrain they are exploring; VERVE can be used for any interactive 3D display of data.VERVE is now open source. VERVE derives from the prior Viz system, which was developed for Mars Polar Lander (2001) and used for the Mars Exploration Rover (2003) and the Phoenix Lander (2008). It has been used for ongoing research with IRG's K10 and KRex rovers in various locations. VERVE was used on the International Space Station during two experiments in 2013 - Surface Telerobotics, in which astronauts controlled robots on Earth from the ISS, and SPHERES, where astronauts control a free flying robot on board the ISS.We will show in detail how to code with VERVE, how to interact between SWT controls to the Ardor3D scenario, and share example code.

  5. Interactive Visualization of 3-D Mantle Convection Extended Through AJAX Applications

    NASA Astrophysics Data System (ADS)

    McLane, J. C.; Czech, W.; Yuen, D.; Greensky, J.; Knox, M. R.

    2008-12-01

    We have designed a new software system for real-time interactive visualization of results taken directly from large-scale simulations of 3-D mantle convection and other large-scale simulations. This approach allows for intense visualization sessions for a couple of hours as opposed to storing massive amounts of data in a storage system. Our data sets consist of 3-D data for volume rendering with over 10 million unknowns at each timestep. Large scale visualization on a display wall holding around 13 million pixels has already been accomplished with extension to hand-held devices, such as the OQO and Nokia N800 and recently the iPHONE. We are developing web-based software in Java to extend the use of this system across long distances. The software is aimed at creating an interactive and functional application capable of running on multiple browsers by taking advantage of two AJAX-enabled web frameworks: Echo2 and Google Web Toolkit. The software runs in two modes allowing for a user to control an interactive session or observe a session controlled by another user. Modular build of the system allows for components to be swapped out for new components so that other forms of visualization could be accommodated such as Molecular Dynamics in mineral physics or 2-D data sets from lithospheric regional models.

  6. Analysis of the variation in OCT measurements of a structural bottle neck for eye-brain transfer of visual information from 3D-volumes of the optic nerve head, PIMD-Average [02π

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2016-03-01

    The present study aimed to analyze the clinical usefulness of the thinnest cross section of the nerve fibers in the optic nerve head averaged over the circumference of the optic nerve head. 3D volumes of the optic nerve head of the same eye was captured at two different visits spaced in time by 1-4 weeks, in 13 subjects diagnosed with early to moderate glaucoma. At each visit 3 volumes containing the optic nerve head were captured independently with a Topcon OCT- 2000 system. In each volume, the average shortest distance between the inner surface of the retina and the central limit of the pigment epithelium around the optic nerve head circumference, PIMD-Average [02π], was determined semiautomatically. The measurements were analyzed with an analysis of variance for estimation of the variance components for subjects, visits, volumes and semi-automatic measurements of PIMD-Average [0;2π]. It was found that the variance for subjects was on the order of five times the variance for visits, and the variance for visits was on the order of 5 times higher than the variance for volumes. The variance for semi-automatic measurements of PIMD-Average [02π] was 3 orders of magnitude lower than the variance for volumes. A 95 % confidence interval for mean PIMD-Average [02π] was estimated to 1.00 +/-0.13 mm (D.f. = 12). The variance estimates indicate that PIMD-Average [02π] is not suitable for comparison between a onetime estimate in a subject and a population reference interval. Cross-sectional independent group comparisons of PIMD-Average [02π] averaged over subjects will require inconveniently large sample sizes. However, cross-sectional independent group comparison of averages of within subject difference between baseline and follow-up can be made with reasonable sample sizes. Assuming a loss rate of 0.1 PIMD-Average [02π] per year and 4 visits per year it was found that approximately 18 months follow up is required before a significant change of PIMDAverage [02π] can

  7. 3-D dynamic rupture simulations by a finite volume method

    NASA Astrophysics Data System (ADS)

    Benjemaa, M.; Glinsky-Olivier, N.; Cruz-Atienza, V. M.; Virieux, J.

    2009-07-01

    Dynamic rupture of a 3-D spontaneous crack of arbitrary shape is investigated using a finite volume (FV) approach. The full domain is decomposed in tetrahedra whereas the surface, on which the rupture takes place, is discretized with triangles that are faces of tetrahedra. First of all, the elastodynamic equations are described into a pseudo-conservative form for an easy application of the FV discretization. Explicit boundary conditions are given using criteria based on the conservation of discrete energy through the crack surface. Using a stress-threshold criterion, these conditions specify fluxes through those triangles that have suffered rupture. On these broken surfaces, stress follows a linear slip-weakening law, although other friction laws can be implemented. For The Problem Version 3 of the dynamic-rupture code verification exercise conducted by the SCEC/USGS, numerical solutions on a planar fault exhibit a very high convergence rate and are in good agreement with the reference one provided by a finite difference (FD) technique. For a non-planar fault of parabolic shape, numerical solutions agree satisfactorily well with those obtained with a semi-analytical boundary integral method in terms of shear stress amplitudes, stopping phases arrival times and stress overshoots. Differences between solutions are attributed to the low-order interpolation of the FV approach, whose results are particularly sensitive to the mesh regularity (structured/unstructured). We expect this method, which is well adapted for multiprocessor parallel computing, to be competitive with others for solving large scale dynamic ruptures scenarios of seismic sources in the near future.

  8. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  9. Real-time auto-stereoscopic visualization of 3D medical images

    NASA Astrophysics Data System (ADS)

    Portoni, Luisa; Patak, Alexandre; Noirard, Pierre; Grossetie, Jean-Claude; van Berkel, Cees

    2000-04-01

    The work here described regards multi-viewer auto- stereoscopic visualization of 3D models of anatomical structures and organs of the human body. High-quality 3D models of more than 1600 anatomical structures have been reconstructed using the Visualization Toolkit, a freely available C++ class library for 3D graphics and visualization. 2D images used for 3D reconstruction comes from the Visible Human Data Set. Auto-stereoscopic 3D image visualization is obtained using a prototype monitor developed at Philips Research Labs, UK. This special multiview 3D-LCD screen has been connected directly to a SGI workstation, where 3D reconstruction and medical imaging applications are executed. Dedicated software has been developed to implement multiview capability. A number of static or animated contemporary views of the same object can simultaneously be seen on the 3D-LCD screen by several observers, having a real 3D perception of the visualized scene without the use of extra media as dedicated glasses or head-mounted displays. Developed software applications allow real-time interaction with visualized 3D models, didactical animations and movies have been realized as well.

  10. 3-D Surface Visualization of pH Titration "Topos": Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick

    2014-01-01

    3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…

  11. Three-dimensional visualization of ensemble weather forecasts - Part 1: The visualization tool Met.3D (version 1.0)

    NASA Astrophysics Data System (ADS)

    Rautenhaus, M.; Kern, M.; Schäfler, A.; Westermann, R.

    2015-07-01

    We present "Met.3D", a new open-source tool for the interactive three-dimensional (3-D) visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns; however, it is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output - 3-D visualization, ensemble visualization and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2-D visualization methods commonly used in meteorology to 3-D visualization by combining both visualization types in a 3-D context. We address the issue of spatial perception in the 3-D view and present approaches to using the ensemble to allow the user to assess forecast uncertainty. Interactivity is key to our approach. Met.3D uses modern graphics technology to achieve interactive visualization on standard consumer hardware. The tool supports forecast data from the European Centre for Medium Range Weather Forecasts (ECMWF) and can operate directly on ECMWF hybrid sigma-pressure level grids. We describe the employed visualization algorithms, and analyse the impact of the ECMWF grid topology on computing 3-D ensemble statistical quantities. Our techniques are demonstrated with examples from the T-NAWDEX-Falcon 2012 (THORPEX - North Atlantic Waveguide and Downstream Impact Experiment) campaign.

  12. A geoscience perspective on immersive 3D gridded data visualization

    NASA Astrophysics Data System (ADS)

    Billen, Magali I.; Kreylos, Oliver; Hamann, Bernd; Jadamec, Margarete A.; Kellogg, Louise H.; Staadt, Oliver; Sumner, Dawn Y.

    2008-09-01

    We describe visualization software, Visualizer, that was developed specifically for interactive, visual exploration in immersive virtual reality (VR) environments. Visualizer uses carefully optimized algorithms and data structures to support the high frame rates required for immersion and the real-time feedback required for interactivity. As an application developed for VR from the ground up, Visualizer realizes benefits that usually cannot be achieved by software initially developed for the desktop and later ported to VR. However, Visualizer can also be used on desktop systems (unix/linux-based operating systems including Mac OS X) with a similar level of real-time interactivity, bridging the "software gap" between desktop and VR that has been an obstacle for the adoption of VR methods in the Geosciences. While many of the capabilities of Visualizer are already available in other software packages used in a desktop environment, the features that distinguish Visualizer are: (1) Visualizer can be used in any VR environment including the desktop, GeoWall, or CAVE, (2) in non-desktop environments the user interacts with the data set directly using a wand or other input devices instead of working indirectly via dialog boxes or text input, (3) on the desktop, Visualizer provides real-time interaction with very large data sets that cannot easily be viewed or manipulated in other software packages. Three case studies are presented that illustrate the direct scientific benefits realized by analyzing data or simulation results with Visualizer in a VR environment. We also address some of the main obstacles to widespread use of VR environments in scientific research with a user study that shows Visualizer is easy to learn and to use in a VR environment and can be as effective on desktop systems as native desktop applications.

  13. Remote web-based 3D visualization of hydrological forecasting datasets.

    NASA Astrophysics Data System (ADS)

    van Meersbergen, Maarten; Drost, Niels; Blower, Jon; Griffiths, Guy; Hut, Rolf; van de Giesen, Nick

    2015-04-01

    As the possibilities for larger and more detailed simulations of geoscientific data expand, the need for smart solutions in data visualization grow as well. Large volumes of data should be quickly accessible from anywhere in the world without the need for transferring the simulation results. We aim to provide tools for both processing and the handling of these large datasets. As an example, the eWaterCycle project (www.ewatercycle.org) aims to provide a running 14-day ensemble forecast to predict water related stress around the globe. The large volumes of simulation results with uncertainty data that are generated through ensemble hydrological predictions provide a challenge for existing visualization solutions. One possible solution for this challenge lies in the use of web-enabled technology for visualization and analysis of these datasets. Web-based visualization provides an additional benefit in that it eliminates the need for any software installation and configuration and allows for the easy communication of research results between collaborating research parties. Providing interactive tools for the exploration of these datasets will not only help in the analysis of the data by researchers, it can also aid in the dissemination of the research results to the general public. In Vienna, we will present a working open source solution for remote visualization of large volumes of global geospatial data based on the proven open-source 3D web visualization software package Cesium (cesiumjs.org), the ncWMS software package provided by the Reading e-Science Centre and the WebGL and NetCDF standards.

  14. 3D panorama stereo visual perception centering on the observers

    NASA Astrophysics Data System (ADS)

    Tang, YiPing; Zhou, Jingkai; Xu, Haitao; Xiang, Yun

    2015-09-01

    For existing three-dimensional (3D) laser scanners, acquiring geometry and color information of the objects simultaneously is difficult. Moreover, the current techniques cannot store, modify, and model the point clouds efficiently. In this work, we have developed a novel sensor system, which is called active stereo omni-directional vision sensor (ASODVS), to address those problems. ASODVS is an integrated system composed of a single-view omni-directional vision sensor and a mobile planar green laser generator platform. Driven by a stepper motor, the laser platform can move vertically along the axis of the ASODVS. During the scanning of the laser generators, the panoramic images of the environment are captured and the characteristics and space location information of the laser points are calculated accordingly. Based on the image information of the laser points, the 3D space can be reconstructed. Experimental results demonstrate that the proposed ASODVS system can measure and reconstruct the 3D space in real-time and with high quality.

  15. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    NASA Astrophysics Data System (ADS)

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco

    2016-04-01

    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  16. ProSAT+: visualizing sequence annotations on 3D structure.

    PubMed

    Stank, Antonia; Richter, Stefan; Wade, Rebecca C

    2016-08-01

    PRO: tein S: tructure A: nnotation T: ool-plus (ProSAT(+)) is a new web server for mapping protein sequence annotations onto a protein structure and visualizing them simultaneously with the structure. ProSAT(+) incorporates many of the features of the preceding ProSAT and ProSAT2 tools but also provides new options for the visualization and sharing of protein annotations. Data are extracted from the UniProt KnowledgeBase, the RCSB PDB and the PDBe SIFTS resource, and visualization is performed using JSmol. User-defined sequence annotations can be added directly to the URL, thus enabling visualization and easy data sharing. ProSAT(+) is available at http://prosat.h-its.org. PMID:27284084

  17. 3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics.

    PubMed

    Park, Jincheol; Oh, Heeseok; Lee, Sanghoon; Bovik, Alan Conrad

    2015-03-01

    Being able to predict the degree of visual discomfort that is felt when viewing stereoscopic 3D (S3D) images is an important goal toward ameliorating causative factors, such as excessive horizontal disparity, misalignments or mismatches between the left and right views of stereo pairs, or conflicts between different depth cues. Ideally, such a model should account for such factors as capture and viewing geometries, the distribution of disparities, and the responses of visual neurons. When viewing modern 3D displays, visual discomfort is caused primarily by changes in binocular vergence while accommodation in held fixed at the viewing distance to a flat 3D screen. This results in unnatural mismatches between ocular fixations and ocular focus that does not occur in normal direct 3D viewing. This accommodation vergence conflict can cause adverse effects, such as headaches, fatigue, eye strain, and reduced visual ability. Binocular vision is ultimately realized by means of neural mechanisms that subserve the sensorimotor control of eye movements. Realizing that the neuronal responses are directly implicated in both the control and experience of 3D perception, we have developed a model-based neuronal and statistical framework called the 3D visual discomfort predictor (3D-VDP)that automatically predicts the level of visual discomfort that is experienced when viewing S3D images. 3D-VDP extracts two types of features: 1) coarse features derived from the statistics of binocular disparities and 2) fine features derived by estimating the neural activity associated with the processing of horizontal disparities. In particular, we deploy a model of horizontal disparity processing in the extrastriate middle temporal region of occipital lobe. We compare the performance of 3D-VDP with other recent discomfort prediction algorithms with respect to correlation against recorded subjective visual discomfort scores,and show that 3D-VDP is statistically superior to the other methods. PMID

  18. Visualization of 3D elbow kinematics using reconstructed bony surfaces

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.

    2010-02-01

    An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.

  19. Extending a teleradiology system by tools for 3D-visualization and volumetric analysis through a plug-in mechanism.

    PubMed

    Evers, H; Mayer, A; Engelmann, U; Schröter, A; Baur, U; Wolsiffer, K; Meinzer, H P

    1998-01-01

    This paper describes ongoing research concerning interactive volume visualization coupled with tools for volumetric analysis. To establish an easy to use application, the 3D-visualization has been embedded in a state of the art teleradiology system, where additional functionality is often desired beyond basic image transfer and management. Major clinical requirements for deriving spatial measures are covered by the tools, in order to realize extended diagnosis support and therapy planning. Introducing the general plug-in mechanism this work exemplarily describes the useful extension of an approved application. Interactive visualization was achieved by a hybrid approach taking advantage of both the precise volume visualization based on the Heidelberg Raytracing Model and the graphics acceleration of modern workstations. Several tools for volumetric analysis extend the 3D-viewing. They offer 3D-pointing devices to select locations in the data volume, measure anatomical structures or control segmentation processes. A haptic interface provides a realistic perception while navigating within the 3D-reconstruction. The work is closely related to research work in the field of heart, liver and head surgery. In cooperation with our medical partners the development of tools as presented proceed the integration of image analysis into clinical routine. PMID:10384617

  20. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  1. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images. PMID:27410090

  2. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    SciTech Connect

    Horwedel, J.E.; Bowman, S.M.

    2000-06-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.

  3. Hardware-accelerated autostereogram rendering for interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Petz, Christoph; Goldluecke, Bastian; Magnor, Marcus

    2003-05-01

    Single Image Random Dot Stereograms (SIRDS) are an attractive way of depicting three-dimensional objects using conventional display technology. Once trained in decoupling the eyes' convergence and focusing, autostereograms of this kind are able to convey the three-dimensional impression of a scene. We present in this work an algorithm that generates SIRDS at interactive frame rates on a conventional PC. The presented system allows rotating a 3D geometry model and observing the object from arbitrary positions in real-time. Subjective tests show that the perception of a moving or rotating 3D scene presents no problem: The gaze remains focused onto the object. In contrast to conventional SIRDS algorithms, we render multiple pixels in a single step using a texture-based approach, exploiting the parallel-processing architecture of modern graphics hardware. A vertex program determines the parallax for each vertex of the geometry model, and the graphics hardware's texture unit is used to render the dot pattern. No data has to be transferred between main memory and the graphics card for generating the autostereograms, leaving CPU capacity available for other tasks. Frame rates of 25 fps are attained at a resolution of 1024x512 pixels on a standard PC using a consumer-grade nVidia GeForce4 graphics card, demonstrating the real-time capability of the system.

  4. The Visual Priming of Motion-Defined 3D Objects

    PubMed Central

    Jiang, Xiong; Jiang, Yang

    2015-01-01

    The perception of a stimulus can be influenced by previous perceptual experience, a phenomenon known as perceptual priming. However, there has been limited investigation on perceptual priming of shape perception of three-dimensional object structures defined by moving dots. Here we examined the perceptual priming of a 3D object shape defined purely by motion-in-depth cues (i.e., Shape-From-Motion, SFM) using a classic prime-target paradigm. The results from the first two experiments revealed a significant increase in accuracy when a “cloudy” SFM stimulus (whose object structure was difficult to recognize due to the presence of strong noise) was preceded by an unambiguous SFM that clearly defined the same transparent 3D shape. In contrast, results from Experiment 3 revealed no change in accuracy when a “cloudy” SFM stimulus was preceded by a static shape or a semantic word that defined the same object shape. Instead, there was a significant decrease in accuracy when preceded by a static shape or a semantic word that defined a different object shape. These results suggested that the perception of a noisy SFM stimulus can be facilitated by a preceding unambiguous SFM stimulus—but not a static image or a semantic stimulus—that defined the same shape. The potential neural and computational mechanisms underlying the difference in priming are discussed. PMID:26658496

  5. 3D visualization for the MARS14 Code

    SciTech Connect

    Rzepecki, Jaroslaw P.; Kostin, Mikhail A; Mokhov, Nikolai V.

    2003-01-23

    A new three-dimensional visualization engine has been developed for the MARS14 code system. It is based on the OPENINVENTOR graphics library and integrated with the MARS built-in two-dimensional Graphical-User Interface, MARS-GUI-SLICE. The integrated package allows thorough checking of complex geometry systems and their fragments, materials, magnetic fields, particle tracks along with a visualization of calculated 2-D histograms. The algorithms and their optimization are described for two geometry classes along with examples in accelerator and detector applications.

  6. New software for visualizing 3D geological data in coal mines

    NASA Astrophysics Data System (ADS)

    Lee, Sungjae; Choi, Yosoon

    2015-04-01

    This study developed new software to visualize 3D geological data in coal mines. The Visualization Tool Kit (VTK) library and Visual Basic.NET 2010 were used to implement the software. The software consists of several modules providing functionalities: (1) importing and editing borehole data; (2) modelling of coal seams in 3D; (3) modelling of coal properties using 3D ordinary Kriging method; (4) calculating economical values of 3D blocks; (5) pit boundary optimization for identifying economical coal reserves based on the Lerchs-Grosmann algorithm; and (6) visualizing 3D geological, geometrical and economical data. The software has been applied to a small-scale open-pit coal mine in Indonesia revealed that it can provide useful information supporting the planning and design of open-pit coal mines.

  7. Location constraint based 2D-3D registration of fluoroscopic images and CT volumes for image-guided EP procedures

    NASA Astrophysics Data System (ADS)

    Liao, Rui; Xu, Ning; Sun, Yiyong

    2008-03-01

    Presentation of detailed anatomical structures via 3D Computed Tomographic (CT) volumes helps visualization and navigation in electrophysiology procedures (EP). Registration of the CT volume with the online fluoroscopy however is a challenging task for EP applications due to the lack of discernable features in fluoroscopic images. In this paper, we propose to use the coronary sinus (CS) catheter in bi-plane fluoroscopic images and the coronary sinus in the CT volume as a location constraint to accomplish 2D-3D registration. Two automatic registration algorithms are proposed in this study, and their performances are investigated on both simulated and real data. It is shown that compared to registration using mono-plane fluoroscopy, registration using bi-plane images results in substantially higher accuracy in 3D and enhanced robustness. In addition, compared to registering the projection of CS to the 2D CS catheter, it is more desirable to reconstruct a 3D CS catheter from the bi-plane fluoroscopy and then perform a 3D-3D registration between the CS and the reconstructed CS catheter. Quantitative validation based on simulation and visual inspection on real data demonstrates the feasibility of the proposed workflow in EP procedures.

  8. GMOL: An Interactive Tool for 3D Genome Structure Visualization.

    PubMed

    Nowotny, Jackson; Wells, Avery; Oluwadare, Oluwatosin; Xu, Lingfei; Cao, Renzhi; Trieu, Tuan; He, Chenfeng; Cheng, Jianlin

    2016-01-01

    It has been shown that genome spatial structures largely affect both genome activity and DNA function. Knowing this, many researchers are currently attempting to accurately model genome structures. Despite these increased efforts there still exists a shortage of tools dedicated to visualizing the genome. Creating a tool that can accurately visualize the genome can aid researchers by highlighting structural relationships that may not be obvious when examining the sequence information alone. Here we present a desktop application, known as GMOL, designed to effectively visualize genome structures so that researchers may better analyze genomic data. GMOL was developed based upon our multi-scale approach that allows a user to scale between six separate levels within the genome. With GMOL, a user can choose any unit at any scale and scale it up or down to visualize its structure and retrieve corresponding genome sequences. Users can also interactively manipulate and measure the whole genome structure and extract static images and machine-readable data files in PDB format from the multi-scale structure. By using GMOL researchers will be able to better understand and analyze genome structure models and the impact their structural relations have on genome activity and DNA function. PMID:26868282

  9. 3D visualization of unsteady 2D airplane wake vortices

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Zheng, Z. C.

    1994-01-01

    Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.

  10. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  11. Development of 3D interactive visual objects using the Scripps Institution of Oceanography's Visualization Center

    NASA Astrophysics Data System (ADS)

    Kilb, D.; Reif, C.; Peach, C.; Keen, C. S.; Smith, B.; Mellors, R. J.

    2003-12-01

    Within the last year scientists and educators at the Scripps Institution of Oceanography (SIO), the Birch Aquarium at Scripps and San Diego State University have collaborated with education specialists to develop 3D interactive graphic teaching modules for use in the classroom and in teacher workshops at the SIO Visualization center (http://siovizcenter.ucsd.edu). The unique aspect of the SIO Visualization center is that the center is designed around a 120 degree curved Panoram floor-to-ceiling screen (8'6" by 28'4") that immerses viewers in a virtual environment. The center is powered by an SGI 3400 Onyx computer that is more powerful, by an order of magnitude in both speed and memory, than typical base systems currently used for education and outreach presentations. This technology allows us to display multiple 3D data layers (e.g., seismicity, high resolution topography, seismic reflectivity, draped interferometric synthetic aperture radar (InSAR) images, etc.) simultaneously, render them in 3D stereo, and take a virtual flight through the data as dictated on the spot by the user. This system can also render snapshots, images and movies that are too big for other systems, and then export smaller size end-products to more commonly used computer systems. Since early 2002, we have explored various ways to provide informal education and outreach focusing on current research presented directly by the researchers doing the work. The Center currently provides a centerpiece for instruction on southern California seismology for K-12 students and teachers for various Scripps education endeavors. Future plans are in place to use the Visualization Center at Scripps for extended K-12 and college educational programs. In particular, we will be identifying K-12 curriculum needs, assisting with teacher education, developing assessments of our programs and products, producing web-accessible teaching modules and facilitating the development of appropriate teaching tools to be

  12. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  13. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  14. Earthscape, a Multi-Purpose Interactive 3d Globe Viewer for Hybrid Data Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Sarthou, A.; Mas, S.; Jacquin, M.; Moreno, N.; Salamon, A.

    2015-08-01

    The hybrid visualization and interaction tool EarthScape is presented here. The software is able to display simultaneously LiDAR point clouds, draped videos with moving footprint, volume scientific data (using volume rendering, isosurface and slice plane), raster data such as still satellite images, vector data and 3D models such as buildings or vehicles. The application runs on touch screen devices such as tablets. The software is based on open source libraries, such as OpenSceneGraph, osgEarth and OpenCV, and shader programming is used to implement volume rendering of scientific data. The next goal of EarthScape is to perform data analysis using ENVI Services Engine, a cloud data analysis solution. EarthScape is also designed to be a client of Jagwire which provides multisource geo-referenced video fluxes. When all these components will be included, EarthScape will be a multi-purpose platform that will provide at the same time data analysis, hybrid visualization and complex interactions. The software is available on demand for free at france@exelisvis.com.

  15. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  16. Subjective evaluation of user experience in interactive 3D visualization in a medical context

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Sjöström, Mårten; Olsson, Roger; Persson, Anders; Ericson, Thomas; Rudling, Johan; Norén, Bengt

    2012-02-01

    New display technologies enable the usage of 3D-visualization in a medical context. Even though user performance seems to be enhanced with respect to 2D thanks to the addition of recreated depth cues, human factors, and more particularly visual comfort and visual fatigue can still be a bridle to the widespread use of these systems. This study aimed at evaluating and comparing two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of quality of experience (QoE), in the context of interactive medical visualization. An adapted methodology was designed in order to subjectively evaluate the experience of users. 14 medical doctors and 15 medical students took part in the experiment. After solving different tasks using the 3D reconstruction of a phantom object, they were asked to judge their quality of the experience, according to specific features. They were also asked to give their opinion about the influence of 3D-systems on their work conditions. Results suggest that medical doctors are opened to 3D-visualization techniques and are confident concerning their beneficial influence on their work. However, visual comfort and visual fatigue are still an issue of 3D-displays. Results obtained with the multi-view display suggest that the use of continuous horizontal parallax might be the future response to these current limitations.

  17. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  18. A 3D Immersive Fault Visualizer and Editor

    NASA Astrophysics Data System (ADS)

    Yikilmaz, M. B.; van Aalsburg, J.; Kreylos, O.; Kellogg, L. H.; Rundle, J. B.

    2007-12-01

    Digital fault models are an important resource for the study of earthquake dynamics, fault-earthquake interactions and seismicity. Once digitized these fault models can be used in Finite Element Model (FEM) programs or earthquake simulations such as Virtual California (VC). However, these models are often difficult to create, requiring a substantial amount of time to generate the fault topology and compute the properties of the individual segments. To aid in the construction of such models we have developed an immersive virtual reality (VR) application to visualize and edit fault models. Our program is designed to run in a CAVE (walk-in VR environment), but also works in a wide range of other environments, including desktop systems and GeoWalls. It is being developed at the UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://www.keckcaves.org). Immersive VR environments are ideal for visualizing and manipulating three- dimensional data sets. Our program allows users to create new models or modify existing ones; for example by repositioning individual fault-segments, by changing the dip angle, or by modifying (or assigning) the value of a property associated with a particular fault segment (i.e. slip rate). With the addition of high resolution Digital Elevation Models (DEM) the user can accurately add new segments to an existing model or create a fault model entirely from scratch. Interactively created or modified models can be written to XML files at any time; from there the data may easily be converted into various formats required by the analysis software or simulation. We believe that the ease of interaction provided by VR technology is ideally suited to the problem of creating and editing digital fault models. Our software provides the user with an intuitive environment for visualizing and editing fault model data. This translates not only into less time spent creating fault models, but also enables the researcher to

  19. Impacts of a CAREER Award on Advancing 3D Visualization in Geology Education

    NASA Astrophysics Data System (ADS)

    Billen, M. I.

    2011-12-01

    CAREER awards provide a unique opportunity to develop educational activities as an integrated part of one's research activities. This CAREER award focused on developing interactive 3D visualization tools to aid geology students in improving their 3D visualization skills. Not only is this a key skill for field geologists who need to visualize unseen subsurface structures, but it is also an important aspect of geodynamic research into the processes, such as faulting and viscous flow, that occur during subduction. Working with an undergraduate student researcher and using the KeckCAVES developed volume visualization code 3DVisualizer, we have developed interactive visualization laboratory exercises (e.g., Discovering the Rule of Vs) and a suite of mini-exercises using illustrative 3D geologic structures (e.g., syncline, thrust fault) that students can explore (e.g., rotate, slice, cut-away) to understand how exposure of these structures at the surface can provide insight into the subsurface structure. These exercises have been integrated into the structural geology curriculum and made available on the web through the KeckCAVES Education website as both data-and-code downloads and pre-made movies. One of the main challenges of implementing research and education activities through the award is that progress must be made on both throughout the award period. Therefore, while our original intent was to use subduction model output as the structures in the educational models, delays in the research results required that we develop these models using other simpler input data sets. These delays occurred because one of the other goals of the CAREER grant is to allow the faculty to take their research in a new direction, which may certainly lead to transformative science, but can also lead to more false-starts as the challenges of doing the new science are overcome. However, having created the infrastructure for the educational components, use of the model results in future

  20. Visualization of 3D ensemble weather forecasts to predict uncertain warm conveyor belt situations

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Grams, Christian M.; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We present the application of interactive 3D visualization of ensemble weather predictions to forecasting warm conveyor belt (WCB) situations during aircraft-based atmospheric research campaigns under consideration of uncertainty in the forecast. Based on requirements of the 2012 T-NAWDEX-Falcon campaign, a method based on ensemble Lagrangian particle trajectories has been developed to predict 3D probabilities of the spatial occurrence of WCBs. The method has been integrated into the new open-source 3D ensemble visualization tool Met.3D. The integration facilitates interactive visual exploration of predicted WCB features and derived probabilities in the context of ensemble forecasts from the European Centre for Medium Range Weather Forecasts. To judge forecast uncertainty, Met.3D's interactivity enables the user to compute and visualize ensemble statistical quantities on-demand and to navigate the ensemble members. A new visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region assists the forecaster in interpreting the obtained probabilities. In this presentation, we focus on a case study that illustrates how we envision the use of 3D ensemble visualization for weather forecasting. The case study revisits a forecast case from T-NAWDEX-Falcon and demonstrates the practical application of the proposed uncertainty visualization methods.

  1. Visualizing the process of interaction in a 3D environment

    NASA Astrophysics Data System (ADS)

    Vaidya, Vivek; Suryanarayanan, Srikanth; Krishnan, Kajoli; Mullick, Rakesh

    2007-03-01

    As the imaging modalities used in medicine transition to increasingly three-dimensional data the question of how best to interact with and analyze this data becomes ever more pressing. Immersive virtual reality systems seem to hold promise in tackling this, but how individuals learn and interact in these environments is not fully understood. Here we will attempt to show some methods in which user interaction in a virtual reality environment can be visualized and how this can allow us to gain greater insight into the process of interaction/learning in these systems. Also explored is the possibility of using this method to improve understanding and management of ergonomic issues within an interface.

  2. GIS-based 3D visualization of the Mw 7.7, 2007, Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.; Altenbrunn, K.

    2009-12-01

    The November 14, 2007 Mw 7.7 earthquake nucleated on the west coast of northern Chile about 40 km east of the city of Tocopilla. It took place in the southern part of a large seismic gap, the Iquique subduction zone segment which is supposed to be at the end of its seismic cycle. The Tocopilla fault plane appears to be the northern continuation of the Mw 8.0, 1995 Antofagasta earthquake. We present a complex 3D model of the rupture area including first hypocenter localizations of aftershocks following the event. The data was recorded during a mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake. The seismic stations were recording the aftershocks from November 2007 until May 2008. In general, subduction zones have a complex structure where most of the volumes examined are characterized by strong variations in physical and material parameters. Therefore, 3D representation of the geophysical and geological conditions to be found are of great importance to understand such a subduction environment. We start with a two-dimensional visualization of the geological and geophysical setting. In a second step, we use GIS as a three-dimensional modeling tool which gives us the possibility to visualize the complex geophysical processes. One can easily add and delete data and focus on the information one needs. This allows us to investigate the aftershock distribution along the subducting slab and identify clear structures and clusters within the data set. Furthermore we combine the 2007 Tocopilla data set with the 1995 Antofagasta aftershocks which provides a new, three-dimensional insight into the segment boundary of these two events. Analyzing the aftershock sequence with a GIS-based model will not only help to visualize the setting but also be the base for various calculations and further explorations of the complex structures. Aftershocks following the 1995 Antofagasta earthquake and the 2007 Tocopilla earthquake

  3. Sector mapping method for 3D detached retina visualization.

    PubMed

    Zhai, Yi-Ran; Zhao, Yong; Zhong, Jie; Li, Ke; Lu, Cui-Xin; Zhang, Bing

    2016-10-01

    A new sphere-mapping algorithm called sector mapping is introduced to map sector images to the sphere of an eyeball. The proposed sector-mapping algorithm is evaluated and compared with the plane-mapping algorithm adopted in previous work. A simulation that maps an image of concentric circles to the sphere of the eyeball and an analysis of the difference in distance between neighboring points in a plane and sector were used to compare the two mapping algorithms. A three-dimensional model of a whole retina with clear retinal detachment was generated using the Visualization Toolkit software. A comparison of the mapping results shows that the central part of the retina near the optic disc is stretched and its edges are compressed when the plane-mapping algorithm is used. A better mapping result is obtained by the sector-mapping algorithm than by the plane-mapping algorithm in both the simulation results and real clinical retinal detachment three-dimensional reconstruction. PMID:27480739

  4. A PC-based high-quality and interactive virtual endoscopy navigating system using 3D texture based volume rendering.

    PubMed

    Hwang, Jin-Woo; Lee, Jong-Min; Kim, In-Young; Song, In-Ho; Lee, Yong-Hee; Kim, SunI

    2003-05-01

    As an alternative method to optical endoscopy, visual quality and interactivity are crucial for virtual endoscopy. One solution is to use the 3D texture map based volume rendering method that offers high rendering speed without reducing visual quality. However, it is difficult to apply the method to virtual endoscopy. First, 3D texture mapping requires a high-end graphic workstation. Second, texture memory limits reduce the frame-rate. Third, lack of shading reduces visual quality significantly. As 3D texture mapping has become available on personal computers recently, we developed an interactive navigation system using 3D texture mapping on a personal computer. We divided the volume data into small cubes and tested whether the cubes had meaningful data. Only the cubes that passed the test were loaded into the texture memory and rendered. With the amount of data to be rendered minimized, rendering speed increased remarkably. We also improved visual quality by implementing full Phong shading based on the iso-surface shading method without sacrificing interactivity. With the developed navigation system, 256 x 256 x 256 sized brain MRA data was interactively explored with good image quality. PMID:12725966

  5. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    SciTech Connect

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-04-15

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 {mu}m) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  6. Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; van Stralen, Marijn; Voormolen, Marco M.; van Burken, Gerard; Nemes, Attila; ten Cate, Folkert J.; Geleijnse, Marcel L.; de Jong, Nico; van der Steen, Antonius F. W.; Reiber, Johan H. C.; Bosch, Johan G.

    2006-03-01

    Three-dimensional (3D) stress echocardiography is a novel technique for diagnosing cardiac dysfunction, by comparing wall motion of the left ventricle under different stages of stress. For quantitative comparison of this motion, it is essential to register the ultrasound data. We propose an intensity based rigid registration method to retrieve two-dimensional (2D) four-chamber (4C), two-chamber, and short-axis planes from the 3D data set acquired in the stress stage, using manually selected 2D planes in the rest stage as reference. The algorithm uses the Nelder-Mead simplex optimization to find the optimal transformation of one uniform scaling, three rotation, and three translation parameters. We compared registration using the SAD, SSD, and NCC metrics, performed on four resolution levels of a Gaussian pyramid. The registration's effectiveness was assessed by comparing the 3D positions of the registered apex and mitral valve midpoints and 4C direction with the manually selected results. The registration was tested on data from 20 patients. Best results were found using the NCC metric on data downsampled with factor two: mean registration errors were 8.1mm, 5.4mm, and 8.0° in the apex position, mitral valve position, and 4C direction respectively. The errors were close to the interobserver (7.1mm, 3.8mm, 7.4°) and intraobserver variability (5.2mm, 3.3mm, 7.0°), and better than the error before registration (9.4mm, 9.0mm, 9.9°). We demonstrated that the registration algorithm visually and quantitatively improves the alignment of rest and stress data sets, performing similar to manual alignment. This will improve automated analysis in 3D stress echocardiography.

  7. The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.

    PubMed

    Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J

    2015-01-01

    GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity. PMID:26357026

  8. 3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions

    NASA Astrophysics Data System (ADS)

    Huber, Ben

    2016-07-01

    Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features

  9. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    NASA Astrophysics Data System (ADS)

    Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.

    2006-12-01

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  10. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    SciTech Connect

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  11. Simulating binocular vision for no-reference 3D visual quality measurement.

    PubMed

    Zhou, Wu-Jie; Yu, Lu; Wu, Ming-Wei

    2015-09-01

    Perceptual quality measurement of three-dimensional (3D) visual signals has become a fundamental challenge in 3D imaging fields. This paper proposes a novel no-reference (NR) 3D visual quality measurement (VQM) metric that uses simulations of the primary visual cortex (V1) of binocular vision. As the major technical contribution of this study, perceptual properties of simple and complex cells are considered for NR 3D-VQM. More specifically, the metric simulates the receptive fields of simple cells (one class of V1 neurons) using Gaussian derivative functions, and the receptive fields of complex cells (the other class of V1 neurons) using disparity energy responses and binocular rivalry responses. Subsequently, various quality-aware features are extracted from the primary visual cortex; these will change in the presence of distortions. Finally, those features are mapped to the subjective quality score of the distorted 3D visual signal by using support vector regression (SVR). Experiments on two publicly available 3D databases confirm the effectiveness of our proposed metric, compared to the relevant full-reference (FR) and NR metrics. PMID:26368467

  12. Dynamic visual image modeling for 3D synthetic scenes in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Gao, Li; Yan, Juntao; Li, Xiaobo; Ji, Yatai; Li, Xin

    The dynamic visual image modeling for 3D synthetic scenes by using dynamic multichannel binocular visual image based on the mobile self-organizing network. Technologies of 3D modeling synthetic scenes have been widely used in kinds of industries. The main purpose of this paper is to use multiple networks of dynamic visual monitors and sensors to observe an unattended area, to use the advantages of mobile network in rural areas for improving existing mobile network information service further and providing personalized information services. The goal of displaying is to provide perfect representation of synthetic scenes. Using low-power dynamic visual monitors and temperature/humidity sensor or GPS installed in the node equipment, monitoring data will be sent at scheduled time. Then through the mobile self-organizing network, 3D model is rebuilt by synthesizing the returned images. On this basis, we formalize a novel algorithm for multichannel binocular visual 3D images based on fast 3D modeling. Taking advantage of these low prices mobile, mobile self-organizing networks can get a large number of video from where is not suitable for human observation or unable to reach, and accurately synthetic 3D scene. This application will play a great role in promoting its application in agriculture.

  13. Points based reconstruction and rendering of 3D shapes from large volume dataset

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchang; Tian, Jie; He, Huiguang; Li, Guangming

    2003-05-01

    In the field of medical imaging, researchers often need visualize lots of 3D datasets to get the informaiton contained in these datasets. But the huge data genreated by modern medical imaging device challenge the real time processing and rendering algorithms at all the time. Spurring by the great achievement of Points Based Rendering (PBR) in the fields of computer graphics to render very large meshes, we propose a new algorithm to use the points as basic primitive of surface reconstruction and rendering to interactively reconstruct and render very large volume dataset. By utilizing the special characteristics of medical image datasets, we obtain a fast and efficient points-based reconstruction and rendering algorithm in common PC. The experimental results show taht this algorithm is feasible and efficient.

  14. 3D Visualization of Hydrological Model Outputs For a Better Understanding of Multi-Scale Phenomena

    NASA Astrophysics Data System (ADS)

    Richard, J.; Schertzer, D. J. M.; Tchiguirinskaia, I.

    2014-12-01

    During the last decades, many hydrological models has been created to simulate extreme events or scenarios on catchments. The classical outputs of these models are 2D maps, time series or graphs, which are easily understood by scientists, but not so much by many stakeholders, e.g. mayors or local authorities, and the general public. One goal of the Blue Green Dream project is to create outputs that are adequate for them. To reach this goal, we decided to convert most of the model outputs into a unique 3D visualization interface that combines all of them. This conversion has to be performed with an hydrological thinking to keep the information consistent with the context and the raw outputs.We focus our work on the conversion of the outputs of the Multi-Hydro (MH) model, which is physically based, fully distributed and with a GIS data interface. MH splits the urban water cycle into 4 components: the rainfall, the surface runoff, the infiltration and the drainage. To each of them, corresponds a modeling module with specific inputs and outputs. The superimposition of all this information will highlight the model outputs and help to verify the quality of the raw input data. For example, the spatial and the time variability of the rain generated by the rainfall module will be directly visible in 4D (3D + time) before running a full simulation. It is the same with the runoff module: because the result quality depends of the resolution of the rasterized land use, it will confirm or not the choice of the cell size.As most of the inputs and outputs are GIS files, two main conversions will be applied to display the results into 3D. First, a conversion from vector files to 3D objects. For example, buildings are defined in 2D inside a GIS vector file. Each polygon can be extruded with an height to create volumes. The principle is the same for the roads but an intrusion, instead of an extrusion, is done inside the topography file. The second main conversion is the raster

  15. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  16. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449

  17. Development of 3-D fracture network visualization software based on graphical user interface

    NASA Astrophysics Data System (ADS)

    Young-Hwan, Noh; Jeong-Gi, Um; Yosoon, Choi; Myong-Ho, Park; Jaeyoung, Choi

    2013-04-01

    A sound understanding of the structural characteristics of fractured rock masses is important in designing and maintaining earth structures because their strength, deformability, and hydraulic behavior depend mainly on the characteristics of discontinuity network structures. Despite considerable progress in understanding the structural characteristics of rock masses, the complexity of discontinuity patterns has prevented satisfactory analysis based on a 3-D rock mass visualization model. This research presents the results of studies performed to develop rock mass visualization in 3-D to analysis the mechanical and hydraulic behavior of fractured rock masses. General and particular solutions of non-linear equations of disk-shaped fractures have been derived to calculated lines of intersection and equivalent pipes. Also, program modules of DISK3D, FNTWK3D, BOUNDARY and BDM(borehole data management) have been developed to perform the visualization of fracture network and corresponding equivalent pipes for DFN based fluid flow model. The developed software for the 3-D fractured rock mass visualization model based on MS visual studio can be used to characterize rock mass geometry and network systems effectively. The results obtained in this study will be refined and then combined for use as a tool for assessing geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. Acknowledgements. This work was supported by the 2011 Energy Efficiency and Resources Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant.

  18. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    PubMed

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p < 0.05), but BIC and MI data did not differ significantly. Thus, the results partly indicate improved bone formation at blasted and hydrogen fluoride treated implants, compared to blasted implants. The 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies. PMID:24711247

  19. Visualization and analysis of 3D gene expression patterns in zebrafish using web services

    NASA Astrophysics Data System (ADS)

    Potikanond, D.; Verbeek, F. J.

    2012-01-01

    The analysis of patterns of gene expression patterns analysis plays an important role in developmental biology and molecular genetics. Visualizing both quantitative and spatio-temporal aspects of gene expression patterns together with referenced anatomical structures of a model-organism in 3D can help identifying how a group of genes are expressed at a certain location at a particular developmental stage of an organism. In this paper, we present an approach to provide an online visualization of gene expression data in zebrafish (Danio rerio) within 3D reconstruction model of zebrafish in different developmental stages. We developed web services that provide programmable access to the 3D reconstruction data and spatial-temporal gene expression data maintained in our local repositories. To demonstrate this work, we develop a web application that uses these web services to retrieve data from our local information systems. The web application also retrieve relevant analysis of microarray gene expression data from an external community resource; i.e. the ArrayExpress Atlas. All the relevant gene expression patterns data are subsequently integrated with the reconstruction data of the zebrafish atlas using ontology based mapping. The resulting visualization provides quantitative and spatial information on patterns of gene expression in a 3D graphical representation of the zebrafish atlas in a certain developmental stage. To deliver the visualization to the user, we developed a Java based 3D viewer client that can be integrated in a web interface allowing the user to visualize the integrated information over the Internet.

  20. Advanced Visualization of Experimental Data in Real Time Using LiveView3D

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed.

  1. Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model.

    PubMed

    Gutiérrez-Becker, Benjamín; Arámbula Cosío, Fernando; Guzmán Huerta, Mario E; Benavides-Serralde, Jesús Andrés; Camargo-Marín, Lisbeth; Medina Bañuelos, Verónica

    2013-09-01

    Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder-Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data. PMID:23686392

  2. Web Based Interactive Anaglyph Stereo Visualization of 3D Model of Geoscience Data

    NASA Astrophysics Data System (ADS)

    Han, J.

    2014-12-01

    The objectives of this study were to create interactive online tool for generating and viewing the anaglyph 3D stereo image on a Web browser via Internet. To achieve this, we designed and developed the prototype system. Three-dimensional visualization is well known and becoming popular in recent years to understand the target object and the related physical phenomena. Geoscience data have the complex data model, which combines large extents with rich small scale visual details. So, the real-time visualization of 3D geoscience data model on the Internet is a challenging work. In this paper, we show the result of creating which can be viewed in 3D anaglyph of geoscience data in any web browser which supports WebGL. We developed an anaglyph image viewing prototype system, and some representative results are displayed by anaglyph 3D stereo image generated in red-cyan colour from pairs of air-photo/digital elevation model and geological map/digital elevation model respectively. The best viewing is achieved by using suitable 3D red-cyan glasses, although alternatively red-blue or red-green spectacles can be also used. The middle mouse wheel can be used to zoom in/out the anaglyph image on a Web browser. Application of anaglyph 3D stereo image is a very important and easy way to understand the underground geologic system and active tectonic geomorphology. The integrated strata with fine three-dimensional topography and geologic map data can help to characterise the mineral potential area and the active tectonic abnormal characteristics. To conclude, it can be stated that anaglyph 3D stereo image provides a simple and feasible method to improve the relief effect of geoscience data such as geomorphology and geology. We believe that with further development, the anaglyph 3D stereo imaging system could as a complement to 3D geologic modeling, constitute a useful tool for better understanding of the underground geology and the active tectonic

  3. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays

    PubMed Central

    2014-01-01

    Background To validate the association between accommodation and visual asthenopia by measuring objective accommodative amplitude with the Optical Quality Analysis System (OQAS®, Visiometrics, Terrassa, Spain), and to investigate associations among accommodation, ocular surface instability, and visual asthenopia while viewing 3D displays. Methods Fifteen normal adults without any ocular disease or surgical history watched the same 3D and 2D displays for 30 minutes. Accommodative ability, ocular protection index (OPI), and total ocular symptom scores were evaluated before and after viewing the 3D and 2D displays. Accommodative ability was evaluated by the near point of accommodation (NPA) and OQAS to ensure reliability. The OPI was calculated by dividing the tear breakup time (TBUT) by the interblink interval (IBI). The changes in accommodative ability, OPI, and total ocular symptom scores after viewing 3D and 2D displays were evaluated. Results Accommodative ability evaluated by NPA and OQAS, OPI, and total ocular symptom scores changed significantly after 3D viewing (p = 0.005, 0.003, 0.006, and 0.003, respectively), but yielded no difference after 2D viewing. The objective measurement by OQAS verified the decrease of accommodative ability while viewing 3D displays. The change of NPA, OPI, and total ocular symptom scores after 3D viewing had a significant correlation (p < 0.05), implying direct associations among these factors. Conclusions The decrease of accommodative ability after 3D viewing was validated by both subjective and objective methods in our study. Further, the deterioration of accommodative ability and ocular surface stability may be causative factors of visual asthenopia in individuals viewing 3D displays. PMID:24612686

  4. LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation.

  5. NVision: A 3D Visualization Environment for N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Markiel, J. A.

    2000-05-01

    NVision: A 3D Visualization Environment for N-Body Simulations We are developing a set of packages for 3D visualization and analysis of our numerical N-body simulations. These tools are intended to be generalizable to a wide range of related problems including cosmological, planetary dynamics, and molecular dynamics simulations. The applications and source code will be fully available to the community. To prototype this project we have adopted the Java platform with the newly released Java3D extension to take advantage of its portability, object-oriented environment, and availability of extensive documentation and class libraries. We will describe the goals and design principles of the project and demo the currently implemented features, including visualization of cosmological simulations and the simulated collision of two rubble-pile asteroids. This research is supported by NSF grants AST99-73209 and AST99-79891.

  6. A novel 3D wavelet based filter for visualizing features in noisy biological data

    SciTech Connect

    Moss, W C; Haase, S; Lyle, J M; Agard, D A; Sedat, J W

    2005-01-05

    We have developed a 3D wavelet-based filter for visualizing structural features in volumetric data. The only variable parameter is a characteristic linear size of the feature of interest. The filtered output contains only those regions that are correlated with the characteristic size, thus denoising the image. We demonstrate the use of the filter by applying it to 3D data from a variety of electron microscopy samples including low contrast vitreous ice cryogenic preparations, as well as 3D optical microscopy specimens.

  7. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  8. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  9. 3D visualization of biomedical CT images based on OpenGL and VRML techniques

    NASA Astrophysics Data System (ADS)

    Yin, Meng; Luo, Qingming; Xia, Fuhua

    2002-04-01

    Current high-performance computers and advanced image processing capabilities have made the application of three- dimensional visualization objects in biomedical computer tomographic (CT) images facilitate the researches on biomedical engineering greatly. Trying to cooperate with the update technology using Internet, where 3D data are typically stored and processed on powerful servers accessible by using TCP/IP, we should hold the results of the isosurface be applied in medical visualization generally. Furthermore, this project is a future part of PACS system our lab is working on. So in this system we use the 3D file format VRML2.0, which is used through the Web interface for manipulating 3D models. In this program we implemented to generate and modify triangular isosurface meshes by marching cubes algorithm. Then we used OpenGL and MFC techniques to render the isosurface and manipulating voxel data. This software is more adequate visualization of volumetric data. The drawbacks are that 3D image processing on personal computers is rather slow and the set of tools for 3D visualization is limited. However, these limitations have not affected the applicability of this platform for all the tasks needed in elementary experiments in laboratory or data preprocessed.

  10. Tangible 3D printouts of scientific data volumes with FOSS - an emerging field for research

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Klump, Jens; Wickert, Jens; Ludwig, Marcel; Frigeri, Alessandro

    2013-04-01

    Humans are very good in using both hands and eyes for tactile pattern recognition: The german verb for understanding, "begreifen" literally means "getting a (tactile) grip on a matter". This proven and time honoured concept has been in use since prehistoric times. While the amount of scientific data continues to grow, researchers still need all the support to help them visualize the data content before their inner eye. Immersive data-visualisations are helpful, yet fail to provide tactile feedback as provided from tangible objects. The need for tangible representations of geospatial information to solve real world problems eventually led to the advent of 3d-globes by M. Behaim in the 15th century and has continued since. The production of a tangible representation of a scientific data set with some fidelity is just the final step of an arc, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or a model, by a sensor which produces a data stream which is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3d-printout. Finally, the new specimen has to be linked to its metadata to ensure its scientific meaning and context. On the technical side, the production of a tangible data-print has been realized as a pilot workflow based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview to convert scientific data volume into stereolithography datasets (stl) for printing on a RepRap printer. The initial motivation to use tangible representations of complex data was the task of quality assessments on tsunami simulation data sets in the FP7 TRIDEC project (www.tridec-online.eu). For this, 3d-prints of space time cubes of tsunami wave spreading patterns were produced. This was followed by print-outs of volume data derived from radar sounders (MARSIS, SHARAD) imaging

  11. Multi-volume visualization for interactive therapy planning

    NASA Astrophysics Data System (ADS)

    Wu, Liangshou; Amin, Viren R.; Ryken, Timothy; Long, Tao; Hagge, Mathew J.; Bryden, Mark

    2007-03-01

    During the past decade, various volume visualization techniques have been developed for different purposes, and many of them, such as direct volume rendering, maximum intensity projection and non-photorealistic rendering, have been implemented on consumer graphics hardware for real time visualization. However, effective multi-volume visualization, a way to establish the visual connections between two or more types of data, has not been adequately addressed even though it has wide applications in medical imaging and numerical simulation based on 3D physical model. In this paper, we aim to develop an effective GPU-based system for multi-volume visualization which is able to reveal both the connections and distinctions among multiple volume data. To address the main challenge for multi-volume visualization on how to establish the visual correspondences while maintaining the distinctive information among multiple volumes, a multi-level distinction mechanism is developed including 2D transfer function, mixed rendering modes, and volume clipping. Taking advantage of the fast hardware-supported processing capabilities, the system is implemented based on the GPU programming. Several advanced volume rendering techniques based on segmented volume are also implemented. The resulting visualization is a highly interactive image fusion system with high quality image and three-level volume distinction. We demonstrate the effectiveness of our system with a case study in which the heat effect on brain tumor, represented as a temperature volume resulting from high intensity focused ultrasound beam exposure over time, is visualized in the context of a MRI head volume.

  12. Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, S.

    2009-04-01

    Transparent 3D Visualization of Archaeological Remains in Roman Site in Ankara-Turkey with Ground Penetrating Radar Method Selma KADIOGLU Ankara University, Faculty of Engineering, Department of Geophysical Engineering, 06100 Tandogan/ANKARA-TURKEY kadioglu@eng.ankara.edu.tr Anatolia has always been more the point of transit, a bridge between West and East. Anatolia has been a home for ideas moving from all directions. So it is that in the Roman and post-Roman periods the role of Anatolia in general and of Ancyra (the Roman name of Ankara) in particular was of the greatest importance. Now, the visible archaeological remains of Roman period in Ankara are Roman Bath, Gymnasium, the Temple of Augustus of Rome, Street, Theatre, City Defence-Wall. The Caesar Augustus, the first Roman Emperor, conquered Asia Minor in 25 BC. Then a marble temple was built in Ancyra, the administrative capital of province, today the capital of Turkish Republic, Ankara. This monument was consecrated to the Empreror and to the Goddess Rome. This temple is supposed to have built over an earlier temple dedicated to Kybele and Men between 25 -20 BC. After the death of the Augustus in 14AD, a copy of the text of "Res Gestae Divi Augusti" was inscribed on the interior of the pronaos in Latin, whereas a Greek translation is also present on an exterior wall of the cella. In the 5th century, it was converted in to a church by the Byzantines. The aim of this study is to determine old buried archaeological remains in the Augustus temple, Roman Bath and in the governorship agora in Ulus district. These remains were imaged with transparent three dimensional (3D) visualization of the ground penetrating radar (GPR) data. Parallel two dimensional (2D) GPR profile data were acquired in the study areas, and then a 3D data volume were built using parallel 2D GPR data. A simplified amplitude-colour range and appropriate opacity function were constructed and transparent 3D image were obtained to activate buried

  13. Semantic Visualization Mapping for Illustrative Volume Visualization

    NASA Astrophysics Data System (ADS)

    Rautek, P.; Bruckner, S.; Gröller, M. E.

    2009-04-01

    Measured and simulated data is usually divided into several meaningful intervals that are relevant to the domain expert. Examples from medicine are the specific semantics for different measuring modalities. A PET scan of a brain measures brain activity. It shows regions of homogeneous activity that are labeled by experts with semantic values such as low brain activity or high brain activity. Diffusion MRI data provides information about the healthiness of tissue regions and is classified by experts with semantic values like healthy, diseased, or necrotic. Medical CT data encode the measured density values in Hounsfield units. Specific intervals of the Hounsfield scale refer to different tissue types like air, soft tissue, bone, contrast enhanced vessels, etc. However, the semantic parameters from expert domains are not necessarily used to describe a mapping between the volume attributes and visual appearance. Volume rendering techniques commonly map attributes of the underlying data on visual appearance via a transfer function. Transfer functions are a powerful tool to achieve various visualization mappings. The specification of transfer functions is a complex task. The user has to have expert knowledge about the underlying rendering technique to achieve the desired results. Especially the specification of higher-dimensional transfer functions is challenging. Common user interfaces provide methods to brush in two dimensions. While brushing is an intuitive method to select regions of interest or to specify features, user interfaces for higher-dimensions are more challenging and often non-intuitive. For seismic data the situation is even more difficult since the data typically consists of many more volumetric attributes than for example medical datasets. Scientific illustrators are experts in conveying information by visual means. They also make use of semantics in a natural way describing visual abstractions such as shading, tone, rendering style, saturation

  14. Ultrascale Climate Data Visualization and Analysis Using UVCDAT and DV3D (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.; Williams, D. N.; Potter, G. L.

    2013-12-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center is developing an advanced computational infrastructure that can provide high-performance analysis and visualization capabilities to the desktops of climate scientists. In collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) development consortium, NCCS is developing climate data analysis and visualization tools for UV-CDAT, which provides data analysis capabilities for the Earth System Grid (ESG). These tools feature workflow interfaces, interactive 3D data exploration, hyperwall and stereo visualization, automated provenance generation, parallel task execution, and streaming data parallel pipelines. NASA's DV3D is a UV-CDAT package that enables exploratory analysis of diverse and rich data sets from various sources including the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. DV3D's integration with CDAT's climate data management system (CDMS) and other climate data analysis tools provides a wide range of climate data analysis operations, e.g. simple arithmetic operations, regridding, conditioned comparisons, weighted averages, various statistical operations, etc. Several teams are developing parallel versions of these tools that will enable users to analyze and display large data sets that cannot currently be processed with existing desktop tools. This enables scientists to run analyses that were previously intractable due to the large size of the datasets and, using DV3D, seamlessly couple these

  15. Ultrascale Climate Data Visualization and Analysis Using DV3D and UVCDAT.

    NASA Astrophysics Data System (ADS)

    Maxwell, T. P.; Potter, G. L.; Williams, D. N.; Doutriaux, C.; Chaudhary, A.

    2014-12-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center is developing an advanced computational infrastructure that can provide high-performance analysis and visualization capabilities to the desktops of climate scientists. In collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) development consortium, NCCS is developing climate data analysis and visualization tools for UV-CDAT, which provides data analysis capabilities for the Earth System Grid (ESG). These tools feature workflow interfaces, interactive 3D data exploration, hyperwall and stereo visualization, automated provenance generation, parallel task execution, and streaming data parallel pipelines. NASA's DV3D is a UV-CDAT package that enables exploratory analysis of diverse and rich data sets from various sources including the Earth System Grid Federation (ESGF). DV3D provides user-friendly workflow interfaces for advanced visualization and analysis of climate data at a level appropriate for scientists. DV3D's integration with CDAT's climate data management system (CDMS) and other tools provides a wide range of climate data analysis operations, e.g. simple arithmetic operations, regridding, conditioned comparisons, weighted averages, various statistical operations, etc. Several teams are developing parallel versions of these tools that will enable users to analyze and display large data sets that cannot currently be processed with existing desktop tools. This enables scientists to run analyses that were previously intractable due to the large size of the datasets and, using DV3D, seamlessly couple these analyses with advanced

  16. Evaluation of quality of experience in interactive 3D visualization: methodology and results

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Sjöström, Mårten; Olsson, Roger; Persson, Anders; Ericson, Thomas

    2012-03-01

    Human factors are of high importance in 3D visualization, but subjective evaluation of 3D displays is not easy because of a high variability among users. This study aimed to evaluate and compare two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of user performance and quality of experience (QoE), in the context of interactive visualization. An adapted methodology has been designed in order to focus on 3D differences and to reduce the influence of all other factors. Thirty-six subjects took part in an experiment during which they were asked to judge the quality of their experience, according to specific features. Results showed that a scene understanding and precision was significantly better on the multi-view display. Concerning the quality of experience, visual comfort was judged significantly better on the multi-view display and visual fatigue was reported by 52% of the subjects on the stereoscopic display. This study has permitted to identify some factors influencing QoE such as prior experience and stereopsis threshold.

  17. The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models

    NASA Astrophysics Data System (ADS)

    Sutrisno, Prajitno, Purnomo, W., Setyawan B.

    2016-06-01

    Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.

  18. 3D visualization of aqueous humor outflow structures in-situ in humans.

    PubMed

    Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Sigal, Ian A; Folio, Lindsey S; Xu, Juan; Gong, Haiyan; Schuman, Joel S

    2011-09-01

    Aqueous humor (AH) exiting the eye via the trabecular meshwork and Schlemm's canal (SC) passes through the deep and intrascleral venous plexus (ISVP) or directly through aqueous veins. The purpose of this study was to visualize the human AH outflow system 360° in three dimensions (3D) during active AH outflow in a virtual casting. The conventional AH outflow pathways of 7 donor eyes were imaged with a modified Bioptigen spectral-domain optical coherence tomography system (Bioptigen Inc, USA; SuperLum LTD, Ireland) at a perfusion pressure of 20 mmHg (N = 3), and 10 mmHg (N = 4). In all eyes, 36 scans (3 equally distributed in each clock hour), each covering a 2 × 3 × 2 mm volume (512 frames, each 512 × 1024 pixels), were obtained. All image data were black/white inverted, and the background subtracted (ImageJ 1.40 g, http://rsb.info.nih.gov/ij/). Contrast was adjusted to isolate the ISVP. SC, collector channels, the deep and ISVP, and episcleral veins were observed throughout the limbus. Aqueous veins could be observed extending into the episcleral veins. Individual scan ISVP castings were rendered and assembled in 3D space in Amira 4.1 (Visage Imaging Inc. USA). A 360-degree casting of the ISVP was obtained in all perfused eyes. The ISVP tended to be dense and overlapping in the superior and inferior quadrants, and thinner in the lateral quadrants. The human AH outflow pathway can be imaged using SD-OCT. The more superficial structures of the AH outflow pathway present with sufficient contrast as to be optically isolated and cast in-situ 360° in cadaver eye perfusion models. This approach may be useful as a model in future studies of human AH outflow. PMID:21514296

  19. 3D Printing Meets Astrophysics: A New Way to Visualize and Communicate Science

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Steffen, Wolfgang; Clementel, Nicola; Gull, Theodore R.

    2015-08-01

    3D printing has the potential to improve the astronomy community’s ability to visualize, understand, interpret, and communicate important scientific results. I summarize recent efforts to use 3D printing to understand in detail the 3D structure of a complex astrophysical system, the supermassive binary star Eta Carinae and its surrounding bipolar ‘Homunculus’ nebula. Using mapping observations of molecular hydrogen line emission obtained with the ESO Very Large Telescope, we obtained a full 3D model of the Homunculus, allowing us to 3D print, for the first time, a detailed replica of a nebula (Steffen et al. 2014, MNRAS, 442, 3316). I also present 3D prints of output from supercomputer simulations of the colliding stellar winds in the highly eccentric binary located near the center of the Homunculus (Madura et al. 2015, arXiv:1503.00716). These 3D prints, the first of their kind, reveal previously unknown ‘finger-like’ structures at orbital phases shortly after periastron (when the two stars are closest to each other) that protrude outward from the spiral wind-wind collision region. The results of both efforts have received significant media attention in recent months, including two NASA press releases (http://www.nasa.gov/content/goddard/astronomers-bring-the-third-dimension-to-a-doomed-stars-outburst/ and http://www.nasa.gov/content/goddard/nasa-observatories-take-an-unprecedented-look-into-superstar-eta-carinae/), demonstrating the potential of using 3D printing for astronomy outreach and education. Perhaps more importantly, 3D printing makes it possible to bring the wonders of astronomy to new, often neglected, audiences, i.e. the blind and visually impaired.

  20. Noninvasive CT to Iso-C3D registration for improved intraoperative visualization in computer assisted orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Rudolph, Tobias; Ebert, Lars; Kowal, Jens

    2006-03-01

    Supporting surgeons in performing minimally invasive surgeries can be considered as one of the major goals of computer assisted surgery. Excellent intraoperative visualization is a prerequisite to achieve this aim. The Siremobil Iso-C 3D has become a widely used imaging device, which, in combination with a navigation system, enables the surgeon to directly navigate within the acquired 3D image volume without any extra registration steps. However, the image quality is rather low compared to a CT scan and the volume size (approx. 12 cm 3) limits its application. A regularly used alternative in computer assisted orthopedic surgery is to use of a preoperatively acquired CT scan to visualize the operating field. But, the additional registration step, necessary in order to use CT stacks for navigation is quite invasive. Therefore the objective of this work is to develop a noninvasive registration technique. In this article a solution is being proposed that registers a preoperatively acquired CT scan to the intraoperatively acquired Iso-C 3D image volume, thereby registering the CT to the tracked anatomy. The procedure aligns both image volumes by maximizing the mutual information, an algorithm that has already been applied to similar registration problems and demonstrated good results. Furthermore the accuracy of such a registration method was investigated in a clinical setup, integrating a navigated Iso-C 3D in combination with an tracking system. Initial tests based on cadaveric animal bone resulted in an accuracy ranging from 0.63mm to 1.55mm mean error.

  1. Evaluation of Gastric Volumes: Comparison of 3-D Ultrasound and Magnetic Resonance Imaging.

    PubMed

    Buisman, Wijnand J; Mauritz, Femke A; Westerhuis, Wouter E; Gilja, Odd Helge; van der Zee, David C; van Herwaarden-Lindeboom, Maud Y A

    2016-07-01

    To investigate gastric accommodation, accurate measurements of gastric volumes are necessary. An excellent technique to measure gastric volumes is dynamic magnetic resonance imaging (MRI). Unfortunately, dynamic MRI is expensive and not always available. A new 3-D ultrasound (US) method using a matrix transducer was developed to measure gastric volumes. In this prospective study, 14 healthy volunteers underwent a dynamic MRI and a 3-D US. Gastric volumes were calculated with intra-gastric liquid content and total gastric volume. Mean postprandial liquid gastric content was 397 ± 96.5 mL. Mean volume difference was 1.0 mL with limits of agreement of -8.9 to 10.9 mL. When gastric air was taken into account, mean total gastric volume was 540 ± 115.4 mL SD. Mean volume difference was 2.3 mL with limits of agreement of -21.1 to 26.4 mL. The matrix 3-D US showed excellent agreement with dynamic MRI. Therefore matrix 3-D US is a reliable alternative to measure gastric volumes. PMID:27067418

  2. Memory and visual search in naturalistic 2D and 3D environments

    PubMed Central

    Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.

    2016-01-01

    The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769

  3. Trans3D: a free tool for dynamical visualization of EEG activity transmission in the brain.

    PubMed

    Blinowski, Grzegorz; Kamiński, Maciej; Wawer, Dariusz

    2014-08-01

    The problem of functional connectivity in the brain is in the focus of attention nowadays, since it is crucial for understanding information processing in the brain. A large repertoire of measures of connectivity have been devised, some of them being capable of estimating time-varying directed connectivity. Hence, there is a need for a dedicated software tool for visualizing the propagation of electrical activity in the brain. To this aim, the Trans3D application was developed. It is an open access tool based on widely available libraries and supporting both Windows XP/Vista/7(™), Linux and Mac environments. Trans3D can create animations of activity propagation between electrodes/sensors, which can be placed by the user on the scalp/cortex of a 3D model of the head. Various interactive graphic functions for manipulating and visualizing components of the 3D model and input data are available. An application of the Trans3D tool has helped to elucidate the dynamics of the phenomena of information processing in motor and cognitive tasks, which otherwise would have been very difficult to observe. Trans3D is available at: http://www.eeg.pl/. PMID:24967953

  4. Memory and visual search in naturalistic 2D and 3D environments.

    PubMed

    Li, Chia-Ling; Aivar, M Pilar; Kit, Dmitry M; Tong, Matthew H; Hayhoe, Mary M

    2016-06-01

    The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769

  5. An open source workflow for 3D printouts of scientific data volumes

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J. F.; Wickert, J.; Ludwig, M.; Frigeri, A.

    2013-12-01

    As the amount of scientific data continues to grow, researchers need new tools to help them visualize complex data. Immersive data-visualisations are helpful, yet fail to provide tactile feedback and sensory feedback on spatial orientation, as provided from tangible objects. The gap in sensory feedback from virtual objects leads to the development of tangible representations of geospatial information to solve real world problems. Examples are animated globes [1], interactive environments like tangible GIS [2], and on demand 3D prints. The production of a tangible representation of a scientific data set is one step in a line of scientific thinking, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or from a data stream generated by an environmental sensor. This data stream is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3D printout. As a last, but crucial step, this new object has to be documented and linked to the associated metadata, and curated in long term repositories to preserve its scientific meaning and context. The workflow to produce tangible 3D data-prints from science data at the German Research Centre for Geosciences (GFZ) was implemented as a software based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview. The workflow was successfully validated in various application scenarios at GFZ using a RapMan printer to create 3D specimens of elevation models, geological underground models, ice penetrating radar soundings for planetology, and space time stacks for Tsunami model quality assessment. While these first pilot applications have demonstrated the feasibility of the overall approach [3], current research focuses on the provision of the workflow as Software as a Service (SAAS), thematic generalisation of information content and

  6. Influence of Gsd for 3d City Modeling and Visualization from Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Alam, Zafare; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Ministry of Municipal and Rural Affairs (MOMRA), aims to establish solid infrastructure required for 3D city modelling, for decision making to set a mark in urban development. MOMRA is responsible for the large scale mapping 1:1,000; 1:2,500; 1:10,000 and 1:20,000 scales for 10cm, 20cm and 40 GSD with Aerial Triangulation data. As 3D city models are increasingly used for the presentation exploration, and evaluation of urban and architectural designs. Visualization capabilities and animations support of upcoming 3D geo-information technologies empower architects, urban planners, and authorities to visualize and analyze urban and architectural designs in the context of the existing situation. To make use of this possibility, first of all 3D city model has to be created for which MOMRA uses the Aerial Triangulation data and aerial imagery. The main concise for 3D city modelling in the Kingdom of Saudi Arabia exists due to uneven surface and undulations. Thus real time 3D visualization and interactive exploration support planning processes by providing multiple stakeholders such as decision maker, architects, urban planners, authorities, citizens or investors with a three - dimensional model. Apart from advanced visualization, these 3D city models can be helpful for dealing with natural hazards and provide various possibilities to deal with exotic conditions by better and advanced viewing technological infrastructure. Riyadh on one side is 5700m above sea level and on the other hand Abha city is 2300m, this uneven terrain represents a drastic change of surface in the Kingdom, for which 3D city models provide valuable solutions with all possible opportunities. In this research paper: influence of different GSD (Ground Sample Distance) aerial imagery with Aerial Triangulation is used for 3D visualization in different region of the Kingdom, to check which scale is more sophisticated for obtaining better results and is cost manageable, with GSD (7.5cm, 10cm, 20cm and 40cm

  7. A new algorithm of laser 3D visualization based on space-slice

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Song, Yanfeng; Song, Yong; Cao, Jie; Hao, Qun

    2013-12-01

    Traditional visualization algorithms based on three-dimensional (3D) laser point cloud data consist of two steps: stripe point cloud data into different target objects and establish the 3D surface models of the target objects to realize visualization using interpolation point or surface fitting method. However, some disadvantages, such as low efficiency, loss of image details, exist in most of these algorithms. In order to cope with these problems, a 3D visualization algorithm based on space-slice is proposed in this paper, which includes two steps: data classification and image reconstruction. In the first step, edge detection method is used to check the parametric continuity and extract edges to classify data into different target regions preliminarily. In the second stage, the divided data is split further into space-slice according to coordinates. Based on space-slice of the point cloud data, one-dimensional interpolation methods is adopted to get the curves connected by each group of cloud point data smoother. In the end, these interpolation points obtained from each group are made by the use of getting the fitting surface. As expected, visual morphology of the objects is obtained. The simulation experiment results compared with real scenes show that the final visual images have explicit details and the overall visual result is natural.

  8. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  9. Demonstration of three gorges archaeological relics based on 3D-visualization technology

    NASA Astrophysics Data System (ADS)

    Xu, Wenli

    2015-12-01

    This paper mainly focuses on the digital demonstration of three gorges archeological relics to exhibit the achievements of the protective measures. A novel and effective method based on 3D-visualization technology, which includes large-scaled landscape reconstruction, virtual studio, and virtual panoramic roaming, etc, is proposed to create a digitized interactive demonstration system. The method contains three stages: pre-processing, 3D modeling and integration. Firstly, abundant archaeological information is classified according to its history and geographical information. Secondly, build up a 3D-model library with the technology of digital images processing and 3D modeling. Thirdly, use virtual reality technology to display the archaeological scenes and cultural relics vividly and realistically. The present work promotes the application of virtual reality to digital projects and enriches the content of digital archaeology.

  10. Role of Interaction in Enhancing the Epistemic Utility of 3D Mathematical Visualizations

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2010-01-01

    Many epistemic activities, such as spatial reasoning, sense-making, problem solving, and learning, are information-based. In the context of epistemic activities involving mathematical information, learners often use interactive 3D mathematical visualizations (MVs). However, performing such activities is not always easy. Although it is generally…

  11. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  12. J-Asteroid, 3D Data Formats and Issues for the Visualization of Small Bodies

    NASA Astrophysics Data System (ADS)

    Hagee, W.; Anwar, S.; Noss, D.; Dickenshied, S.

    2015-06-01

    In adding support for 3D visualization of arbitrary data on small bodies, the J-Asteroid application has identified various pros and cons of existing data formats and issues rendering data in those formats. Key formats and issues will be presented.

  13. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  14. Stereoscopic 3D Visual Discomfort Prediction: A Dynamic Accommodation and Vergence Interaction Model.

    PubMed

    Oh, Heeseok; Lee, Sanghoon; Bovik, Alan Conrad

    2016-02-01

    The human visual system perceives 3D depth following sensing via its binocular optical system, a series of massively parallel processing units, and a feedback system that controls the mechanical dynamics of eye movements and the crystalline lens. The process of accommodation (focusing of the crystalline lens) and binocular vergence is controlled simultaneously and symbiotically via cross-coupled communication between the two critical depth computation modalities. The output responses of these two subsystems, which are induced by oculomotor control, are used in the computation of a clear and stable cyclopean 3D image from the input stimuli. These subsystems operate in smooth synchronicity when one is viewing the natural world; however, conflicting responses can occur when viewing stereoscopic 3D (S3D) content on fixed displays, causing physiological discomfort. If such occurrences could be predicted, then they might also be avoided (by modifying the acquisition process) or ameliorated (by changing the relative scene depth). Toward this end, we have developed a dynamic accommodation and vergence interaction (DAVI) model that successfully predicts visual discomfort on S3D images. The DAVI model is based on the phasic and reflex responses of the fast fusional vergence mechanism. Quantitative models of accommodation and vergence mismatches are used to conduct visual discomfort prediction. Other 3D perceptual elements are included in the proposed method, including sharpness limits imposed by the depth of focus and fusion limits implied by Panum's fusional area. The DAVI predictor is created by training a support vector machine on features derived from the proposed model and on recorded subjective assessment results. The experimental results are shown to produce accurate predictions of experienced visual discomfort. PMID:26672036

  15. Versatile annotation and publication quality visualization of protein complexes using POLYVIEW-3D

    PubMed Central

    Porollo, Aleksey; Meller, Jaroslaw

    2007-01-01

    Background Macromolecular visualization as well as automated structural and functional annotation tools play an increasingly important role in the post-genomic era, contributing significantly towards the understanding of molecular systems and processes. For example, three dimensional (3D) models help in exploring protein active sites and functional hot spots that can be targeted in drug design. Automated annotation and visualization pipelines can also reveal other functionally important attributes of macromolecules. These goals are dependent on the availability of advanced tools that integrate better the existing databases, annotation servers and other resources with state-of-the-art rendering programs. Results We present a new tool for protein structure analysis, with the focus on annotation and visualization of protein complexes, which is an extension of our previously developed POLYVIEW web server. By integrating the web technology with state-of-the-art software for macromolecular visualization, such as the PyMol program, POLYVIEW-3D enables combining versatile structural and functional annotations with a simple web-based interface for creating publication quality structure rendering, as well as animated images for Powerpoint™, web sites and other electronic resources. The service is platform independent and no plug-ins are required. Several examples of how POLYVIEW-3D can be used for structural and functional analysis in the context of protein-protein interactions are presented to illustrate the available annotation options. Conclusion POLYVIEW-3D server features the PyMol image rendering that provides detailed and high quality presentation of macromolecular structures, with an easy to use web-based interface. POLYVIEW-3D also provides a wide array of options for automated structural and functional analysis of proteins and their complexes. Thus, the POLYVIEW-3D server may become an important resource for researches and educators in the fields of protein

  16. A client–server framework for 3D remote visualization of radiotherapy treatment space

    PubMed Central

    Santhanam, Anand P.; Min, Yugang; Dou, Tai H.; Kupelian, Patrick; Low, Daniel A.

    2013-01-01

    Radiotherapy is safely employed for treating wide variety of cancers. The radiotherapy workflow includes a precise positioning of the patient in the intended treatment position. While trained radiation therapists conduct patient positioning, consultation is occasionally required from other experts, including the radiation oncologist, dosimetrist, or medical physicist. In many circumstances, including rural clinics and developing countries, this expertise is not immediately available, so the patient positioning concerns of the treating therapists may not get addressed. In this paper, we present a framework to enable remotely located experts to virtually collaborate and be present inside the 3D treatment room when necessary. A multi-3D camera framework was used for acquiring the 3D treatment space. A client–server framework enabled the acquired 3D treatment room to be visualized in real-time. The computational tasks that would normally occur on the client side were offloaded to the server side to enable hardware flexibility on the client side. On the server side, a client specific real-time stereo rendering of the 3D treatment room was employed using a scalable multi graphics processing units (GPU) system. The rendered 3D images were then encoded using a GPU-based H.264 encoding for streaming. Results showed that for a stereo image size of 1280 × 960 pixels, experts with high-speed gigabit Ethernet connectivity were able to visualize the treatment space at approximately 81 frames per second. For experts remotely located and using a 100 Mbps network, the treatment space visualization occurred at 8–40 frames per second depending upon the network bandwidth. This work demonstrated the feasibility of remote real-time stereoscopic patient setup visualization, enabling expansion of high quality radiation therapy into challenging environments. PMID:23440605

  17. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  18. Fusion of CTA and XA data using 3D centerline registration for plaque visualization during coronary intervention

    NASA Astrophysics Data System (ADS)

    Kaila, Gaurav; Kitslaar, Pieter; Tu, Shengxian; Penicka, Martin; Dijkstra, Jouke; Lelieveldt, Boudewijn

    2016-03-01

    Coronary Artery Disease (CAD) results in the buildup of plaque below the intima layer inside the vessel wall of the coronary arteries causing narrowing of the vessel and obstructing blood flow. Percutaneous coronary intervention (PCI) is usually done to enlarge the vessel lumen and regain back normal flow of blood to the heart. During PCI, X-ray imaging is done to assist guide wire movement through the vessels to the area of stenosis. While X-ray imaging allows for good lumen visualization, information on plaque type is unavailable. Also due to the projection nature of the X-ray imaging, additional drawbacks such as foreshortening and overlap of vessels limit the efficacy of the cardiac intervention. Reconstruction of 3D vessel geometry from biplane X-ray acquisitions helps to overcome some of these projection drawbacks. However, the plaque type information remains an issue. In contrast, imaging using computed tomography angiography (CTA) can provide us with information on both lumen and plaque type and allows us to generate a complete 3D coronary vessel tree unaffected by the foreshortening and overlap problems of the X-ray imaging. In this paper, we combine x-ray biplane images with CT angiography to visualize three plaque types (dense calcium, fibrous fatty and necrotic core) on x-ray images. 3D registration using three different registration methods is done between coronary centerlines available from x-ray images and from the CTA volume along with 3D plaque information available from CTA. We compare the different registration methods and evaluate their performance based on 3D root mean squared errors. Two methods are used to project this 3D information onto 2D plane of the x-ray biplane images. Validation of our approach is performed using artificial biplane x-ray datasets.

  19. 3D image of protein visualization in a whole rice grain using an automatic precision microtome system

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiharu; Ohtani, Toshio; Sugiyama, Junichi; Hagiwara, Shoji; Tanaka, Kunisuke; Kudoh, Ken-ichi; Higuchi, Toshiro

    2000-05-01

    The 3D image formation technique using confocal microscopy has allows visualization of the 3D chemical structure in small parts of the bio-body. However, the large-scale 3D structure such as the distribution of chemical components throughout the whole body has not been shown. To allow such large scale visualization of the 3D internal analysis technique for bio-body has been developed.

  20. Advanced in Visualization of 3D Time-Dependent CFD Solutions

    NASA Technical Reports Server (NTRS)

    Lane, David A.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.

  1. 3D photography in the objective analysis of volume augmentation including fat augmentation and dermal fillers.

    PubMed

    Meier, Jason D; Glasgold, Robert A; Glasgold, Mark J

    2011-11-01

    The authors present quantitative and objective 3D data from their studies showing long-term results with facial volume augmentation. The first study analyzes fat grafting of the midface and the second study presents augmentation of the tear trough with hyaluronic filler. Surgeons using 3D quantitative analysis can learn the duration of results and the optimal amount to inject, as well as showing patients results that are not demonstrable with standard, 2D photography. PMID:22004863

  2. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  3. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. PMID:25689057

  4. On the Efficiency of Image Metrics for Evaluating the Visual Quality of 3D Models.

    PubMed

    Lavoue, Guillaume; Larabi, Mohamed Chaker; Vasa, Libor

    2016-08-01

    3D meshes are deployed in a wide range of application processes (e.g., transmission, compression, simplification, watermarking and so on) which inevitably introduce geometric distortions that may alter the visual quality of the rendered data. Hence, efficient model-based perceptual metrics, operating on the geometry of the meshes being compared, have been recently introduced to control and predict these visual artifacts. However, since the 3D models are ultimately visualized on 2D screens, it seems legitimate to use images of the models (i.e., snapshots from different viewpoints) to evaluate their visual fidelity. In this work we investigate the use of image metrics to assess the visual quality of 3D models. For this goal, we conduct a wide-ranging study involving several 2D metrics, rendering algorithms, lighting conditions and pooling algorithms, as well as several mean opinion score databases. The collected data allow (1) to determine the best set of parameters to use for this image-based quality assessment approach and (2) to compare this approach to the best performing model-based metrics and determine for which use-case they are respectively adapted. We conclude by exploring several applications that illustrate the benefits of image-based quality assessment. PMID:26394428

  5. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    NASA Astrophysics Data System (ADS)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  6. MEVA - An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices

    PubMed Central

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data

  7. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    PubMed

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  8. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    PubMed Central

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10–12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant’s MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation. PMID:26347642

  9. Optical clearing based cellular-level 3D visualization of intact lymph node cortex

    PubMed Central

    Song, Eunjoo; Seo, Howon; Choe, Kibaek; Hwang, Yoonha; Ahn, Jinhyo; Ahn, Soyeon; Kim, Pilhan

    2015-01-01

    Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex. PMID:26504662

  10. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. PMID:26488641

  11. Early pregnancy placental bed and fetal vascular volume measurements using 3-D virtual reality.

    PubMed

    Reus, Averil D; Klop-van der Aa, Josine; Rifouna, Maria S; Koning, Anton H J; Exalto, Niek; van der Spek, Peter J; Steegers, Eric A P

    2014-08-01

    In this study, a new 3-D Virtual Reality (3D VR) technique for examining placental and uterine vasculature was investigated. The validity of placental bed vascular volume (PBVV) and fetal vascular volume (FVV) measurements was assessed and associations of PBVV and FVV with embryonic volume, crown-rump length, fetal birth weight and maternal parity were investigated. One hundred thirty-two patients were included in this study, and measurements were performed in 100 patients. Using V-Scope software, 100 3-D Power Doppler data sets of 100 pregnancies at 12 wk of gestation were analyzed with 3D VR in the I-Space Virtual Reality system. Volume measurements were performed with semi-automatic, pre-defined parameters. The inter-observer and intra-observer agreement was excellent with all intra-class correlation coefficients >0.93. PBVVs of multiparous women were significantly larger than the PBVVs of primiparous women (p = 0.008). In this study, no other associations were found. In conclusion, V-Scope offers a reproducible method for measuring PBVV and FVV at 12 wk of gestation, although we are unsure whether the volume measured represents the true volume of the vasculature. Maternal parity influences PBVV. PMID:24798392

  12. Unified framework for generation of 3D web visualization for mechatronic systems

    NASA Astrophysics Data System (ADS)

    Severa, O.; Goubej, M.; Konigsmarkova, J.

    2015-11-01

    The paper deals with development of a unified framework for generation of 3D visualizations of complex mechatronic systems. It provides a high-fidelity representation of executed motion by allowing direct employment of a machine geometry model acquired from a CAD system. Open-architecture multi-platform solution based on latest web standards is achieved by utilizing a web browser as a final 3D renderer. The results are applicable both for simulations and development of real-time human machine interfaces. Case study of autonomous underwater vehicle control is provided to demonstrate the applicability of the proposed approach.

  13. A 3D Vector/Scalar Visualization and Particle Tracking Package

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively placemore » injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.« less

  14. A 3D Vector/Scalar Visualization and Particle Tracking Package

    SciTech Connect

    Freitag, Lori; Disz, Terry; Papka, Mike; Heath, Daniel; Diachin, Darin; Herzog, Jim; Ryan, and Bob

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively place injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.

  15. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    NASA Astrophysics Data System (ADS)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  16. Research on steady-state visual evoked potentials in 3D displays

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Yi; Lee, Chia-Ying; Lin, Fang-Cheng; Huang, Yi-Pai; Ko, Li-Wei; Shieh, Han-Ping D.

    2015-05-01

    Brain-computer interfaces (BCIs) are intuitive systems for users to communicate with outer electronic devices. Steady state visual evoked potential (SSVEP) is one of the common inputs for BCI systems due to its easy detection and high information transfer rates. An advanced interactive platform integrated with liquid crystal displays is leading a trend to provide an alternative option not only for the handicapped but also for the public to make our lives more convenient. Many SSVEP-based BCI systems have been studied in a 2D environment; however there is only little literature about SSVEP-based BCI systems using 3D stimuli. 3D displays have potentials in SSVEP-based BCI systems because they can offer vivid images, good quality in presentation, various stimuli and more entertainment. The purpose of this study was to investigate the effect of two important 3D factors (disparity and crosstalk) on SSVEPs. Twelve participants participated in the experiment with a patterned retarder 3D display. The results show that there is a significant difference (p-value<0.05) between large and small disparity angle, and the signal-to-noise ratios (SNRs) of small disparity angles is higher than those of large disparity angles. The 3D stimuli with smaller disparity and lower crosstalk are more suitable for applications based on the results of 3D perception and SSVEP responses (SNR). Furthermore, we can infer the 3D perception of users by SSVEP responses, and modify the proper disparity of 3D images automatically in the future.

  17. Investigation and evaluation of soil heavy metals pollution supported by DTM and 3D visualization

    NASA Astrophysics Data System (ADS)

    Hua, Li; Sui, Haigang; Wang, Juan; Shao, Ya

    2005-10-01

    In this paper, a method that integrates 3D GIS visualization, spatial statistical analysis, spatial database, environmental management & evaluation model for evaluating soil heavy metals pollution is presented. Based on the above method and strategies, taking the nearby farmland in the LongJiao hill mine district of Daye City in the Hubei province as an example, we found that the results using integrative method is superior to traditional method. With the technology of DTM and 3D visualization, the quantity of two heavy metals (Cu,Cd) in investigated six kinds of heavy metals (As, Cr, Pb, Cu, Zn, Cd) was easily found that exceeds the soil environment quality standard GB15618-1995. The research discovers the new idea and method can improve the efficiency and precision comparing to traditional heavy metals investigation and evaluation method. Different with traditional 2D representation mode, the new method integrated 3D visualization can visually represent and adequately evaluate soil heavy metals pollution distribution situation in the mineral area.

  18. Visualization of 3D geometric models of the breast created from contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken, III; Wang, Xiao Hui; Chang, Yuan-Hsiang; Chapman, Brian E.

    2002-05-01

    Contrast enhanced breast MRI is currently used as an adjuvant modality to x-ray mammography because of its ability to resolve ambiguities and determine the extent of malignancy. This study described techniques to create and visualize 3D geometric models of abnormal breast tissue. MRIs were performed on a General Electric 1.5 Tesla scanner using dual phased array breast coils. Image processing tasks included: 1) correction of image inhomogeneity caused by the coils, 2) segmentation of normal and abnormal tissue, and 3) modeling and visualization of the segmented tissue. The models were visualized using object-based surface rendering which revealed characteristics critical to differentiating benign from malignant tissue. Surface rendering illustrated the enhancement distribution and enhancement patterns. The modeling process condensed the multi-slice MRI data information and standardized its interpretation. Visualizing the 3D models should improve the radiologist's and/or surgeon's impression of the 3D shape, extent, and accessibility of the malignancy compared to viewing breast MRI data slice by slice.

  19. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    NASA Astrophysics Data System (ADS)

    Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.

    2009-12-01

    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  20. Adaptive volume rendering of cardiac 3D ultrasound images: utilizing blood pool statistics

    NASA Astrophysics Data System (ADS)

    Åsen, Jon Petter; Steen, Erik; Kiss, Gabriel; Thorstensen, Anders; Rabben, Stein Inge

    2012-03-01

    In this paper we introduce and investigate an adaptive direct volume rendering (DVR) method for real-time visualization of cardiac 3D ultrasound. DVR is commonly used in cardiac ultrasound to visualize interfaces between tissue and blood. However, this is particularly challenging with ultrasound images due to variability of the signal within tissue as well as variability of noise signal within the blood pool. Standard DVR involves a global mapping of sample values to opacity by an opacity transfer function (OTF). While a global OTF may represent the interface correctly in one part of the image, it may result in tissue dropouts, or even artificial interfaces within the blood pool in other parts of the image. In order to increase correctness of the rendered image, the presented method utilizes blood pool statistics to do regional adjustments of the OTF. The regional adaptive OTF was compared with a global OTF in a dataset of apical recordings from 18 subjects. For each recording, three renderings from standard views (apical 4-chamber (A4C), inverted A4C (IA4C) and mitral valve (MV)) were generated for both methods, and each rendering was tuned to the best visual appearance by a physician echocardiographer. For each rendering we measured the mean absolute error (MAE) between the rendering depth buffer and a validated left ventricular segmentation. The difference d in MAE between the global and regional method was calculated and t-test results are reported with significant improvements for the regional adaptive method (dA4C = 1.5 +/- 0.3 mm, dIA4C = 2.5 +/- 0.4 mm, dMV = 1.7 +/- 0.2 mm, d.f. = 17, all p < 0.001). This improvement by the regional adaptive method was confirmed through qualitative visual assessment by an experienced physician echocardiographer who concluded that the regional adaptive method produced rendered images with fewer tissue dropouts and less spurious structures inside the blood pool in the vast majority of the renderings. The algorithm has been

  1. Application of synchrotron X-ray microtomography for visualizing bacterial biofilms 3D microstructure in porous media.

    PubMed

    Rolland du Roscoat, S; Martins, J M F; Séchet, P; Vince, E; Latil, P; Geindreau, C

    2014-06-01

    The development of reliable models to accurately predict biofilm growth in porous media relies on a good knowledge of the temporal evolution of biofilms structure within the porous network. Since little is known on the true 3D structure of biofilms developed in porous media, this work aimed at developing a new experimental protocol to visualize the 3D microstructure of bacterial biofilms in porous media. The main originality of the proposed procedure lies on the combination of the more recent advances in synchrotron microtomography (Paganin mode) and of a new contrast agent (1-chloronaphtalene) that has never been applied to biofilm visualization. It is shown that the proposed methodology takes advantage of the contrasting properties of 1-chloronaphtalene to prevent some limitations observed with more classical contrast agents. A quantitative analysis of the microstructural properties (volume fractions and specific surface area) of bacterial biofilms developed in columns of clay beads is also proposed on the basis of the obtained 3D images. PMID:24293082

  2. Sorting and hardware assisted rendering for volume visualization

    SciTech Connect

    Stein, C.; Becker, B.; Max, N.

    1994-03-01

    We present some techniques for volume rendering unstructured data. Interpolation between vertex colors and opacities is performed using hardware assisted texture mapping, and color is integrated for use with a volume rendering system. We also present an O(n{sup 2}) method for sorting n arbitrarily shaped convex polyhedra prior to visualization. It generalizes the Newell, Newell and Sancha sort for polygons to 3-D volume elements.

  3. Visualization of 3D osteon morphology by synchrotron radiation micro-CT

    PubMed Central

    Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G

    2011-01-01

    Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the

  4. The Effect of 3D Visual Simulator on Children’s Visual Acuity - A Pilot Study Comparing Two Different Modalities

    PubMed Central

    Ide, Takeshi; Ishikawa, Mariko; Tsubota, Kazuo; Miyao, Masaru

    2013-01-01

    Purpose : To evaluate the efficacy of two non-surgical interventions of vision improvement in children. Methods : A prospective, randomized, pilot study to compare fogging method and the use of head mounted 3D display. Subjects were children, between 5 to 15 years old, with normal best corrected visual acuity (BCVA) and up to -3D myopia. Subjects played a video game as near point work, and received one of the two methods of treatments. Measurements of uncorrected far visual acuity (UCVA), refraction with autorefractometer, and subjective accommodative amplitude were taken 3 times, at the baseline, after the near work, and after the treatment. Results : Both methods applied after near work, improved UCVA. Head mounted 3D display group showed significant improvement in UCVA and resulted in better UCVA than baseline. Fogging group showed improvement in subjective accommodative amplitude. While 3D display group did not show change in the refraction, fogging group’s myopic refraction showed significant increase indicating the eyes showed myopic change of eyes after near work and treatment. Discussion : Despite our lack of clear knowledge in the mechanisms, both methods improved UCVA after the treatments. The improvement in UCVA was not correlated to measured refraction values. Conclusion : UCVA after near work can be improved by repeating near and distant accommodation by fogging and 3D image viewing, although at the different degrees. Further investigation on mechanisms of improvements and their clinical significance are warranted. PMID:24222810

  5. Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.

    PubMed

    Do, Phuong T; Moreland, John R

    2014-04-01

    The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness. PMID:24897906

  6. Suitability of online 3D visualization technique in oil palm plantation management

    NASA Astrophysics Data System (ADS)

    Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd

    2016-08-01

    Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.

  7. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  8. Applications of texture mapping to volume and flow visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1995-05-01

    The authors describe six visualization methods which take advantage of hardware polygon scan conversion, texture mapping, and compositing, to give interactive viewing of 3D scalar fields, and motion for 3D flows. For volume rendering, these are splatting of an optimized 3D reconstruction filter, and tetrahedral cell projection using a texture map to provide the exponential per pixel necessary for accurate opacity calculation. For flows, these are the above tetrahedral projection method for rendering the ``flow volume`` dyed after passing through a dye releasing polygon, ``splatting`` of cycled anisotropic textures to provide flow direction and motion visualization, splatting motion blurred particles to indicate flow velocity, and advecting a texture directly to show the flow motion. All these techniques are tailored to take advantage of existing graphics pipelines to produce interactive visualization tools.

  9. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer

    PubMed Central

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources. PMID:18974802

  10. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer.

    PubMed

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources. PMID:18974802

  11. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  12. Hierarchical causality explorer: making complemental use of 3D/2D visualizations

    NASA Astrophysics Data System (ADS)

    Azuma, Shizuka; Fujishiro, Issei; Horii, Hideyuki

    2006-01-01

    Hierarchical causality relationships reside ubiquitously in the reality. Since the relationships take intricate forms with two kinds of links - hierarchical abstraction and causal association, there exists no single visualization style that allows the user to comprehend them effectively. This paper introduces a novel information visualization framework which can change existing 3D and 2D display styles interactively according to the user's visual analysis demands. The two visualization styles play a complementary role, and the change in the style relies on morphing so as to maintain the user's cognitive map. Based on this framework, we have developed a general-purpose prototype system, which provides the user with an enriched set of functions not only for supporting fundamental information seeking, but bridging analytic gaps to accomplishing high-level analytic tasks such as knowledge discovery and decision making. The effectiveness of the system is illustrated with an application to the analysis of a nuclear-hazard cover-up problem.

  13. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill. PMID:26020444

  14. UCVM: An Open Source Software Package for Querying and Visualizing 3D Velocity Models

    NASA Astrophysics Data System (ADS)

    Gill, D.; Small, P.; Maechling, P. J.; Jordan, T. H.; Shaw, J. H.; Plesch, A.; Chen, P.; Lee, E. J.; Taborda, R.; Olsen, K. B.; Callaghan, S.

    2015-12-01

    Three-dimensional (3D) seismic velocity models provide foundational data for ground motion simulations that calculate the propagation of earthquake waves through the Earth. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) package for both Linux and OS X. This unique framework provides a cohesive way for querying and visualizing 3D models. UCVM v14.3.0, supports many Southern California velocity models including CVM-S4, CVM-H 11.9.1, and CVM-S4.26. The last model was derived from 26 full-3D tomographic iterations on CVM-S4. Recently, UCVM has been used to deliver a prototype of a new 3D model of central California (CCA) also based on full-3D tomographic inversions. UCVM was used to provide initial plots of this model and will be used to deliver CCA to users when the model is publicly released. Visualizing models is also possible with UCVM. Integrated within the platform are plotting utilities that can generate 2D cross-sections, horizontal slices, and basin depth maps. UCVM can also export models in NetCDF format for easy import into IDV and ParaView. UCVM has also been prototyped to export models that are compatible with IRIS' new Earth Model Collaboration (EMC) visualization utility. This capability allows for user-specified horizontal slices and cross-sections to be plotted in the same 3D Earth space. UCVM was designed to help a wide variety of researchers. It is currently being use to generate velocity meshes for many SCEC wave propagation codes, including AWP-ODC-SGT and Hercules. It is also used to provide the initial input to SCEC's CyberShake platform. For those interested in specific data points, the software framework makes it easy to extract P and S wave propagation speeds and other material properties from 3D velocity models by providing a common interface through which researchers can query earth models for a given location and depth. Also included in the last release was the ability to add small

  15. 3-D vision and figure-ground separation by visual cortex.

    PubMed

    Grossberg, S

    1994-01-01

    A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with

  16. Combination 3D TOP with 2D PC MRA Techique for cerebral blood flow volume measurement.

    PubMed

    Guo, G; Wu, R H; Zhang, Y P; Guan, J T; Guo, Y L; Cheng, Y; terBrugge, K; Mikulis, D J

    2006-01-01

    To demonstrate the discrepancy of cerebral blood flow volume (BFV) estimation with 2D phase-contrast (2D PC) MRA guided with 3D time-of-flight (3D TOF) MR localization by using an "internal" standard. 20 groups of the common (CCA), internal (ICA), and external (ECA) carotid arteries in 10 healthy subjects were examined with 2D PC MRA guided by 3D TOF MR angiograms. The sum BFV of the internal and external carotid arteries was then compared with the ipsilateral common carotid artery flow. An accurate technique would demonstrate no difference. The difference was therefore a measure of accuracy of the method. 3D TOF MRA localization is presented to allow the determination of a slice orientation to improve the accuracy of 2D PC MRA in estimate the BFV. By using the combined protocols, there was better correlation in BFV estimate between the sum of ICA+ECA with the ipsilateral CCA (R2=0.729, P=0.000). The inconsistency (mean +/- SD) was found to be 6.95 +/- 5.95% for estimate the BFV in ICA+ECA and ipsilateral CCA. The main inconsistency was contributed to the ECA and its branches. Guided with 3D TOF MRA localization, 2D PC MRA is more accurate in the determination of blood flow volume in the carotid arteries. PMID:17946401

  17. Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes

    NASA Astrophysics Data System (ADS)

    Kim, Seong Tae; Kim, Dae Hoe; Ro, Yong Man

    2014-09-01

    In digital breast tomosynthesis, the three dimensional (3D) reconstructed volumes only provide quasi-3D structure information with limited resolution along the depth direction due to insufficient sampling in depth direction and the limited angular range. The limitation could seriously hamper the conventional 3D image analysis techniques for detecting masses because the limited number of projection views causes blurring in the out-of-focus planes. In this paper, we propose a novel mass detection approach using slice conspicuity in the 3D reconstructed digital breast volumes to overcome the above limitation. First, to overcome the limited resolution along the depth direction, we detect regions of interest (ROIs) on each reconstructed slice and separately utilize the depth directional information to combine the ROIs effectively. Furthermore, we measure the blurriness of each slice for resolving the degradation of performance caused by the blur in the out-of-focus plane. Finally, mass features are extracted from the selected in focus slices and analyzed by a support vector machine classifier to reduce the false positives. Comparative experiments have been conducted on a clinical data set. Experimental results demonstrate that the proposed approach outperforms the conventional 3D approach by achieving a high sensitivity with a small number of false positives.

  18. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  19. The 3D Visualization of Slope Terrain in Sun Moon Lake.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Gwo-shyn, S.; Pei-Kun, L.

    2015-12-01

    side-slope using the multi-beam sounder below the water surface. Finally, the image of the side-scan sonar is taken and merges with contour lines produced from underwater topographic DTM data. Combining those data, our purpose is by creating different 3D images to have good visualization checking the data of side-slope DTM surveys if they are in well qualified controlled.

  20. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  1. Five levels of PACS modularity: integrating 3D and other advanced visualization tools.

    PubMed

    Wang, Kenneth C; Filice, Ross W; Philbin, James F; Siegel, Eliot L; Nagy, Paul G

    2011-12-01

    The current array of PACS products and 3D visualization tools presents a wide range of options for applying advanced visualization methods in clinical radiology. The emergence of server-based rendering techniques creates new opportunities for raising the level of clinical image review. However, best-of-breed implementations of core PACS technology, volumetric image navigation, and application-specific 3D packages will, in general, be supplied by different vendors. Integration issues should be carefully considered before deploying such systems. This work presents a classification scheme describing five tiers of PACS modularity and integration with advanced visualization tools, with the goals of characterizing current options for such integration, providing an approach for evaluating such systems, and discussing possible future architectures. These five levels of increasing PACS modularity begin with what was until recently the dominant model for integrating advanced visualization into the clinical radiologist's workflow, consisting of a dedicated stand-alone post-processing workstation in the reading room. Introduction of context-sharing, thin clients using server-based rendering, archive integration, and user-level application hosting at successive levels of the hierarchy lead to a modularized imaging architecture, which promotes user interface integration, resource efficiency, system performance, supportability, and flexibility. These technical factors and system metrics are discussed in the context of the proposed five-level classification scheme. PMID:21301923

  2. Open source 3D visualization and interaction dedicated to hydrological models

    NASA Astrophysics Data System (ADS)

    Richard, Julien; Giangola-Murzyn, Agathe; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2014-05-01

    Climate change and surface urbanization strongly modify the hydrological cycle in urban areas, increasing the consequences of extreme events such as floods or draughts. These issues lead to the development of the Multi-Hydro model at the Ecole des Ponts ParisTech (A. Giangola-Murzyn et al., 2012). This fully distributed model allows to compute the hydrological response of urban and peri-urban areas. Unfortunately such models are seldom user friendly. Indeed generating the inputs before launching a new simulation is usually a tricky tasks, and understanding and interpreting the outputs remains specialist tasks not accessible to the wider public. The MH-AssimTool was developed to overcome these issues. To enable an easier and improved understanding of the model outputs, we decided to convert the raw output data (grids file in ascii format) to a 3D display. Some commercial paying models provide a 3D visualization. Because of the cost of their licenses, this kind of tools may not be accessible to the most concerned stakeholders. So, we are developing a new tool based on C++ for the computation, Qt for the graphic user interface, QGIS for the geographical side and OpenGL for the 3D display. All these languages and libraries are open source and multi-platform. We will discuss some preprocessing issues for the data conversion from 2.5D to 3D. Indeed, the GIS data, is considered as a 2.5D (e.i. 2D polygon + one height) and the its transform to 3D display implies a lot of algorithms. For example,to visualize in 3D one building, it is needed to have for each point the coordinates and the elevation according to the topography. Furthermore one have to create new points to represent the walls. Finally the interactions between the model and stakeholders through this new interface and how this helps converting a research tool into a an efficient operational decision tool will be discussed. This ongoing research on the improvement of the visualization methods is supported by the

  3. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  4. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  5. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    PubMed Central

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-01-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryo-image volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pull-back images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34±2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland-Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01±0.43 mm2. DICE coefficients were 0.91±0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (±200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities. PMID:27162417

  6. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  7. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  8. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts. PMID:21277821

  9. Interactive 3D Visualization of Humboldt Bay Bridge Earthquake Simulation With High Definition Stereo Output

    NASA Astrophysics Data System (ADS)

    Ang, P. B.; Nayak, A.; Yan, J.; Elgamal, A.

    2006-12-01

    This visualization project involves the study of the Humboldt Bay Middle Channel Bridge, a Pacific Earthquake Engineering Research (PEER) testbed site, subjected to an earthquake simulated by the Department of Structural Engineering, UCSD. The numerical simulation and data generation was carried out using the OpenSees finite element analysis platform, and GiD was employed for the mesh generation in preprocessing. In collaboration with the Scripps Visualization Center, the data was transformed into a virtual 3D world that a viewer could rotate around, zoom into, pan about, step through each timestep or examine in true stereo. The data consists of the static mesh of the bridge-foundation-ground elements, material indices for each type of element, the displacement amount of each element nodes over time, and the shear stress levels for each ground element over time. The Coin3D C++ Open Inventor API was used to parse the data and to render the bridge system in full 3D at 1130 individual time steps to show how the bridge structure and the surrounding soil elements interact during the full course of an earthquake. The results can be viewed interactively while using the program, saved as images and processed into animated movies, in resolutions as high as High Definition (1920x1080), or in stereo modes such as red-blue anaglyph.

  10. Visualization of anthropometric measures of workers in computer 3D modeling of work place.

    PubMed

    Mijović, B; Ujević, D; Baksa, S

    2001-12-01

    In this work, 3D visualization of a work place by means of a computer-made 3D-machine model and computer animation of a worker have been performed. By visualization of 3D characters in inverse kinematic and dynamic relation with the operating part of a machine, the biomechanic characteristics of worker's body have been determined. The dimensions of a machine have been determined by an inspection of technical documentation as well as by direct measurements and recordings of the machine by camera. On the basis of measured body height of workers all relevant anthropometric measures have been determined by a computer program developed by the authors. By knowing the anthropometric measures, the vision fields and the scope zones while forming work places, exact postures of workers while performing technological procedures were determined. The minimal and maximal rotation angles and the translation of upper and lower arm which are basis for the analysis of worker burdening were analyzed. The dimensions of the seized space of a body are obtained by computer anthropometric analysis of movement, e.g. range of arms, position of legs, head, back. The influence of forming of a work place on correct postures of workers during work has been reconsidered and thus the consumption of energy and fatigue can be reduced to a minimum. PMID:11811295

  11. The Visual Representation of 3D Object Orientation in Parietal Cortex

    PubMed Central

    Cowan, Noah J.; Angelaki, Dora E.

    2013-01-01

    An accurate representation of three-dimensional (3D) object orientation is essential for interacting with the environment. Where and how the brain visually encodes 3D object orientation remains unknown, but prior studies suggest the caudal intraparietal area (CIP) may be involved. Here, we develop rigorous analytical methods for quantifying 3D orientation tuning curves, and use these tools to the study the neural coding of surface orientation. Specifically, we show that single neurons in area CIP of the rhesus macaque jointly encode the slant and tilt of a planar surface, and that across the population, the distribution of preferred slant-tilts is not statistically different from uniform. This suggests that all slant-tilt combinations are equally represented in area CIP. Furthermore, some CIP neurons are found to also represent the third rotational degree of freedom that determines the orientation of the image pattern on the planar surface. Together, the present results suggest that CIP is a critical neural locus for the encoding of all three rotational degrees of freedom specifying an object's 3D spatial orientation. PMID:24305830

  12. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM.

    PubMed

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-07-01

    Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication. PMID:26846371

  13. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  14. 3D Geo-Structures Visualization Education Project (3dgeostructuresvis.ucdavis.edu)

    NASA Astrophysics Data System (ADS)

    Billen, M. I.

    2014-12-01

    Students of field-based geology must master a suite of challenging skills from recognizing rocks, to measuring orientations of features in the field, to finding oneself (and the outcrop) on a map and placing structural information on maps. Students must then synthesize this information to derive meaning from the observations and ultimately to determine the three-dimensional (3D) shape of the deformed structures and their kinematic history. Synthesizing this kind of information requires sophisticated visualizations skills in order to extrapolate observations into the subsurface or missing (eroded) material. The good news is that students can learn 3D visualization skills through practice, and virtual tools can help provide some of that practice. Here I present a suite of learning modules focused at developing students' ability to imagine (visualize) complex 3D structures and their exposure through digital topographic surfaces. Using the software 3DVisualizer, developed by KeckCAVES (keckcaves.org) we have developed visualizations of common geologic structures (e.g., syncline, dipping fold) in which the rock is represented by originally flat-lying layers of sediment, each with a different color, which have been subsequently deformed. The exercises build up in complexity, first focusing on understanding the structure in 3D (penetrative understanding), and then moving to the exposure of the structure at a topographic surface. Individual layers can be rendered as a transparent feature to explore how the layer extends above and below the topographic surface (e.g., to follow an eroded fold limb across a valley). The exercises are provided using either movies of the visualization (which can also be used for examples during lectures), or the data and software can be downloaded to allow for more self-driven exploration and learning. These virtual field models and exercises can be used as "practice runs" before going into the field, as make-up assignments, as a field

  15. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    NASA Astrophysics Data System (ADS)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  16. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.

    PubMed

    Guo, Hanqi; Phillips, Carolyn L; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-01-01

    We propose a method for the vortex extraction and tracking of superconducting magnetic flux vortices for both structured and unstructured mesh data. In the Ginzburg-Landau theory, magnetic flux vortices are well-defined features in a complex-valued order parameter field, and their dynamics determine electromagnetic properties in type-II superconductors. Our method represents each vortex line (a 1D curve embedded in 3D space) as a connected graph extracted from the discretized field in both space and time. For a time-varying discrete dataset, our vortex extraction and tracking method is as accurate as the data discretization. We then apply 3D visualization and 2D event diagrams to the extraction and tracking results to help scientists understand vortex dynamics and macroscale superconductor behavior in greater detail than previously possible. PMID:26529730

  17. 3D Visualization as a Communicative Aid in Pharmaceutical Advice-Giving over Distance

    PubMed Central

    Dahlbäck, Nils; Petersson, Göran Ingemar

    2011-01-01

    Background Medication misuse results in considerable problems for both patient and society. It is a complex problem with many contributing factors, including timely access to product information. Objective To investigate the value of 3-dimensional (3D) visualization paired with video conferencing as a tool for pharmaceutical advice over distance in terms of accessibility and ease of use for the advice seeker. Methods We created a Web-based communication service called AssistancePlus that allows an advisor to demonstrate the physical handling of a complex pharmaceutical product to an advice seeker with the aid of 3D visualization and audio/video conferencing. AssistancePlus was tested in 2 separate user studies performed in a usability lab, under realistic settings and emulating a real usage situation. In the first study, 10 pharmacy students were assisted by 2 advisors from the Swedish National Co-operation of Pharmacies’ call centre on the use of an asthma inhaler. The student-advisor interview sessions were filmed on video to qualitatively explore their experience of giving and receiving advice with the aid of 3D visualization. In the second study, 3 advisors from the same call centre instructed 23 participants recruited from the general public on the use of 2 products: (1) an insulin injection pen, and (2) a growth hormone injection syringe. First, participants received advice on one product in an audio-recorded telephone call and for the other product in a video-recorded AssistancePlus session (product order balanced). In conjunction with the AssistancePlus session, participants answered a questionnaire regarding accessibility, perceived expressiveness, and general usefulness of 3D visualization for advice-giving over distance compared with the telephone and were given a short interview focusing on their experience of the 3D features. Results In both studies, participants found the AssistancePlus service helpful in providing clear and exact instructions. In

  18. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    PubMed

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  19. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  20. Digital breast tomosynthesis: computerized detection of microcalcifications in reconstructed breast volume using a 3D approach

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan; Helvie, Mark A.

    2010-03-01

    We are developing a computer-aided detection (CAD) system for clustered microcalcifications in digital breast tomosynthesis (DBT). In this preliminary study, we investigated the approach of detecting microcalcifications in the tomosynthesized volume. The DBT volume is first enhanced by 3D multi-scale filtering and analysis of the eigenvalues of Hessian matrices with a calcification response function and signal-to-noise ratio enhancement filtering. Potential signal sites are identified in the enhanced volume and local analysis is performed to further characterize each object. A 3D dynamic clustering procedure is designed to locate potential clusters using hierarchical criteria. We collected a pilot data set of two-view DBT mammograms of 39 breasts containing microcalcification clusters (17 malignant, 22 benign) with IRB approval. A total of 74 clusters were identified by an experienced radiologist in the 78 DBT views. Our prototype CAD system achieved view-based sensitivity of 90% and 80% at an average FP rate of 7.3 and 2.0 clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 3.6 and 1.3 clusters per volume, respectively. For the subset of malignant clusters, the view-based detection sensitivity was 94% and 82% at an average FP rate of 6.0 and 1.5 FP clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 1.2 and 0.9 clusters per volume, respectively. This study demonstrated that computerized microcalcification detection in 3D is a promising approach to the development of a CAD system for DBT. Study is underway to further improve the computer-vision methods and to optimize the processing parameters using a larger data set.

  1. Multimodal visualization of 3D enhanced MRI and CT of acoustic schwannoma and related structures

    NASA Astrophysics Data System (ADS)

    Kucharski, Tomasz; Kujawinska, Malgorzata; Niemczyk, Kazimierz; Marchel, Andrzej

    2005-09-01

    According to the necessity of supporting vestibular schwannoma surgery, there is a demand to develop a convenient method of medical data visualization. The process of making choice of optimal operating access way has been uncomfortable for a surgeon so far, because there has been a necessity of analyzing two independent 3D images series (CT -bone tissues visible, MRI - soft tissues visible) in the region of ponto-cerebellar angle tumors. The authors propose a solution that will improve this process. The system used is equipped with stereoscopic helmet mounted display. It allows merged CT and MRI data representing tissues in the region of of ponto-cerebellar angle to be visualized in stereoscopic way. The process of data preparation for visualization includes: -automated segmentation algorithms, -different types of 3D images (CT, MRI) fusion. The authors focused on the development of novel algorithms for segmentation of vestibular schwannoma. It is important and difficult task due to different types of tumors and their inhomogeneous character dependent on growth models. The authors propose algorithms based on histogram spectrum and multimodal character of MRI imaging (T1 and T2 modes). However due to a variety of objects the library of algorithms with specific modifications matching to selected types of images is proposed. The applicability and functionality of the algorithms and library was proved on the series of data delivered by Warsaw Central Medical University Hospital.

  2. High Productivity DRIE solutions for 3D-SiP and MEMS Volume Manufacturing

    NASA Astrophysics Data System (ADS)

    Puech, M.; Thevenoud, JM; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, JM

    2006-04-01

    Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimised to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters has resulted in ultra high silicon etch rates, with unrivalled uniformity and repeatability leading to excellent process. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer heads and Silicon microphones.

  3. High-productivity DRIE solutions for 3D-SiP and MEMS volume manufacturing

    NASA Astrophysics Data System (ADS)

    Puech, M.; Thevenoud, J. M.; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, J. M.

    2006-12-01

    Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimized to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters have shown ultra high silicon etch rate, with unrivaled uniformity and repeatability leading to excellent process yields. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. A key factor for achieving the highest performances was the recognized expertise of Alcatel vacuum and plasma science technologies. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer head and Silicon microphones.

  4. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using

  5. A novel technique for visualizing high-resolution 3D terrain maps

    NASA Astrophysics Data System (ADS)

    Dammann, John

    2007-02-01

    A new technique is presented for visualizing high-resolution terrain elevation data. It produces realistic images at small scales on the order of the data resolution and works particularly well when natural objects are present. Better visualization at small scales opens up new applications, like site surveillance for security and Google Earth-type local search and exploration tasks that are now done with 2-D maps. The large 3-D maps are a natural for high-resolution stereo display. The traditional technique drapes a continuous surface over the regularly spaced elevation values. This technique works well when displaying large areas or in cities with large buildings, but falls apart at small scales or for natural objects like trees. The new technique visualizes the terrain as a set of disjoint square patches. It is combined with an algorithm that identifies smooth areas within the scene. Where the terrain is smooth, such as in grassy areas, roads, parking lots and rooftops, it warps the patches to create a smooth surface. For trees or shrubs or other areas where objects are under-sampled, however, the patches are left disjoint. This has the disadvantage of leaving gaps in the data, but the human mind is very adept at filling in this missing information. It has the strong advantage of making natural terrain look realistic, trees and bushes look stylized but still look natural and are easy to interpret. Also, it does not add artifacts to the map, like filling in blank vertical walls where there are alcoves and other structure and extending bridges and overpasses down to the ground. The new technique is illustrated using very large 1-m resolution 3-D maps from the Rapid Terrain Visualization (RTV) program, and comparisons are made with traditional visualizations using these maps.

  6. 3D visualization and biovolume estimation of motile cells by digital holography

    NASA Astrophysics Data System (ADS)

    Merola, F.; Miccio, L.; Memmolo, P.; Di Caprio, G.; Coppola, G.; Netti, P.

    2014-05-01

    For the monitoring of biological samples, physical parameters such as size, shape and refractive index are of crucial importance. However, up to now the morphological in-vitro analysis of in-vitro cells has been limited to 2D analysis by classical optical microscopy such as phase-contrast or DIC. Here we show an approach that exploits the capability of optical tweezers to trap and put in self-rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cell's phase-contrast signature, we demonstrate that it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to 3D shape of the object avoiding tomography microscopy, that is an overwhelmed and very complex approach for measuring 3D shape and biovolume estimation.

  7. PointCloudXplore: a visualization tool for 3D gene expressiondata

    SciTech Connect

    Rubel, Oliver; Weber, Gunther H.; Keranen, Soile V.E.; Fowlkes,Charles C.; Luengo Hendriks, Cristian L.; Simirenko, Lisa; Shah, NameetaY.; Eisen, Michael B.; Biggn, Mark D.; Hagen, Hans; Sudar, Damir J.; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2006-10-01

    The Berkeley Drosophila Transcription Network Project (BDTNP) has developed a suite of methods that support quantitative, computational analysis of three-dimensional (3D) gene expression patterns with cellular resolution in early Drosophila embryos, aiming at a more in-depth understanding of gene regulatory networks. We describe a new tool, called PointCloudXplore (PCX), that supports effective 3D gene expression data exploration. PCX is a visualization tool that uses the established visualization techniques of multiple views, brushing, and linking to support the analysis of high-dimensional datasets that describe many genes' expression. Each of the views in PointCloudXplore shows a different gene expression data property. Brushing is used to select and emphasize data associated with defined subsets of embryo cells within a view. Linking is used to show in additional views the expression data for a group of cells that have first been highlighted as a brush in a single view, allowing further data subset properties to be determined. In PCX, physical views of the data are linked to abstract data displays such as parallel coordinates. Physical views show the spatial relationships between different genes' expression patterns within an embryo. Abstract gene expression data displays on the other hand allow for an analysis of relationships between different genes directly in the gene expression space. We discuss on parallel coordinates as one example abstract data view currently available in PCX. We have developed several extensions to standard parallel coordinates to facilitate brushing and the visualization of 3D gene expression data.

  8. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  9. Detection and 3D representation of pulmonary air bubbles in HRCT volumes

    NASA Astrophysics Data System (ADS)

    Silva, Jose S.; Silva, Augusto F.; Santos, Beatriz S.; Madeira, Joaquim

    2003-05-01

    Bubble emphysema is a disease characterized by the presence of air bubbles within the lungs. With the purpose of identifying pulmonary air bubbles, two alternative methods were developed, using High Resolution Computer Tomography (HRCT) exams. The search volume is confined to the pulmonary volume through a previously developed pulmonary contour detection algorithm. The first detection method follows a slice by slice approach and uses selection criteria based on the Hounsfield levels, dimensions, shape and localization of the bubbles. Candidate regions that do not exhibit axial coherence along at least two sections are excluded. Intermediate sections are interpolated for a more realistic representation of lungs and bubbles. The second detection method, after the pulmonary volume delimitation, follows a fully 3D approach. A global threshold is applied to the entire lung volume returning candidate regions. 3D morphologic operators are used to remove spurious structures and to circumscribe the bubbles. Bubble representation is accomplished by two alternative methods. The first generates bubble surfaces based on the voxel volumes previously detected; the second method assumes that bubbles are approximately spherical. In order to obtain better 3D representations, fits super-quadrics to bubble volume. The fitting process is based on non-linear least squares optimization method, where a super-quadric is adapted to a regular grid of points defined on each bubble. All methods were applied to real and semi-synthetical data where artificial and randomly deformed bubbles were embedded in the interior of healthy lungs. Quantitative results regarding bubble geometric features are either similar to a priori known values used in simulation tests, or indicate clinically acceptable dimensions and locations when dealing with real data.

  10. 3D volume reconstruction of a mouse brain histological sections using warp filtering

    SciTech Connect

    Ju, Tao; Warren, Joe; Carson, James P.; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  11. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, Boy-Santhos; Hut, Rolf; van de Giesen, Nick

    2013-04-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the 150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  12. Accurately measuring volume of soil samples using low cost Kinect 3D scanner

    NASA Astrophysics Data System (ADS)

    van der Sterre, B.; Hut, R.; Van De Giesen, N.

    2012-12-01

    The 3D scanner of the Kinect game controller can be used to increase the accuracy and efficiency of determining in situ soil moisture content. Soil moisture is one of the principal hydrological variables in both the water and energy interactions between soil and atmosphere. Current in situ measurements of soil moisture either rely on indirect measurements (of electromagnetic constants or heat capacity) or on physically taking a sample and weighing it in a lab. The bottleneck in accurately retrieving soil moisture using samples is the determining of the volume of the sample. Currently this is mostly done by the very time consuming "sand cone method" in which the volume were the sample used to sit is filled with sand. We show that 3D scanner that is part of the $150 game controller extension "Kinect" can be used to make 3D scans before and after taking the sample. The accuracy of this method is tested by scanning forms of known volume. This method is less time consuming and less error-prone than using a sand cone.

  13. 3-D foliation unfolding with volume and bed-length least-squares conservation

    SciTech Connect

    Leger, M.; Morvan, J.M.; Thibaut, M.

    1994-12-31

    Restoration of a geologic structure at earlier times is a good means to criticize, and next to improve, its interpretation. Restoration softwares already exist in 2D, but a lot of work remains to be done in 3D. The authors focus on the interbedding slip phenomenon, with bed-length and volume conservation. They unfold a (geometrical) foliation by optimizing following least-squares criteria: horizontalness, bed-length and volume conservation, under equality constraints related to the position of the ``binding`` or ``pin-surface``

  14. Neuronal Representation of 3-D Space in the Primary Visual Cortex and Control of Eye Movements.

    PubMed

    Alekseenko, Svetlana V

    2015-01-01

    The aim of this article is to consider the correlations between the structure of the primary visual cortical area V1 and control of coordinated movements of the two eyes. Using the anatomical data available, a schematic map of 3-D space representation in the layer IV of area V1 containing only monocular cells has been constructed. The analysis of this map revealed that binocular neurons of V1, which are formed by convergence of monocular cells, should encode the absolute disparity. Participation of monocular and binocular neurons of V1 in the control of convergence, divergence, and version eye movements is discussed. It is proposed that synchronous contraction of corresponding extraocular muscles of both eyes for vergence might be ensured by duplicated transmission of information from the central part of retina to visual cortex of both hemispheres. PMID:26562914

  15. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy.

    PubMed

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-05-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  16. Fast 3D visualization of endogenous brain signals with high-sensitivity laser scanning photothermal microscopy

    PubMed Central

    Miyazaki, Jun; Iida, Tadatsune; Tanaka, Shinji; Hayashi-Takagi, Akiko; Kasai, Haruo; Okabe, Shigeo; Kobayashi, Takayoshi

    2016-01-01

    A fast, high-sensitivity photothermal microscope was developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope. We confirmed a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrated simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 μs. The fluorescence image visualized neurons expressing yellow fluorescence proteins, while the photothermal signal detected endogenous chromophores in the mouse brain, allowing 3D visualization of the distribution of various features such as blood cells and fine structures probably due to lipids. This imaging modality was constructed using compact and cost-effective laser diodes, and will thus be widely useful in the life and medical sciences. PMID:27231615

  17. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  18. Estimation of single cell volume from 3D confocal images using automatic data processing

    NASA Astrophysics Data System (ADS)

    Chorvatova, A.; Cagalinec, M.; Mateasik, A.; Chorvat, D., Jr.

    2012-06-01

    Cardiac cells are highly structured with a non-uniform morphology. Although precise estimation of their volume is essential for correct evaluation of hypertrophic changes of the heart, simple and unified techniques that allow determination of the single cardiomyocyte volume with sufficient precision are still limited. Here, we describe a novel approach to assess the cell volume from confocal microscopy 3D images of living cardiac myocytes. We propose a fast procedure based on segementation using active deformable contours. This technique is independent on laser gain and/or pinhole settings and it is also applicable on images of cells stained with low fluorescence markers. Presented approach is a promising new tool to investigate changes in the cell volume during normal, as well as pathological growth, as we demonstrate in the case of cell enlargement during hypertension in rats.

  19. A 3D visualization and guidance system for handheld optical imaging devices

    NASA Astrophysics Data System (ADS)

    Azar, Fred S.; de Roquemaurel, Benoit; Cerussi, Albert; Hajjioui, Nassim; Li, Ang; Tromberg, Bruce J.; Sauer, Frank

    2007-03-01

    We have developed a novel 3D visualization and guidance system for handheld optical imaging devices. In this paper, the system is applied to measurements of breast/cancerous tissue optical properties using a handheld diffuse optical spectroscopy (DOS) instrument. The combined guidance system/DOS instrument becomes particularly useful for monitoring neoadjuvant chemotherapy in breast cancer patients and for longitudinal studies where measurement reproducibility is critical. The system uses relatively inexpensive hardware components and comprises a 6 degrees-of-freedom (DOF) magnetic tracking device including a DC field generator, three sensors, and a PCI card running on a PC workstation. A custom-built virtual environment combined with a well-defined workflow provide the means for image-guided measurements, improved longitudinal studies of breast optical properties, 3D reconstruction of optical properties within the anatomical map, and serial data registration. The DOS instrument characterizes tissue function such as water, lipid and total hemoglobin concentration. The patient lies on her back at a 45-degrees angle. Each spectral measurement requires consistent contact with the skin, and lasts about 5-10 seconds. Therefore a limited number of positions may be studied. In a reference measurement session, the physician acquires surface points on the breast. A Delaunay-based triangulation algorithm is used to build the virtual breast surface from the acquired points. 3D locations of all DOS measurements are recorded. All subsequently acquired surfaces are automatically registered to the reference surface, thus allowing measurement reproducibility through image guidance using the reference measurements.

  20. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation.

    PubMed

    Lee, Yejin; Hong, Kyunghi; Hong, Sung-Ae

    2007-05-01

    Garment fit and resultant air volume is a crucial factor in thermal insulation, and yet, it has been difficult to quantify the air volume of clothing microclimate and relate it to the thermal insulation value just using the information on the size of clothing pattern without actual 3D volume measurement in wear condition. As earlier methods for the computation of air volume in clothing microclimate, vacuum over suit and circumference model have been used. However, these methods have inevitable disadvantages in terms of cost or accuracy due to the limitations of measurement equipment. In this paper, the phase-shifting moiré topography was introduced as one of the 3D scanning tools to measure the air volume of clothing microclimate quantitatively. The purpose of this research is to adopt a non-contact image scanning technology, phase-shifting moiré topography, to ascertain relationship between air volume and insulation value of layered clothing systems in wear situations where the 2D fabric creates new conditions in 3D spaces. The insulation of vests over shirts as a layered clothing system was measured with a thermal manikin in the environmental condition of 20 degrees C, 65% RH and air velocity of 0.79 m/s. As the pattern size increased, the insulation of the clothing system was increased. But beyond a certain limit, the insulation started to decrease due to convection and ventilation, which is more apparent when only the vest was worn over the torso of manikin. The relationship between clothing air volume and insulation was difficult to predict with a single vest due to the extreme openings which induced active ventilation. But when the vest was worn over the shirt, the effects of thickness of the fabrics on insulation were less pronounced compared with that of air volume. In conclusion, phase-shifting moiré topography was one of the efficient and accurate ways of quantifying air volume and its distribution across the clothing microclimate. It is also noted

  1. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data.

    PubMed

    Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme

    2015-09-18

    Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738

  2. A low-latency, big database system and browser for storage, querying and visualization of 3D genomic data

    PubMed Central

    Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme

    2015-01-01

    Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738

  3. FaceWarehouse: a 3D facial expression database for visual computing.

    PubMed

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2014-03-01

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24434222

  4. McIDAS-V: Advanced Visualization for 3D Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Rink, T.; Achtor, T. H.

    2010-12-01

    McIDAS-V is a Java-based, open-source, freely available software package for analysis and visualization of geophysical data. Its advanced capabilities provide very interactive 4-D displays, including 3D volumetric rendering and fast sub-manifold slicing, linked to an abstract mathematical data model with built-in metadata for units, coordinate system transforms and sampling topology. A Jython interface provides user defined analysis and computation in terms of the internal data model. These powerful capabilities to integrate data, analysis and visualization are being applied to hyper-spectral sounding retrievals, eg. AIRS and IASI, of moisture and cloud density to interrogate and analyze their 3D structure, as well as, validate with instruments such as CALIPSO, CloudSat and MODIS. The object oriented framework design allows for specialized extensions for novel displays and new sources of data. Community defined CF-conventions for gridded data are understood by the software, and can be immediately imported into the application. This presentation will show examples how McIDAS-V is used in 3-dimensional data analysis, display and evaluation.

  5. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). PMID:10388621

  6. Glacial isostatic adjustment on 3-D Earth models: a finite-volume formulation

    NASA Astrophysics Data System (ADS)

    Latychev, Konstantin; Mitrovica, Jerry X.; Tromp, Jeroen; Tamisiea, Mark E.; Komatitsch, Dimitri; Christara, Christina C.

    2005-05-01

    We describe and present results from a finite-volume (FV) parallel computer code for forward modelling the Maxwell viscoelastic response of a 3-D, self-gravitating, elastically compressible Earth to an arbitrary surface load. We implement a conservative, control volume discretization of the governing equations using a tetrahedral grid in Cartesian geometry and a low-order, linear interpolation. The basic starting grid honours all major radial discontinuities in the Preliminary Reference Earth Model (PREM), and the models are permitted arbitrary spatial variations in viscosity and elastic parameters. These variations may be either continuous or discontinuous at a set of grid nodes forming a 3-D surface within the (regional or global) modelling domain. In the second part of the paper, we adopt the FV methodology and a spherically symmetric Earth model to generate a suite of predictions sampling a broad class of glacial isostatic adjustment (GIA) data types (3-D crustal motions, long-wavelength gravity anomalies). These calculations, based on either a simple disc load history or a global Late Pleistocene ice load reconstruction (ICE-3G), are benchmarked against predictions generated using the traditional normal-mode approach to GIA. The detailed comparison provides a guide for future analyses (e.g. what grid resolution is required to obtain a specific accuracy?) and it indicates that discrepancies in predictions of 3-D crustal velocities less than 0.1 mm yr-1 are generally obtainable for global grids with ~3 × 106 nodes; however, grids of higher resolution are required to predict large-amplitude (>1 cm yr-1) radial velocities in zones of peak post-glacial uplift (e.g. James bay) to the same level of absolute accuracy. We conclude the paper with a first application of the new formulation to a 3-D problem. Specifically, we consider the impact of mantle viscosity heterogeneity on predictions of present-day 3-D crustal motions in North America. In these tests, the

  7. A novel and stable approach to anatomical structure morphing for enhanced intraoperative 3D visualization

    NASA Astrophysics Data System (ADS)

    Rajamani, Kumar T.; Gonzalez Ballester, Miguel A.; Nolte, Lutz-Peter; Styner, Martin

    2005-04-01

    The use of three dimensional models in planning and navigating computer assisted surgeries is now well established. These models provide intuitive visualization to the surgeons contributing to significantly better surgical outcomes. Models obtained from specifically acquired CT scans have the disadvantage that they induce high radiation dose to the patient. In this paper we propose a novel and stable method to construct a patient-specific model that provides an appropriate intra-operative 3D visualization without the need for a pre or intra-operative imaging. Patient specific data consists of digitized landmarks and surface points that are obtained intra-operatively. The 3D model is reconstructed by fitting a statistical deformable model to the minimal sparse digitized data. The statistical model is constructed using Principal Component Analysis from training objects. Our morphing scheme efficiently and accurately computes a Mahalanobis distance weighted least square fit of the deformable model to the 3D data model by solving a linear equation system. Relaxing the Mahalanobis distance term as additional points are incorporated enables our method to handle small and large sets of digitized points efficiently. Our novel incorporation of M-estimator based weighting of the digitized points enables us to effectively reject outliers and compute stable models. Normalization of the input model data and the digitized points makes our method size invariant and hence applicable directly to any anatomical shape. The method also allows incorporation of non-spatial data such as patient height and weight. The predominant applications are hip and knee surgeries.

  8. 3-D Measurement and Visualization of Electrical Propagation on Heart Surface

    NASA Astrophysics Data System (ADS)

    Lin, Shien-Fong; Wikswo, John P.

    1997-11-01

    Optical recording of the cardiac transmembrane potential (Vm) has recently become a powerful tool to reveal patterns of electrical wave front dynamics on the heart surface. The optical mapping techniques have been previously applied to observe a portion of the heart due to its 3-D geometry. We extended our 2-D optical mapping technique to include one front view and two back mirror views for measuring and visualizing the transmembrane potential distribution simultaneously over entire surface of an isolated rabbit heart. The heart was illuminated with an argon laser delivered through an optical fiber bundle consisting of seven 1-mm fibers. These fibers were positioned around the heart to induce a near-uniform fluorescence intensity distribution on the heart surface. A single high-speed CCD camera with a long depth of field recorded the laser-stimulated epifluorescence from all three views in a single frame. Sequences of 100 to 600 frames of 12-bit/pixel digital images were recorded during regular pacing or induced ventricular fibrillation at 335 frames/second. Image processing then yielded the Vm distribution at a resolution of 128x64 pixels/frame. The propagating wave front images were obtained by subtracting two subsequent Vm images. The geometry of the heart was obtained by profilometry. The wave front information obtained from image processing could be texture-mapped to the heart geometry for visualization. Our 3-D imaging technique provides simultaneous, dynamic information of wave front activation and propagation over entire heart surface, and thereby can offer a more complete knowledge of wave front dynamics in a whole heart model. Future work involves automatic procedure for digitizing the heart shape and measuring the wave front dimensions using the 3-D geometry.

  9. Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    PubMed Central

    Valverde-Islas, Laura E.; Arrangoiz, Esteban; Vega, Elio; Robert, Lilia; Villanueva, Rafael; Reynoso-Ducoing, Olivia; Willms, Kaethe; Zepeda-Rodríguez, Armando; Fortoul, Teresa I.; Ambrosio, Javier R.

    2011-01-01

    Background Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. Methodology/Principal Findings Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. Conclusions/Significance We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton. PMID:21412407

  10. Visualizing Earthquakes in '3D' using the IRIS Earthquake Browser (IEB) Website

    NASA Astrophysics Data System (ADS)

    Welti, R.; McQuillan, P. J.; Weertman, B. R.

    2012-12-01

    The distribution of earthquakes is often easier to interpret in 3D, but most 3D visualization tools require the installation of specialized software and some practice in their use. To reduce this barrier for students and the general public, a pseudo-3D seismicity viewer has been developed which runs in a web browser as part of the IRIS Earthquake Browser (IEB). IEB is an interactive map for viewing earthquake epicenters all over the world, and is composed of a Google map, HTML, JavaScript and a fast earthquake hypocenter web service. The web service accesses seismic data at IRIS from the early 1960s until present. Users can change the region, the number of events, and the depth and magnitude ranges to display. Earthquakes may also be viewed as a table, or exported to various formats. Predefined regions can be selected and zoomed to, and bookmarks generally preserve whatever region and settings are in effect when bookmarked, allowing the easy sharing of particular "scenarios" with other users. Plate boundaries can be added to the display. The 3DV viewer displays events for the currently-selected IEB region in a separate window. They can be rotated and zoomed, with a fast response for plots of up to several thousand events. Rotation can be done manually by dragging or automatically at a set rate, and tectonic plate boundaries turned on or off. 3DV uses a geographical projection algorithm provided by Gary Pavils and collaborators. It is written in HTML5, and is based on CanvasMol by Branislav Ulicny.; A region SE of Fiji, selected in IRIS Earthquake Browser. ; The same region as viewed in 3D Viewer.

  11. An objective method for 3D quality prediction using visual annoyance and acceptability level

    NASA Astrophysics Data System (ADS)

    Khaustova, Darya; Fournier, Jérôme; Wyckens, Emmanuel; Le Meur, Olivier

    2015-03-01

    This study proposes a new objective metric for video quality assessment. It predicts the impact of technical quality parameters relevant to visual discomfort on human perception. The proposed metric is based on a 3-level color scale: (1) Green - not annoying, (2) Orange - annoying but acceptable, (3) Red - not acceptable. Therefore, each color category reflects viewers' judgment based on stimulus acceptability and induced visual annoyance. The boundary between the "Green" and "Orange" categories defines the visual annoyance threshold, while the boundary between the "Orange" and "Red" categories defines the acceptability threshold. Once the technical quality parameters are measured, they are compared to perceptual thresholds. Such comparison allows estimating the quality of the 3D video sequence. Besides, the proposed metric is adjustable to service or production requirements by changing the percentage of acceptability and/or visual annoyance. The performance of the metric is evaluated in a subjective experiment that uses three stereoscopic scenes. Five view asymmetries with four degradation levels were introduced into initial test content. The results demonstrate high correlations between subjective scores and objective predictions for all view asymmetries.

  12. GPU-Based Visualization of 3D Fluid Interfaces using Level Set Methods

    NASA Astrophysics Data System (ADS)

    Kadlec, B. J.

    2009-12-01

    We model a simple 3D fluid-interface problem using the level set method and visualize the interface as a dynamic surface. Level set methods allow implicit handling of complex topologies deformed by evolutions where sharp changes and cusps are present without destroying the representation. We present a highly optimized visualization and computation algorithm that is implemented in CUDA to run on the NVIDIA GeForce 295 GTX. CUDA is a general purpose parallel computing architecture that allows the NVIDIA GPU to be treated like a data parallel supercomputer in order to solve many computational problems in a fraction of the time required on a CPU. CUDA is compared to the new OpenCL™ (Open Computing Language), which is designed to run on heterogeneous computing environments but does not take advantage of low-level features in NVIDIA hardware that provide significant speedups. Therefore, our technique is implemented using CUDA and results are compared to a single CPU implementation to show the benefits of using the GPU and CUDA for visualizing fluid-interface problems. We solve a 1024^3 problem and experience significant speedup using the NVIDIA GeForce 295 GTX. Implementation details for mapping the problem to the GPU architecture are described as well as discussion on porting the technique to heterogeneous devices (AMD, Intel, IBM) using OpenCL. The results present a new interactive system for computing and visualizing the evolution of fluid interface problems on the GPU.

  13. Volume quantization of the mouse cerebellum by semiautomatic 3D segmentation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Sijbers, Jan; Van der Linden, Anne-Marie; Scheunders, Paul; Van Audekerke, Johan; Van Dyck, Dirk; Raman, Erik R.

    1996-04-01

    The aim of this work is the development of a non-invasive technique for efficient and accurate volume quantization of the cerebellum of mice. This enables an in-vivo study on the development of the cerebellum in order to define possible alterations in cerebellum volume of transgenic mice. We concentrate on a semi-automatic segmentation procedure to extract the cerebellum from 3D magnetic resonance data. The proposed technique uses a 3D variant of Vincent and Soille's immersion based watershed algorithm which is applied to the gradient magnitude of the MR data. The algorithm results in a partitioning of the data in volume primitives. The known drawback of the watershed algorithm, over-segmentation, is strongly reduced by a priori application of an adaptive anisotropic diffusion filter on the gradient magnitude data. In addition, over-segmentation is a posteriori contingently reduced by properly merging volume primitives, based on the minimum description length principle. The outcome of the preceding image processing step is presented to the user for manual segmentation. The first slice which contains the object of interest is quickly segmented by the user through selection of basic image regions. In the sequel, the subsequent slices are automatically segmented. The segmentation results are contingently manually corrected. The technique is tested on phantom objects, where segmentation errors less than 2% were observed. Three-dimensional reconstructions of the segmented data are shown for the mouse cerebellum and the mouse brains in toto.

  14. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits

    PubMed Central

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    Purpose: This article presents a new reconstruction method for 3D imaging using a multiple 360° circular orbit cone beam CT system, specifically a way to combine 3D volumes reconstructed with each orbit. The main goal is to improve the noise performance in the combined image while avoiding cone beam artifacts. Methods: The cone beam projection data of each orbit are reconstructed using the FDK algorithm. When at least a portion of the total volume can be reconstructed by more than one source, the proposed combination method combines these overlap regions using weighted averaging in frequency space. The local exactness and the noise performance of the combination method were tested with computer simulations of a Defrise phantom, a FORBILD head phantom, and uniform noise in the raw data. Results: A noiseless simulation showed that the local exactness of the reconstructed volume from the source with the smallest tilt angle was preserved in the combined image. A noise simulation demonstrated that the combination method improved the noise performance compared to a single orbit reconstruction. Conclusions: In CT systems which have overlap volumes that can be reconstructed with data from more than one orbit and in which the spatial frequency content of each reconstruction can be calculated, the proposed method offers improved noise performance while keeping the local exactness of data from the source with the smallest tilt angle. PMID:21089770

  15. Fully analytical integration over the 3D volume bounded by the β sphere in topological atoms.

    PubMed

    Popelier, Paul L A

    2011-11-17

    Atomic properties of a topological atom are obtained by 3D integration over the volume of its atomic basin. Algorithms that compute atomic properties typically integrate over two subspaces: the volume bounded by the so-called β sphere, which is centered at the nucleus and completely contained within the atomic basin, and the volume of the remaining part of the basin. Here we show how the usual quadrature over the β sphere volume can be replaced by a fully analytical 3D integration leading to the atomic charge (monopole moment) for s, p, and d functions. Spherical tensor multipole moments have also been implemented and tested up to hexadecupole for s functions only, and up to quadrupole for s and p functions. The new algorithm is illustrated by operating on capped glycine (HF/6-31G, 35 molecular orbitals (MOs), 322 Gaussian primitives, 19 nuclei), the protein crambin (HF/3-21G, 1260 MOs, 5922 primitives and 642 nuclei), and tin (Z = 50) in Sn(2)(CH(3))(2) (B3LYP/cc-pVTZ and LANL2DZ, 59 MOs, 1352 primitives). PMID:21978204

  16. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  17. Developing a 3D Game Design Authoring Package to Assist Students' Visualization Process in Design Thinking

    ERIC Educational Resources Information Center

    Kuo, Ming-Shiou; Chuang, Tsung-Yen

    2013-01-01

    The teaching of 3D digital game design requires the development of students' meta-skills, from story creativity to 3D model construction, and even the visualization process in design thinking. The characteristics a good game designer should possess have been identified as including redesign things, creativity thinking and the ability to…

  18. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    NASA Astrophysics Data System (ADS)

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  19. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  20. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  1. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan

    2012-02-01

    The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.

  2. Predicate-Based Focus-and-Context Visualization for 3D Ultrasound.

    PubMed

    Schulte zu Berge, Christian; Baust, Maximilian; Kapoor, Ankur; Navab, Nassir

    2014-12-01

    Direct volume visualization techniques offer powerful insight into volumetric medical images and are part of the clinical routine for many applications. Up to now, however, their use is mostly limited to tomographic imaging modalities such as CT or MRI. With very few exceptions, such as fetal ultrasound, classic volume rendering using one-dimensional intensity-based transfer functions fails to yield satisfying results in case of ultrasound volumes. This is particularly due its gradient-like nature, a high amount of noise and speckle, and the fact that individual tissue types are rather characterized by a similar texture than by similar intensity values. Therefore, clinicians still prefer to look at 2D slices extracted from the ultrasound volume. In this work, we present an entirely novel approach to the classification and compositing stage of the volume rendering pipeline, specifically designed for use with ultrasonic images. We introduce point predicates as a generic formulation for integrating the evaluation of not only low-level information like local intensity or gradient, but also of high-level information, such as non-local image features or even anatomical models. Thus, we can successfully filter clinically relevant from non-relevant information. In order to effectively reduce the potentially high dimensionality of the predicate configuration space, we propose the predicate histogram as an intuitive user interface. This is augmented by a scribble technique to provide a comfortable metaphor for selecting predicates of interest. Assigning importance factors to the predicates allows for focus-and-context visualization that ensures to always show important (focus) regions of the data while maintaining as much context information as possible. Our method naturally integrates into standard ray casting algorithms and yields superior results in comparison to traditional methods in terms of visualizing a specific target anatomy in ultrasound volumes. PMID:26356952

  3. Recording, Visualization and Documentation of 3D Spatial Data for Monitoring Topography in Areas of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis

    2014-05-01

    . Journal of Archaeological Science 40, 176-189 (2012) [6] Sinclair, P., Addis, M., Choi, F., Doerr, M., Lewis, P., Martinez, K.: The Use of CRM Core in Multimedia Annotation. In: First International Workshop on Semantic Web Annotations for Multimedia (2006) [7] Zhiming, Z., et al.: Scientific workflow management: between generality and applicability. In: Proc. the 5th International Conference on Quality Software, Melbourne, Australia, pp. 19-20 (2005) [8] Infrastructure for Spatial Information in Europe. INSPIRE Architecture and Standards Position Paper (2002) [9] Doerr, M., Kritsotaki, A.: Documenting events in metadata. In: The e-volution of Information Communication Technology in Cultural Heritage, pp. 56-61 (2006) [10] Maravelakis, E., Konstantaras, A., Kritsotaki, A., Angelakis, D. and Xinogalos, M.: Analysing User Needs for a Unified 3D Metadata Recording and Exploitation of Cultural Heritage Monuments System, Advances in Visual Computing, Lecture Notes in Computer Science Volume 8034, pp 138-147, (2013) [11] Maravelakis, E., Andrianakis, M., Psarakis, K., Bolanakis, N., Tzatzanis, G., Bilalis, N., Antoniadis, A.: Lessons Learned from Cultural Heritage Digitisation Projects in Crete. In: Proceedings of the 14th International Conference on Virtual Systems and Multimedia, pp. 152-156 (2008)

  4. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  5. Adaptive enhancement and visualization techniques for 3D THz images of breast cancer tumors

    NASA Astrophysics Data System (ADS)

    Wu, Yuhao; Bowman, Tyler; Gauch, John; El-Shenawee, Magda

    2016-03-01

    This paper evaluates image enhancement and visualization techniques for pulsed terahertz (THz) images of tissue samples. Specifically, our research objective is to effectively differentiate between heterogeneous regions of breast tissues that contain tumors diagnosed as triple negative infiltrating ductal carcinoma (IDC). Tissue slices and blocks of varying thicknesses were prepared and scanned using our lab's THz pulsed imaging system. One of the challenges we have encountered in visualizing the obtained images and differentiating between healthy and cancerous regions of the tissues is that most THz images have a low level of details and narrow contrast, making it difficult to accurately identify and visualize the margins around the IDC. To overcome this problem, we have applied and evaluated a number of image processing techniques to the scanned 3D THz images. In particular, we employed various spatial filtering and intensity transformation techniques to emphasize the small details in the images and adjust the image contrast. For each of these methods, we investigated how varying filter sizes and parameters affect the amount of enhancement applied to the images. Our experimentation shows that several image processing techniques are effective in producing THz images of breast tissue samples that contain distinguishable details, making further segmentation of the different image regions promising.

  6. Design and implementation of a 3D ocean virtual reality and visualization engine

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  7. A MATLAB function for 3-D and 4-D topographical visualization in geosciences

    NASA Astrophysics Data System (ADS)

    Zekollari, Harry

    2016-04-01

    Combining topographical information and spatially varying variables in visualizations is often crucial and inherent to geoscientific problems. Despite this, it is often an impossible or a very time-consuming and difficult task to create such figures by using classic software packages. This is also the case in the widely used numerical computing environment MATLAB. Here a MATLAB function is introduced for plotting a variety of natural environments with a pronounced topography, such as for instance glaciers, volcanoes and lakes in mountainous regions. Landscapes can be visualized in 3-D, with a single colour defining a featured surface type (e.g. ice, snow, water, lava), or with a colour scale defining the magnitude of a variable (e.g. ice thickness, snow depth, water depth, surface velocity, gradient, elevation). As an input only the elevation of the subsurface (typically the bedrock) and the surface are needed, which can be complemented by various input parameters in order to adapt the figure to specific needs. The figures are particularly suited to make time-evolving animations of natural processes, such as for instance a glacier retreat or a lake drainage event. Several visualization examples will be provided alongside with animations. The function, which is freely available for download, only requires the basic package of MATLAB and can be run on any standard stationary or portable personal computer.

  8. Reconstruction Error of Calibration Volume's Coordinates for 3D Swimming Kinematics.

    PubMed

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2011-09-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  9. Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans

    PubMed Central

    Simavli, Huseyin; Que, Christian John; Akduman, Mustafa; Rizzo, Jennifer L.; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.

    2015-01-01

    Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal thickness (RT) measurements from 3-dimensional (3D) volume scans for primary open angle glaucoma (POAG). Design Cross-sectional study. Methods Setting Institutional Study population 156 patients (89 POAG and 67 normal subjects) Observation procedures One eye of each subject was included. SD-OCT peripapillary RT values from 3D volume scans were calculated for four quadrants of three different sized annuli. Peripapillary retinal nerve fiber layer (RNFL) thickness values were also determined. Main outcome measures Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Results The top five RT AUROCs for all glaucoma patients and for a subset of early glaucoma patients were for the inferior quadrant of outer circumpapillary annulus of circular grid (OCA) 1 (0.959, 0.939), inferior quadrant of OCA2 (0.945, 0.921), superior quadrant of OCA1 (0.890, 0.811), inferior quadrant of OCA3 (0.887, 0.854), and superior quadrant of OCA2 (0.879, 0.807). Smaller RT annuli OCA1 and OCA2 consistently showed better diagnostic performance than the larger RT annulus OCA3. For both RNFL and RT measurements, best AUROC values were found for inferior RT OCA1 and OCA2, followed by inferior and overall RNFL thickness. Conclusion Peripapillary RT measurements from 3D volume scans showed excellent diagnostic performance for detecting both glaucoma and early glaucoma patients. Peripapillary RT values have the same or better diagnostic capability compared to peripapillary RNFL thickness measurements, while also having fewer algorithm errors. PMID:25498354

  10. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  11. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  12. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.

    2009-12-01

    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  13. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.

    PubMed

    Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike

    2016-01-01

    Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos. PMID:26529743

  14. FaceWarehouse: A 3D Facial Expression Database for Visual Computing.

    PubMed

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2013-10-25

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Microsoft's Kinect system to capture 150 individuals from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions. For every raw data record, a set of facial feature points on the color image such as eye corners and mouth contour are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-three tensor to build a bilinear face model with two attributes, identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image. PMID:24166613

  15. Use of 3D conformal symbology on HMD for a safer flight in degraded visual environment

    NASA Astrophysics Data System (ADS)

    Klein, Ofer; Doehler, Hans-Ullrich; Trousil, Thomas; Peleg-Marzan, Ruthy

    2012-06-01

    Since the entry of coalition forces to Afghanistan and Iraq, a steep rise at the rate of accidents has occurred as a result of flying and landing in Degraded Visual Environment (DVE) conditions. Such conditions exist in various areas around the world and include bad weather, dust and snow landing (Brownout and whiteout) and low illumination at dark nights. A promising solution is a novel 3D conformal symbology displayed on head-tracked helmet mounted display (HMD). The 3D conformal symbology approach provides space stabilized three-dimensional symbology presented on the pilot helmet mounted display and has the potential of presenting a step function in HMD performance. It offers an intuitive way for presenting crucial information to the pilots in order to increase Situational Awareness, lower the pilots' workload and thus enhancing safety of flight dramatically. The pilots can fly "heads out" while the necessary flight and mission information is presented in intuitive manner, conformal with the real world and in real-time. . Several Evaluation trials had been conducted in the UK, US and Israel using systems that were developed by Elbit Systems to prove the embodied potential of the system to provide a solution for DVE flight conditions: technology, concept and the specific systems.

  16. A GIS-based borehole data management and 3D visualization system

    NASA Astrophysics Data System (ADS)

    McCarthy, James D.; Graniero, Phil A.

    2006-12-01

    The use of subsurface data for problem solving is limited in part by the freedom the user has in their choice of data structures. If a user is allowed to work with the data in a familiar way, they can spend more time performing analysis tasks and less time restructuring data, thus increasing productivity and reducing the risks associated with a series of data modification cycles. Borehole information system (BoreIS) is based upon this principle. Design was guided by interviews with geologists who were targeted as potential users of the software, and BoreIS was developed as an extension to ESRI's ArcScene three-dimensional (3D) GIS environment. BoreIS uses borehole or well data supplied by the user to develop a 3D GIS representation which can be queried, visualized, and analysed. By asking relevant questions about data stored in Excel spreadsheets, BoreIS can automate many high-level GIS functions so that an inexperienced GIS user can still use the system. By matching table elements to spatially and geologically significant terms through the interactive setup, users can work with the data more closely matched to the geological problem domain. This allows the novice user to use powerful GIS functions to discover spatial patterns in their data. BoreIS' interactive manipulation of terms in complex queries, simple addition of contoured surfaces, and masking by lithology or formation helps geologists find spatial patterns in their data, beyond the limits of data tables and flat maps.

  17. PDB explorer -- a web based algorithm for protein annotation viewer and 3D visualization.

    PubMed

    Nayarisseri, Anuraj; Shardiwal, Rakesh Kumar; Yadav, Mukesh; Kanungo, Neha; Singh, Pooja; Shah, Pratik; Ahmed, Sheaza

    2014-12-01

    The PDB file format, is a text format characterizing the three dimensional structures of macro molecules available in the Protein Data Bank (PDB). Determined protein structure are found in coalition with other molecules or ions such as nucleic acids, water, ions, Drug molecules and so on, which therefore can be described in the PDB format and have been deposited in PDB database. PDB is a machine generated file, it's not human readable format, to read this file we need any computational tool to understand it. The objective of our present study is to develop a free online software for retrieval, visualization and reading of annotation of a protein 3D structure which is available in PDB database. Main aim is to create PDB file in human readable format, i.e., the information in PDB file is converted in readable sentences. It displays all possible information from a PDB file including 3D structure of that file. Programming languages and scripting languages like Perl, CSS, Javascript, Ajax, and HTML have been used for the development of PDB Explorer. The PDB Explorer directly parses the PDB file, calling methods for parsed element secondary structure element, atoms, coordinates etc. PDB Explorer is freely available at http://www.pdbexplorer.eminentbio.com/home with no requirement of log-in. PMID:25118648

  18. Monitoring the solid-liquid interface in tanks using profiling sonar and 3D visualization techniques

    NASA Astrophysics Data System (ADS)

    Sood, Nitin; Zhang, Jinsong; Roelant, David; Srivastava, Rajiv

    2005-03-01

    Visualization of the interface between settled solids and the optically opaque liquid above is necessary to facilitate efficient retrieval of the high-level radioactive waste (HLW) from underground storage tanks. A profiling sonar was used to generate 2-D slices across the settled solids at the bottom of the tank. By incrementally rotating the sonar about its centerline, slices of the solid-liquid interface can be imaged and a 3-D image of the settled solids interface generated. To demonstrate the efficacy of the sonar in real-time solid-liquid interface monitoring systems inside HLW tanks, two sets of experiments were performed. First, various solid objects and kaolin clay (10 μm dia) were successfully imaged while agitating with 30% solids (by weight) entrained in the liquid. Second, a solid with a density similar to that of the immersed fluid density was successfully imaged. Two dimensional (2-D) sonar images and the accuracy and limitations of the in-tank imaging will be presented for these two experiments. In addition, a brief review of how to utilize a 2-D sonar image to generate a 3-D surface of the settled layer within a tank will be discussed.

  19. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    PubMed

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice. PMID:19651551

  20. PointCloudExplore 2: Visual exploration of 3D gene expression

    SciTech Connect

    International Research Training Group Visualization of Large and Unstructured Data Sets, University of Kaiserslautern, Germany; Institute for Data Analysis and Visualization, University of California, Davis, CA; Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, CA; Genomics Division, LBNL; Computer Science Department, University of California, Irvine, CA; Computer Science Division,University of California, Berkeley, CA; Life Sciences Division, LBNL; Department of Molecular and Cellular Biology and the Center for Integrative Genomics, University of California, Berkeley, CA; Ruebel, Oliver; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Keranen, Soile V.E.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; DePace, Angela H.; Simirenko, L.; Eisen, Michael B.; Biggin, Mark D.; Hagen, Hand; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2008-03-31

    To better understand how developmental regulatory networks are defined inthe genome sequence, the Berkeley Drosophila Transcription Network Project (BDNTP)has developed a suite of methods to describe 3D gene expression data, i.e.,the output of the network at cellular resolution for multiple time points. To allow researchersto explore these novel data sets we have developed PointCloudXplore (PCX).In PCX we have linked physical and information visualization views via the concept ofbrushing (cell selection). For each view dedicated operations for performing selectionof cells are available. In PCX, all cell selections are stored in a central managementsystem. Cells selected in one view can in this way be highlighted in any view allowingfurther cell subset properties to be determined. Complex cell queries can be definedby combining different cell selections using logical operations such as AND, OR, andNOT. Here we are going to provide an overview of PointCloudXplore 2 (PCX2), thelatest publicly available version of PCX. PCX2 has shown to be an effective tool forvisual exploration of 3D gene expression data. We discuss (i) all views available inPCX2, (ii) different strategies to perform cell selection, (iii) the basic architecture ofPCX2., and (iv) illustrate the usefulness of PCX2 using selected examples.

  1. Adaptation of video game UVW mapping to 3D visualization of gene expression patterns

    NASA Astrophysics Data System (ADS)

    Vize, Peter D.; Gerth, Victor E.

    2007-01-01

    Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.

  2. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  3. MRI data driven partial volume effects correction in PET imaging using 3D local multi-resolution analysis

    NASA Astrophysics Data System (ADS)

    Le Pogam, Adrien; Lamare, Frederic; Hatt, Mathieu; Fernandez, Philippe; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2013-02-01

    PET partial volume effects (PVE) resulting from the limited resolution of PET scanners is still a quantitative issue that PET/MRI scanners do not solve by themselves. A recently proposed voxel-based locally adaptive 3D multi-resolution PVE correction based on the mutual analysis of wavelet decompositions was applied on 12 clinical 18F-FLT PET/T1 MRI images of glial tumors, and compared to a PET only voxel-wise iterative deconvolution approach. Quantitative and qualitative results demonstrated the interest of exploiting PET/MRI information with higher uptake increases (19±8% vs. 11±7%, p=0.02), as well as more convincing visual restoration of details within tumors with respect to deconvolution of the PET uptake only. Further studies are now required to demonstrate the accuracy of this restoration with histopathological validation of the uptake in tumors.

  4. GIS-based 3D modeling and visualization of the Mw7.7, 2007, Tocopilla aftershocks

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Sobiesiak, M.

    2009-04-01

    The November 14, 2007 Mw 7.7 earthquake nucleated on the west coast of northern Chile about 40 km east of the city of Tocopilla. It took place in the southern part of the of a large seismic gap namely, the Iquique subduction zone segment which is supposed to be at the end of its seismic cycle. The Tocopilla fault plane appears to be the northern continuation of the Mw 8.0, 1995 Antofagasta earthquake. We present a complex 3D model of the rupture area including first hypocenter localizations of aftershocks following the event. The data was recorded during a mission of the German Task Force for Earthquakes after the 2007 Tocopilla earthquake. 34 seismic stations were recording the aftershocks from November 2007 until May 2008. In general, subduction zones have a complex structure where most of the volumes examined are characterized by strong variations in physical and material parameters and are far away from a homogeneously layered half space. Therefore, 3D representation of the geophysical and geological conditions to be found are of great importance to understand such a subduction environment. Using ArcScene as a three-dimensional modeling tool gives us the possibility to visualize the aftershock distribution along the subducting slab and identify clear structures and clusters within the data set. Furthermore we combine the 2007 Tocopilla data set with the 1995 Antofagasta aftershocks which provides a new, three-dimensional insight into the segment boundary of these two events.

  5. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. PMID:20022133

  6. 3-D visualization of ensemble weather forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    NASA Astrophysics Data System (ADS)

    Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.

    2015-02-01

    We present the application of interactive 3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and forecast wind field resolution. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (three to seven days before take-off).

  7. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool.

    PubMed

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2009-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  8. DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    PubMed Central

    Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary

    2008-01-01

    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444

  9. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  10. Web-based volume slicer for 3D electron-microscopy data from EMDB

    PubMed Central

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J.; Patwardhan, Ardan

    2016-01-01

    We describe the functionality and design of the Volume slicer – a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale. PMID:26876163

  11. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard

    2015-03-01

    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  12. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    ERIC Educational Resources Information Center

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  13. Earth Science Research Discovery, Integration, 3D Visualization and Analysis using NASA World Wind

    NASA Astrophysics Data System (ADS)

    Alameh, N.; Hogan, P.

    2008-12-01

    NASA plays a leadership role in the world of Advanced Information Technologies. Part of our mission is to leverage those technologies to increase the usability of the growing amount of earth observation produced by the science community. NASA World Wind open source technology provides a complete 3D visualization platform that is being continually advanced by NASA, its partners and the open source community. The technology makes scientific data and observations more accessible to Earth scientists and offers them a standards-based extensible platform to manipulate and analyze that data. The API-centric architecture of World Wind's SDK allows others to readily extend or embed this technology (including in web pages). Such multiple approaches to using the technology accelerate opportunities for the research community to provide "advances in fundamental understanding of the Earth system and increased application of this understanding to serve the nation and the people of the world" (NRC Decadal Survey). The opportunities to advance this NASA Open Source Agreement (NOSA) technology by leveraging advances in web services, interoperability, data discovery mechanisms, and Sensor Web are unencumbered by proprietary constraints and therefore provide the basis for an evolving platform that can reliably service the needs of the Earth Science, Sensor Web and GEOSS communities. The ability for these communities to not only use this technology in an unrestricted manner but to also participate in advancing it leads to accelerated innovation and maximum exchange of information. 3 characteristics enable World Wind to push the frontier in Advanced Information Systems: 1- World Wind provides a unifying information browser to enable a variety of 3D geospatial applications. World Wind consists of a coherent suite of modular components to be used selectively or in concert with any number of programs. 2- World Wind technology can be embedded as part of any application and hence makes it

  14. Volume analysis of treatment response of head and neck lesions using 3D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Street, Ethan; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Chan, Heang-Ping; Mukherji, Suresh K.

    2008-03-01

    A computerized system for segmenting lesions in head and neck CT scans was developed to assist radiologists in estimation of the response to treatment of malignant lesions. The system performs 3D segmentations based on a level set model and uses as input an approximate bounding box for the lesion of interest. In this preliminary study, CT scans from a pre-treatment exam and a post one-cycle chemotherapy exam of 13 patients containing head and neck neoplasms were used. A radiologist marked 35 temporal pairs of lesions. 13 pairs were primary site cancers and 22 pairs were metastatic lymph nodes. For all lesions, a radiologist outlined a contour on the best slice on both the pre- and post treatment scans. For the 13 primary lesion pairs, full 3D contours were also extracted by a radiologist. The average pre- and post-treatment areas on the best slices for all lesions were 4.5 and 2.1 cm2, respectively. For the 13 primary site pairs the average pre- and post-treatment primary lesions volumes were 15.4 and 6.7 cm 3 respectively. The correlation between the automatic and manual estimates for the pre-to-post-treatment change in area for all 35 pairs was r=0.97, while the correlation for the percent change in area was r=0.80. The correlation for the change in volume for the 13 primary site pairs was r=0.89, while the correlation for the percent change in volume was r=0.79. The average signed percent error between the automatic and manual areas for all 70 lesions was 11.0+/-20.6%. The average signed percent error between the automatic and manual volumes for all 26 primary lesions was 37.8+/-42.1%. The preliminary results indicate that the automated segmentation system can reliably estimate tumor size change in response to treatment relative to radiologist's hand segmentation.

  15. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  16. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  17. Towards a gestural 3D interaction for tangible and three-dimensional GIS visualizations

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Pattakos, Nikolas; Maragakis, Michail

    2014-05-01

    The last decade has been characterized by a significant increase of spatially dependent applications that require storage, visualization, analysis and exploration of geographic information. GIS analysis of spatiotemporal geographic data is operated by highly trained personnel under an abundance of software and tools, lacking interoperability and friendly user interaction. Towards this end, new forms of querying and interaction are emerging, including gestural interfaces. Three-dimensional GIS representations refer to either tangible surfaces or projected representations. Making a 3D tangible geographic representation touch-sensitive may be a convenient solution, but such an approach raises the cost significantly and complicates the hardware and processing required to combine touch-sensitive material (for pinpointing points) with deformable material (for displaying elevations). In this study, a novel interaction scheme upon a three dimensional visualization of GIS data is proposed. While gesture user interfaces are not yet fully acceptable due to inconsistencies and complexity, a non-tangible GIS system where 3D visualizations are projected, calls for interactions that are based on three-dimensional, non-contact and gestural procedures. Towards these objectives, we use the Microsoft Kinect II system which includes a time of flight camera, allowing for a robust and real time depth map generation, along with the capturing and translation of a variety of predefined gestures from different simultaneous users. By incorporating these features into our system architecture, we attempt to create a natural way for users to operate on GIS data. Apart from the conventional pan and zoom features, the key functions addressed for the 3-D user interface is the ability to pinpoint particular points, lines and areas of interest, such as destinations, waypoints, landmarks, closed areas, etc. The first results shown, concern a projected GIS representation where the user selects points

  18. 3D visualization of tissue microstructures using optical coherence tomography needle probes

    NASA Astrophysics Data System (ADS)

    Kirk, Rodney W.; McLaughlin, Robert A.; Quirk, Bryden C.; Curatolo, Andrea; Sampson, David D.

    2011-05-01

    Optical coherence tomography (OCT) needle probes use miniaturized focusing optics encased in a hypodermic needle. Needle probes can scan areas of the body that are too deep to be imaged by other OCT systems. This paper presents an OCT needle probe-based system that is capable of acquiring three-dimensional scans of tissue structures. The needle can be guided to a target area and scans acquired by rotating and pulling-back the probe. The system is demonstrated using ex vivo human lymph node and sheep lung samples. Multiplanar reconstructions are shown of both samples, as well as the first published 3D volume rendering of lung tissue acquired with an OCT needle probe.

  19. 3D Visualization of Sheath Folds in Roman Marble from Ephesus, Turkey

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Passchier, Cornelis W.; de Kemp, Eric A.; Ilhan, Sinan

    2013-04-01

    Excavation of a palatial 2nd century AD house (Terrace House Two) in the ancient city of Ephesus, Turkey in the 1970s produced 10.313 pieces of colored, folded marble which belonged to 54 marble plates of 1.6 cm thickness that originally covered the walls of the banquet hall of the house. The marble plates were completely reassembled and restored by a team of workers over the last 6 years. The plates were recognized as having been sawn from two separate large blocks of "Cipollino verde", a green mylonitized marble from Karystos on the Island of Euboea, Greece. After restoration, it became clear that all slabs had been placed on the wall in approximately the sequence in which they had been cut off by a Roman stone saw. As a result, the marble plates give a full 3D insight in the folded internal structure of 1m3 block of mylonite. The restoration of the slabs was recognized as a first, unique opportunity for detailed reconstruction of the 3D geometry of m-scale folds in mylonitized marble. Photographs were taken of each slab and used to reconstruct their exact arrangement within the originally quarried blocks. Outlines of layers were digitized and a full 3D reconstruction of the internal structure of the block was created using ArcMap and GOCAD. Fold structures in the block include curtain folds and multilayered sheath folds. Several different layers showing these structures were digitized on the photographs of the slab surfaces and virtually mounted back together within the model of the marble block. Due to the serial sectioning into slabs, with cm-scale spacing, the visualization of the 3D geometry of sheath folds was accomplished with a resolution better than 4 cm. Final assembled 3D images reveal how sheath folds emerge from continuous layers and show their overall consistency as well as a constant hinge line orientation of the fold structures. Observations suggest that a single deformation phase was responsible for the evolution of "Cipollino verde" structures

  20. In situ visualization of magma deformation at high temperature using time-lapse 3D tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Lee, Peter; Lavallee, Yan; Kendrick, Jackie; Von-Aulock, Felix

    2016-04-01

    We use synchrotron based x-ray computed micro-tomography (sCT) to visualize, in situ, the microstructural evolution of magma samples 3 mm diameter with a resolution of 3 μm during heating and uniaxial compression at temperatures up to 1040 °C. The interaction between crystals, melt and gas bubbles is analysed in 4D (3D + time) during sample deformation. The ability to observe the changes of the microstructure as a function of time allow us to: a) study the effect of temperature in the ability of magma to fracture or deform; b) quantify bubble nucleation and growth rates during heating; c) study the relation between crystal displacement and volatile exsolution. We will show unique beautiful videos of how bubbles grow and coalescence, how samples and crystals within the sample fracture, heal and deform. Our study establishes in situ sCT as a powerful tool to quantify and visualize with micro-scale resolution fast processes taking place in magma that are essential to understand ascent in a volcanic conduit and validate existing models for determining the explosivity of volcanic eruptions. Tracking simultaneously the time and spatial changes of magma microstructures is shown to be primordial to study disequilibrium processes between crystals, melt and gas phases.

  1. High-resolution 3D modelling and visualization of Mount Everest

    NASA Astrophysics Data System (ADS)

    Gruen, Armin; Murai, Shunji

    In the year 1988, a new topographical map 1:50,000 of the Mount Everest region was published by the National Geographic Society. The full map content was derived from aerial images of scale 1:35,000, acquired in a 1984 photogrammetric flight. This highly acclaimed topographical map, produced with Swiss photogrammetric and cartographic know-how, serves until nowadays as an important work of reference. We took the analogue data (images, contours), converted them into digital form through scanning, and produced a texture-mapped 3D computer model. With a DTM of 10 m grid-size and natural texture pixel-size of 1 m this model is currently the best dataset available for an area of 25 by 25 km 2 around the summit of Mount Everest. This paper reports about the production procedure of the model and shows some high-resolution photorealistic visualization results. The dataset has been used in the meantime by cartographers and animation experts for the production of new map-related visualization products and is much sought after by scientists of various disciplines.

  2. Reconstruction, Quantification, and Visualization of Forest Canopy Based on 3d Triangulations of Airborne Laser Scanning Point Data

    NASA Astrophysics Data System (ADS)

    Vauhkonen, J.

    2015-03-01

    Reconstruction of three-dimensional (3D) forest canopy is described and quantified using airborne laser scanning (ALS) data with densities of 0.6-0.8 points m-2 and field measurements aggregated at resolutions of 400-900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty) space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i) to optimize the degree of filtration with respect to the field measurements, and (ii) to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2) with the stem volume considered, both alone (R2=0.65) and together with other predictors (R2=0.78). When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  3. Local intersection volume: a new 3D descriptor applied to develop a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands.

    PubMed

    Verli, Hugo; Albuquerque, Magaly Girão; Bicca de Alencastro, Ricardo; Barreiro, Eliezer J

    2002-03-01

    In this work, we have developed a new descriptor, named local intersection volume (LIV), in order to compose a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands. The LIV can be classified as a 3D local shape descriptor in contraposition to the global shape descriptors. We have selected from the literature 49 non-benzodiazepine compounds as a training data set and the model was obtained and evaluated by genetic algorithms (GA) and partial least-squares (PLS) methods using LIVs as descriptors. The LIV 3D-QSAR model has a good predictive capacity according the cross-validation test by "leave-one-out" procedure (Q(2)=0.72). The developed model was compared to a comprehensive and extensive SAR pharmacophore model, recently proposed by Cook and co-workers, for benzodiazepine receptor ligands [J. Med. Chem. 43 (2000) 71]. It showed a relevant correlation with the pharmacophore groups pointed out in that work. Our LIV 3D-QSAR model was also able to predict affinity values for a series of nine compounds (test data set) that was not included into the training data set. PMID:11900866

  4. Interactive Visualization and Monitoring of Large-Scale 3-D Mantle Convection Runs

    NASA Astrophysics Data System (ADS)

    Damon, M.; Yuen, D.; Kameyama, M.; Knox, M.; Porter, D.; Sevre, E. O.; Woodward, P.

    2007-12-01

    With the imminent arrival of petascale computing in the United States by 2011, new strategies for visualizing and monitoring high-resolution numerical simulations on massively parallel computers are needed to overcome the extreme data and resource requirements. We have employed a visualization system consisting of 14 powerful Dell workstations, each with a multi-terabyte disk, connected via a high-speed network with a bandwidth on the order of a few gigabits per second to a locally situated massively parallel system with approximately 2,000 processing elements. This system has been constructed at the Laboratory of Computational Sciences and Engineering at the University of Minnesota. Near real-time interactive analysis of 3-D mantle convection using around 10 million grid points has been carried out using a client-server application capable of streaming gigabytes of simulated data to a remote Powerwall with 13 million pixels. Concurrently, we have constructed a web-portal that allows a user to monitor the same run at home or in a hotel room, using a laptop. In our case, interactive computing takes on the meaning of performing such runs for a limited duration of time, say 1 to 2 hours. This calls for a balance between grid resolution and the number of processing elements required to provide the level of interactivity needed to achieve one to a few frames per second. Our mode of operation represents a new paradigm in numerical modeling that supports a trend toward both real-time visualization and monitoring of high-resolution models and a consequent reduction in storage of raw output data, since the interactive periods are by definition short. Using this interactive strategy periodically we can facilitate long heroic runs extending over a few days.

  5. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    SciTech Connect

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodriguez, A. O.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  6. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  7. Do you see what I hear: experiments in multi-channel sound and 3D visualization for network monitoring?

    NASA Astrophysics Data System (ADS)

    Ballora, Mark; Hall, David L.

    2010-04-01

    Detection of intrusions is a continuing problem in network security. Due to the large volumes of data recorded in Web server logs, analysis is typically forensic, taking place only after a problem has occurred. This paper describes a novel method of representing Web log information through multi-channel sound, while simultaneously visualizing network activity using a 3-D immersive environment. We are exploring the detection of intrusion signatures and patterns, utilizing human aural and visual pattern recognition ability to detect intrusions as they occur. IP addresses and return codes are mapped to an informative and unobtrusive listening environment to act as a situational sound track of Web traffic. Web log data is parsed and formatted using Python, then read as a data array by the synthesis language SuperCollider [1], which renders it as a sonification. This can be done either for the study of pre-existing data sets or in monitoring Web traffic in real time. Components rendered aurally include IP address, geographical information, and server Return Codes. Users can interact with the data, speeding or slowing the speed of representation (for pre-existing data sets) or "mixing" sound components to optimize intelligibility for tracking suspicious activity.

  8. Effects of immersion on visual analysis of volume data.

    PubMed

    Laha, Bireswar; Sensharma, Kriti; Schiffbauer, James D; Bowman, Doug A

    2012-04-01

    Volume visualization has been widely used for decades for analyzing datasets ranging from 3D medical images to seismic data to paleontological data. Many have proposed using immersive virtual reality (VR) systems to view volume visualizations, and there is anecdotal evidence of the benefits of VR for this purpose. However, there has been very little empirical research exploring the effects of higher levels of immersion for volume visualization, and it is not known how various components of immersion influence the effectiveness of visualization in VR. We conducted a controlled experiment in which we studied the independent and combined effects of three components of immersion (head tracking, field of regard, and stereoscopic rendering) on the effectiveness of visualization tasks with two x-ray microscopic computed tomography datasets. We report significant benefits of analyzing volume data in an environment involving those components of immersion. We find that the benefits do not necessarily require all three components simultaneously, and that the components have variable influence on different task categories. The results of our study improve our understanding of the effects of immersion on perceived and actual task performance, and provide guidance on the choice of display systems to designers seeking to maximize the effectiveness of volume visualization applications. PMID:22402687

  9. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    /liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.

  10. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  11. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  12. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    NASA Astrophysics Data System (ADS)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  13. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  14. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes

    NASA Astrophysics Data System (ADS)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine

    2015-03-01

    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  15. Recording, Visualization and Documentation of 3D Spatial Data for Monitoring Topography in Areas of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis

    2014-05-01

    This research investigates the application of new system for 3D documentation of land degradation and its effect [1,2] on areas of cultural heritage via complete 3D data acquisition, 3D modeling and metadata recording using terrestrial laser scanners (TLS) [3,4,5]. As land degradation progresses through time it is important to be able to map and exactly replicate with great precision the entire 3D shape of the physical objects of interest, such as landslides, ground erosion, river boundaries, mad accumulation, etc. [1,2] TLS enables the extraction and recording of a very large number of points in space with great precision and without the need for any physical contact with the object of interest. Field specialists can then examine the produced models and comment on them both on the overall object of interest and on specific features of it by inserting annotations on certain parts of the model [6]. This process could be proven to be very cost effective as it can be repeated as often as necessary and produce a well catalogued documentation of the progress of land degradation at particular areas. The problem with repeating TLS models lies on the various types of hardware equipment and software systems that might be used for the extraction of point clouds, and the different people that might be called to analyze the findings. These often result in a large volume of interim and final products with little if no standardization, multiple different metadata and vague documentation [7], which makes metadata recordings [8] crucial both for one scientist to be able to follow upon the work of the other as well as being able to repeat the same work when deemed necessary. This makes the need for a repository tool proposed by the authors essential in order to record all work that is done in every TLS scanning, and makes the technology accessible to scientists of various different fields [9,10], eg. geologists, physicists, topographers, remote sensing engineers, archaeologists etc

  16. Snow Volumes 3D Modeling on the Karstic Plateau of Mount Lebanon (Lebanon)

    NASA Astrophysics Data System (ADS)

    Janine, S.; Luxey, P.; Dhont, D.

    2006-12-01

    Fresh water availability is a major player in the middle east geo-politics. Its correct management implies accurate knowledge of the underground reserves as well as surface flow. In Lebanon, snow fall is a major surface input. Evaluations of snow volumes have already been performed in 2000-2001 but they were preliminary and open the door to further more accurate studies. Our goal is to evaluate the snow volumes remaining at the end of the winter, using a 3D geo-modeler (normally used in the oil business). The studied snow is deposited onto porous and rough terrains making it a good candidate for infiltration in the underlaying karst reservoirs. The deposits are studied in two different areas, one with circular shaped dolines where the snow is trapped (Jabal Jraid, between 1760 and 1884 meters), the other is characterized by more elongated lows (Sannine plateau, between 2450 and 2625 meters). Our technique uses remotely sensed data as satellite images and DEM. The combination of both data sets leads to an automated method to determine the snow volumes. This automation is of high importance as the measures can be reproduced at different time intervals allowing the determination of a melting rate.

  17. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes

    PubMed Central

    Eapen, Maya; Korah, Reeba; Geetha, G.

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  18. Automated breast mass detection in 3D reconstructed tomosynthesis volumes: a featureless approach.

    PubMed

    Singh, Swatee; Tourassi, Georgia D; Baker, Jay A; Samei, Ehsan; Lo, Joseph Y

    2008-08-01

    The purpose of this study was to propose and implement a computer aided detection (CADe) tool for breast tomosynthesis. This task was accomplished in two stages-a highly sensitive mass detector followed by a false positive (FP) reduction stage. Breast tomosynthesis data from 100 human subject cases were used, of which 25 subjects had one or more mass lesions and the rest were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algorithms in which the second stage FP reduction is done via feature extraction and analysis, instead information theory principles were used with mutual information as a similarity metric. Three schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes, A, B, and C, differed in the composition of their knowledge base of regions of interest (ROIs). Scheme A's knowledge base was comprised of all the mass and FP ROIs generated by the first stage of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and randomly extracted normal ROIs. Scheme C had information from three sources of information-masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach optimal performance. The results indicated that the knowledge base needed no more than 20 times as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6 FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C. PMID:18777923

  19. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system

    NASA Astrophysics Data System (ADS)

    France, L.; Ouillon, N.; Chazot, G.; Kornprobst, J.; Boivin, P.

    2009-06-01

    CMAS 3D, developed in MATLAB ®, is a program to support visualization of major element chemical data in three dimensions. Such projections are used to discuss correlations, metamorphic reactions and the chemical evolution of rocks, melts or minerals. It can also project data into 2D plots. The CMAS 3D interface makes it easy to use, and does not require any knowledge of Matlab ® programming. CMAS 3D uses data compiled in a Microsoft Excel™ spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching.

  20. Use and Evaluation of 3D GeoWall Visualizations in Undergraduate Space Science Classes

    NASA Astrophysics Data System (ADS)

    Turner, N. E.; Hamed, K. M.; Lopez, R. E.; Mitchell, E. J.; Gray, C. L.; Corralez, D. S.; Robinson, C. A.; Soderlund, K. M.

    2005-12-01

    One persistent difficulty many astronomy students face is the lack of 3- dimensional mental model of the systems being studied, in particular the Sun-Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause, for example, the cycle of lunar phases or the pattern of seasons. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs for use in geology classes, but as yet very little work has been done involving the GeoWall for astronomy classes. We present results from a large study involving over 1000 students of varied backgrounds: some students were tested at the University of Texas at El Paso, a large public university on the US-Mexico border and other students were from the Florida Institute of Technology, a small, private, technical school in Melbourne Florida. We wrote a lecture tutorial-style lab to go along with a GeoWall 3D visual of the Earth-Moon system and tested the students before and after with several diagnostics. Students were given pre and post tests using the Lunar Phase Concept Inventory (LPCI) as well as a separate evaluation written specifically for this project. We found the lab useful for both populations of students, but not equally effective for all. We discuss reactions from the students and their improvement, as well as whether the students are able to correctly assess the usefullness of the project for their own learning.

  1. A 3D Earth orbit model; visualization and analysis of Milankovitch cycles and insolation

    NASA Astrophysics Data System (ADS)

    Gilb, R. D.; Kostadinov, T. S.

    2012-12-01

    An astronomically precise and accurate Earth orbit graphical model, Earth orbit v2.0, is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Prevalent paleoclimatic theories invoke Milankovitch cycles as a major forcing mechanism capable of shifting Earth's climate regimes on time scales of tens to hundreds of thousands of years. Variability of eccentricity (ellipticity of orbit), precession (longitude of perihelion) and obliquity (Earth's axial tilt) changes parameters such as amplitude of seasonal insolation, timing of seasons with respect to perihelion, and total annual insolation. Hays et al. (1976) demonstrated a strong link between Milankovitch cycles and paleoclimatological records, which has been confirmed and expanded many times since (e.g. Berger et al., 1994; Berger et al., 2010). The complex interplay of several orbital parameters on various time scales makes assessment and visualization of Earth's orbit and spatio-temporal insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns on various spatio-temporal scales. These factors also make Milankovitch theory difficult to teach effectively. The model allows substantial user control in a robust, yet intuitive and user-friendly graphical user interface (GUI) developed in Matlab. We present the user with a choice between Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. Berger solutions span from -1 Myr to +1 Myr, while Laskar provides solutions from -101 Myr to +21 Myr since J2000. Users can also choose a "demo" mode which allows the three Milankovitch parameters to be varied independently of each other, so the user can isolate the effects of each on orbital geometry and insolation. For example, extreme eccentricity can be

  2. Visualization and dissemination of 3D geological property models of the Netherlands

    NASA Astrophysics Data System (ADS)

    Stafleu, Jan; Sobisch, Hans-Georg; Maljers, Denise; Hummelman, Jan; Dambrink, Roula M.; Gunnink, Jan L.

    2013-04-01

    The Geological Survey of the Netherlands (GSN) systematically produces 3D geological models of the Netherlands. To date, we build and maintain two different types of nation-wide models: (1) layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and (2) voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties. Our models are disseminated free-of-charge through the DINO-portal (www.dinoloket.nl) in a number of ways, including in an on-line map viewer with the option to create vertical cross-sections through the models, and as a series of downloadable GIS products. A recent addition to the portal is the freely downloadable SubsurfaceViewer software (developed by INSIGHT GmbH), allowing users to download and visualize both the layer-based models and the voxel models on their desktop computers. The SubsurfaceViewer allows visualization and analysis of geological layer-based and voxel models of different data structures and origin and includes a selection of data used to construct the respective model (maps, cross-sections, borehole data, etc.). The user is presented both a classical map view and an interactive 3D view. In addition, the SubsurfaceViewer offers a one dimensional vertical view as a synthetic borehole as well as a vertical cross-section view. The data structure is based on XML and linked ASCII-files and allows the hybrid usage of layers (tin and 2D raster) and voxels (3D raster). A recent development in the SubsurfaceViewer is the introduction of a data structure supporting irregular voxels. We have chosen a simple data structure consisting of a plain ASCII-file containing the x,y,z -coordinates of the lower left and upper right corner of each voxel followed by a list of property values (e.g. the geological unit the voxel belongs to, the lithological composition and the hydraulic conductivity). Irregular voxels are used to

  3. Optoacoustic 3D visualization of changes in physiological properties of mouse tissues from live to postmortem

    NASA Astrophysics Data System (ADS)

    Su, Richard; Ermiliov, Sergey A.; Liopo, Anton V.; Oraevsky, Alexander A.

    2012-02-01

    Using the method of 3D optoacoustic tomography, we studied changes in tissues of the whole body of nude mice as the changes manifested themselves from live to postmortem. The studies provided the necessary baseline for optoacoustic imaging of necrotizing tissue, acute and chronic hypoxia, and reperfusion. They also establish a new optoacoustic model of early postmortem conditions of the whole mouse body. Animals were scanned in a 37°C water bath using a three-dimensional optoacoustic tomography system previously shown to provide high contrast maps of vasculature and organs based on changes in the optical absorbance. The scans were performed right before, 5 minutes after, 2 hours and 1 day after a lethal injection of KCl. The near-infrared laser wavelength of 765 nm was used to evaluate physiological features of postmortem changes. Our data showed that optoacoustic imaging is well suited for visualization of both live and postmortem tissues. The images revealed changes of optical properties in mouse organs and tissues. Specifically, we observed improvements in contrast of the vascular network and organs after the death of the animal. We associated these with reduced optical scattering, loss of motion artifacts, and blood coagulation.

  4. 3D visualization of sheath folds in Ancient Roman marble wall coverings from Ephesos, Turkey

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Passchier, Cees W.; de Kemp, Eric A.; İlhan, Sinan

    2014-10-01

    Archaeological excavations and restoration of a palatial Roman housing complex in Ephesos, Turkey yielded 40 wall-decorating plates of folded mylonitic marble (Cipollino verde), derived from the internal Hellenides near Karystos, Greece. Cipollino verde was commonly used for decoration purposes in Roman buildings. The plates were serial-sectioned from a single quarried block of 1,25 m3 and provided a research opportunity for detailed reconstruction of the 3D geometry of meterscale folds in mylonitized marble. A GOCAD model is used to visualize the internal fold structures of the marble, comprising curtain folds and multilayered sheath folds. The sheath folds are unusual in that they have their intermediate axis normal to the parent layering. This agrees with regional tectonic studies, which suggest that Cipollino verde structures formed by local constrictional non-coaxial flow. Sheath fold cross-section geometry, exposed on the surface of a plate or outcrop, is found to be independent of the intersection angle of the fold structure with the studied plane. Consequently, a single surface cannot be used as an indicator of the three-dimensional geometry of transected sheath folds.

  5. Ergodic theory and experimental visualization of chaos in 3D flows

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Mezic, Igor

    2000-11-01

    In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.

  6. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  7. Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes

    NASA Astrophysics Data System (ADS)

    Zheng, Yefeng; Georgescu, Bogdan; Barbu, Adrian; Scheuering, Michael; Comaniciu, Dorin

    2008-03-01

    Multi-chamber heart segmentation is a prerequisite for quantification of the cardiac function. In this paper, we propose an automatic heart chamber segmentation system. There are two closely related tasks to develop such a system: heart modeling and automatic model fitting to an unseen volume. The heart is a complicated non-rigid organ with four chambers and several major vessel trunks attached. A flexible and accurate model is necessary to capture the heart chamber shape at an appropriate level of details. In our four-chamber surface mesh model, the following two factors are considered and traded-off: 1) accuracy in anatomy and 2) easiness for both annotation and automatic detection. Important landmarks such as valves and cusp points on the interventricular septum are explicitly represented in our model. These landmarks can be detected reliably to guide the automatic model fitting process. We also propose two mechanisms, the rotation-axis based and parallel-slice based resampling methods, to establish mesh point correspondence, which is necessary to build a statistical shape model to enforce priori shape constraints in the model fitting procedure. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3D computed tomography (CT) volumes. Our approach is based on recent advances in learning discriminative object models and we exploit a large database of annotated CT volumes. We formulate the segmentation as a two step learning problem: anatomical structure localization and boundary delineation. A novel algorithm, Marginal Space Learning (MSL), is introduced to solve the 9-dimensional similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3D shape through learning-based boundary delineation. Extensive experiments demonstrate the efficiency and robustness of the proposed approach, comparing favorably to the state-of-the-art. This

  8. TeleInViVo: a collaborative volume visualization application.

    PubMed

    Coleman, J; Savchenko, A; Goettsch, A; Wang, K; Bono, P; Littlefield, R; Macedonia, C

    1997-01-01

    Converging technologies in the areas of networks, volume visualization algorithms, and computer performance have made possible the development of a new tool for collaboration, which extends the reach of health professionals, and other consumers of volumetric data around the world. TeleInViVo(tm) is a three-dimensional (3D) collaborative volume visualization tool for medical applications. It extends the capabilities of InViVo(tm), a fast volume visualization tool developed at the Fraunhofer IGD, Darmstadt, Germany [1-3], with efficient and intuitive network collaboration features for remote consultation and new modes of interaction. The software runs on both UNIX and Windows NT platforms. TeleInViVo provides a high degree of interactivity for the medical professional when interacting with the patient data, facilitates explanation and communication between field personnel and medical experts located far from the field, and permits viewing of the data in a multitude of ways designed to support rapid and accurate diagnosis. Current efforts involve architectural enhancements to support multiuser, distributed telemedical scenarios. The application includes the following features: Volume and subvolume data transmission at user specified resolution, Synchronization cues, Integration of Immersion Probe(tm), a 6 degree-of-freedom input device, for ergonomic 3D data exploration, Tools for measuring distances, Tools for planning instrument path, Arbitrary cutting planes in real time, Interactive segmentation tools, Virtual video recorder and playback (cine loops), 3D stereo mode. TeleInViVo is an essential part of the MUSTPAC-1 portable 3D ultrasound system developed by Battelle Pacific Northwest Labs, Richland, WA. PMID:10168908

  9. 3D Visualization of Solar Data: Preparing for Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Felix, S.; Meier, S.; Csillaghy, A.; Nicula, B.; Verstringe, F.; Bourgoignie, B.; Berghmans, D.; Jiggens, P.

    2014-12-01

    The next generation of ESA/NASA heliophysics missions, Solar Orbiter and Solar Probe Plus, will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Since 2010, NASA's Solar Dynamics Observatory returns 1.4 TB/day of high-resolution solar images, magnetograms and EUV irradiance data. Within a few years, the scientific community will thus have access to petabytes of multi­dimensional remote­sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. As of today, there is an obvious lack of capability to both visualize these data and assimilate them into sophisticated models to advance our knowledge. A key piece needed to bridge the gap between observables, derived quantities like magnetic field extrapolations and model output is a tool to routinely and intuitively visualize large heterogeneous, multidimensional, time­dependent data sets. As of today, the space science community is lacking the means to do this (i) on a routine basis, (ii) for complex multi­dimensional data sets from various instruments and vantage points and (iii) in an extensible and modular way that is open for future improvements and interdisciplinary usage. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project. Among other features, JHelioviewer offers efficient region-of-interest-based data

  10. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  11. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    PubMed

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions. PMID:26283159

  12. Visual navigation of the UAVs on the basis of 3D natural landmarks

    NASA Astrophysics Data System (ADS)

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-12-01

    This work considers the tracking of the UAV (unmanned aviation vehicle) on the basis of onboard observations of natural landmarks including azimuth and elevation angles. It is assumed that UAV's cameras are able to capture the angular position of reference points and to measure the angles of the sight line. Such measurements involve the real position of UAV in implicit form, and therefore some of nonlinear filters such as Extended Kalman filter (EKF) or others must be used in order to implement these measurements for UAV control. Recently it was shown that modified pseudomeasurement method may be used to control UAV on the basis of the observation of reference points assigned along the UAV path in advance. However, the use of such set of points needs the cumbersome recognition procedure with the huge volume of on-board memory. The natural landmarks serving as such reference points which may be determined on-line can significantly reduce the on-board memory and the computational difficulties. The principal difference of this work is the usage of the 3D reference points coordinates which permits to determine the position of the UAV more precisely and thereby to guide along the path with higher accuracy which is extremely important for successful performance of the autonomous missions. The article suggests the new RANSAC for ISOMETRY algorithm and the use of recently developed estimation and control algorithms for tracking of given reference path under external perturbation and noised angular measurements.

  13. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  14. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  15. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  16. A 3-D implicit finite-volume model of shallow water flows

    NASA Astrophysics Data System (ADS)

    Wu, Weiming; Lin, Qianru

    2015-09-01

    A three-dimensional (3-D) model has been developed to simulate shallow water flows in large water bodies, such as coastal and estuarine waters. The eddy viscosity is determined using a newly modified mixing length model that uses different mixing length functions for the horizontal and vertical shear strain rates. The 3-D shallow water flow equations with the hydrostatic pressure assumption are solved using an implicit finite-volume method based on a quadtree (telescoping) rectangular mesh on the horizontal plane and the sigma coordinate in the vertical direction. The quadtree technique can locally refine the mesh around structures or in high-gradient regions by splitting a coarse cell into four child cells. The grid nodes are numbered with a one-dimensional index system that has unstructured grid feature for better grid flexibility. All the primary variables are arranged in a non-staggered grid system. Fluxes at cell faces are determined using a Rhie and Chow-type momentum interpolation, to avoid the possible spurious checkerboard oscillations caused by linear interpolation. Each of the discretized governing equations is solved iteratively using the flexible GMRES method with ILUT preconditioning, and coupling of water level and velocity among these equations is achieved by using the SIMPLEC algorithm with under-relaxation. The model has been tested in four cases, including steady flow near a spur-dyke, tidal flows in San Francisco Bay and Gironde Estuary, and wind-induced current in a flume. The calculated water levels and velocities are in good agreement with the measured values.

  17. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    PubMed

    Tracey, Jeff A; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R; Fisher, Robert N

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  18. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    USGS Publications Warehouse

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  19. Movement-Based Estimation and Visualization of Space Use in 3D for Wildlife Ecology and Conservation

    PubMed Central

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research. PMID:24988114

  20. 3D Visualization of "Frozen" Dynamic Magma Chambers in the Duluth Complex, Northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Peterson, D. M.; Hauck, S. A.

    2005-12-01

    The Mesoproterozoic Duluth Complex and associated intrusions of the Midcontinent Rift in northeastern Minnesota constitute one of the largest, semi-continuous, mafic intrusive complexes in the world, second only to the Bushveld Complex of South Africa. These rocks cover an arcuate area of over 5,000 square kilometers and give rise to two strong gravity anomalies (+50 & +70 mgal) that imply intrusive roots to more than 13 km depth. The geometry of three large mafic intrusions within the Duluth Complex have been modeled by the integration of field mapping and drill hole data with maps of gravity and magnetic anomalies. The igneous bodies include the South Kawishiwi, Partridge River, and Bald Eagle intrusions that collectively outcrop over an area of > 800 square kilometers. The South Kawishiwi and Partridge River intrusions host several billion tons of low-grade Cu-Ni-PGE mineralization near their base, while the geophysical expressions of the Bald Eagle intrusion have the same shape and dimensions as the "bulls eye" pattern of low velocity seismic reflection anomalies along the East Pacific Rise. These anomalies are interpreted to define regions of melt concentrations, i.e., active magma chambers. This suggests that the funnel-shaped Bald Eagle intrusion could be an example of a "frozen" dynamic magma chamber. In support of this analogy we note that the magmatic systems of intracontinental rifts, mid-ocean ridges, extensional regimes in back-arc environments, and ophiolites have a common characteristic: the emplacement of magma in extensional environments, and the common products in all four are varieties of layered intrusions, dikes and sills, and overlying volcanic rocks. 3D visualization of these intrusions is integral to the understanding of the Duluth Complex magmatic system and associated mineralization, and can be used as a proxy for study of similar systems, such as the Antarctic Ferrar dolerites, worldwide.

  1. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    NASA Astrophysics Data System (ADS)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  2. Visualizing 3D Objects from 2D Cross Sectional Images Displayed "In-Situ" versus "Ex-Situ"

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George

    2010-01-01

    The present research investigates how mental visualization of a 3D object from 2D cross sectional images is influenced by displacing the images from the source object, as is customary in medical imaging. Three experiments were conducted to assess people's ability to integrate spatial information over a series of cross sectional images in order to…

  3. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  4. Visualizing Terrestrial and Aquatic Systems in 3D - in IEEE VisWeek 2014

    EPA Science Inventory

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  5. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  6. Services Oriented Smart City Platform Based On 3d City Model Visualization

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.

    2014-04-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.

  7. Determining gully volume from straightforward photo-based 3D reconstruction

    NASA Astrophysics Data System (ADS)

    James, M. R.; Castillo, C.; Pérez, R.; Taguas, E. V.; Gomez, J. A.; Quinton, J. N.

    2012-04-01

    In order to quantify soil loss through gully erosion, accurate measurements of gully volume are required. However, gullys are usually extended features, often with complex morphologies and are challenging to survey appropriately and efficiently. Here we explore the use of a photo-based technique for deriving 3D gully models suitable for detailed erosion studies. Traditional aerial and oblique close-range photogrammetry approaches have been previously used to produce accurate digital elevation models (DEMs) from photographs. However, these techniques require expertise to carry out successfully, use proprietry software and usually need apriori camera calibration. The computer vision approach we adopt here relaxes these requirements and allows 3D models to be automatically produced from collections of unordered photos. We use a freely available 'reconstruction pipeline' (http://blog.neonascent.net/archives/bundler-photogrammetry-package/) that combines structure-from-motion and multi-view stereo algorithms (SfM-MVS) to generate dense point clouds (millions of points). The model is derived from photos taken from different positions with a consumer camera and is then scaled and georeferenced using additional software (http://www.lancs.ac.uk/staff/jamesm/software/sfm_georef.htm) and observations of some control points in the scene. The approach was tested on a ~7-m long sinous gully section (average width and depth ~2.4 and 1.2 m respectively) in Vertisol soils, near Cordoba, Spain. For benchmark data, the gully topography was determined with a terrestrial laser scanner (Riegl LMS-Z420i, with a cited range accuracy of 10 mm). 191 photos were taken with a Canon EOS 450D with a prime (fixed) 28 mm lens over a period of ~10 minutes. In order to georeference the SfM-MVS model for comparison with the TLS data, 6 control targets were located around the gully and their locations determined by dGPS. Differences between the TLS and SfM-MVS surfaces are dominated by areas of data

  8. Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser

    NASA Astrophysics Data System (ADS)

    Christen, M.

    2016-06-01

    Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.

  9. 3D Quantitative Confocal Laser Microscopy of Ilmenite Volume Distribution in Alpe Arami Olivine

    NASA Astrophysics Data System (ADS)

    Bozhilov, K. N.

    2001-12-01

    The deep origin of the Alpe Arami garnet lherzolite massif in the Swiss Alps proposed by Dobrzhinetskaya et al. (Science, 1996) has been a focus of heated debate. One of the lines of evidence supporting an exhumation from more than 200 km depth includes the abundance, distribution, and orientation of magnesian ilmenite rods in the oldest generation of olivine. This argument has been disputed in terms of the abundance of ilmenite and consequently the maximum TiO2 content in the discussed olivine. In order to address this issue, we have directly measured the volume fraction of ilmenite of the oldest generation of olivine by applying confocal laser scanning microscopy (CLSM). CLSM is a method which allows for three-dimensional imaging and quantitative volume determination by optical sectioning of the objects. The images for 3D reconstruction and measurements were acquired from petrographic thin sections in reflected laser light with 488 nm wavelength. Measurements of more than 80 olivine grains in six thin sections of our material yielded an average volume fraction of 0.31% ilmenite in the oldest generation of olivine from Alpe Arami. This translates into 0.23 wt.% TiO2 in olivine with error in determination of ±0.097 wt.%, a value significantly different from that of 0.02 to 0.03 wt.% TiO2 determined by Hacker et al. (Science, 1997) by a broad-beam microanalysis technique. During the complex geological history of the Alpe Arami massif, several events of metamorphism are recorded which all could have caused increased mobility of the mineral components. Evidence for loss of TiO2 from olivine is the tendency for high densities of ilmenite to be restricted to cores of old grains, the complete absence of ilmenite inclusions from the younger, recrystallized, generation of olivine, and reduction in ilmenite size and abundance in more serpentinized specimens. These observations suggest that only olivine grains with the highest concentrations of ilmenite are close to the

  10. The effect of object speed and direction on the performance of 3D speckle tracking using a 3D swept-volume ultrasound probe

    NASA Astrophysics Data System (ADS)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Symonds-Tayler, J. Richard N.; Evans, Philip M.

    2011-11-01

    Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s-1. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s-1. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over

  11. Error propagation in the computation of volumes in 3D city models with the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Biljecki, F.; Ledoux, H.; Stoter, J.

    2014-11-01

    This paper describes the analysis of the propagation of positional uncertainty in 3D city models to the uncertainty in the computation of their volumes. Current work related to error propagation in GIS is limited to 2D data and 2D GIS operations, especially of rasters. In this research we have (1) developed two engines, one that generates random 3D buildings in CityGML in multiple LODs, and one that simulates acquisition errors to the geometry; (2) performed an error propagation analysis on volume computation based on the Monte Carlo method; and (3) worked towards establishing a framework for investigating error propagation in 3D GIS. The results of the experiments show that a comparatively small error in the geometry of a 3D city model may cause significant discrepancies in the computation of its volume. This has consequences for several applications, such as in estimation of energy demand and property taxes. The contribution of this work is twofold: this is the first error propagation analysis in 3D city modelling, and the novel approach and the engines that we have created can be used for analysing most of 3D GIS operations, supporting related research efforts in the future.

  12. Toward automatic detection of vessel stenoses in cerebral 3D DSA volumes

    NASA Astrophysics Data System (ADS)

    Mualla, F.; Pruemmer, M.; Hahn, D.; Hornegger, J.

    2012-05-01

    Vessel diseases are a very common reason for permanent organ damage, disability and death. This fact necessitates further research for extracting meaningful and reliable medical information from the 3D DSA volumes. Murray's law states that at each branch point of a lumen-based system, the sum of the minor branch diameters each raised to the power x, is equal to the main branch diameter raised to the power x. The principle of minimum work and other factors like the vessel type, impose typical values for the junction exponent x. Therefore, deviations from these typical values may signal pathological cases. In this paper, we state the necessary and the sufficient conditions for the existence and the uniqueness of the solution for x. The second contribution is a scale- and orientation- independent set of features for stenosis classification. A support vector machine classifier was trained in the space of these features. Only one branch was misclassified in a cross validation on 23 branches. The two contributions fit into a pipeline for the automatic detection of the cerebral vessel stenoses.

  13. Quality control of dose volume histogram computation characteristics of 3D treatment planning systems

    NASA Astrophysics Data System (ADS)

    Panitsa, E.; Rosenwald, J. C.; Kappas, C.

    1998-10-01

    Detailed quality control (QC) protocols are a necessity for modern radiotherapy departments. The established QC protocols for treatment planning systems (TPS) do not include recommendations on the advanced features of three-dimensional (3D) treatment planning, like the dose volume histograms (DVH). In this study, a test protocol for DVH characteristics was developed. The protocol assesses the consistency of the DVH computation to the dose distribution calculated by the same TPS by comparing DVH parameters with values obtained by the isodose distributions. The computation parameters (such as the dimension of the computation grid) that are applied to the TPS during the tests are not fixed but set by the user as if the test represents a typical clinical case. Six commercial TPS were examined with this protocol within the frame of the EC project Dynarad (Biomed I). The results of the intercomparison prove the consistency of the DVH results to the isodose values for most of the examined TPS. However, special attention should be paid when working with cases of adverse conditions such as high dose gradient regions. In these cases, higher errors are derived, especially when an insufficient number of dose calculation points are used for the DVH computation.

  14. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  15. a Cache Design Method for Spatial Information Visualization in 3d Real-Time Rendering Engine

    NASA Astrophysics Data System (ADS)

    Dai, X.; Xiong, H.; Zheng, X.

    2012-07-01

    A well-designed cache system has positive impacts on the 3D real-time rendering engine. As the amount of visualization data getting larger, the effects become more obvious. They are the base of the 3D real-time rendering engine to smoothly browsing through the data, which is out of the core memory, or from the internet. In this article, a new kind of caches which are based on multi threads and large file are introduced. The memory cache consists of three parts, the rendering cache, the pre-rendering cache and the elimination cache. The rendering cache stores the data that is rendering in the engine; the data that is dispatched according to the position of the view point in the horizontal and vertical directions is stored in the pre-rendering cache; the data that is eliminated from the previous cache is stored in the eliminate cache and is going to write to the disk cache. Multi large files are used in the disk cache. When a disk cache file size reaches the limit length(128M is the top in the experiment), no item will be eliminated from the file, but a new large cache file will be created. If the large file number is greater than the maximum number that is pre-set, the earliest file will be deleted from the disk. In this way, only one file is opened for writing and reading, and the rest are read-only so the disk cache can be used in a high asynchronous way. The size of the large file is limited in order to map to the core memory to save loading time. Multi-thread is used to update the cache data. The threads are used to load data to the rendering cache as soon as possible for rendering, to load data to the pre-rendering cache for rendering next few frames, and to load data to the elimination cache which is not necessary for the moment. In our experiment, two threads are designed. The first thread is to organize the memory cache according to the view point, and created two threads: the adding list and the deleting list, the adding list index the data that should be

  16. Be the Volume: A Classroom Activity to Visualize Volume Estimation

    ERIC Educational Resources Information Center

    Mikhaylov, Jessica

    2011-01-01

    A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…

  17. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    ERIC Educational Resources Information Center

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  18. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.

    PubMed

    Piro, Neltje E; Piro, Lennart K; Kassubek, Jan; Blechschmidt-Trapp, Ronald A

    2016-01-01

    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  19. Interactive 3D Visualization of the Great Lakes of the World (GLOW) as a Tool to Facilitate Informal Science Education

    NASA Astrophysics Data System (ADS)

    Yikilmaz, M.; Harwood, C. L.; Hsi, S.; Kellogg, L. H.; Kreylos, O.; McDermott, J.; Pellett, B.; Schladow, G.; Segale, H. M.; Yalowitz, S.

    2013-12-01

    Three-dimensional (3D) visualization is a powerful research tool that has been used to investigate complex scientific problems in various fields. It allows researchers to explore and understand processes and features that are not directly observable and help with building of new models. It has been shown that 3D visualization creates a more engaging environment for public audiences. Interactive 3D visualization can allow individuals to explore scientific concepts on their own. We present an NSF funded project developed in collaboration with UC Davis KeckCAVES, UC Davis Tahoe Environmental Research Center, ECHO Lake Aquarium & Science Center, and Lawrence Hall of Science. The Great Lakes of the World (GLOW) project aims to build interactive 3D visualization of some of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes. The project includes a collection of publicly available satellite imagery and digital elevation models at various resolutions for the 20 major lakes of the world as well as the bathymetry data for the 12 lakes. It also includes the vector based 'Global Lakes and Wetlands Database (GLWD)' by the World Wildlife Foundation (WWF) and the Center for Environmental System Research University of Kassel, Germany and the CIA World DataBank II data sets to show wetlands and water reservoirs at global scale. We use a custom virtual globe (Crusta) developed at the UC Davis KeckCAVES. Crusta is designed to specifically allow for visualization and mapping of features in very high spatial resolution (< 1m) and large extent (1000's of km2) raster imagery and topographic data. In addition to imagery, a set of pins, labels and billboards are used to provide textual information about these lakes. Users can interactively learn about the lake and watershed processes as well as geologic processes (e.g. faulting, landslide, glacial, volcanic

  20. Identifying Key Structural Features and Spatial Relationships in Archean Microbialites Using 2D and 3D Visualization Methods

    NASA Astrophysics Data System (ADS)

    Stevens, E. W.; Sumner, D. Y.

    2009-12-01

    Microbialites in the 2521 ± 3 Ma Gamohaan Formation, South Africa, have several different end-member morphologies which show distinct growth structures and spatial relationships. We characterized several growth structures and spatial relationships in two samples (DK20 and 2_06) using a combination of 2D and 3D analytical techniques. There are two main goals in studying complicated microbialites with a combination of 2D and 3D methods. First, one can better understand microbialite growth by identifying important structures and structural relationships. Once structures are identified, the order in which the structures formed and how they are related can be inferred from observations of crosscutting relationships. Second, it is important to use both 2D and 3D methods to correlate 3D observations with those in 2D that are more common in the field. Combining analysis provides significantly more insight into the 3D morphology of microbial structures. In our studies, 2D analysis consisted of describing polished slabs and serial sections created by grinding down the rock 100 microns at a time. 3D analysis was performed on serial sections visualized in 3D using Vrui and 3DVisualizer software developed at KeckCAVES, UCD (http://keckcaves.org). Data were visualized on a laptop and in an immersive cave system. Both samples contain microbial laminae and more vertically orients microbial "walls" called supports. The relationships between these features created voids now filled with herringbone and blocky calcite crystals. DK20, a classic plumose structure, contains two types of support structures. Both are 1st order structures (1st order structures with organic inclusions and 1st without organic inclusions) interpreted as planar features based on 2D analysis. In the 2D analysis the 1st order structures show v branching relationships as well as single cuspate relationships (two 1st order structures with inclusions merging upward), and single tented relationships (three supports

  1. SRB-3D Solid Rocket Booster performance prediction program. Volume 3: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The programmer's manual for the Modified Solid Rocket Booster Performance Prediction Program (SRB-3D) describes the major control routines of SRB-3D, followed by a super index listing of the program and a cross-reference of the program variables.

  2. Using 3D Glyph Visualization to Explore Real-time Seismic Data on Immersive and High-resolution Display Systems

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Lindquist, K.; Kilb, D.; Newman, R.; Vernon, F.; Leigh, J.; Johnson, A.; Renambot, L.

    2003-12-01

    The study of time-dependent, three-dimensional natural phenomena like earthquakes can be enhanced with innovative and pertinent 3D computer graphics. Here we display seismic data as 3D glyphs (graphics primitives or symbols with various geometric and color attributes), allowing us to visualize the measured, time-dependent, 3D wave field from an earthquake recorded by a certain seismic network. In addition to providing a powerful state-of-health diagnostic of the seismic network, the graphical result presents an intuitive understanding of the real-time wave field that is hard to achieve with traditional 2D visualization methods. We have named these 3D icons `seismoglyphs' to suggest visual objects built from three components of ground motion data (north-south, east-west, vertical) recorded by a seismic sensor. A seismoglyph changes color with time, spanning the spectrum, to indicate when the seismic amplitude is largest. The spatial extent of the glyph indicates the polarization of the wave field as it arrives at the recording station. We compose seismoglyphs using the real time ANZA broadband data (http://www.eqinfo.ucsd.edu) to understand the 3D behavior of a seismic wave field in Southern California. Fifteen seismoglyphs are drawn simultaneously with a 3D topography map of Southern California, as real time data is piped into the graphics software using the Antelope system. At each station location, the seismoglyph evolves with time and this graphical display allows a scientist to observe patterns and anomalies in the data. The display also provides visual clues to indicate wave arrivals and ~real-time earthquake detection. Future work will involve adding phase detections, network triggers and near real-time 2D surface shaking estimates. The visuals can be displayed in an immersive environment using the passive stereoscopic Geowall (http://www.geowall.org). The stereographic projection allows for a better understanding of attenuation due to distance and earth

  3. 3D-Assisted Quantitative Assessment of Orbital Volume Using an Open-Source Software Platform in a Taiwanese Population

    PubMed Central

    Shyu, Victor Bong-Hang; Hsu, Chung-En; Chen, Chih-hao; Chen, Chien-Tzung

    2015-01-01

    Orbital volume evaluation is an important part of pre-operative assessments in orbital trauma and congenital deformity patients. The availability of the affordable, open-source software, OsiriX, as a tool for preoperative planning increased the popularity of radiological assessments by the surgeon. A volume calculation method based on 3D volume rendering-assisted region-of-interest computation was used to determine the normal orbital volume in Taiwanese patients after reorientation to the Frankfurt plane. Method one utilized 3D points for intuitive orbital rim outlining. The mean normal orbital volume for left and right orbits was 24.3±1.51 ml and 24.7±1.17 ml in male and 21.0±1.21 ml and 21.1±1.30 ml in female subjects. Another method (method two) based on the bilateral orbital lateral rim was also used to calculate orbital volume and compared with method one. The mean normal orbital volume for left and right orbits was 19.0±1.68 ml and 19.1±1.45 ml in male and 16.0±1.01 ml and 16.1±0.92 ml in female subjects. The inter-rater reliability and intra-rater measurement accuracy between users for both methods was found to be acceptable for orbital volume calculations. 3D-assisted quantification of orbital volume is a feasible technique for orbital volume assessment. The normal orbital volume can be used as controls in cases of unilateral orbital reconstruction with a mean size discrepancy of less than 3.1±2.03% in females and 2.7±1.32% in males. The OsiriX software can be used reliably by the individual surgeon as a comprehensive preoperative planning and imaging tool for orbital volume measurement and computed tomography reorientation. PMID:25774683

  4. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin

    NASA Astrophysics Data System (ADS)

    Ha, Manh Hung; Cauvin, Ludovic; Rassineux, Alain

    2016-04-01

    We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.

  5. Application of 3D WebGIS and real-time technique in earthquake information publishing and visualization

    NASA Astrophysics Data System (ADS)

    Li, Boren; Wu, Jianping; Pan, Mao; Huang, Jing

    2015-06-01

    In hazard management, earthquake researchers have utilized GIS to ease the process of managing disasters. Researchers use WebGIS to assess hazards and seismic risk. Although they can provide a visual analysis platform based on GIS technology, they lack a general description in the extensibility of WebGIS for processing dynamic data, especially real-time data. In this paper, we propose a novel approach for real-time 3D visual earthquake information publishing model based on WebGIS and digital globe to improve the ability of processing real-time data in systems based on WebGIS. On the basis of the model, we implement a real-time 3D earthquake information publishing system—EqMap3D. The system can not only publish real-time earthquake information but also display these data and their background geoscience information in a 3D scene. It provides a powerful tool for display, analysis, and decision-making for researchers and administrators. It also facilitates better communication between researchers engaged in geosciences and the interested public.

  6. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  7. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    PubMed Central

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-01-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications. PMID:26883390

  8. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface ar